遥感裁剪

合集下载

【最新精选】实验二图像的裁剪和镶嵌

【最新精选】实验二图像的裁剪和镶嵌

实验二遥感图像裁剪与镶嵌处理实验目的:通过实验操作,掌握遥感图像规则分幅裁剪、不规则分幅裁剪、图像匹配和图像镶嵌的基本方法和步骤,深刻理解遥感图像裁剪和镶嵌的意义。

实验内容:ERDAS软件中图像预处理模块下的Subset和Mosaic。

1.图象拼接(镶嵌)处理将同一区域机邻的三幅遥感图象进行拼接处理,为了消除太阳高度角或大气环境等影响造成的相邻图像效果的差异,首先用直方图匹配(Histogram Match)对遥感图像进行处理。

(1)直方图匹配(Histogram Match)(2)图像拼接(镶嵌).启动图象拼接工具,在ERDAS图标面板工具条中,点击Dataprep/Data preparation/Mosaicc lmages—打开Mosaic Tool 视窗。

.加载Mosaic图像,在Mosaic Tool视窗菜单条中,Edit/Add images—打开Add Images for Mosaic 对话框。

依次加载窗拼接的图像。

.在Mosaic Tool 视窗工具条中,点击set Input Mode 图标,进入设置图象模式的状态,利用所提供的编辑工具,进行图象叠置组合调查。

.图象匹配设置,点击Edit /Image Matching —打击Matching options 对话框,设置匹配方法:Overlap Areas。

.在Mosaic Tool视窗菜单条中,点击Edit/set Overlap Function—打开set OverlapFunction对话框设置以下参数:.设置相交关系(Intersection Method):No Cutline Exists。

.设置重叠图像元灰度计算(select Function):Average。

.Apply —close完成。

.运行Mosaic 工具在Mosaic Tool视窗菜单条中,点击 Process/Run Mosaic ,设置文件路径和名称,执行镶嵌操作。

ERDAS遥感图像的分幅裁剪

ERDAS遥感图像的分幅裁剪
或在ERDAS图标面板菜单条单击Interpreter图标/Utilities/Vector to Raster命令,打开Vector to Raster对话框。
在Vector to Raster对话框中设置下列参数:
(1) 输入矢量文件名称(Input Vector File)为Zone88.
在Subset对话框中设置下列参数:
(1) 输入文件名称(Input File)为Lanier.img.
(2) 输出文件名称(Output File)为Lanier-sub.img.
(3) 单击AOI按钮确定裁剪范围。
(4) 打开Choose AOI对话框。
ERDAS遥感图像的分幅裁剪
2010-09-02 20:43:51 来源:地信在线 作者: 匿名 浏览次数:209 网友评论 0 条
一.分幅裁剪
在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪(Subset image),按照 ERDAS实现图像分幅裁剪的过程,可以将图像分幅裁剪分为两种类型:规则分幅裁剪(Rectangle Subset)和不规则分幅裁剪(Polygon Subset)。
Arcinfo或ERDAS的Vector模块绘制精确的边界多边形(Polygon),然后以ArcInfo的Polygon为边界条件进行图像裁剪。对于这种情况,需要调用ERDAS其他模块的功能分两步完成。
第1步:将ArcInfo多边形转换成栅格图像文件
在ERDAS图标面板菜单条单击Main/Data Preparation/Utilities/Vector to Raster命令,打开Vector to Raster对话框。
或在ERDAS图标面板工具条单击Data Prep图标/Subset命令,打开Subset对话框。

遥感影像处理知识

遥感影像处理知识

1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。

2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。

3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。

常用方法是按照行政区划边界或自然区划边界进行图像裁剪。

在基础数据生产中,还经常要进行标准分幅裁剪。

按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。

4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。

5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。

6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。

7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。

8.立体像对:从两个不同位置对同一地区所摄取的一对相片。

9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。

10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。

在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。

11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。

12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。

envi5.3中规则影像裁剪步骤

envi5.3中规则影像裁剪步骤

在开始撰写envi5.3中规则影像裁剪步骤的文章之前,让我们先回顾一下envi5.3中的规则影像裁剪是什么。

envi5.3是一款专业的遥感图像处理软件,其中的规则影像裁剪功能可以根据用户设定的规则,对影像进行裁剪操作,以满足不同的需求。

接下来,我们将深入探讨envi5.3中规则影像裁剪的步骤,以便更好地理解和应用这一功能。

1. 确定裁剪范围在进行规则影像裁剪之前,首先需要确定裁剪的范围。

用户可以通过在envi5.3中选择相应的工具或输入特定的坐标来确定裁剪范围。

此步骤十分关键,因为裁剪范围的确定将直接影响最终裁剪出的影像的内容和准确性。

2. 设定裁剪规则一旦确定了裁剪范围,接下来就是设定裁剪规则。

envi5.3中的规则影像裁剪功能支持多种裁剪规则设定,例如按照特定的坐标范围、按照像元值、按照特定的地物类型等等。

用户可以根据实际需求,灵活选择裁剪规则,以便达到期望的裁剪效果。

3. 执行裁剪操作当裁剪范围和规则设定完成后,就可以执行裁剪操作了。

envi5.3会根据用户设定的规则,自动对影像进行裁剪处理,裁剪出符合要求的新影像。

在执行裁剪操作时,用户需要留意影像处理的速度和裁剪的精度,以确保裁剪结果符合预期。

总结回顾通过以上的步骤,我们对envi5.3中规则影像裁剪的操作流程有了初步的了解。

在实际操作过程中,用户可以根据具体的需求和影像特点,灵活运用裁剪工具,达到理想的裁剪效果。

规则影像裁剪功能也为遥感图像处理提供了更多的可能性和便利性。

个人观点和理解在我看来,envi5.3中的规则影像裁剪功能极大地方便了遥感图像处理的工作。

通过灵活设定裁剪范围和裁剪规则,用户可以更加精准地获取所需的影像信息,从而为后续的遥感数据分析和应用提供了有力的支持。

在未来的发展中,我期待envi5.3能够进一步优化规则影像裁剪的功能,使其更加智能、高效,并且更加符合用户的实际需求。

在本文中,我们深入探讨了envi5.3中规则影像裁剪的步骤,并对其进行了总结和回顾。

遥感实验五_影像镶嵌、裁剪、融合

遥感实验五_影像镶嵌、裁剪、融合
在Mosaic Tool视窗菜单条中,点击Edit/setOverlap Function—打开setOverlap Function对话框,如图1.2.6示,设置以下参数:
.设置相交关系(Intersection Method):No Cutline Exists。
.设置重叠图像元灰度计算(select Function):Average。
图2.1.5
点击DataPrep,在弹出的下拉菜单中单击Subset Images,在Input File中输入裁切的底图xianqiang.img,在Output File中设置输出文件路径和文件名,这里保存名为jianqie3.img。
单击From Inquire Box,然后点击AOI,在弹出的Choose AOI中点击Viewer,点击OK。,最后在subset点击OK,步骤如图2.1.6示。
图2.1.6
图2.1.7
在新视图窗口中打开裁切结果,如图2.1.8示。
图2.1.8
同理对全色影像进行剪切。
操作步骤如图2.2.1—2.2.3示。
图2.1.1
图2.2.2
图2.2.3
全色影像裁切效果如图2.2.4示。
图2.2.4
2.3.按已有图像范围裁切(掩膜)
按已有图像的范围从一幅较大图像中裁切一部分图像时,按下图所示方法操作:其中4处为较大图像文件(即待裁切图像),5处为限定范围的图像文件(即裁切范围),6处为结果文件(即裁切后图像),如图2.3.1示。
.Apply—close。
图像拼接线设置,在Mosaic Tool视窗菜单条中选择Set Mode For Intersection按钮 ,两幅图像之间将出现叠加线,单击两幅图像的相交区域,重叠区域将被高亮显示。根据实际需要,选择拼接线模式:

遥感影像的拼接、裁剪、不显示黑色区域问题

遥感影像的拼接、裁剪、不显示黑色区域问题

小知识:
1、如何利用arcgis10.2将多个**.img(**.tif)格式遥感影像图的图层拼接成一个图层?
打开arcmap软件,加载要拼接的遥感影像多个图层,依次打开arctoolbox→数据管理工具→栅格→栅格数据集→镶嵌,出现镶嵌对话框,在镶嵌对话框中,选择其中一个图层为“目标栅格”要加载的图层,将剩余几个要拼接的图层均加载至“输入栅格”中,“NoData值”中填入0(目的是为了使影像图中的黑色区域不显示),其余设置保持默认值,确定即可。

(时间较长,耐心等待)
2、如何利用arcgis10.2将遥感影像图的图层按照指定边界范围进行裁剪?
首先按照上面方法进行遥感影像图的拼接,使其为一个图层,然后加载指定边界范围图层,打开arctoolbox→数据管理
工具→栅格→栅格处理→裁剪,出现裁剪对话框,“输入栅格”位置即要裁剪的遥感影像图图层,输出范围即指定边界范围图层,勾选“使用输入要素裁剪几何”,勾选“保持裁剪范围”,点击右下角“环境”,出现“环境设置”对话框,点击处理范围,找到指定边界范围图层,点击确定,确定即可,时间较长,耐心等待。

3、如何使遥感影像图的黑色区域不显示?
右击遥感影像图层→属性,出现图层属性对话框,点击符号系统,勾选“显示背景值”,确定即可。

(最新)ENVI对图像进行配准、校正、拼接、裁剪

(最新)ENVI对图像进行配准、校正、拼接、裁剪

目录第一部分利用ENVI对图像进行配准-校正-拼接-裁剪 (2)一、图像配准与校正 (2)(一)基础知识 (2)(二)ENVI操作 (4)二、图像镶嵌(图像拼接) (16)(一)基础知识 (16)(二)ENVI操作 (16)三、图像裁剪 (20)(一)基础知识 (20)(二)ENVI操作 (21)第二部分:下载影像及介绍 (26)(一)基本信息 (26)(二)日期信息 (26)(三)云量信息 (26)(四)空间信息 (26)第一部分利用ENVI对图像进行配准-校正-拼接-裁剪一、图像配准与校正(一)基础知识1、图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。

2、几何校正是指利用地面控制点和几何校正数学模型,来矫正非系统因素产生的误差,非系统因素如传感器本身的高度、地球曲率、空气折射或地形等的影响。

由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。

简单来说,图像校正是借助一组控制点,对一幅图像进行地理坐标的校正。

本文将采用地面控制点+校正模型的几何校正方式中的Image to Image,利用Image格式的基准影像对2006年兰州TM影像进行配准与校正。

3、图像选点原则[1]选取图像上易分辨且较精细的特征点,如道路交叉点、河流弯曲或分叉处、海岸线弯曲处、飞机场、城廓边缘等。

[2]特征变化大的地区需要多选。

[3]图像边缘部分一定要选取控制点。

[4]尽可能满幅均匀选取。

[5]保证一定数量的控制点,不是控制点越多越好。

4、数理知识:[1]多项式模型x=a0+a1X+a2Y+a3X²+a4XY+ a5Y²+....y=b0+ b1X+b2Y+b3X²+ b4XY +b5Y²+ ....X,Y:校正前该点的位置;x,y:校正后该点的位置[2]最少控制点个数: ( n+1 )²[3]误差计算:RMSEerror= sqrt( (x' -x)²+ (y' -y)²)5、重采样方法(插值算法)[1]最近邻法概念:取与所计算点( x,y )周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近就取哪个亮度值作为 ( x,y )点的亮度值优点:简单易用,计算显小缺点:图像的亮度具有不连续性,精度差[2]双线性内插法概念:取(x,y)点周围的4个邻点,在y方向内插2次,再在x方向内插1次,得到( x,y)点的亮度值 f ( x,y)优点:双线性内插法比最近邻法虽然计算虽有所增加,但精度明显提高,特别是对亮度不连续现象或线状特征的块状化现象有明显的改善。

遥感影像处理步骤

遥感影像处理步骤

一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。

(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。

它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。

一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

(2)除坏线和条带去除遥感图像中的坏线。

遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。

一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。

3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。

二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。

特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。

1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。

(1)影像对栅格图像的配准将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

(2)影像对矢量图形的配准将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。

2.几何粗纠正这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.3.几何精纠正为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。

DEM遥感图像合并裁剪

DEM遥感图像合并裁剪

如何在ERDAS、ARCgis中实现用矢量线界裁切遥感影像总结一下利用Erdas和Arcgis来随意图形分割影像图:影像图格式为tif随意图形格式随意(就当shape格式)一:合并影像图:由于影像图的分割需要,则要全部覆盖shape格式的边界。

分Erdas和Arcgis两种合并法:Erdas合并:①打开Erdas,再打开viewer窗口(注意:再打开图层时,要将raster option的no stretch 和background transparent前打勾,这样图层就不会失真)。

②打开需要合并的图:files of type选择,选择对应的的图层③在窗口viewer—raster—mosaic images,弹出mosaic tool窗口④在窗口mosaic tool—process—run mosaic,弹出窗口⑤在窗口output file nam选择files of type为tif格式,存放路径自己选择,点击ok完成Arcgis合并: ①打开Arcgis(Arcmap), 加入要合并的图层②ArcToolBox—datamanagementtools—raster—mosaic或mosic to new rastevr然后按需求选择input raster 和 output raster还有名称。

二:生成分割边界:①先用arcmap打开shape图,选中shape边界②ArcToolBox—conversion tools—to coverage—feature to class coverage然后按需求选择input feature classse和在output coverage填入存储路径,点击ok完成,生成coverage格式。

③然后在Erdas用窗口viewer打开coverage图和tif图。

④再矢量图上用鼠标点击你要裁切的边界线,再点击“AOI”菜单,选择 copy select toaoi; View—>Arrange Layers Viewer打开Arrange Layers Viewer对话框,在Vector图层上单击右键,选择Show Properties,打开Properties对话框,选中Polygon,点击Apply按钮,再选中矢量图中重叠的部分。

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。

二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。

图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。

我国情况较为特殊,往往需要自定义坐标系。

所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。

1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。

根据每台电脑安装的路径以及版本不同而略有不同。

以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。

(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。

)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。

1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。

遥感实习作业大气校正、条带修复、镶嵌、裁剪、监督分类、三维显示等

遥感实习作业大气校正、条带修复、镶嵌、裁剪、监督分类、三维显示等

贵州大学实习报告专用纸学院:公共管理学院专业:土地资源管理姓名:杨顺学号: 1208100304 班级:土管121 实习性质:课程实习实习地点:资环楼327机房指导教师:杨柳老师成绩:一、实验目的通过上机实验的学习让我们掌握基本一些关于遥感软件的基本操作,如envi大气校正、定标、镶嵌、裁剪、监督分类和地温反演等及 arcgis成图和三维显示。

二、实验要求实验要求是自己独立完成不得抄写,必须应用老师给的数据来完成,还有是监督分类和地温反演要求arcgis成图。

三、实验原理Envi和arcgis基本操作原理。

四、实验仪器安装envi和arcgis的电脑。

五、实验步骤实验步骤:envi的基本操作(Envi基本打开操作、子区裁剪、图像特征及图像信息的统计)→数据预处理(定标大气校正、条带修复、镶嵌、裁剪)→监督分类→三维显示→地温反演。

六、实验数据LE71270412007264PFS00.tar.gz和LE71270422007264PFS00.tar.gz这两个遥感影像数据文件。

七、实验内容(一).熟悉ENVI基本操作1.Envi基本打开操作1) 启动ENVI2) 熟悉ENVI的菜单3) 打开一个影像文件4) 熟悉三个影像窗口5) 显示彩色合成图像6) 熟悉ENVI主影像窗口菜单Tools下的功能。

2.子区裁剪选择File>Save File as>ENVI Standard,出现New File Builder对话框。

点击Import File…,当Create New File Input File 对话框出现时,从下列选项中选择一个文件或多个文件。

如果内藏的文件没有在列表中显示出来,点击“Open Image File”,选择要输入的文件。

点击Spatial subset按钮,出现select Spatial subset对话框,在对话框内按不同方式进行子区的裁剪。

点击Spectral subset 按钮,出现File Spectral subset对话框,选取需要处理的波段。

遥感图像裁剪与拼接

遥感图像裁剪与拼接

遥感图像拼接(镶嵌)与裁剪一、实验目的与要求图像镶嵌指在一定数学基础控制下,把多景相邻遥感图像拼接成一个大范围、无缝的图像的过程,在ENVI中提供了透明处理、匀色、羽化等功能。

实验要求可以用ENVI解决镶嵌颜色不一致、接边以及重叠区等问题。

图像裁剪的目的是将研究之外的区域去除。

常用的方法是按照行政区划边界或者自然区域边界进行图像裁剪;在基础数据生产中,经常还要进行标准分幅裁剪。

ENVI的图像裁剪过程,可分为规则裁剪和不规则裁剪。

实验要求学生们学会通过ENVI软件对下载的地区图像进行裁剪和拼接,将南京区域裁剪出来。

通过本次实验,初步熟悉ENVI和ARCGIS软件,为今后环境遥感学习奠定基础。

二、实验内容与方法1 实验内容1)图像拼接:ENVI的图像拼接功能提供交互式的方式将没有地理坐标或者有地理坐标的多幅图像合并,生成一幅单一的合成图像。

2)图像裁剪:通常按照行政区划边界或自然区划边界进行图像剪裁,在基础数据生产中,还经常要进行标准分幅裁剪。

2 实验方法1)图像拼接最新ENVI提供了全新的影像无缝镶嵌工具Seamless Mosaic,所有功能集成在一个流程化的界面,它可以:∙控制图层的叠放顺序∙设置忽略值、显示或隐藏图层或轮廓线、重新计算有效的轮廓线、选择重采样方法和输出范围、可指定输出波段和背景值∙可进行颜色校正、羽化/调和∙提供高级的自动生成接边线功能、也可手动编辑接边线∙提供镶嵌结果的预览使用该工具可以对影像的镶嵌做到更精细的控制,包括镶嵌匀色、接边线功能和镶嵌预览等功能。

2)图像裁剪(1)规则分幅裁剪,是指裁剪图像的边界范围是一个矩形,这个矩形的范围获取途径包括行列号、左上角和右下角两点坐标、图像文件、ROI/矢量文件;(2)不规则分幅裁剪,是指裁剪图像的边界范围是一个任意多边形。

任意多边形可以是事先生成的一个完整的闭合多边形区域,可以是一个手工绘制的ROI(感兴趣区)多边形,也可以是ENVI支持的矢量文件。

遥感图像几何校正(较易)

遥感图像几何校正(较易)

遥感图像几何校正(较易)遥感图像几何校正是将采集的遥感图像与地球参考系统(如地理坐标系统或投影坐标系统)进行对齐,以保证图像上的地物位置与实际地理位置一致。

下面是一个较易的遥感图像几何校正步骤示例:1. 获取控制点:首先选择一些在图像上可见且在地面上已知坐标的控制点。

这些控制点可以是人工设置的地物特征,如标志物、房屋角点等,也可以是已知坐标的地理要素,如GPS测点、地面地物等。

2. 图像配准:通过图像配准软件,在原始图像上标记出控制点的位置,并将其与其在地面上的真实坐标相匹配。

配准软件会根据这些控制点来计算出图像的几何变换参数,如旋转、平移和缩放等。

13. 几何变换:根据图像的几何变换参数,对整个图像进行几何校正。

几何变换方法可以是线性的或非线性的,其中包括了常用的平移、旋转、缩放和仿射变换等。

4. 像素重采样:在完成几何校正后,由于图像上的像素点分辨率可能与原始图像不同,因此需要对图像进行重采样,以保证图像的细节精度和质量。

重采样方法有最邻近插值、双线性插值和双三次插值等,根据实际情况选择合适的方法。

5. 边缘裁剪:在完成像素重采样后,由于几何校正和重采样的处理可能会导致图像边缘的变形,需要对图像进行边缘裁剪,以去除边缘的不确定区域。

6. 输出校正后的图像:完成校正后的图像即可输出,用于后续的遥感分析和应用。

2需要注意的是,以上是一个较为简单的遥感图像几何校正流程,具体步骤和方法会因不同的图像类型、几何变换需求和软件工具的选择而有所不同。

在实际应用中,还需要考虑更多因素,如地面控制点的选择和精度要求、辅助数据的使用等。

3。

ENVI遥感图像处理实验二——图像常规处理2

ENVI遥感图像处理实验二——图像常规处理2

遥感图像预处理实习姓名徐丹学号120154088成绩日期2014、4、28实习内容:遥感图像的裁剪、镶嵌与几何校正1、在实际的工作中,为何经常需要对影像进行裁剪与镶嵌操作?在ENVI软件平台如何实现影像的裁剪与镶嵌,以一示例详细叙述裁剪与镶嵌的具体操作步骤。

由于遥感卫星就是在一个预先设计的轨道上运行,星载传感器沿着轨道在地面上的轨迹按一定宽度垂直于运行方向进行扫描,在实际工作中有时需要分析的地区并不完全处在同一幅图像内,这时候需要把多景相邻遥感图像拼接成一个大范围无缝的图像,即图像镶嵌,而图像剪裁的目的则就是将研究之外的区域去除。

一、图像裁剪:(1)规则分幅裁剪a)在主菜单中,选择File ——Open Image File,打开裁剪图像bhtmref、img。

b)在主菜单中,选择File——Save ——ENVI Standard,弹出New 对话框。

c)在New 对话框中,单击Import File按钮,弹出Create New File对话框。

d)在Create New File对话框中,选中Select Input File列表中的裁剪图像,单击Spatial Subset按钮。

e)在Select Spatial Subset对话框中,单击Image按钮,弹出Subset ByImage对话框。

f)在Subset By Image对话框中,可以通过输入行列数确定剪裁尺寸并按住鼠标左键拖动图像中的红色矩形框确定剪裁区域,或直接用鼠标左键按红色边框拖动来确定剪裁尺寸以及位置,单击OK按钮。

g)在Select Spatial Subset对话框中可以瞧到剪裁区域信息,单击OK按钮。

h)在Create New File对话框中,可以通过Spectral Subset按钮选择输出波段子集,单击OK按钮。

i)选择输出路径及文件名或者选择Memory直接在窗口上显示,单击OK按钮,完成规则分幅裁剪过程。

ENVI遥感图像处理实验教程 实验四 镶嵌、裁切ok

ENVI遥感图像处理实验教程 实验四 镶嵌、裁切ok

图 4-1-6 图像镶嵌输出参数设置
图 4-1-7 图像镶嵌结果
练习: 将实习 3 中几何校正好的两幅地形图进行镶嵌设置及处理
2、裁切 影像裁剪的目的是将研究区以外的区域去除, 经常是按照行政区划或研究区 域的边界对图像进行裁剪,在基础数据生产中,还经常要做标准分副裁剪。按照 ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。 2.1 规则裁剪 (1)在主菜单中,选择 File →Open Image File,打开裁剪的图像; (2)在主菜单中,选择 Basic Tools→ Resize Data (Sptial/Spectral) 命令; (3) 在 Resize Data Input File 对话框中选择需要裁剪的图像( 图 4-2-1) ;
图 4-2-11 导出 EVF 图层为 ROI
(5) 选择主菜单 Basic→subset data via ROIs,或者选择 ROI Tool→File →Subset data via ROIs,选择要裁剪图像,点击 OK; (6) 在弹出的 Spatial Subset via ROI Parameters 窗口中选择进行裁剪 的感兴趣区域及输出文件(图 4-2-12)。
图 4-2-6 图像裁剪输出参数设置 2. 2 不规则裁剪 不规则裁剪是指裁剪图像的边界范围是一个任意多边形,通过事先确定的一 个完整的闭合区域进行,这个区域可以是一个手工绘制的 ROI 多边形,也可以 是 ENVI 支持的矢量数据文件。 1、基于手动绘制感兴趣区域的图像裁剪 (1) 打开要裁剪的图像,并显示在 Display 中; (2) 在 Image 视图窗口中选择 Overlay→Region of Interest。 在 ROI Tool 窗口中,选择 ROI_Type→Polygon; (3) 在 Window 一栏中选择感兴趣区域绘制窗口,这里选择 Image,然后在 Image 窗体中绘制一个多边形区域,然后右键单击两次结束; (4) 选择主菜单 Basic→subset data via ROIs,或者选择 ROI Tool→File →Subset data via ROIs 命令,选择裁剪图像(图 4-2-7);

遥感图像裁剪与拼接

遥感图像裁剪与拼接

遥感图像裁剪与拼接在遥感领域中,遥感图像裁剪与拼接是常见的处理操作。

通过将多个遥感图像进行裁剪和拼接,可以获得更大范围、更高分辨率的图像,进而满足不同应用需求。

本文将介绍遥感图像裁剪与拼接的基本原理、方法和应用场景。

一、遥感图像裁剪遥感图像裁剪是指将原始的遥感图像按照感兴趣区域进行切割,只保留所需部分。

裁剪可以有效减少图像数据量,同时也能够提高分析效率。

以下是常见的遥感图像裁剪方法:1. 矩形裁剪矩形裁剪是最常用的一种裁剪方式,通过指定感兴趣区域的左上角和右下角坐标,可以实现对图像的矩形裁剪。

2. 多边形裁剪在某些情况下,感兴趣区域可能呈现复杂的形状,无法用矩形进行准确裁剪。

此时,可以利用多边形裁剪方法实现更精确的裁剪。

3. 边界缓冲裁剪边界缓冲裁剪是指在感兴趣区域周围增加一定的缓冲边界,以避免实际野外边界与图像边界不对齐的问题。

这种裁剪方法常用于遥感监测和精确测绘等应用领域。

二、遥感图像拼接遥感图像拼接是将多幅遥感图像按照一定的拼接规则进行合并,生成一张大尺寸的合成图像。

拼接可以扩展观测范围,提高图像分辨率,以及实现更全面的遥感分析。

以下是常用的遥感图像拼接方法:1. 无重叠拼接无重叠拼接是最简单的一种拼接方式,将多幅遥感图像按照顺序直接拼接在一起。

这种方法适用于目标分割、土地利用等需要完整观测范围的应用场景。

2. 重叠拼接重叠拼接是指在图像拼接过程中,采取重叠部分图像像素的平均值或加权平均值作为拼接结果。

这种方法可以减少图像拼接处的明显接缝,提高整体的视觉质量。

3. 特征点匹配拼接特征点匹配拼接是通过提取图像中的特征点,在不同图像上进行匹配,确定拼接关系,然后进行图像变形和融合。

这种方法对于复杂场景和大范围拼接效果较好。

三、应用场景遥感图像裁剪与拼接在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 土地利用规划通过裁剪与拼接遥感图像,可以获取更大范围、更高分辨率的土地利用信息。

这对于城市规划、农业管理等具有重要意义。

行政区遥感图像裁剪

行政区遥感图像裁剪

一行政区多边形制作1 影像配准所有图件扫描后都必须经过扫描配准,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。

①将郑州市区划图JPG格式(行政区划图的交通线尽量详细)用ERDAS转为tif格式;打开ERDAS,选择import模块,进行如下设置:点击OK后,弹出对话框,点击OK完成转换。

②打开Arcmap,添加刚转换过的图形,然后修改行政区划图的属性(data frame properties),选Coordinate System选择坐标系统predefined→Projected Coordinate System→UTM→WGS 1984→WGS_1984_UTM_Zone_49N。

加载Georeferencing工具条③打开ERDAS,在Viewr中打开郑州2001年432波段组合的遥感图像。

2 输入控制点在遥感图片中找一些特殊的地物点。

我们在地图上得到一些控制点─主要交通线的交点(这是最明显的交点,而且只要时间差的不远极少会变化),在遥感图像中选择一个交点作为控制点,记下这个点的坐标,然后在Arcmap中的Georeferencing工具条选择,在行政区划图中找到相应交通线的交点,点击右键,然后再点右键选择Input X and Y,出现如下对话框,输入刚才记的坐标重复上述过程找寻控制点,至少选择六个控制点,而且必须均匀分布在行政区划图上。

提示:上述选取交通线交点最好配合谷歌地球进行寻找。

3 制作ARCGIS多边形①启动ArcCatalog ,在工作文件夹新建shapefile多边形图层②在ArcMap中添加刚才新建的shapefile多边形图层,添加编辑工具条(editor),start editing,按照行政区划图描绘出郑州市的市界多边形,描绘后保存。

Shapefile保存了绘后的多边形郑州市的世界shapefile多边形图层二遥感图像裁剪遥感图像裁剪主要有两种方法:(一)基于ERDAS裁剪1 转换shapefile多边形图层格式在ArcMap中加载ArcToolbox,选择Converison Tools/To Coverage/Feature Class To Coverage,打开如下对话框,添加数据2 将arcinfo多边形转化栅格图像文件在ERDAS中打开Vector模块,选择Vector to Raster,打开对话框,添加数据:点击OK后弹出如下对话框,进行如下设置:矢量转栅格后的图像如下:3 掩膜运算实现图像不规则裁剪ERDAS面板工具条上,选择interpreter图标/Utilities/Mask 打开如下对话框,进行设置:2001年的遥感图像裁剪结果如下:1988年的遥感裁剪结果如下:(二)基于ArcMap裁剪1 在ArcMap中加载,2001年郑州周围的432波段组合的图像和描绘出的shapefile多边形图层。

遥感影像裁剪实验报告

遥感影像裁剪实验报告

一、实验目的1. 掌握遥感图像几何校正的基本方法和步骤;2. 掌握图像拼接的原理,以及两幅图像拼接的时候需要的条件,掌握拼接技术;3. 学习通过 ERDAS 进行遥感图像规则分幅裁剪,不规则分幅裁剪和掩膜处理。

二、实验内容1. 规则分幅裁剪:根据行列号、左上角和右下角两点坐标、图像文件、ROI 矢/量文件等获取矩形裁剪范围,进行规则裁剪。

2. 不规则分幅裁剪:通过手动绘制裁剪范围和外部矢量数据裁剪图像两种方法进行不规则裁剪。

3. 掩膜处理:对全州县东山瑶族自治乡七宝坑研究区TM影像进行掩膜处理,提取研究区信息。

三、实验步骤1. 规则分幅裁剪:(1)打开ENVI软件,选择File>Open Image File,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)选择Import File,导入裁剪范围数据。

(4)在ENVI主菜单栏中选择File>Save As,保存裁剪后的图像。

2. 不规则分幅裁剪:(1)打开ENVI软件,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)在ENVI界面中,使用鼠标绘制裁剪范围或导入外部矢量数据。

(4)在ENVI主菜单栏中选择File>Save As,保存裁剪后的图像。

3. 掩膜处理:(1)打开ENVI软件,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)在ENVI界面中,使用掩膜工具对研究区进行掩膜处理。

(4)在ENVI主菜单栏中选择File>Save As,保存掩膜后的图像。

四、实验结果与分析1. 规则分幅裁剪:成功获取124-42双牌幅TM影像数据的矩形裁剪范围,裁剪后的图像符合预期。

envi遥感预处理步骤

envi遥感预处理步骤
envi遥感预处理步骤
ENVI遥感预处理步骤通常包括以下几个主要步骤:
1. 数据导入:将遥感数据导入ENVI软件中。这可以包括多光谱影像、高光谱影像、雷达 数据等不同类型的遥感数据。
2. 大气校正:对于可见光和近红外波段的数据,大气校正是必要的。它通过去除大气散射 和吸收效应,使得数据更加准确和可比较。常用的大气校正方法包括大气点校正(ATCOR) 、大气校正模型(ACORN)等。
8. 数据校验和验证:对预处理后的数据进行质量检查和验证,确保数据的准确性和可靠性。
以上是ENVI遥感预处理的一般步骤,具体的步骤和方法可能会根据不同的研究目的和数据类 型而有所不同。
ቤተ መጻሕፍቲ ባይዱ
5. 去噪处理:去噪处理是为了去除遥感数据中的噪声和杂波,以提高图像质量和准确性。 常用的去噪方法包括滤波、小波变换等。
envi遥感预处理步骤
6. 数据裁剪和子集提取:根据研究需求,对遥感数据进行裁剪和子集提取,以提取感兴趣区 域的数据,减少数据处理的复杂性。
7. 影像增强:影像增强是为了改善遥感图像的视觉效果和信息提取能力。常用的增强方法包 括直方图均衡化、拉伸、滤波、波段组合等。
envi遥感预处理步骤
3. 辐射校正:辐射校正是为了将原始遥感数据转换为反射率或辐射亮度,以消除不同时间 、不同地点的数据之间的辐射差异。这可以通过校正系数、大气透过率和太阳辐射等参数来 实现。
4. 几何校正:几何校正是为了将遥感数据与地理坐标系统对齐,以便进行地理空间分析。 这包括图像配准、地面控制点的选择、投影转换等步骤。

高光谱影像裁剪

高光谱影像裁剪

高光谱影像裁剪是遥感图像处理中非常重要的一项技术,通过对高光谱影像进行裁剪,可以提取出感兴趣区域内的有效信息,为后续的地物分类、目标检测和环境监测等工作提供支持。

本文将从高光谱影像的特点、裁剪方法和应用价值等方面进行详细介绍。

一、高光谱影像的特点高光谱影像是指在数百甚至数千个连续波段范围内获取地物光谱信息的遥感影像,相比于普通彩色遥感影像,高光谱影像具有更丰富的光谱信息,能够提供更多的地物特征参数。

其特点主要包括以下几个方面:1. 具有连续的光谱信息:高光谱影像可以在可见光和红外光波段内获取连续的光谱信息,对地物的光谱特征进行更为精细的描述。

2. 具有较高的光谱分辨率:高光谱影像可以提供几十乃至上百个波段的光谱数据,相比于普通影像有更高的光谱分辨率,能够更准确地反映地物的光谱特征。

3. 具有丰富的信息量:高光谱影像所包含的光谱信息更加丰富,能够提供更多的地物分类特征参数,对地物的分类识别有较大的帮助。

二、高光谱影像裁剪的方法针对高光谱影像的裁剪,可以采用以下几种方法:1. 基于像素的裁剪:按照地物的范围和位置信息对像素进行裁剪,可以通过绘制感兴趣区域的边界来实现像素级别的裁剪。

2. 基于光谱特征的裁剪:根据地物的光谱特征参数对影像进行裁剪,可以通过提取地物的光谱曲线来确定感兴趣区域的位置和范围。

3. 基于空间信息的裁剪:结合高光谱影像的空间信息和地物的形态特征,采用对象提取和分割算法对影像进行裁剪,可以实现对地物的精确提取。

三、高光谱影像裁剪的应用价值高光谱影像裁剪在遥感图像处理和地物信息提取中具有重要的应用价值,主要表现在以下几个方面:1. 地物分类与识别:裁剪后的高光谱影像可以提供更精确的地物信息和光谱特征参数,有利于地物的分类识别和精细化的地物信息提取。

2. 环境监测与资源调查:通过裁剪高光谱影像,可以获取特定区域内的环境变化和资源信息,为环境监测和资源调查提供数据支持。

3. 目标检测与定位:裁剪后的高光谱影像可以用于目标的检测与定位,对于农作物生长状态、自然灾害损失评估等方面具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感实验——裁剪
第一种方法规矩图形的裁剪
1.打开程序,然后打开实验二图像裁剪中的can-trm.img 结果如图:
2.点击图像中的file 选择Save file as单击ENVI Standard
3.打开界面后点击Import file ,单击打开原文件然后单击image 进行选取截图区域如图
4.完成之后进行保存,之后在输出如图
第二种方法:选取感兴趣区域
1.打开原文件,点击Overlay 选择Region of internet
2.进行页面编辑,左键是画图右键单击第一次闭合第二次是填充、中间单击一次是删

3.单击file 选择Subset Data via POIS
4. 单击原文件然后点ok
5.进行文件的保存
6.新建一个New display 然后打开之前保存的文件如图
第三种方法:
1.打开原文件,进行如下操作:
2.打开文件region .shp 进行如下操作
6.完成效果如下:。

相关文档
最新文档