Color_Image_Database_for_Evaluation_of_Image_Quality_Metrics_
image子模块用法

image子模块用法image子模块是Python中PIL库(Python Imaging Library)的一个模块,用于对图像进行处理和操作。
它提供了一系列的函数和方法,用于加载、保存、调整、转换和合成图像。
下面是image子模块的一些常用功能和用法的参考内容:1. 加载和保存图像- 使用`Image.open(path)`函数加载图像,其中`path`是图像文件的路径。
- 使用`Image.save(path)`方法保存图像,其中`path`是保存图像的路径。
可以指定保存的格式,如`png`、`jpeg`等。
2. 调整图像大小- 使用`resize(size)`方法调整图像的大小,其中`size`是一个二元组,表示新的图像大小。
可以指定新的宽度、高度或缩放比例。
3. 调整图像质量- 使用`Image.filter()`方法应用不同的滤镜效果,如模糊、锐化等。
可以根据需要选择不同的滤镜效果。
4. 调整图像颜色- 使用`Image.convert(mode)`方法转换图像的色彩模式,其中`mode`可以是灰度、RGB、CMYK等。
可以根据需要选择不同的色彩模式。
- 使用`ImageEnhance`模块提供的方法调整图像的亮度、对比度和锐度等。
5. 剪裁和旋转图像- 使用`crop(box)`方法剪裁图像,其中`box`是一个四元组,表示剪裁的区域的左上角坐标和右下角坐标。
- 使用`rotate(angle)`方法旋转图像,其中`angle`是旋转的角度。
可以指定正值表示逆时针旋转,负值表示顺时针旋转。
6. 图像合成- 使用`Image.blend(image1, image2, alpha)`方法将两张图像混合,其中`image1`和`image2`是要混合的两张图像,`alpha`表示混合的比例。
7. 图像操作- 使用`ImageDraw`模块提供的函数和方法进行图像的绘制,如绘制直线、矩形、圆等。
基于颜色自相关图和互信息的图像检索算法

————————————作者简介:沈新宁(1989-),男,硕士研究生,主研方向:图像检索;王小龙,硕士研究生;杜建洪,副教授 收稿日期:2012-12-27 修回日期:2013-03-18 E-mail :sxnfnj@基于颜色自相关图和互信息的图像检索算法沈新宁,王小龙,杜建洪(复旦大学信息科学与工程学院,上海 200433)摘 要:颜色特征是重要的图像视觉特征,颜色相关图则是当前基于内容的图像检索中常用的特征描述符,但现有基于颜色相关图的图像检索算法存在计算复杂度高、检索精确度低的问题。
为此,提出基于颜色自相关图和互信息的图像检索算法。
给出一种新的颜色特征描述符——颜色互信息,通过计算颜色相关图特征矩阵中每个颜色与其周围颜色的平均互信息,得到不同颜色之间的全局及空间分布特性,并作为新的颜色特征矢量,以降低计算复杂度。
同时采用外部特征矢量归一化方法结合颜色互信息与颜色自相关算法,以提高检索精确度。
实验结果表明,该算法可有效降低计算复杂度,提高实时响应性能和检索精度。
关键词:图像检索;颜色特征;颜色相关图;颜色互信息;特征归一化Image Retrieval Algorithm Based on Color Autocorrelogram and Mutual InformationSHEN Xin-ning, WANG Xiao-long, DU Jian-hong(School of Information Science and Technology, Fudan University, Shanghai 200433, China)【Abstract 】Color is an important visual feature. Color Correlogram(CC) algorithm is commonly used in the color based image retrieval as a feature descriptor, but most of the existing methods based on CC have problems of high computational complexity and low retrieval accuracy. Aiming at this problem, this paper proposes an image retrieval algorithm based on color autocorrelogram and mutual information. It presents a novel color feature descriptor, namely Color Mutual Information(CMI). The new color feature vector which describes the global and spatial distribution relation among different colors is obtained by calculating the average mutual information between one color and all the colors around it in the CC feature matrix, thus reducing the computational complexity. Inter-feature normalization is applied in the combination of CMI and color autocorrelogram to enhance the retrieval accuracy. Experimental result shows that this integrated method can reduce the computational complexity, improves real-time response speed and retrieval accuracy.【Key words 】image retrieval; color feature; Color Correlogram(CC); Color Mutual Information(CMI); feature normalization DOI: 10.3969/j.issn.1000-3428.2014.02.056计 算 机 工 程 Computer Engineering 第40卷 第2期 V ol.40 No.2 2014年2月February 2014・图形图像处理・ 文章编号:1000—3428(2014)02—0259—04文献标识码:A中图分类号:TP911.731 概述基于内容的图像检索(Content Based Image Retrieval, CBIR)是当前多媒体检索的热门话题,是直接采用图像内容来实现图像信息检索的一门技术。
COLMAP简易教程(命令行模式)

COLMAP简易教程(命令⾏模式)完整的 multi view stereo pipeline 会有以下步骤1. structure from motion(SfM)==> camera parameters, sparse point cloud2. multi view stereo(MVS)==>depth map, dense point cloud3. surface reconstruction(SR)==>poisson or delauny reconstruction, mesh4. texture mapping(TM)==>get mesh with textureCOLMAP整体流程如下图所⽰COLMAP重建过程主要步骤COLMAP 兼容好⼏种不同的相机模型,我们在使⽤时可以对相机模型进⾏限制以获得最好的效果。
如果提前不知道相机内参,最好使⽤包含畸变系数的模型,默认为SIMPLE_RAIDIAL。
如果已知相机没有畸变或畸变影响很⼩,建议使⽤SIMPLE_PINHOLE模型。
可供选择的模型分别为SIMPLE_PINHOLE, PINHOLE, SIMPLE_RADIAL, RADIAL, OPENCV, FULL_OPENCV,SIMPLE_RADIAL_FISHEYE, RADIAL_FISHEYE, OPENCV_FISHEYE, FOV, THIN_PRISM_FISHEYE不同模型含义及参数如下表所⽰,详见Camera ModelsStructure from Motion运动恢复结构流程如下图所⽰运动恢复结构主要步骤运动恢复结构的⽬的是求解相机参数,需要把所有输⼊图⽚放到⼀个⽂件夹下。
按如下步骤依次进⾏。
图像特征提取相机内参已知的情况下我们可以直接通过命令⾏参数ImageReader.camera_params传给 COLMAP。
a. 相机内参已知$ colmap feature_extractor \--database_path ./database.db \--image_path images \--ImageReader.camera_model SIMPLE_PINHOLE \--ImageReader.camera_params "1813.3334,1920,1080" \--SiftExtraction.max_image_size 3840其中camera_params为 std::string 类型,不同的模型有对应的表⽰⽅式。
automodelforimageclassification.from_pretrained_说明

automodelforimageclassification.from_pretrained说明1. 引言1.1 概述在当今数字化时代,图像分类任务变得越来越重要。
图像分类是一个将输入的图像自动归类到预定义分类标签中的任务。
它在许多领域中都有广泛的应用,包括计算机视觉、人工智能、医学影像处理等。
为了解决这个问题,研究者们提出了各种各样的方法和算法。
1.2 文章结构本文将详细介绍automodelforimageclassification.from_pretrained函数及其在图像分类任务中的应用。
文章将分为五个部分进行讨论:第一部分是引言部分,对整篇文章进行概述,并描述文章的结构。
第二部分将介绍自动模型用于图像分类任务时所面临的挑战以及传统方法的局限性。
第三部分将详细解释automodelforimageclassification.from_pretrained函数的功能和使用方法,并通过实例演示其操作过程。
第四部分将对该函数进行优点和局限性分析,评估其在实际应用中的效果和限制。
最后一部分是结论部分,对全文进行总结回顾,并展望未来研究方向。
1.3 目的本文旨在介绍automodelforimageclassification.from_pretrained函数以及其在图像分类任务中的应用。
通过深入分析该函数的功能和使用方法,我们希望读者能够对这一技术有更全面的了解,并对其在实际应用中的优点和局限性有清晰的认识。
同时,我们也希望激发读者对未来相关研究方向的兴趣,并为进一步研究提供参考。
2. 自动模型用于图像分类的介绍2.1 图像分类任务图像分类是计算机视觉中最基础和常见的任务之一。
其目标是将输入的图像分为预定义类别中的一个或多个。
在现实世界中,图像分类应用广泛,例如人脸识别、物体识别和场景分析等领域。
2.2 传统方法的局限性在过去,图像分类主要依赖于手工设计特征和使用传统机器学习算法进行学习和预测。
(完整版)用户界面交互设计中英术语

交互设计常用中英文专业术语(完整版)时间:2017-05-31 出处:Designer_Oliver 阅读量:1381最近开始整理交互设计师在工作和职场交流中常用的英语词汇,包括了设计方向、设计领域、职业、专业学科、交互设计专用术语、设计方法、界面、ui、布局、控件、手势、产品、商业、技术、用研、数据分析、计费模式、信息可视化、成果、其他20个方面,陆续通过4-5篇文章的形式分享给大家。
设计方向conversation design 对话式设计experience design 经历设计graphic design 平面设计industry design 工业设计information design 信息设计interaction design 交互设计product design 产品设计service design 服务设计ui design 界面设计user experience design 用户体验设计user centered design 以用户为中心的设计visual design 视觉设计设计领域ai_artificial intelligence 人工智能ar_augmented reality 增强现实diet 饮食education 教育finance 金融mobile internet 移动互联网internet 互联网iot_internet of thing 物联网smart home 智能家居shopping 购物traditional industry 传统行业ugv_unmanned ground vehicle 无人驾驶地面车辆vr_virtual reality 虚拟现实wearable device 穿戴式设备职业bd_business development 业务拓展front end 前端,前端工程师interaction designer 交互设计师operation 运维工程师product designer 产品设计师product manager 产品经理project manager 项目经理qa_quality assurance 测试,测试工程师r&d_research&develop 研发,研发工程师ui designer 界面设计师user experience designer 用户体验设计师visual designer 视觉设计师专业与学科computer science and technology 计算机科学与技术ergonomics 人体工程学,人因学ethnology 人种学hci_human computer interaction 人机交互industrial design 工业设计interaction design 交互设计multimedia design and production 多媒体设计与制作psychics 心理学software engineering 软件工程statistics 统计学service design 服务设计visual communication design 视觉传达设计设计专用术语business 业务/商业business requirement 业务需求competitive analysis 竞品分析deepness 深度dimension 维度emotional design 情感化设计flow 流程goal 目标ia_information architecture 信息架构information 信息motivation 动机path 路径range 广度usage scenario 使用场景usability 可用性user behavior 用户行为user requirement 用户需求user study/user research用户调研设计方法与工具brainstorming 头脑风暴card sorting 卡片分类法emotional design 情感化设计fitts' law费茨定律gestalt psychology 格式塔心理学storyboard 故事版storyline 故事大纲user analysis 用户分析ucd user centered design 以用户为中心的设计界面cli_command line interface 命令行界面gui_graphical user interface 图形用户界面nui_natural user interface 自然用户界面vui_voice user interface 语音用户界面布局absolutelayout 绝对布局autolayout 自动布局banner 横幅border 边界线card based design 卡片式设计column 列content 内容dashboard 仪表盘framelayout 单帧布局float 悬浮grid 网格horizontal 水平layout 布局linearlayout 线性布局margin 外间距navigation bar 导航栏padding 内间距pinterest style layout 瀑布流relativelayout 相对布局row 行tablelayout 表格布局tool bar 工具栏widget 小部件vertical 垂直控件alert 警告anchors 锚点bottom sheet 底部动作条button 按钮canvas 画布card 卡片checkbox 复选框chip 纸片(android material design专有名词)data picker 日期选择器dialog 提示框,对话框divider 分隔线float 悬浮image 图像item 条,项目label 只读文本link 链接list 列表listview 列表视图loading 加载menu 菜单pagecontrol 多页控件(即小圆点)panel 面板password 密码picker 选择器progress bar 进度条radio 单选框table 表格tile 瓦片(android material design专有名词)time picker 时间选择器title 标题toast toast(无准确翻译,一种会自动消失的轻量提示框)scroll 滚动scroll bar 滚动条scrollview 滚动视图selector 选择器selection control 选择控制器slider 滑块snackbar snackbar(无准确翻译,一种会自动消失,带有操作的轻量提示框)sub header 副标题submit 提交switch 开关tab tab(无准确翻译,更多指导航上的选项)tag 标签textview 文本框toggle 开关tooltips 工具提示webview 网页视图手势click 点击drag 拖曳finger 手指hotspot 热区pinch 捏press 压,按stretch 伸展swipe 滑动tap 轻触zoom in 放大zoom out 缩小成果draft 草稿demo 演示interaction design document 交互文档hi fi prototype_high fidelity prototype 高保真原型lo fi prototype_low fidelity prototype 低保真原型prototype 原型wireframe 线框图ux workflow 交互流程图用户研究a/b test a/b测试expert evaluation 专家评估eye tracking 眼动跟踪focus group 焦点小组heuristic evaluation 启发式评估persona 用户画像questionnaire问卷调研usability testing 可用性测试user interview 用户访谈user experience map 用户体验地图user study/user research 用户调研data analyse 数据分析产品与商业account 账号advertisement 广告as 客户服务aso_app store optimization 应用商店优化business 商业copy 文案cms 内容管理系统customer 客户customer service 客服feed 信息流fsd_functional specifications document 功能详细说明function 功能individualization 个性化market 市场mrd_market requirements document 市场需求文档mvp_minimum viable product 最小化可行产品pgc_professionally generated content 专业生产内容prd_product requirements document 产品需求文档product design 产品设计process 项目,进度product 产品requirement 需求share 份额stickiness 黏性slogan 口号/标语/广告语strategy 策略user 用户ugc_user generated content 用户原创内容uml_unified modeling language 统一建模语言viral marketing 病毒式营销/病毒性营销uialignment 对齐art 艺术art base 美术/设计出身brand 品牌color 颜色icon 图标flat design 扁平化设计font 字体grid 栅格系统hierarchy 层次kv_key visual 主视觉, 主画面layer 层legibility 可读性logo 商标,徽标material 素材opacity 透明度responsive design 响应式设计resolution 分辨率sans serif typeface 非衬线体scale 比例缩放serif typeface 衬线字体skeuomorphic design 拟物化设计style 样式texture 纹理theme 主题typography 排版visual design 视觉设计技术api 应用程序编程接口/应用程序界面background 后台client 客户端container 容器data 数据database 数据库deep learning 深度学习developer 开发者format 格式化framework 框架machine learning 机器学习library 库optimize 优化performance 性能plug in 插件program 程序script 脚本sdk_software development kit 软件开发工具包seo 搜索引擎优化server 服务器technology 技术type 类型timer 定时器,计时器url 统一资源定位、网址visuality 可视性信息可视化bar chart 柱状图bubble chart 气泡图chart 图表dashboard 仪表盘information visualization 信息可视化line chart 折线图pie chart 饼图radar chart 雷达图scatter chart 散点图tree view树状图广告计费模式cpa_cost per action 每次行动(下载、注册等)成本cpc_cost per click 每次点击成本cpm_cost per mille 每千次展现成本数据acu_average concurrent users 平均同时在线用户数cac_ customer acquisition cost 用户获取成本click_click through 点击量/点击次数cpc 点击成本ctr_click rate_click through rate 点击率dau_daily active user 日活跃用户量dnu_day new user 日新增用户量gmv_gross merchandise volume 商品交易总量kpi_key performance indicator 关键绩效指标mau_monthly active user 月活跃用户量pcu_peak concurrent users 最高在线用户数pv_page view 页面浏览量roi_return on investment 投资回报率uv_unique visitor 独立访客数wau_weekly active users 周活跃用户量其他fyi/fyr 供参考kpi 关键绩效指标manual 手册schedule 工作进度计划表, 日程安排产品与商业account 账号advertisement 广告as 客户服务aso_app store optimization 应用商店优化business 商业copy 文案cms 内容管理系统customer 客户customer service 客服feed 信息流fsd_functional specifications document 功能详细说明function 功能individualization 个性化market 市场mrd_market requirements document 市场需求文档mvp_minimum viable product 最小化可行产品pgc_professionally generated content 专业生产内容prd_product requirements document 产品需求文档product design 产品设计process 项目,进度product 产品requirement 需求share 份额stickiness 黏性slogan 口号/标语/广告语strategy 策略user 用户ugc_user generated content 用户原创内容uml_unified modeling language 统一建模语言viral marketing 病毒式营销/病毒性营销uialignment 对齐art 艺术art base 美术/设计出身brand 品牌color 颜色icon 图标flat design 扁平化设计font 字体grid 栅格系统hierarchy 层次kv_key visual 主视觉, 主画面layer 层legibility 可读性logo 商标,徽标material 素材opacity 透明度responsive design 响应式设计resolution 分辨率sans serif typeface 非衬线体scale 比例缩放serif typeface 衬线字体skeuomorphic design 拟物化设计style 样式texture 纹理theme 主题typography 排版visual design 视觉设计布局absolutelayout 绝对布局autolayout 自动布局banner 横幅border 边界线card based design 卡片式设计column 列content 内容dashboard 仪表盘framelayout 单帧布局float 悬浮grid 网格horizontal 水平layout 布局linearlayout 线性布局margin 外间距navigation bar 导航栏padding 内间距pinterest style layout 瀑布流relativelayout 相对布局row 行tablelayout 表格布局tool bar 工具栏widget 小部件vertical 垂直技术api 应用程序编程接口/应用程序界面background 后台client 客户端container 容器data 数据database 数据库deep learning 深度学习developer 开发者format 格式化framework 框架machine learning 机器学习library 库optimize 优化performance 性能plug in 插件program 程序script 脚本sdk_software development kit 软件开发工具包seo 搜索引擎优化server 服务器technology 技术type 类型timer 定时器,计时器url 统一资源定位、网址visuality 可视性UI :用户界面,是英文User和interface的缩写。
image模块使用方法

image模块使用方法【实用版3篇】目录(篇1)1.引言2.image 模块简介3.image 模块基本使用方法4.image 模块高级功能5.常见问题与解答6.结语正文(篇1)【引言】在 Python 编程语言中,处理图片和图像的方法多种多样。
Python 的image 模块提供了一系列图像处理功能,帮助开发者轻松实现图像的读取、显示、保存、格式转换等操作。
本文将为您介绍如何使用 image 模块,以及如何应对在使用过程中可能遇到的问题。
【image 模块简介】image 模块是 Python 的 PIL(Python Imaging Library)图像处理库的一个分支。
PIL 库在 Python 3.0 以后被分为 Pillow 和 image 两个模块。
image 模块主要负责图像的读取、显示、保存、格式转换等基本操作。
它支持多种图像格式,如 JPEG、PNG、BMP 等。
【image 模块基本使用方法】1.导入 image 模块在 Python 代码中,使用`from PIL import Image`语句导入 image 模块。
2.读取图像使用`Image.open()`函数读取图像文件,该函数可以读取多种图像格式。
例如:```pythonimg = Image.open("example.jpg")```3.显示图像使用`img.show()`函数在默认的图像查看器中显示图像。
4.保存图像使用`img.save()`函数将图像保存为指定格式的文件。
例如:```pythonimg.save("example.png")```5.格式转换使用`img.convert()`函数将图像转换为指定格式。
例如:```pythonimg_converted = img.convert("RGBA")```【image 模块高级功能】image 模块还提供了许多高级功能,如裁剪、翻转、旋转、缩放、滤镜等。
python中image的用法

python中image的用法Python中的image模块提供了许多功能强大的图像处理工具,使得开发人员可以轻松地加载、处理和保存图像。
在这篇文章中,我们将一步一步地探索python 中image模块的用法。
第一步,我们需要安装image模块。
在Python中,我们可以使用pip来安装image模块。
打开命令行终端,并输入以下命令:pythonpip install image这将自动下载和安装image模块。
第二步,我们可以加载图像文件。
在Python中,我们可以使用image模块的open()函数来加载图像文件。
以下是一个加载图像文件的示例代码:pythonfrom PIL import Image# 加载图像文件image = Image.open("image.jpg")在这个例子中,我们加载了名为"image.jpg"的图像文件,并将它保存在一个变量中。
第三步,我们可以对图像进行一些基本的操作。
image模块提供了许多内置的方法和函数,使得图像处理变得简单和灵活。
以下是一些常用的图像处理操作的示例:pythonfrom PIL import Image# 加载图像文件image = Image.open("image.jpg")# 获取图像的大小width, height = image.size# 调整图像尺寸resized_image = image.resize((width 2, height 2))# 旋转图像rotated_image = image.rotate(90)# 翻转图像flipped_image = image.transpose(Image.FLIP_LEFT_RIGHT)# 显示图像image.show()# 保存图像resized_image.save("resized_image.jpg")在这个例子中,我们通过使用resize()方法调整图像的尺寸,使用rotate()方法旋转图像,使用transpose()方法翻转图像。
colorful_image_colorization算法原理_概述及解释说明

colorful image colorization算法原理概述及解释说明1. 引言1.1 概述本文旨在介绍colorful image colorization算法的原理,并对其进行解释和说明。
随着计算机技术的不断发展,图像处理领域也取得了长足的进步。
图像着色是图像处理中一个重要的任务,它可以将灰度图像转化为色彩丰富的彩色图像,使人们能够更好地理解和感受图像所传达的信息。
Colorful image colorization算法是一种基于深度学习的方法,利用神经网络模型实现自动化的图像着色过程。
通过训练大量数据集,算法可以学习到图像中不同区域之间的颜色关系,并生成与原始灰度图像相匹配的彩色版本。
该算法在计算机视觉、数字媒体和艺术设计等领域具有广泛应用前景。
1.2 文章结构本文首先会对colorful image colorization算法进行概述,介绍其基本原理和实现方式。
然后详细解释算法的输入与输出,并说明其核心原理。
接下来,在第三部分中会对算法进行详细解释和说明,包括预处理步骤、网络架构以及数据训练与优化策略。
第四部分将介绍实验结果与评估方法,包括数据集的选择和准备、定量评估指标和方法,以及对实验结果进行分析和讨论。
最后,本文将总结全文内容并给出相关结论。
1.3 目的本文的目的是全面阐述colorful image colorization算法的原理和实现。
通过对该算法进行概述和解释说明,读者可以充分了解其基本原理、输入输出以及核心实现方式。
同时,通过对算法进行详细解释和优化策略说明,读者可以了解到如何使用该算法进行图像着色,并在实际应用中取得良好效果。
最后,通过对实验结果与评估的介绍,读者可以对该算法在不同场景下的表现有一个全面的了解。
2. colorful image colorization算法原理:2.1 算法概述:colorful image colorization算法是一种将黑白图像转化为彩色图像的技术。
UCID - An Uncompressed Colour Image Database

1. TION
Over the last few years content based image retrieval (CBIR) has become a significant area of research with hundreds of papers published every year. It is therefore natural that keeping an eye on recent developments in this field is becoming more and more difficult. Unfortunately, the way many of the results are presented makes this even more challenging. Many authors seem to use their own image sets and retrieval performance measures which makes a comparison of retrieval algorithms virtually impossible. One reason for this is the fact that only few image sets are publicly available. Apart from the original image dataset that Swain an Ballard used in their paper2 and the VisTex database3 there is little available without any access restrictions. Furthermore, the Swain and VisTex image sets are of little use as the first one is - comprising less than 100 images - too small to allow an objective evaluation (and in addition the images have an unnatural black background) and the latter is intended as a texture database rather than a dataset that is useful for image retrieval. Another dataset that is available to the research community is the COIL-100 database from Columbia University. 4 However, again this set was created for a different purpose, namely that of viewpoint invariant object recognition and is hence only of limited use for image retrieval research. One database that is relatively often used in CBIR publications is the Corel dataset. 5 However there are several problems associated with this database. First as it is a commercial dataset, distribution of its images is rather limited if not impossible. Another limitation is that there seem to be many different versions of the Corel database around, or at least one is made to believe so if one browses through the CBIR literature. Not only are the datasets released by Corel different in Europe and in the USA, it is often unclear which images or which subset of the image database are being used for testing algorithms; statements similar to ”20 000 Corel images were used in the experiments” seem fairly common. However, the biggest disadvantage of the Corel image set is the lack of a ground truth. A ground truth on an image set would specify a set of query images together with a list of images for each of them that are considered similar to the query and hence that an ideal image retrieval algorithm would retrieve. Having a ground truth for an image database makes it immediately possible
coloredmnist介绍

coloredmnist介绍
ColoredMNIST是一种改进的MNIST数据集,它是一个用于
图像分类任务的计算机视觉数据集。
与传统MNIST数据集不
同的是,ColoredMNIST中的图像是彩色图像,而不是灰度图像。
ColoredMNIST数据集由70000个图像组成,这些图像是根据MNIST数据集中的手写数字图片生成的。
每个图像都是
28x28像素大小的彩色图像,包含0-9之间的手写数字。
ColoredMNIST数据集的构建方法是,首先从MNIST数据集
中随机选择一张图像,然后将其复制到一个RGB颜色空间中,并为每个像素随机分配一个颜色值。
这样,就得到了一个彩色的手写数字图像。
ColoredMNIST数据集可以用于训练和评估各种图像分类算法,包括卷积神经网络(CNN)和其他机器学习方法。
由于图像
是彩色的,相对于灰度图像,它可以提供更多的信息,从而可能提高分类算法的性能。
总而言之,ColoredMNIST是一个用于图像分类任务的彩色手
写数字数据集,它是对传统MNIST数据集的改进和扩展。
基于深度学习的花卉检测与识别系统(YOLOv5清新界面版,Python代码)

基于深度学习的花卉检测与识别系统(YOLOv5清新界面版,Python代码)花卉检测与识别系统是一个基于深度学习的应用程序,它主要的目的是实时识别和检测花卉。
这个系统是基于YOLOv5算法构建的,使用Python编写。
它可以检测和识别各种花卉,提供给用户一个全面的、针对花卉的识别和检测功能。
这个系统可以方便地安装和使用,它使用了清新的用户界面。
在该应用中,用户需要上传包含花卉图像的文件夹,然后系统将扫描整个文件夹,并在每张图片中识别和标识花卉。
当然,在使用这个系统前,用户需要安装相应的依赖库和必要的软件,如OpenCV、PyTorch、Matplotlib等。
在YOLOv5算法中,我们使用了具有高度准确性的预训练模型,这样,我们就可以在该模型的基础上,使用我们自己的数据集进行finetune。
这里我们使用了一个大型数据集"Flowers17",包含了不同种类的花卉。
在finetune之后,我们就可以得到一个高精度检测和识别花卉的模型。
下面是系统使用的大致流程:1. 从用户通过应用程序上传的文件夹中读取图片。
2. 预处理图像:裁剪/缩放图片、对其进行归一化和去均值处理。
3. 将图像传递到YOLOv5预测模型中,这个模型将返回一组概率输出,用于标识每张图片中的花卉位置和类型。
4. 根据预测结果在原始图像上绘制边框。
5. 在输出窗口中显示原始图像及其检测和识别结果。
在这个系统中,我们使用了YOLOv5的最新版本。
它比以前的版本更快、更准确,特别是在小目标检测的情况下表现更为突出。
这使得在实时应用中使用它变得更加可行和实用。
总之,在使用这个系统时,在上传文件夹后,您就可以轻松地对输入图像进行识别和检测,从而找出其中的花卉类型和数量。
这个系统的界面简单直观,易于使用,它可以帮助用户更好地理解花卉的种类和分布,更好地了解对花卉的保护和规划有关的方面。
基于形状特征的图像检索

题目:基于形状特征的图像检索系统的设计与实现基于形状特征的图像检索系统的设计与实现摘要近年来,随着多媒体和计算机互联网技术的快速发展,数字图像的数量正以惊人的速度增长。
面对日益丰富的图像信息海洋,人们需要有效地从中获取所期望得到多媒体信息。
因此,在大规模的图像数据库中进行快速、准确的检索成为人们研究的热点。
为了实现快速而准确地检索图像,利用图像的视觉特征,如颜色、纹理、形状等来进行图像检索的技术,也就是基于内容的图像检索技术(CBIR)应运而生[6]。
本文主要研究基于形状特征的图像检索,边缘检测是基于形状特征的一种检索方法,边缘是图像最基本的特性。
在图像边缘检测中,微分算子可以提取出图像的细节信息,景物边缘是细节信息中最具有描述景物特征的部分,也是图像分析中的一个不可或缺的部分。
本文详细地分析了一种边缘检测方法Canny算子,用C++编程实现各算子的边缘检测,并根据边缘检测的有效性和定位的可靠性,得出Canny算子具备有最优边缘检测所需的特性。
并通过基于轮廓的描述方法,傅里叶描述符对图像的形状特征进行描述并存入数据库中。
对行相应的检索功能。
关键词:图像检索;形状特征;Canny算子;边缘检测;傅里叶描述符Design and Implementation of Image Retrieval System Based onShape FeaturesABSTRACTWith the rapid development of multimedia and computer network technique, the quantity of digital image and video is going up fabulously. Facing the vast ocean of information of image, it has a good sense to obtain the desired multimedia information. Currently, rapid and effective searching for desired image from large-scale image databases becomes an hot research topic.In order to retrieve image quickly and accurately using image visual features such as color, texture, shape, which named content-based image retrieval (CBIR) came into being. This paper introduces the principle of wavelet transform applying to image edge detection. Edge detection is based on the shape of the characteristics of a retrieval method, and the edge is the most basic characteristics of the image. In the image edge detection ,differential operator can be used to extract the details of the images, features’ edge is the most detailed information describing the characteristics of the features of the image analysis, and is also an integral part of the image. This paper analyzes a Canny operator edge detection method, and we complete with the C++ language procedure to come ture edge detection. According to the effectiveness of the image detection and the reliability of the orientation, we can deduced that the Canny operator have the characteristics which the image edge has. And contour-based method for describing the image Fourier descriptors to describe the shape feature and stored in the database. Align the corresponding search function.Key words:image retrieval;sharp feature;Canny operator;edge detection;Fourier shape descriptors目录1 前言 (1)1.1 课题背景及研究意义 (1)1.2 国内外发展状况 (1)1.3 课题研究的主要内容 (2)2 基于形状特征的图像检索 (3)2.1 图像检索技术的发展过程 (3)2.1.1 基于内容的图像检索技术 (3)2.1.2 基于形状特征的图像检索 (3)2.2 边缘检测 (4)2.3 Canny边缘检测 (4)2.3.1 Canny指标 (4)2.3.2 Canny算子的实现 (5)2.4 基于轮廓的描述方法 (7)2.4.1 傅立叶形状描述符 (7)2.5 图像的相似性度量 (9)3 基于形状特征的图像检索系统的设计 (10)3.1 Canny算子的程序设计 (10)3.2 图像特征数据库设计 (11)3.3 实验结果 (12)4 基于形状特征的图像检索系统实现 (13)4.1 系统框架 (13)4.2 编程环境 (14)4.3 程序结果 (14)5 总结 (15)参考文献 (16)致谢 (17)附录 (18)1前言1.1课题背景及研究意义随着多媒体技术、计算机技术、通信技术及Intemet网络的迅速发展,人们正在快速地进入一个信息化社会。
外文翻译----数字图像处理和模式识别技术关于检测癌症的应用

引言英文文献原文Digital image processing and pattern recognition techniques for the detection of cancerCancer is the second leading cause of death for both men and women in the world , and is expected to become the leading cause of death in the next few decades . In recent years , cancer detection has become a significant area of research activities in the image processing and pattern recognition community .Medical imaging technologies have already made a great impact on our capabilities of detecting cancer early and diagnosing the disease more accurately . In order to further improve the efficiency and veracity of diagnoses and treatment , image processing and pattern recognition techniques have been widely applied to analysis and recognition of cancer , evaluation of the effectiveness of treatment , and prediction of the development of cancer . The aim of this special issue is to bring together researchers working on image processing and pattern recognition techniques for the detection and assessment of cancer , and to promote research in image processing and pattern recognition for oncology . A number of papers were submitted to this special issue and each was peer-reviewed by at least three experts in the field . From these submitted papers , 17were finally selected for inclusion in this special issue . These selected papers cover a broad range of topics that are representative of the state-of-the-art in computer-aided detection or diagnosis(CAD)of cancer . They cover several imaging modalities(such as CT , MRI , and mammography) and different types of cancer (including breast cancer , skin cancer , etc.) , which we summarize below .Skin cancer is the most prevalent among all types of cancers . Three papers in this special issue deal with skin cancer . Y uan et al. propose a skin lesion segmentation method. The method is based on region fusion and narrow-band energy graph partitioning . The method can deal with challenging situations with skin lesions , such as topological changes , weak or false edges , and asymmetry . T ang proposes a snake-based approach using multi-direction gradient vector flow (GVF) for the segmentation of skin cancer images . A new anisotropic diffusion filter is developed as a preprocessing step . After the noise is removed , the image is segmented using a GVF1snake . The proposed method is robust to noise and can correctly trace the boundary of the skin cancer even if there are other objects near the skin cancer region . Serrano et al. present a method based on Markov random fields (MRF) to detect different patterns in dermoscopic images . Different from previous approaches on automatic dermatological image classification with the ABCD rule (Asymmetry , Border irregularity , Color variegation , and Diameter greater than 6mm or growing) , this paper follows a new trend to look for specific patterns in lesions which could lead physicians to a clinical assessment.Breast cancer is the most frequently diagnosed cancer other than skin cancer and a leading cause of cancer deaths in women in developed countries . In recent years , CAD schemes have been developed as a potentially efficacious solution to improving radiologists’diagnostic accuracy in breast cancer screening and diagnosis . The predominant approach of CAD in breast cancer and medical imaging in general is to use automated image analysis to serve as a “second reader”, with the aim of improving radiologists’diagnostic performance . Thanks to intense research and development efforts , CAD schemes have now been introduces in screening mammography , and clinical studies have shown that such schemes can result in higher sensitivity at the cost of a small increase in recall rate . In this issue , we have three papers in the area of CAD for breast cancer . Wei et al. propose an image-retrieval based approach to CAD , in which retrieved images similar to that being evaluated (called the query image) are used to support a CAD classifier , yielding an improved measure of malignancy . This involves searching a large database for the images that are most similar to the query image , based on features that are automatically extracted from the images . Dominguez et al. investigate the use of image features characterizing the boundary contours of mass lesions in mammograms for classification of benign vs. Malignant masses . They study and evaluate the impact of these features on diagnostic accuracy with several different classifier designs when the lesion contours are extracted using two different automatic segmentation techniques . Schaefer et al. study the use of thermal imaging for breast cancer detection . In their scheme , statistical features are extracted from thermograms to quantify bilateral differences between left and right breast regions , which are used subsequently as input to a fuzzy-rule-based classification system for diagnosis.Colon cancer is the third most common cancer in men and women , and also the third mostcommon cause of cancer-related death in the USA . Y ao et al. propose a novel technique to detect colonic polyps using CT Colonography . They use ideas from geographic information systems to employ topographical height maps , which mimic the procedure used by radiologists for the detection of polyps . The technique can also be used to measure consistently the size of polyps . Hafner et al. present a technique to classify and assess colonic polyps , which are precursors of colorectal cancer . The classification is performed based on the pit-pattern in zoom-endoscopy images . They propose a novel color waveler cross co-occurence matrix which employs the wavelet transform to extract texture features from color channels.Lung cancer occurs most commonly between the ages of 45 and 70 years , and has one of the worse survival rates of all the types of cancer . Two papers are included in this special issue on lung cancer research . Pattichis et al. evaluate new mathematical models that are based on statistics , logic functions , and several statistical classifiers to analyze reader performance in grading chest radiographs for pneumoconiosis . The technique can be potentially applied to the detection of nodules related to early stages of lung cancer . El-Baz et al. focus on the early diagnosis of pulmonary nodules that may lead to lung cancer . Their methods monitor the development of lung nodules in successive low-dose chest CT scans . They propose a new two-step registration method to align globally and locally two detected nodules . Experments on a relatively large data set demonstrate that the proposed registration method contributes to precise identification and diagnosis of nodule development .It is estimated that almost a quarter of a million people in the USA are living with kidney cancer and that the number increases by 51000 every year . Linguraru et al. propose a computer-assisted radiology tool to assess renal tumors in contrast-enhanced CT for the management of tumor diagnosis and response to treatment . The tool accurately segments , measures , and characterizes renal tumors, and has been adopted in clinical practice . V alidation against manual tools shows high correlation .Neuroblastoma is a cancer of the sympathetic nervous system and one of the most malignant diseases affecting children . Two papers in this field are included in this special issue . Sertel et al. present techniques for classification of the degree of Schwannian stromal development as either stroma-rich or stroma-poor , which is a critical decision factor affecting theprognosis . The classification is based on texture features extracted using co-occurrence statistics and local binary patterns . Their work is useful in helping pathologists in the decision-making process . Kong et al. propose image processing and pattern recognition techniques to classify the grade of neuroblastic differentiation on whole-slide histology images . The presented technique is promising to facilitate grading of whole-slide images of neuroblastoma biopsies with high throughput .This special issue also includes papers which are not derectly focused on the detection or diagnosis of a specific type of cancer but deal with the development of techniques applicable to cancer detection . T a et al. propose a framework of graph-based tools for the segmentation of microscopic cellular images . Based on the framework , automatic or interactive segmentation schemes are developed for color cytological and histological images . T osun et al. propose an object-oriented segmentation algorithm for biopsy images for the detection of cancer . The proposed algorithm uses a homogeneity measure based on the distribution of the objects to characterize tissue components . Colon biopsy images were used to verify the effectiveness of the method ; the segmentation accuracy was improved as compared to its pixel-based counterpart . Narasimha et al. present a machine-learning tool for automatic texton-based joint classification and segmentation of mitochondria in MNT-1 cells imaged using an ion-abrasion scanning electron microscope . The proposed approach has minimal user intervention and can achieve high classification accuracy . El Naqa et al. investigate intensity-volume histogram metrics as well as shape and texture features extracted from PET images to predict a patient’s response to treatment . Preliminary results suggest that the proposed approach could potentially provide better tools and discriminant power for functional imaging in clinical prognosis.We hope that the collection of the selected papers in this special issue will serve as a basis for inspiring further rigorous research in CAD of various types of cancer . We invite you to explore this special issue and benefit from these papers .On behalf of the Editorial Committee , we take this opportunity to gratefully acknowledge the autors and the reviewers for their diligence in abilding by the editorial timeline . Our thanks also go to the Editors-in-Chief of Pattern Recognition , Dr. Robert S. Ledley and Dr.C.Y. Suen , for their encouragement and support for this special issue .英文文献译文数字图像处理和模式识别技术关于检测癌症的应用世界上癌症是对于人类(不论男人还是女人)生命的第二杀手。
ZEISS FORUM 4.4 眼科医生数据管理软件说明书

See how you can further benefit from ZEISS FORUM• Increase your efficiency and save time, space and money with a completely paperless workflow.• Expand your ZEISS FORUM software with clinical applications for retina , glaucoma , refractive and cataract patients.• Connect all your diagnostic devices (DICOM and non-DICOM), from ZEISS as well as other vendors and integrate them seamlessly with existing EMR and hospital information systems.• Exchange data conveniently between various practice sites with the multi-site architecture of ZEISS FORUM.FORUM from ZEISS Version 4.4Intuitive data management softwareFORUM ® from ZEISS is a scalable ophthalmology software that can be tailored to your needs.Discover the latest version that gives you enhanced simplicity, advanced review tools and improved security.1. Instrument/modality must support TLS• Perform actions such as zoom and pan on multiple documents simultaneously for quick comparison.• Flexibly export documents in DICOM and non-DICOM formats.• Smoothly switch betweenreviewing documents in a stacked or side-by-side view and intuitively navigate through the documents.• Use color channels to visualize the retinal structures of the eye.• Manually measure and annotate specific areas of images.• Review CLARUS stereo image pairs for stereoscopic evaluation.• Simultaneously scroll through the most recent OCT scans in the integrated OCT Display.• Secure data in transit through TLS encryption and data at rest through transparent database encryption.• Rely on DICOM TLS communi-cation with ZEISS and non-ZEISS instruments 1 and DICOM systems.• Utilize a user-friendly Admin Center to easily configure complex settings or schedule your backups.Enhanced simplicity:Experience all-aroundconvenience via an intuitive interface and minimal clicks.Advanced review tools:Uncover deeper insights and make confident decisions with powerful analysis tools.Improved security:Get peace of mind throughsecure protection and compliance with security standards.Carl Zeiss Meditec AG Goeschwitzer Strasse 51–5207745 Jena Germany/forum/med/contactse n -I N T _31_022_0069I P r i n t e d i n G e r m a n y . C Z -I /2023 I n t e r n a t i o n a l e d i t i o n : O n l yf o r s a l e i n s e l e c t e d c o u n t r i e s .T h e c o n t e n t s o f t h e b r o c h u r e m a y d i f f e r f r o m t h e c u r r e n t s t a t u s o f a p p r o v a l o f t h e p r o d u c t o r s e r v i c e o f f e r i ng i n y o u r c o u n t r y . P l e a s e c o n t a c t o u r r e g i o n a l r e p r e s e n t a t i v e s f o r m o r e i n f o r m a t i o n . S u b j e c t t o ch a n g e si n d e s i g n a n d s c o p e o f d e l i v e r y a n d d u e t o o n g o i n g t e c h n i c a l d e v e l o p m e n t . F O R U M i s e i t h e r a t r a d e m a r k o r r e g i s t e r e d t r a d e m a r k o f C a r l Z e i s s M e d i t e c A G o r o t h e r c o m p a n i e s o f t h e Z E I S S G r o u p i n G e r m a n y a n d / o r o t h e r c o u n t r i e s . © C a r l Z e i s s M e d i t e c A G , 2023. A l l r i g h t s r e s e r v e d .ArchiveEMR Viewer Viewer ViewerEMR EMR 2. Considers full installation including plug-ins.Contact your sales representative and receive configurations for expanded solutions.0297ZEISS FORUM provides real-time access to diagnostic data from local and remote sites.Minimum requirements for FORUM 4.4 from ZEISSZEISS FORUM ArchiveZEISS FORUM Viewer Hardware PCMac ®Processor Intel Core i5 (11th generation)Intel Core i5 (11th generation)Intel Core i5 (11th generation) or Apple ARMv6Free RAMMinimum 2: 8 GBRecommended: 16 GB Minimum 2: 8 GBRecommended: 16 GB Minimum 2: 8 GB Free hard disc capacity Minimum: 200 GB Minimum: 8 GB Minimum: 8 GB Screen resolutionMinimum:1280 × 800 pixels Recommended: 1680 × 1050 pixels or higherMinimum:1280 × 800 pixels Recommended: 1920 × 1080 pixels or higherMinimum:1280 × 800 pixels Recommended: 1680 × 1050 pixels or higherOperating systemWindows 10 (64 Bit)Windows 11 (64 Bit)Windows Server 2012 R2Windows Server 2016Windows Server 2019Windows Server 2022Windows 10 (64 Bit)Windows 11 (64 Bit)Windows Server 2012 R2Windows Server 2016Windows Server 2019Windows Server 2022macOS ® Ventura 13.x。
python 多点找色实现算法 -回复

python 多点找色实现算法-回复在Python中,实现多点找色算法是一项非常有意思的任务。
多点找色算法主要是在屏幕上寻找指定颜色的像素点,并返回它们的位置。
在本文中,我们将逐步介绍如何使用Python来实现这一算法。
第一步:了解图像处理基础知识在开始编写多点找色算法之前,我们需要对图像处理有一定的了解。
在计算机中,图像由一组像素点组成,每个像素点代表一个特定的颜色。
在Python中,我们可以使用PIL库(Python Imaging Library)来处理图像。
首先,我们需要安装PIL库,可以使用pip命令行工具进行安装:pythonpip install pillow安装完毕后,我们可以导入PIL库并加载一张图片进行处理:pythonfrom PIL import Image# 加载图片image = Image.open('image.jpg')现在,我们已经成功加载了一张图片,可以进行后续的图像处理操作了。
第二步:获取像素点的颜色值在多点找色算法中,我们需要获取像素点的颜色值,并判断是否和目标颜色匹配。
PIL库提供了一个方法`getpixel`来获取像素点的颜色值。
这个方法接受一个二元组作为参数,表示像素点的位置。
例如,如果我们想要获取图片中坐标为(100, 200)的像素点的颜色值,可以使用以下代码:python# 获取坐标为(100, 200)的像素点的颜色值color = image.getpixel((100, 200))通过这个颜色值,我们可以进一步判断是否和目标颜色匹配。
第三步:匹配目标颜色在多点找色算法中,我们需要判断像素点的颜色值是否和目标颜色匹配。
如果匹配成功,则将该像素点的位置保存下来。
为了实现这一功能,我们可以定义一个函数`find_color`来完成匹配任务:pythondef find_color(image, target_color):# 获取图片的尺寸width, height = image.size# 创建一个空列表,用于保存匹配结果match_positions = []# 遍历图片的所有像素点for y in range(height):for x in range(width):# 获取当前像素点的颜色值color = image.getpixel((x, y))# 判断是否和目标颜色匹配if color == target_color:match_positions.append((x, y))# 返回匹配结果return match_positions通过这个函数,我们可以找到所有和目标颜色匹配的像素点的位置。
image colorization 经典方法

image colorization 经典方法
Image colorization 是一种经典的图像处理方法,它的目标是根据黑白或灰度图像恢复出彩色的图像。
经典的 image colorization 方法通常基于计算机视觉和机器学习技术。
在经典的图像上色方法中,有两种常用的策略:基于规则的方法和基于机器学习的方法。
基于规则的方法利用颜色概率分布和统计规律来自动赋予黑白或灰度图像合适的颜色。
这些方法通常从大型彩色图像数据库中学习颜色统计信息,并利用这些信息来为输入图像赋予颜色。
然而,由于这些方法依赖于统计规律,对于某些特殊图像或者细节部分,可能无法准确地恢复颜色。
基于机器学习的方法则通过训练模型来学习图像中的颜色特征和关联性。
这些方法首先需要构建一个大型的彩色图像数据库,并将这些图像和它们对应的黑白或灰度图像配对。
然后,利用神经网络模型或其他机器学习算法对图像进行训练,以学习图像的颜色分布和相应的映射关系。
在测试阶段,这些方法可以将黑白或灰度图像输入到训练好的模型中,从而生成彩色图像。
虽然基于机器学习的方法能够更加准确地为黑白或灰度图像上色,但是这些方法的训练过程通常需要较大的计算资源和大量的标注数据。
而基于规则的方法则需要手动设计特征和规则,因此对专业知识的要求较高。
由于 image colorization 需要对图像中的每个像素进行颜色恢复,算法的速度也是一个重要的考量指标。
因此,在实际应用中,我们需要综合考虑准确性、效率和资源消耗等因素,选择适合的 image colorization 方法。
image color summarizer 的原理

image color summarizer 的原理
Image Color Summarizer的原理是通过对图像中的颜色进行分析和提取,将图
像的主要颜色进行总结和概括。
首先,该算法会将图像转换为数字化的像素矩阵。
每个像素点都包含了红、绿、蓝(RGB)三个颜色通道的数值。
然后,算法会对这些像素进行聚类或分组,将具有相似颜色的像素归为一类。
这通常是通过计算像素之间的欧几里德距离来实现的,欧几里德距离是用来度量颜色之间的差异度的一种方法。
接下来,算法会根据像素所属的类别来计算每个类别的平均颜色。
这可以通过
对每个类别中的像素颜色值进行求平均得到。
最后,算法会根据每个类别的平均颜色值来生成图像的颜色摘要或总结。
一种
常见的方法是将每个类别的平均颜色值绘制成一个小方块的形式,以形成一幅颜色样本图。
这样可以直观地展示图像中主要的颜色分布。
Image Color Summarizer的原理简单而直观,通过对像素颜色的分析和聚类,
将图像的主要颜色总结和概括,从而帮助用户更好地理解图像的色彩构成。
imagefolder的用法与示例

imagefolder的用法与示例什么是imag efolder?`i ma ge fo ld er`是一个用于管理和组织图像文件的P yt ho n库。
它提供了简单且高效的方法,用于加载、预处理和可视化图像数据。
本文将介绍`im ag ef ol de r`的基本使用方法,并提供一些示例来帮助读者更好地理解如何有效地使用该库。
安装imagef older使用`i ma ge fo ld er`之前,我们需要先安装它。
你可以通过以下命令来安装`im ag ef ol de r`:p i pi ns ta ll im ag efo l de r加载图像数据集在使用`im ag ef ol de r`之前,我们需要准备好图像数据集。
可以将要使用的图像文件按类别分别放在不同的文件夹中,每个文件夹的名称即为对应的类别名称。
通过`i ma ge fo ld er`可以很方便地加载这些图像数据集。
以下是一个示例代码,展示了如何使用`im ag ef ol de r`加载数据集:f r om im ag ef ol de rim p or tI ma ge Fo ld er设置数据集路径d a ta_p at h='./d ata s et'创建ImageFolder对象d a ta se t=Im ag eF old e r(da ta_p at h)获取数据集中的类别数n u m_cl as se s=da tas e t.nu m_cl as se s打印类别数p r in t("数据集中的类别数:",nu m_cl as s es)数据预处理使用`i ma ge fo ld er`加载数据集后,我们可以对图像数据进行预处理。
`i ma ge fo ld er`提供了多种预处理方法,包括图像缩放、裁剪、旋转等操作。
以下是一个示例代码,展示了如何使用`i m ag ef ol de r`进行数据预处理:f r om im ag ef ol de rim p or tI ma ge Fo ld erf r om im ag ef ol de r.t r an sf or ms im po rtR e si ze,T oT en so r设置数据集路径d a ta_p at h='./d ata s et'创建ImageFolder对象,并指定预处理方法d a ta se t=Im ag eF old e r(da ta_p at h,tra n sf or m=[R es iz e(256),T oT e ns or()])加载数据集d a ta=d at as et.l oad_da ta()打印数据集中的第一张图片p r in t("第一张图片:",d at a[0])数据可视化`i ma ge fo ld er`还提供了简单且方便的方法来可视化加载的图像数据。
python colorama用法

python colorama用法Colorama是一个Python库,用于在命令行中添加颜色和样式,使打印输出更加丰富多彩。
它提供了一种简单的方式来为终端输出添加文本颜色、背景颜色和样式。
使用Colorama需要先安装该库。
可以通过运行以下命令来安装Colorama:pip install colorama一旦安装完成,我们就可以开始使用Colorama来改变命令行输出的样式了。
首先,我们需要导入colorama模块:from colorama import Fore, Back, Style接下来,我们可以使用Fore对象来设置文本颜色。
例如,`Fore.RED`将文本设为红色:print(Fore.RED + "This is red text")类似地,我们可以使用Back对象来设置背景颜色。
例如,`Back.GREEN`将背景设置为绿色:print(Back.GREEN + "This has a green background")我们还可以使用Style对象来设置文本样式。
例如,`Style.BRIGHT`可以使文本变亮:print(Style.BRIGHT + "This text is bright")为了重置所有样式,可使用Style.RESET_ALL:print(Style.RESET_ALL + "This text has default style")除了使用内置的颜色和样式外,我们还可以自定义颜色。
可以使用如下方式创建自定义颜色:Fore.COLOR_NAME + Back.COLOR_NAME例如,`Fore.LIGHTYELLOW_EX + Back.BLUE`将文本颜色设置为浅黄色,背景颜色设置为蓝色。
最后,为了避免颜色在命令行中持续生效,我们应该在每次输出后及时恢复默认样式,可以使用`print(Style.RESET_ALL)`来实现。
albumentation 使用手册

Albumentations是一个用于图像增强的Python库,提供了各种图像变换和增强技术,可以帮助您在机器学习和计算机视觉任务中提高模型的性能。
以下是Albumentations的使用手册:Albumentations使用手册一、简介Albumentations是一个用于图像增强的Python库,提供了各种图像变换和增强技术,可以帮助您在机器学习和计算机视觉任务中提高模型的性能。
它支持各种图像变换,如裁剪、缩放、旋转、翻转等,还支持更复杂的图像增强技术,如色彩变换、亮度调整等。
使用Albumentations可以非常方便地对图像进行各种增强操作,快速生成大量多样化的训练数据。
二、安装您可以使用pip命令安装Albumentations库:```shellpip install albumentations```三、基本用法1. 导入必要的模块和数据集:```pythonimport cv2from albumentations import Compose, Resize, RandomHorizontalFlip, Normalize, RGBShift, HueSaturationValuefrom your_dataset import your_dataset_name```2. 创建一个增强变换序列:```pythontransform = Compose([Resize(300, 300), # 调整图像大小为300x300像素RandomHorizontalFlip(), # 以0.5的概率对图像进行水平翻转RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25), # 在RGB通道上随机偏移一定范围内的像素值HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10), # 随机调整图像的色调、饱和度和亮度值Normalize() # 对图像进行标准化处理])```3. 对数据集中的每个图像应用增强变换:```pythonfor image in your_dataset_name:augmented_image = transform(image=image)["image"] # 对原始图像进行增强变换并返回增强后的图像# 在此处处理增强后的图像,例如将其保存到磁盘上或将其输入到模型中进行训练等操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract— In this contribution, a new image database for testing full-reference image quality assessment metrics is presented. It is based on 1700 test images (25 reference images, 17 types of distortions for each reference image, 4 levels for each type of distortion). Using this image database, 654 observers from three different countries (Finland, Italy, and Ukraine) have carried out about 400000 individual human quality judgments (more than 200 judgments for each distorted image). The obtained mean opinion scores for the considered images can be used for evaluating the performances of visual quality metrics as well as for comparison and for the design of new metrics. The database, with testing results, is freely available.Index Terms—Visual quality metrics, HVS, test image databasesI.I NTRODUCTIONQuality evaluation of digital images is critical in all applications of image processing. Each stage of processing, storing, compression, and enhancement, may introduce perceivable distortions [1][2]. The visibility and annoyance of these impairments are directly related to the quality of the received/processed data. It is fundamental the possibility of measuring the overall perceived quality to maintain, control, or to enhance the quality of the digital data.Many efforts have been directed during the last two decades by the scientific community to the design of quality metrics. The choice of an adequate metric usually depends on the requirements of the considered application. They can be distinguished in objective and subjective metrics. In objective measurements of the performances of an imaging system, image quality and quality losses are determined by evaluating some parameters based on a given general mathematical, physical or psycho-psychological model. While in subjective tests, the digital image quality is determined from the performance of test-persons in subjective psychological tests. Objective quality metrics can be classified according to the amount of side information required to compute a given quality measurement. Using this criterion, three generic classes of objective metrics can be classified as Full Reference (FR) when the original and the impaired data are available, Reduced Reference (RR) when some side information regarding the original media can be used, and No-Reference (NR) if only the impaired image is available. The most used FR objective metrics are the Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR). They have low computational cost, physical meanings, and are mathematically easy to deal with for optimization purposes. However, they have been widely criticized for not being well correlated with perceived quality measurement [3][4].To overcome such problems, recently HVS inspired objective quality metrics have been introduced. The main difference among these metrics and the mathematical ones (MSE, PSNR) is that they are more heuristic. It is more difficult to perform a mathematical comparison of their performances. Thus, to adequately evaluate the quality of such metrics statistical experiments are needed [8][9]. To this purpose, a large database of distorted test images is usually prepared, and the Mean Opinion Score (MOS) from a large number of human observers is collected. Then, the subjective results are compared with the objective scores of the tested metrics to identify the metric more tuned to the subjective scores. However some drawbacks are to be considered: usually the size of the test database is not big enough [10], the number of different distortions is limited [11][12], and methodological errors in planning and execution of the experiments can occur.Since in most applications humans are the ultimate receivers of the digital data, the most accurate way to determine its quality is to measure it directly using psychophysical experiments with human subjects. Unfortunately, these subjective tests are too expensive and time-consuming.One of the most intensive studies in this field has been carried out by the Video Quality Expert Group (VQEG)[13]. New metrics of image visual quality have been designed andColor Image Database for Evaluation of ImageQuality MetricsN. Ponomarenko#1, V. Lukin#2, K. Egiazarian*3, Senior Member, IEEE, J. Astola*4, Fellow IEEE,M. Carli+5, Senior Member, IEEE and F. Battisti+6#Dept of Transmitters, Receivers and Signal Processing, National Aerospace University, Kharkov, Ukraine1uagames@mail.ru2lukin@xai.kharkov.ua*Institute of Signal Processing, Tampere University of Technology, Tampere, Finland3karen@cs.tut.fi4jta@cs.tut.fi+Dept of Applied Electronics, University of Rome "Roma TRE", Rome, Italy5carli@uniroma3.it6fbattisti@uniroma3.itthe largest database of distorted test images (982 distorted images: 29 reference images, 5 types of distortions, 5-7 distortion levels) has been created, LIVE database [14]. However, to our opinion, the LIVE database, as well as the other ones, does not allow to adequately evaluate metrics of image visual quality. This is due to the limited number of the modeled types of distortions, for LIVE namely the ones induced by JPEG and JPEG2000 compression, arising from transmission errors for JPEG2000, modeled by white noise and Gaussian blur. Among them only the distortion caused by JPEG compression allows the evaluation of the correspondence of the tested metrics to one feature of HVS. In [9], the conclusion (based on using LIVE database) is that VIF [15] is the best among tested metrics. At the same time, based on data of subjective experiments carried out in [10] (in which the authors took into account peculiarities of HVS as CSF and contrast masking), the values of Spearman and Kendall correlations for VIF and MOS are 0.377 and 0.255, respectively. Meanwhile, for the best metrics considered the correlations are equal to 0.984 and 0.948, respectively. This means that LIVE database has not allowed to emphasize the poor accounting of CSF and of contrast masking by VIF.In the design of the proposed database, we have tried to overcome the drawbacks of existing test image databases while maintaining their positive aspects. Briefly, this image database contains 17 types of distortions related to the most important currently known peculiarities of HVS and valuable (wide-spread) practical situations of image processing.For assessing the human perceived quality, a huge number of participants (654) has been enrolled in the performed experiments for providing reliability of the obtained MOS estimates. Using this database, it is possible to more accurately evaluate the correspondence of metrics to the human visual judgment. We also have analyzed some results, in particular, human perception of noisy and filtered images. The paper is organized as follows. The requirements to image databases used for testing full-reference quality metrics are considered in Section II. Section III is devoted to the description of the proposed image database. In Section IV we present the performed experiments. Analysis of the obtained results is also given. Finally, Section V conclusions are drawn. II.R EQUIREMENTS T O I MAGE D ATABASES U SED F OR T ESTINGF ULL-R EFERENCE Q UALITY M ETRICSThe image databases to be used for the considered application have to satisfy several requirements as reflecting the HVS peculiarities and containing non-trivial images. Based on previous experience, we can summarize some guideline for designing a test image database:• it should include images with considerably different characteristics: percentage of homogeneous regions, details and textures, various texture characteristics, etc.;• for each HVS feature, the database has to contain, at least, one distortion type that allows to estimate how this feature influences image visual quality;• it is desirable that the database will contain image distortions typical for practice that originate due to compression, denoising, data transmission errors, etc;• the images in the database should not be too simple for visual quality estimation: 1) the number of distortion levels should not be large, 2) the number of situations when all metrics evidence in favor of a given image should not be large. Fig. 1 shows three undesirable situations in testing. Quality of the image in Fig. 1 (a) is worse than one in Fig. 1 (b). Then, a majority of tested quality metrics will indicate preference of the latter image quality. The presence of relatively large number of such pairs of compared image combinations in database might result in overestimated effectiveness of all considered metrics. Images represented in Figures 1 (c) and 1 (d) relate to the same type of distortions (impulse noise). The image in Fig. 1 (c) is characterized by a sufficiently higher level of distortions. In this case, most metrics will evidence in favor of the better quality of the image in Fig. 1 (d). In general, this is the correct decision and the property to clearly “recognize” such simple situations has to be provided for quality metrics. However a large number of such combinations leads to increasing correlation of the analyzed metric and MOS. It is also undesirable to use many images in a database for which distortions are unperceived (Figures 1 (e) and 1 (f)).III.D ESCRIPTION O F T HE P ROPOSED I MAGE D ATABASEThe proposed test database (TID2008) contains color images with different textural characteristics, various percentages of homogeneous regions, edges and details. The images are from the Kodak test set [16] that can be considered as a good trade off between the abovementioned requirements. Besides, we have synthesized and added one artificial image that has different texture fragments and objects with various characteristics. All images are of size 512x384 pixels. Table I presents the distortions modeled in our image database.As can be noticed several distortions have been considered. For example, masked noise and high frequency noises are types of distortions that allow analyzing metrics’ adequateness with respect to local contrast sensitivity and spatial frequency sensitivity of HVS. Such artifacts are typically introduced by lossy image compression or digital watermarking [17][18]. Other important type of distortions studied recently [20] are residual distortions resulting from denoising. It is a common result that the PSNR for a filtered image is by 2-3 dB better than an original (noisy) one, but, at the same time, visually a processed image looks worse than the corresponding noisy original. Thus, we have included into our database images for which original additive i.i.d. Gaussian noise is suppressed by one of the state-of-the-art filter [21]. In Fig. 2, an example of the original and of its version corrupted by Gaussian additive noise is reported. As it can be seen, although the processed image is characterized by a larger PSNR, residual noise after filtering and distortions introduced by filtering leads to perceivable artifacts.a)c) e)b)d) f)Fig 1. Three examples of too simple cases of visual quality assessment that have to be met quite seldomT ABLE IT YPES OF DISTORTIONS USED IN OUR IMAGE DATABASE№Type of distortion(four levels for eachdistortion)Correspondence topractical situationAccounted HVSpeculiarities1 Additive Gaussian noise Image acquisition Adaptivity,robustness2Additive noise in colorcomponentsImage acquisition Color sensitivity3 Spatially correlated noise Digital photographySpatial frequencysensitivity4 Masked noiseImage compression,watermarkingLocal contrastsensitivity5 High frequency noiseImage compression,watermarkingSpatial frequencysensitivity6 Impulse noise Image acquisition Robustness7 Quantization noiseImage registration,gamma correctionColor, local contrast,spatial frequency8 Gaussian blur Image registrationSpatial frequencysensitivity9 Image denoising Image denoisingSpatial frequency, localcontrast10 JPEG compression JPEG compressionColor, spatial frequencysensitivity11 JPEG2000 compressionJPEG2000compressionSpatial frequencysensitivity12 JPEG transmission errors Data transmission Eccentricity13 JPEG2000 transm. errors Data transmission Eccentricity14Non eccentricity patternnoiseImage compression,watermarkingEccentricity15Local block-wisedistortions of differentintensityImage acquisition,inpaintingEvenness of distortions16Mean shift (intensityshift)Image acquisition Light level sensitivity17 Contrast changeImage acquisition,gamma correctionLight level, localcontrast sensitivityAnother distortion we considered is caused by compressionand transmission oven noisy packet channels. We haveincluded into our database the images compressed by JPEG orJPEG2000 and decoded with errors in data transmissionchannels. Quite often it is not easy to notice distortionsinduced by such errors since they are almost not seen (visible)due to their non-eccentricity. Fig. 3 presents two examples ofdistortions due to transmission/decoding errors. Distortedfragments might occur to be similar to original texture and/orcolor of surrounding fragments and due to peculiarities ofHVS a human might not notice (pay attention to) suchdistortions. To our opinion, the use of images for which theconsidered distortions are modeled will allow to get someimagination concerning ability of the tested quality metrics totake this feature of HVS into account. Another distortion weintroduced in the test set is the so called local block-wisedistortions of different intensity. An idea that we would like toverify consists in the following. We suppose that in case ofcompact impulse-like distortions HVS reacts not to distortionvalues pixel by pixel but to area (percentage of pixels) that is asubject to (occupied by) distortions. Distortions have beenmodeled in such a way that blocks of size 32x32 pixels thathave arbitrary random color have been placed in an imagerandomly but mainly in places where there is importantinformation (content). For the first level of distortions, 16blocks with color slightly differing from mean color ofreplaced fragment have been added. For the second level ofdistortions, the amount of such blocks was 8 but their colordiffers from mean color of replaced fragment more. For thethird and fourth levels, four and two blocks have beenreplaced, respectively. However, for these blocks their colordiffers more essentially from the mean colors of thecorresponding replaced fragments. Trials show that the imagecorrupted by two blocks is perceived as having better visualquality (although it has smaller PSNR) than the imagedistorted by 16 blocks. Finally, we have added into our database images for which mean shift and contrast change distortions have been modeled [7].a)b)Fig. 2. Comparison of visual quality a) after filtering out additive noise, PSNR=28.19 dB, b) original noisy image corrupted by additive i.i.d. Gaussiannoise, PSNR=26.99 dBa) b)Fig. 3. Image decoded with errors due to unreliable data transmission line: a)for the standard JPEG, PSNR=24.05 dB, b) for the standard JPEG2000,PSNR=23.98 dB We have set four levels for all types of distortions. For almost all types of distortions, the corresponding levels of PSNR are of about 30 dB, 27 dB, 24 dB, and 21 dB (very good quality, good quality, poor quality, and bad quality). On one hand, such number of distortion levels for 25 reference images allows to “reliably cover” all range of subjective quality of distorted images from “excellent” to “very bad”. On the other hand, four levels do not create too many simple combinations of image pairs at their quality comparison stage (see Section II). Table II gives some additional details concerning generation of distorted images for all types. Note that all color images have been represented as RGB with 8 bits in each component.T ABLE 2S OME DETAILS OF DISTORTED IMAGE GENERATION№Type of distortion Four levels of distortions 1 Additive Gaussian noise Variance=64, 130, 260, 525 2 Different additive noise in color componentsPSNR=30 dB, 27 dB, 24 dB, 21 dB 3 Spatially correlated noise Variance=64, 130, 260, 525 4 Masked noise PSNR=30 dB, 27 dB, 24 dB, 21 dB 5 High frequency noise PSNR=30 dB, 25 dB, 20 dB, 15 dB 6 Impulse noise Pimp=0.85%, 1.7%, 3.4%, 6.8% 7 Quantization noise QS (quantization step)=27, 39, 55, 768 Gaussian blurWindow size is 11, Sigma (parameterof blur) = 0.65, 1, 1.7, 49 Image denoisingVariance of additive noise beforefiltering = 144, 484, 1764, 810010JPEG compression quality levels with parameters ofcompression equal to 60, 23, 8, 4 (100- max quality, 0 - min quality)11JPEG2000 compression PSNR=30 dB, 27 dB, 24 dB, 21 dB 12JPEG transmission errors PSNR=30 dB, 27 dB, 24 dB, 21 dB 13JPEG2000 transmission errors PSNR=30 dB, 27 dB, 24 dB, 21 dB 14Non eccentricity pattern noise PSNR=30 dB, 27 dB, 24 dB, 21 dB15Local block-wise distortions of different intensity16, 8, 4 and 2 blocks16Mean shift (intensity shift) Value of the shift is +10,-20,+30,-40 17Contrast change x1.2, x0.75, x1.45, x0.5IV. E XPERIMENTS D ESCRIPTIONThere are different methodologies that can be used to evaluate the quality of an image [9][22]. In [23] we tested the following approach to evaluate the image visual quality. The basic idea is that is easier for a subject to select the image of higher quality between two than to rank one image with a scale. The experiment performed is organized in two phases.In the first one the observers have been asked to sort the images from the test set according to their visual quality through a pair-wise comparisons. For each couple of distorted images the observer had to decide which one, between the two, was less distorted when compared to the original one. Then, a quantitative evaluation of the image quality is determined by its position in the obtained ordered set. In the second phase of the experiment, to produce the MOS, the observers were asked to rate the annoyance of possible impairments in the test set using a continuous scale [0,100],where ‘100’ corresponds to the case where no distortions are detected (i.e. the highest quality) and ‘0’ to the case where very annoying impairments are present. At the end of the experiments, the subjects have marked that it was simpler thefirst stage of quality evaluation although for sorting the test set they had to perform more judgments. Moreover, the Pearsoncorrelation between the MOS obtained from the quantitative evaluation of image quality (second stage in the experiments), and the MOS derived by averaging the image positions in the sorted samples (first stage in the experiments) was equal to 0.99. This means that both approaches have led to the same results.A conventional way to measure the correspondence between the HVS and the visual quality is to find the correlation between these metric values calculated for the considered test image database and the MOS values obtained for the same database. Different correlations can be used: the standard Pearson correlation and rank correlations proposed by Spearman and Kendall [24]. In our tests we have used the Spearman and Kendall correlation. In fact the use of Pearson correlation requires a preliminary data fitting [9] whilst the rank correlations of Spearman and Kendall can be derived without such pre-processing.According to [22], the execution time of one experiment by each observer should not exceed 30 minutes. In our case database of test images contains 1700 images. The full sorting of this image database will require about 1700 x log2 (1700) decisions for each observer. Supposing that each comparison takes approximately 2-3 seconds, the total time for each subject experiment will vary from 10 up to 15 hours. This is unrealistic. Thus, experiments for each reference image have been performed separately. The averaged time needed by each subject for one reference image is 13.5 minutes.Totally 654 experiments have been carried out in three countries: Finland, Italy, and Ukraine. 251 experiments have been carried out in Finland, 150 in Italy, and 253 in Ukraine. In Italy and Ukraine the experiments have been performed in off-line mode; in Finland, in on-line mode via Internet.Our experiments have been performed on LCD and TFT monitors with screen sizes 17 or 19 inches. The monitor brightness, illumination and distance from the observer varied in wide limits. The only fixed parameter in our experiments was the monitor resolution, 1152x864 pixels.It is useful to note that the designed database is intended for verification of visual quality metrics in a priori unknown conditions. Each experiment consisted of 9 cycles. During the first cycle all the 68 distorted images of a given set that correspond to a selected reference image have been randomly divided into 34 pairs. The “winners” of each pair (an image that has better visual quality according to the observer opinion) got one point, the “losers” got no points. In each cycle those images have been randomly combined to pairs that had equal or almost equal number of points. Thus, each image had a chance to be compared to any other image in the set, but images that have approximately equal quality have been compared more frequently to provide high quality ordering. Each observer during one experiment has carried out 306 comparisons of image visual quality (612 evaluations of relative visual quality of distorted images). The observers have performed experiments on a variable number of reference images (1-3). Totally, 654 observers have performed 200124 comparisons of visual quality of distorted images or 400248 evaluations of relative visual quality in image pairs. Each image from the total set of 1700 distorted images finally got, on the average, 235 estimates of relative visual quality. As the result, the quantitative estimates of image visual quality have been obtained (the numbers of got points) as well as rank estimates of quality (average place in the ordered sample). Spearman correlation between the MOS for both variants is 0.998 whilst Kendall correlation is equal to 0.961. These values evidence high statistical confidence of the obtained MOS. Another evidence of reliability of the MOS is the high correlation present in the data independently obtained in the three different countries where the experiments have been carried out (0.93-0.96).The validity of the subjective test results was verified by a screening of the results performed according to Annex 2 [22]. The average MOS for all the 25 reference images is given in Fig. 4. In each section, corresponding to one distortion, there are four dots that mark the MOS for the four distortion levels; the leftmost dot corresponds to the first level of distortions. This plot allows drawing some interesting conclusions. First, none of the considered distortions produces for all levels a worse image visual quality than for other types of distortions. Similarly, there is not a distortion providing for all levels a better visual quality than the one obtained for other types of distortions. This shows that the database has been properly designed. Third, we would like to highlight the interesting phenomenon that has been also emphasized in [15]. Among images with modified contrast the highest visual quality is assigned to images with slightly enhanced (about 1.2 times) contrast. This confirms the hypothesis that subjectively such images are perceived by observers as even having higher quality than the corresponding reference images. At the same time, the over-contrasted images (with contrast enhanced by 1.45 times) occur to be visually perceived as having worse quality than images subject to some other type of distortions.It is also interesting to note that distortions induced by filtering occur to be very similar to distortions due to JPEG image compression. The range of visual quality of images for these two distortions is the widest. We would like to highlight the dependences of the visual quality on the PSNR for distortions of the 1st (Additive Gaussian noise), 9th (DCT 3D denoising), 10th (JPEG), and 11th (JPEG2000) types.These dependences are shown in Fig. 5. These plots prove one more time that the PSNR is not suitable to characterize the visual quality of distorted images, especially filtered ones. If the PSNR after filtering increases by 1-2 dB, the visual quality of the filtered image can results even worse. To be sure that the filtering operation leads to an improvement in the image visual quality, its PSNR should increase by, at least, 2.5-3 dB if the PSNR of the noisy image was of about 29-30 dB, or by, at least, 7-8 dB if noisy image PSNR has been about 20-22 dB. Another comment by the analysis of Fig. 5 is that for images presenting a similar PSNR, the visual quality of images compressed by using the JPEG standard is preferable in comparison to images compressed by using the standard JPEG2000 (as in LIVE, we used the freely available coderKakadu [6]). JPEG produces worse visual quality of images than JPEG2000 for PSNR around 22-23 dB [5].Fig 5. Dependence of the opinion score on PSNR for some types of distortionsFig. 6. Dependences of the MOS on PSNR for different spatial frequency and color distributions of additive noiseThe obtained results confirm a typical phenomenon for HVS: higher sensitivity to spatially correlated noise and less sensitivity to noise in color components (see plots in Fig. 6). As seen, images corrupted by spatially correlated noise have worse visual quality than those corrupted by i.i.d. Gaussian noise that show a smaller PSNR (6 dB less).V.A CCESS T O T ID2008,C ONCLUSIONSFor obtaining TID2008, please send your request by e-mail Karen.egiazarian@tut.fi. This archive includes image files, the file containing the MOS values, the program for calculation of Spearman and Kendall correlations, the readme file that explains how to exploit the database. TID2008 is free of charge for usage with scientific purposes. In case of publishing results obtained by means of TID2008, it is necessary to refer to this paper. Finally, we would like to stress once more the main advantage of TID2008: it satisfies main requirements for image quality testing, containing many different types of distortion related to various peculiarities of HVS.R EFERENCES[1]M. Yuen and H. R. Wu, "A survey of hybrid MC/DPCM/DCT videocoding distortions," Signal Processing, vol. 70, pp. 247-78, Oct. 1998.[2]ITU Recommendation P.930, "Principles of a reference impairmentsystem for video," 1996.[3] A. B. Watson, Ed., Digital Images and Human Vision, Cambridge, MA:MIT Press, 1993, 224p.[4]Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment sodifficult,” in Proc. IEEE Int. Conf. Acoustics, Speech, and SignalProcessing, vol. 4, Orlando, FL, pp. 3313–3316, May 2002.[5]G. Wallace, “The JPEG Still Picture Compression Standard”, Comm. ofthe ACM, vol. 34, No.4, 1991.[6] D. Taubman, M. Marcellin, JPEG 2000: Image CompressionFundamentals, Standards and Practice. Boston: Kluwer, 2002.[7]Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, “Image qualityassessment: from error visibility to structural similarity”, IEEETransactions on Image Proc., vol. 13, issue 4, pp. 600-612, April, 2004. [8]I. Avcibas¸ B. Sankur, and K. Sayood, “Statistical evaluation of imagequality measures,” J. Electron. Imag., vol.11, no.2, pp.206–23, 2002.[9]H. R. Sheikh, M. F. Sabir, A. C. Bovik, “A Statistical Evaluation ofRecent Full Reference Image Quality Assessment Algorithms”, IEEETransactions on Image Proc., vol. 15, no. 11, pp. 3441-3452, 2006.[10]Ponomarenko N., Silvestri F., Egiazarian K., Carli M., Astola J., LukinV. “On between-coefficient contrast masking of DCT basis functions”,CD-ROM Proc. of the Third International Workshop on VideoProcessing and Quality Metrics. - USA, 2007. - 4 p.[11]R. de Freitas Zampolo, R. Seara, “A Comparison of Image QualityMetric Performances Under Practical Conditions”, Proc. of IEEEInternational Conf. on Image Processing, 2005, vol. 3, pp. 1192-1195. [12]M. Miyahara, K. Kotani, V.R. Algazi, ”Objective picture quality scale(PQS) for image coding”, IEEE Transactions on Communications, vol.46, issue 9, pp. 1215-1226, 1998.[13]VQEG: The Video Quality Experts Group, /[14]H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, LIVE ImageQuality Assessment Database, Rel. 2 2005 /research/quality[15]Sheikh H. R. and Bovik A. C., "Image Information and Visual Quality",IEEE Trans. on Image Processing, vol. 15, February, 2006, pp. 430-444[16]Kodak Lossless True Color Image Suite. /graphics/kodak/[17]I.J. Cox, M.L. Miller, J.A. Bloom, J. Fridrich and T. Kalker, DigitalWatermarking and Steganography (Second Edition), Morgan Kaufmann,2008, 619 p.[18]M. Carli, “Perceptual Aspects in Data Hiding”, Thesis for the degree ofDoctor of Technology, Tampere University of Technology, 2008.[19]K.N. Plataniotis and A.N. Venetsanopoulos, Color Image Processingand Applications, Springer Verlag, Berlin, 3-540-66953-1, May 2000. [20] E. Vansteenkiste, D. Van der Weken, W. Philips, E. Kerre, “Psycho-visual quality assessment of state-of-the-art denoising schemes”,Proceedings of EISIPCO, 2006, 5 p.[21]K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising bysparse 3-D transform-domain collaborative filtering, IEEE Trans.OnImage Processing, vol. 16, issue 8, pp. 2080-2095, Aug. 2007.[22]ITU (2002). Methodology for Subjective Assessment of the Quality ofTelevision Pictures Recommendation BT.500-11, InternationalTelecommunication Union, Geneva, Switzerland.[23]K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti,M. Carli, “New full-reference quality metrics based on HVS”, CD-ROMProceedings of the Second International Workshop on Video Processingand Quality Metrics, Scottsdale, USA, 2006, 4 p.[24]W.H. Kruskal, “Ordinal measures of association”, J. Amer. Statist.Assoc., vol. 53, pp. 814–861, 1958.。