全等三角形的判定1练习题
全等三角形的判定(一)(人教版)(含答案)
全等三角形的判定(一)(人教版)一、单选题(共10道,每道10分)1.如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是( )A.∠B=∠CB.∠AEB=∠ADCC.AE=ADD.BE=DC答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定2.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定3.能使两个直角三角形全等的条件是( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定4.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定5.下列各组图形中,是全等图形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形答案:B解题思路:试题难度:三颗星知识点:全等三角形的性质6.下列条件一定能推得△ABC与△DEF全等的是( )A.在△ABC与△DEF中,∠A=∠B,∠D=∠E,AB=DEB.在△ABC与△DEF中,AB=AC,∠A=∠F,FD=FEC.在△ABC与△DEF中,,∠B=∠ED.在△ABC与△DEF中,,∠B=∠E答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定7.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定8.如图,在△ABC中,已知AB=AC,BD=DE=EF=FC,则图中全等三角形有( )A.1对B.2对C.3对D.4对答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定9.如图,有三棱锥ABCD和三棱锥EFGH,其中甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.若∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则下列叙述正确的是( )A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等答案:B解题思路:试题难度:三颗星知识点:全等三角形的判定10.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )A.①②B.②③C.①③D.①②③答案:A解题思路:试题难度:三颗星知识点:全等三角形的判定。
《全等三角形的判定》练习(含答案)
全等三角形的判定一、选择题1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【答案】C .【解析】解带③去可以利用“角边角”得到全等的三角形.故选C .2.如图,已知:∠A=∠D ,∠1=∠2,下列条件中能使△ABC ≌△DEF 的是()A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD【答案】D .【解析】添加AF=CD ,∵AF=CD ,∴AF+FC=CD+FC ,∴AC=FD ,在△ABC 和△DEF 中12A DAC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),故选D .3.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是( )A .1个B .2个C .3个D .4个【答案】B .【解析】①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS ;③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合SAS .所以正确的说法有两个.故选B .4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A .若添加条件AC=A ′C ′,则△ABC ≌△A ′B ′C ′B .若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C .若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D .若添加条件∠C=∠C ′,则△ABC ≌△A ′B ′C ′【答案】B.【解析】A ,正确,符合SAS 判定;B ,不正确,因为边BC 与B ′C ′不是∠A 与∠A ′的一边,所以不能推出两三角形全等;C ,正确,符合AAS 判定;D ,正确,符合ASA 判定;故选B .5.如图,在等腰△ABC 中,AB=AC ,∠A=20°,AB 上一点D 使AD=BC ,过点D 作DE ∥BC 且DE=AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°【答案】B.【解析】如图所示,连接AE .∵AE=DE,∴∠ADE=∠DAE,∵DE∥BC,∴∠DAE=∠ADE=∠B,∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC﹣∠AED=40°,∴∠DCE=∠CDE=(180﹣40°)÷2=70°.故选B .6.如图:AB=AC ,∠B=∠C,且AB=5,AE=2,则EC 的长为( )A .2B .3C .5D .2.5【答案】B.【解析】在△ABE 与△ACF 中,∵A AAB AC B C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACF(ASA ),∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故选B.二、填空题.7.如图,AB=AC ,要使△ABE≌△ACD,依据ASA ,应添加的一个条件是 .【答案】∠C=∠B .【解析】添加∠C=∠B,在△ACD 和△ABE 中,A AAB AC C B∠=∠⎧⎪=⎨⎪∠=∠⎩,8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【答案】5.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFC DE EFAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.9.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .【答案】5. 【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,1=2AB ABABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADB≌△ACB(ASA ),∴BD=BC=5.10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是: .【答案】ASA ,全等三角形对应边相等 .【解析】∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△EDC(ASA ),∴DE=AB.11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形为 .(写出一对即可)【答案】△ABC ≌△ADC.【解析】△ABC≌△ADC,理由如下:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△ABC 与△ADC 中,BAC DCA AC CADAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△ADC(ASA ),∴AB=DC,BC=DA ,在△ABO 与△CDO 中,BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△CDO(AAS ),同理可得:△BCO≌△DAO,三、解答题12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .【答案】证明见解析.【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°,∴∠ABE=∠FCD,在△ABE 与△FCD 中,A F AB FCABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△FCD(ASA ),∴BE=CD.13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .【答案】答案见解析.【解析】∵CF∥AB,∴∠A=∠ACF,∠ADE=∠CFE.在△ADE 和△CFE 中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE(AAS ).∴AD=CF.14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .【答案】答案见解析.【解析】∵△AOD 和△AOE 是等边三角形,∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,∵∠BAC=60°,∴∠FAO=∠EAG=60°﹣∠CAO, 在△AFO 和△AGE 中, FAO EAG AO AEAOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO≌△AGE(ASA ), ∴AF=AG.。
全等三角形练习(基础证明题)
全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。
2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。
5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。
9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。
10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。
11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。
12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。
ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。
16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。
18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。
A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。
全等三角形的判定1练习题
练习51.如图,若AB=CD,AC=DB,可以判定哪两个三角形全等?说明理由2.如图,△ABC中,AB=AC,AD是BC边上的中线,∠B与∠C有什么关系?试说明。
3.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,则AB和DE有怎样的位置关系?推理说明。
4.如图,已知AB=AC,AD=AE,BD=EC。
图中有几对三角形全等?用推理说明。
5.如图,已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?6.如图,已知AB=CD,AD=CB。
则AB与CB,AD与CB有怎样的位置关系? 7.如图,AC=AD,BC=BD,∠1=35o,∠2=65o,求∠C8.如图,AB=AD,BC=DC,∠BAD=64o,求∠DAC9.如图,AC=DF,BC=EF,AD=BE,∠BAC=80o,∠F=60o,求∠ABC10.如图,AB=CD,AE=DF,BF=CE,试判断AB与CD,AE与FD的位置关系。
11.如图,AB=AC,BE=CE,说明AD平分∠BAC12.如图,△ABC中,AD=AE, BE=CD,AB=AC,说明△ABD≌△ACE13.如图,AC=DB,要使△ABC≌△DCB,只要增加一个条件是:14.如图,已知AC,BD相交于O,AB=DC,AC=DB,说明∠A=∠D15.如图,在△ABC中AB=AC,∠B与∠C相等吗?说明理由。
你还有发现吗?16.如图,已知AB=AC,BD=DC,则∠B与∠C是什么关系?为什么?∠BDC与∠A,∠B,∠C又有什么时候关系?17.已知AB=AD,DC=CB,则∠B与∠D是什么关系?18.已知AB=CD,AD=BC,则直线AB,CD有什么位置关系?为什么?19.如图,△ABC中AB=AC,AD是△ABC的中线,问AD还是三角形的什么线?为什么?20.如图,已知AB=DC,AC=DB,说明∠1=∠2。
全等三角形判定-专题复习50题(含答案解析)
全等三⾓形判定-专题复习50题(含答案解析)全等三⾓形判定⼀、选择题:1.如图所⽰,亮亮书上的三⾓形被墨迹污染了⼀部分,很快他就根据所学知识画出⼀个与书上完全⼀样的三⾓形,那么这两个三⾓形完全⼀样的依据是()A.SSS B.SAS C.AAS D.ASA2.⽅格纸中,每个⼩格顶点叫做⼀个格点,以格点连线为边的三⾓形叫做格点三⾓形.如图,在4×4的⽅格纸中,有两个格点三⾓形△ABC、△DEF,下列说法中成⽴的是()A.∠BCA=∠EDF B.∠BCA=∠EFDC.∠BAC=∠EFD D.这两个三⾓形中,没有相等的⾓3.如图所⽰,△ABD≌△CDB,下⾯四个结论中,不正确的是()A.△ABD和△C DB的⾯积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.下列判断中错误..的是()A.有两⾓和⼀边对应相等的两个三⾓形全等B.有两边和⼀⾓对应相等的两个三⾓形全等C.有两边和其中⼀边上的中线对应相等的两个三⾓形全等D.有⼀边对应相等的两个等边三⾓形全等5.使两个直⾓三⾓形全等的条件是()A.⼀个锐⾓对应相等B.两个锐⾓对应相等C.⼀条边对应相等D.两条边对应相等6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下⾯判断中错误的是( )A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/8.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪⼀个条件⽆法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F9.如图,在△ABC中,∠ABC=45°,AC=8cm,F是⾼AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm10.在如图所⽰的5×5⽅格中,每个⼩⽅格都是边长为1的正⽅形,△ABC是格点三⾓形(即顶点恰好是正⽅形的顶点),则与△ABC有⼀条公共边且全等的所有格点三⾓形个数是()A.1 B.2 C.3 D.411.如图,点E在正⽅形ABCD的对⾓线AC上,且EC=2AE,直⾓三⾓形FEG的两直⾓边EF、EG分别交BC、DC于点M、N.若正⽅形ABCD的边长为a,则重叠部分四边形EMCN的⾯积为()A.a2B.a2C.a2D.a212.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表⽰某⼈从A地到B地的不同⾏进路线(箭头表⽰⾏进的⽅向),则路程最长的⾏进路线图是()A.B.C.D.⼆、填空题:13.如图所⽰,有⼀块三⾓形的镜⼦,⼩明不⼩⼼弄破裂成1、2两块,现需配成同样⼤⼩的⼀块.为了⽅便起见,需带上块,其理由是.14.如图⽰,点B在AE上,∠CBE=∠DBE,要使ΔABC≌ΔABD, 还需添加⼀个条件是__________.(填上你认为适当的⼀个条件即可)15.如图,已知∠1=∠2,AC=AD,请增加⼀个条件,使△ABC≌△AED,你添加的条件是.16.如图,∠1=∠2,要使△ABD≌△ACD,需添加的⼀个条件是(只添⼀个条件即可).17.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三⾓形对.18.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应⾓是.19.如图,已知AB⊥BD,垂⾜为B,ED⊥BD,垂⾜为D,AB=CD,BC=DE,则∠ACE= 度.20.如图,如果两个三⾓形的两条边和其中⼀条边上的⾼对应相等,那么这两个三⾓形的第三边所对的⾓的关系是.三、解答题:21.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂⾜分别为A.B.试说明AD+AB=BE.22.如图,E、A.C三点共线,AB∥CD,∠B=∠E,,AC=CD。
八年级数学-全等三角形的判定练习(含答案)
八年级数学-全等三角形的判定练习(含答案)一、选择题1.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠D=∠B D.∠A=∠C 【答案】C.【解析】∠D=∠B,理由是:∵在△ADF和△CBE中AD BCD BDF BE=⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△CBE(SAS),即选项C正确;具备选项A、选项B,选项D的条件都不能推出两三角形全等,故选C.2.如图,若已知AE=AC,用“SAS”说明△ABC≌△ADE,还需要的一个条件是()A.BC=DE B.AB=AD C.BO=DO D.EO=CO【答案】B.【解析】在△ABC与△ADE中AE ACA AAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),故选B.3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSS B.SAS C.ASA D.HL 【答案】B.【解析】∵AB∥CD,∴∠BAC=∠DCA,在△ABC与△CDA中,AB CDBAC DCAAC CA=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDA(SAS).故选B.4.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠ED.∠ABD=∠CB E【答案】D.【解析】∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选D.5.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【答案】B.【解析】∵△ABD和△A CE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选B.6.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30° B.35° C.40° D.45°【答案】C.【解析】在BC上截取BF=AB,连DF,则有△ABD≌△FBD(SAS),∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°﹣∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°﹣∠ABD﹣∠A=180°﹣20°﹣100°=60°,∴△DCE≌△DCF(SAS),故∠ECA=∠DCB=40°.故选C.7.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=40°,则∠DEF的度数是()A.75° B.70° C.65° D.60°【答案】B.【解析】∵AB=AC,∴∠B=∠C=12(180°﹣∠A)=70°,在△BDE和△CEF中,BD CEB CBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠CED=∠B+∠BDE,即∠CEF+∠DEF=∠B+∠BDE,∴∠DEF=∠B=70°;故选B.8.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF 【答案】A.【解析】只有选项A正确,理由是:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,AD BCA CAF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),故选A.二、填空题9.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=6,则CD 的长为.【答案】2.【解析】∵AB∥EF,∴∠A=∠E,∵AD=EC,∴AD+DC=EC+DC,即AC=ED,在△ABC和△EFD中AB EFA EAC ED=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EFD(SAS),∴AC=ED=6,∴CD=AC+ED﹣AE=6+6﹣10=2,10.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)【答案】AC=DF.【解析】补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,11.如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)【答案】BD=CE.【解析】BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中AB ACB CBD CE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS).12.如图,已知AC=AE,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个).【答案】AB=AD.【解析】AB=AD,理由是:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),13.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,下列结论:①∠EAB=∠FAC;②∠C=∠EFA;③AD=AC;④AF=AC.其中正确的结论是(填写所有正确结论的序号).【答案】①②④.【解析】在△ABC与△AEF中,AB AEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△AEF(SAS),∴∠EAB=∠FAC,∠C=∠EFA,AF=AC,∴①②④正确;由已知条件不能得出AD=AC,③不正确.三、解答题14.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【答案】证明见解析.【解析】∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DE C中,CA CDACB DCEBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEC(SAS).15.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.【答案】证明见解析.【解答】证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,AB EFB EBD EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.16.已知:如图,在△ABC、△AD E中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【答案】(1)证明见解析;(2)BD⊥CE.【解析】(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)
D CB A 全等三角形的判定(一)(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .6、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .7、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ;②AC=DF ;③∠ABC=∠DEF ;④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 交于O ,请问O 点有何特征?【经典练习】 1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠3.在△ABC 和△C B A ''' ) ①A A '∠=∠B B '∠=∠,BC =C A C A ''='③A A '∠=∠B B '∠=∠,AC =C A B A ''=' A . 1个B. 2个C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是__________________。
全等三角形判定专题一( 证明题 )
全等三角形判定专题一(证明题)1、如图,AC=AD,BC=BD,求证:AB平分∠CAD.2如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.3、如图,已知AB=AC,AD=AE.求证:BD=CE.4如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB 于E,请说明AE=BE.5、一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.6、已知:如图,AB=DC,AB∥DC,求证:AD=BC.7、如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.8、如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.9、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.10、已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.11已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.12、如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.、13、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?14、已知:如图,AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AE=CF;(2)AE∥CF.15、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.16:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D。
104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是()A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF。
请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形()A。
3 B。
4 C。
5 D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件()A.∠1=∠2B.∠B=∠CC.∠D=∠E D。
∠BAE=∠CADD CBA 3、如图3,AD=BC,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A 。
AB ∥CD B.AD ∥BC C 。
∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B 。
全等三角形的判定练习
全等三角形的判定专项练习一.填空题(每题4分,共24分)1.如图,△ABD ≌△ACE,对应角是_______________________,对应边是__________________.2. 已知:如图,△ABC ≌△FED,且BC=DE.则∠A=__________,A D=_______.3. 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______. 4.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________.1 2 3 45.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________.6.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ),又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质).在△EBD 与△FCE 中,∠______=∠______(已证), ______=______(已知),∠B =∠C (已知), ∴EBD FCE △≌△( ).∴ED =EF ( ). 5 6 二.选择题(每题5分,共40分)7. 下列各条件中,不能作出惟一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边8. 如图,已知:△ABE ≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是 ( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8 99. 图中全等的三角形是 ( )A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ10. AD=AE , AB=AC , BE 、CD 交于F , 则图中相等的角共有(除去∠DFE=∠BFC )A.5对B.4对C.3对D.2对 ( ) 11.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED 的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对A B CD12AD EC B F 4321E D C BA12. 已知:如图,△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是 ( )A.AC=DFB.AD=BEC.DF=EFD.BC=EF10 11 12 13 14 13.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC 的度数为 ( )A.50°B.30°C.45°D.25° 14. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ( )A.70°B.80°C.100°D.90° 三.解答题(每题9分,共36分)15. 已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB.16. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .17.如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .18.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?七年级全等三角形判定专题训练 (查找隐含着的三角形全等的条件)(一)公共边1、已知:如图,AD ∥BC ,AD =CB ,你能说明△ADC ≌△CBA 吗? 证明:FG E D C B A AD E CBFG CEDBO A∵AD ∥BC (已知)∴∠=∠(两直线平行,内错角相等)在 中⎪⎪⎩⎪⎪⎨⎧∠=∠(公共边)=(已证)(已知)= ∴ ≌ ( )2、如图,∠B =∠C ,AD 平分∠BAC ,求证:△ABD ≌△ACD 证明: ∵AD 平分∠BAC ( )∴∠ =∠ (角平分线的定义) 在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∠∠∠=∠(公共边)=(已证)=(已知) ∴△ABD △ACD ( )3、如图,已知AB =AC ,AD 是BC 边上的中线,求证:AD 是角平分线吗 证明:∵AD 是BC 边上的中线(已知)∴ = (中线的定义) 在 中∴ ≌ ( ).∴ = (全等三角形的对应角相等) ∴AD 是角平分线( )4、如图,已知21∠=∠,AD=AB ,求证:ADC ABC ∆≅∆。
全等三角形判定基础练习(有答案)
全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。
全等三角形的判定精选练习题 简单(分SSS、SAS、AAS、ASA、HL分专题)
CBA全等三角形的判定(SSS)不要写在上面,答案写在纸上1、如图1,已知AB=CD,AC=BD,求证:∠A=∠D.图1 图2 图3 图42、如图2,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.3、已知如图3,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.4、如图4,AB=AC,BD=CD,求证:∠1=∠2.全等三角形的判定(SAS)4、如图4,AB与CD交于点O,OA=OC,OD=OB,求证AD=CB.图7 图8 图95、如图5,已知△ABC中,AB=AC,AD平分∠BAC,求证△ABD≌△ACD6、如图6,已知AB=AD,AC=AE,∠1=∠2,求证∠ADE=∠B.7、如图7,已知AB=AD,若AC平分∠BAD,求证AC平分∠BCD8、如图8,在△ABC和△DEF中,B、E、F、C,在同一直线上,①AB=DE;③∠ABC=∠DEF;④BE=CF. 证明AC=DF9、如图9,AB⊥BD,DE⊥BD,点C是BD上一点,且BC=DE,CD=AB.⑴如图1证明AC与CE垂直⑵如图2,若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第⑴问中AC与BE的位置关系还成立吗?(注意字母的变化)【典型题】1.如图1,AB∥图5图2 图32.如图2,已知:AD=AE,ABEACD∠=∠,求证:BD=CE.3.如图3,已知:ABDBACDC∠=∠∠=∠.,求证:OC=OD. 图64.如图4已知:AB=CD,AD=BC,O是BD中点,过O点的直线分别交DA和BC的延长线于E,F.求证:AE=CF.5.如图5,已知321∠=∠=∠,AB=AD.求证:BC=DE.6.如图6,已知四边形ABCD中,AB=DC,AD=BC,点F在AD上,点E在BC上,AF=CE,EF的对角线BD交于O,求证:OF=OE 7. 如图7,已知∠A=∠C,AF=CE,DE∥BF,求证:△ABF≌△CDE.8.如图8,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC= BF。
全等三角形判定专题一( 证明题 )
全等三角形判定专题一(证明题)1、如图,AC=AD,BC=BD,求证:AB平分∠CAD.2如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.3、如图,已知AB=AC,AD=AE.求证:BD=CE.4如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB 于E,请说明AE=BE.5、一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.6、已知:如图,AB=DC,AB∥DC,求证:AD=BC.7、如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.8、如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.9、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.10、已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.11已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.12、如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.、13、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?14、已知:如图,AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AE=CF;(2)AE∥CF.15、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.16:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。
全等三角形的判定练习题及答案
全等三角形的判定练习题及答案一、1. 如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形2.如图,AO = BO,CO = DO,AD与BC交于E,∠O =0o,∠B =5o,则∠BED的度数是 A.60o B.90o C.75o D.85o 3.如图,已知△ABD和△ACE中,AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是第题第题A.∠B =∠CB.∠D =∠EC.∠DAE =∠BAC D.∠CAD =∠DAC4.在△ABC和△DEF中,下列各组条件中,不能判定两个三角形全等的是A.AB = DE,∠B =∠E,∠C =∠FB.AC = DF,BC = DE,∠C =∠DC.AB = EF,∠A =∠E,∠B =∠FD.∠A =∠F,∠B =∠E,AC = DE5.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是A.都全等 B.乙和丙C.只有乙D.只有丙6.下列判断正确的是A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一角的对边对应相等的两个三角形全等7.如图4所示,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①A S=AR;②QP∥AR;③△BRP≌△QSP中A.全部正确 B、仅①和②正确C.仅①正确D.仅①和③正确8.如图1所示,△ABC与△BDE都是等边三角形,AB A.AE=CD B.AE>CD C.AE 9.如图2所示,在等边△ABC 中,D、E、F,分别为AB、BC、CA上一点,且AD=BE=CF,图中全等的三角形组数为A.3组 B.4组 C.5组 D.6组10. 已知△ABC≌△MNP,?A?48?,?N?62?,则?B? 度数分别为,,.,?C,?M和?P的二、1、已知:如图12,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE?BF,AE=CF.求证:AF?CE;AB∥CD.A B C2.如图,已知AD = CB,AE = CF,DE = BF;求证:AB//CD 图.123.如图,已知AB = CD,AC = DB;求证:∠A =∠D.全等三角形的判定姓名1、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?2、已知O是AB中点,OC=OD,?AOD??BOC,求证:AC?BD3、已知:如图,?CAB??DBA,AC?BD。
全等三角形三角形全等的判定测试题
第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质 4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .6B .4C .23D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N . 求证:AM =AN .NME D B CA6.【2012·泸州】如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?【知识要点】 1.全等三角形能够完全重合的两个三角形叫做全等三角形. 2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等. 3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS ”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS ”). (3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA ”). (4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS ”). 4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”). 【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等. 3.“HL ”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等. 【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角; (2)对应顶点所对应的边是对应边; (3)公共边(角)是对应边(角); (4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC ≌△DEF , 说明A 与D ,B 与E , C 与F 是对应点,则∠ABC 与∠DEF 是对应角,边AC 与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,M∵△AEB 由△ADC 旋转而得,∴△AEB ≌△ADC .∴∠3=∠1,∠6=∠C . ∵AB =AC ,AD ⊥BC , ∴∠2=∠1,∠7=∠C . ∴∠3=∠2,∠6=∠7. ∵∠4=∠5,∴∠ABM =∠ABN . 又∵AB =AB ,∴△AMB ≌△ANB . ∴AM =AN .6.证明:∵△ABC 和△EDC 是等边三角形, ∴∠BCA =∠DCE =60°.∴∠BCA -∠ACD =∠DCE -∠ACD , 即∠BCD =∠ACE . 在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS ). ∴∠DBC =∠EAC .又∵∠DBC =∠ACB =60°, ∴∠ACB =∠EAC . ∴AE ∥BC .7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF ,AC=DF ,∴Rt △ABC ≌Rt △DEF .∴∠ABC=∠DEF ,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°. 故选B .8.解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD ,EC=BC , ∴△ABC ≌△CED . ∴AB=ED .即量出DE 的长,就是A 、B 两端的距离. 9.解:对. 理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ). ∴AB′=AB .人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
全等三角形的判定(边角边,角边角,边边角,)练习题
全等三角形的判定(边角边,角边角,边边角,)练习题1、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形。
2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm,AC=2.8cm。
③连结BC,得△ABC。
④按上述画法再画一个△A'B'C'。
把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3、边角边公理.简称“边角边”或“SAS”)一、例题与练习1、填空:如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB,二是___________;还需要一个条件_____________。
如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:一是___________,二是 ____________还需要一个条件________________。
2、例1 、已知:AD∥BC,AD= CB。
求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF 的位置,那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB 的条件外,还需要一个什么条件?怎样证明呢?例、已知:AB=AC、AD=AE、∠1=∠2。
求证:△ABD≌△ACE。
练习:1、已知:如图,AB=AC,F、E分别是AB、AC的中点。
求证:△ABE≌△ACF。
2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACEAB练习题) EC D4、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。
全等三角形的判定和性质(一)(人教版)(含答案)
A.SSS B.SAS
C.AAS D.HL
答案:D
解题思路:
1.思路点拨:
三角板说明∠PMO=∠PNO=90°,结合OM=ON,OP=OP,故判定三角形全等的方法是“HL”.
C.(4)(6)(1) D.(2)(3)(4)
答案:D
解题思路:
1.思路点拨:判定两个三角形是否全等,必须依据全等三角形的五种判定方法;且全等三角形的判定方法中必有一条边相等.
2.解题过程:
根据全等三角形的判定方法,对照图形和选项,注意验证:
选项A:符合判定方法SAS;
选项B:符合判定方法SSS
选项C:符合判定方法AAS;
A.AAS B.SAS
C.ASA D.SSS
答案:B
解题思路:
1.思路点拨:
等边三角形存在边相等,可以证全等.
2.解题过程:
∵△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°
∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC
在△ADC和△AEB中
∴△ADC≌△ABE(SAS)
A.50° B.60°
C.62° D.64°
答案:B
解题思路:
1.思路点拨:
①把∠BDC看成△ACD的外角,只需求∠ACD;
②利用全等的性质,得到 ;求出 即可.
2.解题过程:
∵∠ACB=90°,∠A=20°
∴∠CBA=70°
∵
∴ , ,
∴
∵
∴
∴∠BDC=∠A+∠ACD=20°+40°=60°,
全等三角形的判定和性质(一)(人教版)(含答案)
全等三角形的判定和性质(一)(人教版)一、单选题(共10道,每道10分)1.如图,要用“HL”判断Rt△ABC和Rt△DEF全等的条件是( )A.AC=DF,BC=EFB.∠A=∠D,AB=DEC.AC=DF,AB=DED.∠B=∠E,BC=EF答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定2.如图,用三角板可按下面的方法画角平分线:在已知的∠AOB的两条边上分别取点M,N,使OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上画法证明△POM≌△PON根据的是( )A.SSSB.SASC.AASD.HL答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定3.已知:如图,△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°,那么△ADC≌△ABE的根据是( )A.AASB.SASC.ASAD.SSS答案:B解题思路:4.下列两个三角形中,一定全等的是( )A.两个等腰直角三角形B.有两条边相等的直角三角形C.有一个角是80°,底边相等的两个等腰三角形D.有一个角是100°,底边相等的两个等腰三角形答案:D解题思路:5.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是( )A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定6.如图,在Rt△ABC中,∠ACB=90°,∠A=20°,,若恰好经过点B,交AB于点D,则∠BDC的度数为( )A.50°B.60°C.62°D.64°答案:B解题思路:试题难度:三颗星知识点:三角形的内角和定理7.如图,,∠CAB=70°,且∥AB,则等于( )A.50°B.40°C.35°D.30°答案:B解题思路:试题难度:三颗星知识点:全等三角形的性质8.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C向过点A的直线作垂线,垂足分别为D,E.若BD=4cm,CE=3cm,则DE的长为( )A.5cmB.6cmC.7cmD.10cm答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定和性质9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.1B.2C.3D.4答案:A解题思路:试题难度:三颗星知识点:全等三角形的判定与性质10.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F.若BF=AC,则∠ABC的度数是( )A.40°B.45°C.50°D.60°答案:B解题思路:试题难度:三颗星知识点:全等三角形的判定与性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定(SSS)
1.如图,若AB=CD,AC=DB,能够判定哪两个三角形全等?说明理由
2.如图,△ABC中,AB=AC,AD是BC边上的中线,∠B与∠C有什么关系?试说明。
3.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,则AB和DE有怎样的位置关系?推理说明。
4.如图,已知AB=AC,AD=AE,BD=EC。
图中有几对三角形全等?用推理说明。
5.如图,已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?
6.如图,已知AB=CD,AD=CB。
则AB与CB,AD与CB有怎样的位置关系?
7.如图,AC=AD,BC=BD,∠1=35o,∠2=65o,求∠C
8.如图,AB=AD,BC=DC,∠BAD=64o,求∠DAC
9.如图,AC=DF,BC=EF,AD=BE,∠BAC=80o,∠F=60o,求∠ABC
10.如图,AB=CD,AE=DF,BF=CE,试判断AB与CD,AE与FD的位置关系。
11.如图,AB=AC,BE=CE,说明AD平分∠BAC
12.如图,△ABC中,AD=AE,BE=CD,AB=AC,说明△ABD≌△ACE
13.如图,AC=DB,要使△ABC≌△DCB,只要增加一个条件是:
14.如图,已知AC,BD相交于O,AB=DC,AC=DB,说明∠A=∠D
15.如图,在△ABC中AB=AC,∠B与∠C相等吗?说明理由。
你还有发现吗?
16.如图,已知AB=AC,BD=DC,则∠B与∠C是什么关系?为什么?
∠BDC与∠A,∠B,∠C又有什么时候关系?
17.已知AB=AD,DC=CB,则∠B与∠D是什么关系?
18.已知AB=CD,AD=BC,则直线AB,CD有什么位置关系?为什么?
19.如图,△ABC中AB=AC,AD是△ABC的中线,问AD还是三角形的什么线?为什么?
20.如图,已知AB=DC,AC=DB,说明∠1=∠2。