轮台县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轮台县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 2. 有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.
②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是( )
A .0
B .1
C .2
D .3
3. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A B A.直线 B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
4.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为()1111]
A.10B.51C.20D.30
5.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]
6.已知a∈R,复数z=(a﹣2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的()
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.已知x,y满足时,z=x﹣y的最大值为()
A.4 B.﹣4 C.0 D.2
8.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()
A.3 B.C.2D.6
9.已知e为自然对数的底数,若对任意的
1
[,1]
x
e
∈,总存在唯一的[1,1]
y∈-,使得2
ln1y
x x a y e
-++=
成立,则实数a的取值范围是()
A.
1
[,]e
e
B.
2
(,]e
e
C.
2
(,)
e
+∞ D.
21
(,)
e
e e
+
【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.
10.下列关系式中,正确的是()
A.∅∈{0} B.0⊆{0} C.0∈{0} D.∅={0}
11.已知△ABC中,a=1,b=,B=45°,则角A等于()
A.150°B.90°C.60°D.30°
12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法
........
从该地区调查了500位老年人,结果如下:
由2()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
算得
2
2
500(4027030160)
9.967
20030070430
K
⨯⨯-⨯
==
⨯⨯⨯
附表:
参照附表,则下列结论正确的是()
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”;
②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”;
③采用系统抽样方法比采用简单随机抽样方法更好;
④采用分层抽样方法比采用简单随机抽样方法更好;
A.①③B.①④C.②③D.②④
二、填空题
13.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]的最小正周期是.
14.对任意实数x,不等式ax2﹣2ax﹣4<0恒成立,则实数a的取值范围是.
15.对于|q|<1(q为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n(其中S n是数列{a n}的前n项的和)为它的各项的和,记为S,即S=S n=,则循环小数0.的分数形式是.16.若的展开式中含有常数项,则n的最小值等于.
17.已知点M(x,y)满足,当a>0,b>0时,若ax+by的最大值为12,则+的最小值是.
18.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.
三、解答题
19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
3.841 6.635 10.828
k
2
() 0.050 0.010 0.001
P K k
≥
55
95%的把握认为“歌迷”与性别有关?
“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌
3.841 6.635
附:K2=.
20.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;
(Ⅱ)求点D到平面AMP的距离.
21.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且
线段AB的中点E在直线y=x上
(Ⅰ)求直线AB的方程
(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.
22.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行
(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)
23.已知全集U=R ,集合A={x|x 2﹣4x ﹣5≤0},B={x|x <4},C={x|x ≥a}.
(Ⅰ)求A ∩(∁U B ); (Ⅱ)若A ⊆C ,求a 的取值范围.
24.(本题满分15分)
已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;
(2)若a bx cx x g +-=2
)(,当1≤x 时,求)(x g 的最大值.
【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.
轮台县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C.
2. 【答案】C
【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.
②相关指数R 2来刻画回归的效果,R 2值越大,说明模型的拟合效果越好,因此②不正确.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.
综上可知:其中正确命题的是①③. 故选:C .
【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.
3. 【答案】D.
第Ⅱ卷(共110分)
4. 【答案】D 【解析】
试题分析:分段间隔为
5030
1500
=,故选D.
考点:系统抽样
5.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.6.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
7.【答案】A
【解析】解:由约束条件作出可行域如图,
联立,得A(6,2),
化目标函数z=x﹣y为y=x﹣z,
由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.
故选:A.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
8.【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2.
故选:C.
【点评】本题主要考查了椭圆的简单性质.属基础题.
9.【答案】B
【解析】
10.【答案】C
【解析】解:对于A∅⊆{0},用“∈”不对,
对于B和C,元素0与集合{0}用“∈”连接,故C正确;
对于D,空集没有任何元素,{0}有一个元素,故不正确.
11.【答案】D
【解析】解:∵,B=45°
根据正弦定理可知
∴sinA==
∴A=30°
故选D.
【点评】本题主要考查正弦定理的应用.属基础题.
12.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635
人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.
二、填空题
13.【答案】[1,)∪(9,25].
【解析】解:∵集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为
,
若时,只需满足
,
解得;
若,只需满足
,
解得
9<a≤25,
当a<0时,不符合条件,
综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.14.【答案】(﹣4,0].
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,
则满足,
即,
∴
解得﹣4<a<0,
综上:a的取值范围是(﹣4,0].
故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
15.【答案】.
【解析】解:0.=++…+==,
故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
16.【答案】5
【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r
令=0,得n=,当r=4时,n 取到最小值5
故答案为:5.
【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.
17.【答案】4.
【解析】解:画出满足条件的平面区域,如图示:
,
由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++≥2+2=4,
当且仅当3a=4b时“=”成立,
故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
18.【答案】(3,1).
【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得
即(2x+y﹣7)m+(x+y﹣4)=0,
∴2x+y﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
三、解答题
19.【答案】
100人中,“歌迷”有25人,从而完成2×2列联表如下:
将2×2列联表中的数据代入公式计算,得:
K2==≈3.030
因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…
(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2.
Ω由10个等可能的基本事件组成.…
用A表示“任选2人中,至少有1个是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成.
∴P(A)= (12)
【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.
20.【答案】
【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA
∵△PCD为正三角形
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD
∴PE⊥平面ABCD
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理得EM=,AM=,AE=3
∴EM2+AM2=AE2,∴∠AME=90°
∴AM⊥PM
(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM
∴
而
在Rt△PEM中,由勾股定理得PM=
∴
∴
∴,即点D到平面PAM的距离为
21.【答案】
【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(Ⅱ)证明:设P(x0,y0),则,
直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
22.【答案】
【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80;
∵(,)在回归直线上,
∴选择=﹣20x+250;
(2)利润w=(x﹣5)(﹣20x+250)=﹣20x2+350x﹣1250=﹣20(x﹣8.75)2+281.25,
∴当x=8.75元时,利润W最大为281.25(万元),
∴当单价定8.75元时,利润最大281.25(万元).
23.【答案】
【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},
∴∁U B={x|x≥4},
又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},
∴A∩(∁U B)={x|4≤x≤5};
(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,
∴a的范围为a≤﹣1.
【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.
24.【答案】
【解析】(1)]0,222[-;(2)2.
(1)由1=a 且c b =,得4
)2()(2
22
b b b x b bx x x f -++=++=,
当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分
故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2
min max ()()1
24
()(1)11
b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩
,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分
112≤+=,…………13分
且当2a =,0b =,1c =-时,若1≤x ,则112)(2
≤-=x x f 恒成立, 且当0=x 时,2)(2
+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分。