【2014自考】自考本科 概率论与数理统计知识点总结大全假设检验的基本知识
概率论与数理统计知识点总结(免费超详细版)80669
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
《概率论与数理统计》知识点简单汇总
《概率论与数理统计》知识点简单汇总第一章1.事件的基本关系与运算(和事件、积事件、差事件、对立事件等)2. 加法公式和乘法公式(条件概率,结合事件的独立性)3. 全概率公式、贝叶斯公式(结合书上例题和课后习题)P17例5、例6第二章1.有关这章的概念制表格一(把握概率分布、概率密度与分布函数的关系)2.常用离散型和连续型分布制表二熟记书上P82表4-13.理解第4节随机变量函数的概念(侧重离散型,包括二维离散型)(P36例1 ;P40定理1;P41例4;P43习题1、2 ;P44例1;P46习题1等)(此章概念是重点也同时是基础,与后续3,4章紧密关联)第三章1 . 理解离散型的联合分布律和边缘分布律(结合书上P51例1、P55例1)2 . 理解连续型的联合概率密度和边缘概率密度(结合P52例3、P57例3、P59习题4)3. 理解随机变量的独立性(P60例题)4. 随机变量函数(P62 例1)第四章1. 熟练数学期望的定义、性质、计算(P71例2、例3;P74例7)2. 熟练方差的定义、性质、计算(书上例题)期望和方差两个概念与第2章和后面的统计部分紧密关联,重点掌握3. 熟悉协方差、相关系数和矩三个概念及计算公式 建议上述数字特征自制表格三第五章1. 熟练 切比雪夫不等式 (P92 定理、P92例1)2. 了解大数定律和中心极限定理(P101定理2、P102例4) 第六章1. 理解样本和总体的概念;(统计就是用样本来研究总体)2. 熟练常用统计量 109P ; 掌握P110两个例题;3. 三个重要分布自制表格四 (0,1)N )4. 上分位点 (P42定义5、P113定义3 、P115定义5)结合2()n χ和()t n 两个的图形来理解; 注意与随机变量的分布函数()F x (特别是标准正态分布()x Φ)的区别 上述所有都是重点,必须理解加熟记,是整个统计部分的基础。
第七章1. 第一节,熟练掌握点估计的矩估计法和极大似然估计法;P127例2、3P130例62. 第二节,理解无偏性和有效性3. 区间估计P136例1,例139例2,例3(见P140表7-1)以上都结合书上例题,予以熟练掌握。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点总结
概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
概率论与数理统计知识点总结
概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
自考概率论与数理统计基础知识
自考概率论与数理统计基础知识一、《概率论与数理统计(经管类)》考试题型分析:题型大致包括以下五种题型,各题型及所占分值如下:由各题型分值分布我们能够看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。
计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不但要牢记重要的公式,而且要能够灵活运用。
应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。
结合历年真题来练习,就会很容易的掌握解题思路。
总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。
二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。
第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。
4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式:5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。
一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。
6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A 与B相互独立。
概率论与数理统计考点归纳
以下是概率论与数理统计的一些常见考点归纳:
概率论:
1. 概率的基本概念:样本空间、事件、随机变量等。
2. 概率运算:并、交、差、补等运算规则。
3. 条件概率与独立性:条件概率的定义与计算、独立事件的判定与计算。
4. 随机变量:离散和连续随机变量的概念、概率质量函数(PMF)和概率密度函数(PDF)、期望、方差等。
5. 常见离散分布:伯努利分布、二项分布、泊松分布等。
6. 常见连续分布:均匀分布、正态分布、指数分布等。
7. 两个随机变量的关系:协方差、相关系数等。
数理统计:
1. 抽样与抽样分布:简单随机抽样、抽样分布、中心极限定理等。
2. 参数估计:点估计和区间估计、最大似然估计、置信区间等。
3. 假设检验:假设检验的基本步骤、显著性水平、p值等。
4. 单样本参数检验:均值检验、比例检验等。
5. 两样本参数检验:两样本均值检验、两样本比例检验等。
6. 方差分析:单因素方差分析、多因素方差分析等。
7. 相关与回归分析:相关系数、简单线性回归模型等。
这只是概率论与数理统计的一些常见考点归纳,实际考试中可能还会涉及更多细分知识点。
在复习过程中,建议根据自己的学习进度和重点,深入学习和掌握这些知识点,并进行大量的练习题来加深理解和提高解题能力。
(完整版)自考概率论与数理统计复习资料要点总结
i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。
自考-概率论与数理统计 第八章 假设检验
双侧检验与单侧检验 (假设的形式)
研究的问题
假设 双侧检验 左侧检验 右侧检验
H0 H1
= 0 ≠0
0 < 0
0 > 0
双侧检验
(原假设与备择假设的确定)
1. 2.
3.
•
双侧检验属于决策中的假设检验。也就是说, 不论是拒绝 H0 还是接受 H0 ,我们都必需采 取相应的行动措施 例如,某种零件的尺寸,要求其平均长度为 10厘米,大于或小于10厘米均属于不合格 建立的原假设与备择假设应为 H0: 10 H1: 10
必是原假设不成立.
| X 10 | 的大小可以用来检验原假设是否成立.
合理的思路是找出一个界限K,
当 | X 10 | K 时,我们就接受原假设 H0. 当 | X 10 | K 时,我们就拒绝原假设 H0.
这里的问题是,我们如何确定常数K呢 细致的分析:
由于
X 要作出某种判断,必须从样 本(X1,X2,...,Xn)出发制定一个法则,一旦样本观察 值(x1,x2,...,xn)确定,可利用所构造的法则作出判断: 拒绝H0还是拒绝H1.这种法则称为H0对H1的一个检验 法则,简称为一个检验法则,或一个检验.
• 检验法则本质上就是把样本空间划分为两个互不相 交的子集C和C*,使得当样本(X1,X2,...,Xn)的观察值 (x1,x2,...,xn)∈C时,将拒绝原假设H0,若(x1,x2,...,xn)∈C*, 则接受原假设.这样的划分构成一个准则,称样本空间 的子集C为检验的临界域(或拒绝域).
小概率事件在一次实验中发生了,故假设不合情理, 即:否定原假设,简便方法测得均值有系统偏差.
8.1.2统计假设的概念
《概率论与数理统计》知识点整理
《概率论与数理统计》知识点整理概率论与数理统计是数学中的一个重要分支,它研究随机现象发生的规律以及对这些规律的推断和决策问题。
在现代科学、金融、医学、工程等领域中都有广泛的应用。
下面是《概率论与数理统计》的一些重要知识点:一、概率论:1.概率的基本概念:随机试验、样本空间、事件、概率公理化定义等。
2.条件概率与概率的乘法定理:条件概率的定义、条件概率的乘法定理、独立事件的定义与性质等。
3.全概率公式与贝叶斯公式:全概率公式的推导与应用、贝叶斯公式的推导与应用等。
4.随机变量与概率分布:随机变量的定义与分类、概率分布的基本性质、离散型随机变量与连续型随机变量的概率分布等。
5.两随机变量函数的概率分布:随机变量的函数、数学期望的定义与性质、方差的定义与性质等。
6.多维随机变量及其分布:二维随机变量的概率分布、联合分布函数与边缘分布、条件分布等。
二、数理统计:1.统计数据的描述:数据的集中趋势度量(均值、中位数、众数)、数据的离散程度度量(极差、方差、标准差)、数据的分布形态度量(偏度、峰度)等。
2.参数估计:点估计的概念与方法、矩估计法、极大似然估计法、最小二乘估计法等。
3.假设检验:假设检验的基本概念、显著性水平与拒绝域、假设检验的步骤、单侧检验与双侧检验等。
4.统计分布:正态分布的性质与应用、t分布与χ²分布的概念与性质、F分布的概念与性质等。
5.方差分析与回归分析:方差分析的基本原理与应用、单因素方差分析、回归分析的基本原理与应用、简单线性回归分析等。
三、随机过程:1.随机过程的基本概念与性质:随机过程的定义、状态与状态转移概率、齐次性与非齐次性等。
2.马尔可夫链:马尔可夫链的定义与性质、状态空间的分类、平稳分布与极限等。
3.随机过程的描述:概率密度函数、概率生成函数、随机过程的矩、协方差函数等。
4.随机过程的分类:齐次与非齐次、连续与间断、宽离散与窄离散等。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率论1.随机试验和样本空间:随机试验是具有不确定性的试验,其结果有多个可能的取值。
样本空间是随机试验所有可能结果的集合。
2.事件及其运算:事件是样本空间中满足一定条件的结果的集合。
事件之间可以进行并、交、补等运算。
3.概率的定义和性质:概率是描述随机事件发生可能性的数值。
概率具有非负性、规范性和可列可加性等性质。
4.条件概率和独立性:条件概率是在已知一事件发生的条件下,另一事件发生的概率。
事件独立表示两个事件之间的发生没有相互关系。
5.全概率公式和贝叶斯公式:全概率公式是一种计算事件概率的方法,将事件分解成互斥的多个事件的概率之和。
贝叶斯公式是一种用于更新事件概率的方法。
6.随机变量和分布函数:随机变量是样本空间到实数集的映射,用来描述试验结果的数值特征。
分布函数是随机变量取值在一点及其左侧的概率。
7.常用概率分布:常见的概率分布包括离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布)。
8.数学期望和方差:数学期望是随机变量的平均值,用于描述随机变量的中心位置。
方差是随机变量离均值的平均距离,用于描述随机变量的分散程度。
二、数理统计1.统计量和抽样分布:统计量是对样本数据进行总结和分析的函数。
抽样分布是统计量的概率分布,用于推断总体参数。
2.估计和点估计:估计是利用样本数据对总体参数进行推断。
点估计是利用样本数据得到总体参数的一个具体数值。
3.估计量的性质和评估方法:估计量的性质包括无偏性、有效性和一致性等。
评估方法包括最大似然估计、矩估计等。
4.区间估计:区间估计是对总体参数进行估计的区间范围。
置信区间是对总体参数真值的一个区间估计。
5.假设检验和检验方法:假设检验是在已知总体参数的条件下,对总体分布做出的统计推断。
检验方法包括参数检验和非参数检验。
6.正态总体的推断:当总体近似服从正态分布时,可以利用正态分布的性质进行推断。
7.方差分析和回归分析:方差分析用于比较两个或多个总体均值是否相等。
(完整版)概率论与数理统计知识点总结
p k q nk
其中 q 1 p,0 p 1, k 0,1,2,, n ,
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) .
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0—1)分布,
所以(0-1)分布是二项分布的特例。
泊 松 设随机变量 X 的分布律为
1
(完整版)概率论与数理统计知识点总结
A—B,也可表示为 A—AB 或者 AB ,它表示 A 发生而 B 不发生的事
件.
A、B 同时发生:A B,或者 AB。A B=Ø ,则表示 A 与 B 不可能 同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是
互不相容的.
—A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A .它表 示 A 不发生的事件。互斥未必对立。
P(A)= (1) (2 ) (m ) = P(1) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(6)几 若随机试验的结果为无限不可数并且每个结果出现的可能性均
1
(完整版)概率论与数理统计知识点总结
何概型 匀,同时样本空间中的每一个基本事件可以使用一个有界区域 来描述,则称此随机试验为几何概型。对任一事件 A,
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) .
对于离散型随机变量, F(x) pk ; xk x x
对于连续型随机变量, F(x) f (x)dx .
概型 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用
概率论与数理统计各章重点知识整理
概率论与数理统计各章重点知识整理(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除概率论与数理统计各章重点知识整理第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件():每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=(A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛)函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则 X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1))1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计知识点简述
概率论与数理统计知识点简述
概率论与数理统计是数学中重要的分支,其主要研究内容包括随机事件的发生概率、随机变量的数字特征、大数定律和中心极限定理、统计推断等。
以下是关于概率论与数理统计的基本知识简述:
1. 概率论的基本概念:随机事件、样本空间、事件之间的关系、概率的定义和计算等。
2. 随机变量及其数字特征:随机变量的定义、表示方法、离散型和连续型随机变量的数字特征 (如均值、方差、协方差等) 的定义和计算。
3. 大数定律和中心极限定理:大数定律描述了频率的稳定性,中心极限定理则证明了在一定条件下,样本平均值的分布趋近于正态分布。
4. 统计推断:统计推断是通过对样本数据的分析来推断总体的数据特征,包括假设检验、置信区间、假设检验的拒绝域等。
5. 随机变量的相互转换:随机变量的相互转换包括变量的乘积、变量的和、变量的乘积和等,其概率分布可以通过数学计算或特性推断得到。
6. 协方差、方差和协方差矩阵:协方差描述了两个或多个随机变量之间的线性关系,方差则是随机变量的平均值的平方,协方差矩阵描述了两个随机变量之间的线性关系和分布。
这些基本知识是概率论和数理统计的基础,掌握它们可以帮助更好地理解和应用统计学的基本概念和技术。
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
自考概率论与数理统计基础知识
自考概率论与数理统计基础知识一、《概率论与数理统计(经管类)》考试题型分析:题型大致包括以下五种题型,各题型及所占分值如下:由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。
计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。
应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。
结合历年真题来练习,就会很容易的掌握解题思路。
总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。
二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。
第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。
4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式:5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。
一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。
6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A 与B相互独立。