98 潘天佐 植物生长环境测控系统的设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第1章绪论1
1.1 选题的背景及其研究意义1
1.2.1 国外研究现状2
1.2.2 国内发展现状2
1.3 课题的主要内容及研究意义3
1.3.1 本论文的主要内容3
1.3.2 本论文研究的意义3
第2章研究方案的设计5
2.1 温室大棚内重要参数的调节与控制5
2.1.1 温湿度的调节与控制5
2.1.2 二氧化碳含量的调节与控制6
2.1.3 光照度的调节与控制7
2.1.4 土壤湿度的调节和控制7
2.2 系统总体方案的设计8
2.2.1 总体方案设计8
2.3 本章小结9
第3章硬件设计10
3.1 微控制器概述10
3.2 空气温湿度的处理与采集12
3.2.1 温湿度传感器12
3.2.2 空气的温湿度设计13
3.3 土壤湿度模块14
3.4 二氧化碳浓度测控模块16
3.5 光照度测控模块17
3.6 通信模块18
3.7 报警模块19
3.8本章小结20
第4章测控系统的软件设计21
4.1 PID控制算法21
4.2 系统下位机主程序流程图的设计22
4.3基于LabVIEW的上位机界面设计23致谢26
参考文献27
附录28
附录1 程序清单28
附录2 原理图34
第1章绪论
1.1 选题的背景及其研究意义
中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜,水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。
目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。
本文提出了一种以AT89S52单片机为控制核心的测控仪,主要是为了对蔬菜大棚内温度、湿度,以及二氧化碳含量进行有效、可靠地检测与控制而设计的。该测控仪具有检测精度高、使用简单、成本较低和工作稳定可靠等特点,不仅可以应用在农业蔬菜大棚,也可以应用在恒温湿的机械加工厂、室内环境等方面,所以具有一定的应用前景。
1.2.1 国外研究现状
西方发达国家在现代温室测控技术上起步比较早。1949年,借助于工程技术的发展,美国建成了第一个植物人工气候室,开展了植物对自然环境的适应性和抗御能力的基础及应用研究。20世纪60年代,生产型的高级温室开始应用于农业生产,奥地利首先建成了番茄生产工厂,
07 年代后荷兰、日本、美国、英国、以色列等国家的温室园艺迅猛发展,温室设施广泛应用于园艺作物生产、畜牧业和水产养殖业。随着计算机技术的进步和智能控制理论的发展,近百年来,温室大棚作为设施农业的重要组成部分,其自动控制和管理技术不断得以提高,在世界各地都得到了长足的发展.特别是二十世纪70年代电子技术的迅猛发展和微型计算机的出现,更使温室大棚环境控制技术产生了革命性的变化。80年代,随着微型计算机日新月异的进步和价格大幅度下降,以及对温室控制要求的提高,以微机为核心的温室综合环境控制系统,在欧美得到了长足的发展,并迈入了网络化,智能化阶段。
目前,国外现代化温室的内部设施己经发展到比较完备的程度,并形成了一定的标准。温室内的各环境因子大多由计算机集中控制,检测传感器也较为齐全,如温室内外的温度、湿度、光照度、二氧化碳浓度、营养液浓度等,由传感器的检测基本上可以实现对各个执行机构的自动控制,如无级调节的天窗通风系统,湿帘与风扇配套的降温系统,由热水锅炉或热风机组成的加温系统,可定时喷灌或滴灌的灌溉系统,二氧化碳施肥系统,以及适用于温室作业的农业机械等。计算机对这些系统的控制己经不是简单的、独立的、静态的直接数字控制,而是基于环境模型上的监督控制,以及基于专家系统上的人工智能控制,一些国家在实现自动化的基础上正在向着完全自动化、无人化的方向发展。1.2.2 国内发展现状
我国现代温室技术起步较晚,70 年代以来,政府大力发展以塑料大棚、节能日光温室为主的设施农业,促进了农村经济的发展和缓和了蔬菜季节性短缺矛盾。与此同时,从1997年至1949年,从欧美、日本等国家引进了一系列现代化温室 (包括加温系统、湿帘降温系统、灌溉系统、监测与集中控制系统及其它附属设施>进行实验研究。引进的温室与我国传统温室比较,其空间大,便于进行机械作业,生产率与资源利用率比较高,为我国温室的发展提供了借鉴作用。但这些温室也存在着许多不足之处,主要表现在:
1.价格昂贵,国内农业生产目前难以接受;
2.缺乏与我国气候特点相适应的温室测控软件。目前我国引进温室的测控系统大多投资大、运行费用过高,并且测控系统中所侧重考虑的环境参数与我国的气候特点存在矛盾;
3.控制方式比较简单,软件实现模式固定,不能进行功能扩展。
随后在我国出现了一些国外的仿造产品,如江苏工学院研制的“温室环境测控系统”,主要用于无土栽培实验温室,造价仍较高,且处于实验阶段。吉林工业大学研制的“温室环境自动检测系统”,仅实现了温湿度的自动测试,“智能型温室环境控制器”仅实现了温室内的喷水自动控制等。以上产品均没有面向我国广大农村现有的 100万亩传统温