高中数学 排列学案 新人教A版选修2-3

合集下载

(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3

(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3

1.2.1排列第一课时一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

高中数学人教A版选修(2-3)1.2.1《排列》教案

高中数学人教A版选修(2-3)1.2.1《排列》教案

§1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念 教学难点:排列数公式的推导 授课类型:新授课 课时安排:2课时 内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n Nm m m =+++ 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1、问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

1.2.1排列与组合(排列)(新人教A版选修2-3)解析

1.2.1排列与组合(排列)(新人教A版选修2-3)解析

练习 用0,1,2,3,4,5可组成多少个无重复数字的大于 213045的自然数.
第一类:形如3,4,5, 这样的数都是满足条件的数共有这样的数都是满足条件的数共有: A13·A44
第三类:形如214,215这样的数都是满足
条件的数共有:
A12·A33
(一)
分类加法计数原理
做一件事情,完成它可以有n类办法,在第一类办法 中有m1种不同的方法,在第二类办法中有m2种不同的 方法,……,在第n类办法中有mn种不同的方法。那么 完成这件事共有
N=m1+m2+…+mn .
种不同的方法
分步乘法计数原理
做一件事情,完成它需要分成n个步骤,做第一步
有m1种不同的方法,做第二步有m2种不同的方
从4个不同的元素a,b,c,d 中任取3个,然后按照一定的顺 序排成一列,共有多少种不同的排列方法?
abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc; cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.
同样,问题2可以归结为: 从4个不同的元素a,b,c,d中任取3个,然后按 照一定的顺序排成一列,共有多少种不同的排列方法?
分析:把题目转化为从甲、乙、丙3名同学中选2名, 按照参加上午的活动在前,参加下午的活动在后的 顺序排列,求一共有多少种不同的排法?
第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法. 第二步:确定参加下午活动的同学,有2种方法
根据分步计数原理:3×2=6 即共6种方法。
上午 甲 乙 丙
Aa15 x16
课堂练习
1.计算:(1)5 A53 4 A42 348 (2) A41 A42 A43 A44 64

高二数学 1.2.5排列组合习题课学案 新人教A版选修2-3

高二数学   1.2.5排列组合习题课学案 新人教A版选修2-3

高中数学 1.2.5排列组合习题课学案基础梳理1.排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素(又称元素分析法);或以位置为考察对象,先满足特殊位置的要求,再考虑其他位置(又称位置分析法).(2)间接法:先不考虑附加条件,计算出全部元素的排列顺序,再减去不符合要求的元素的排列顺序.2.解排列组合综合问题,应遵循三大原则:先特殊后一般,先分组后排列,先分类后分步的原则.充分考虑元素的性质,进行合理的分类和分步.寻找并理解“关键词”的含义及其等价问题,善于将实际问题转化为排列组合的基本模型.在解题过程中要特别注意培养思维的条理性、深刻性和灵活性.自测自评1.(C2100+C97100)÷A3101的值为(C)A.6 B.101 C.16D.1101解析:(C2100+C97100)÷A3101=(C2100+C3100)÷A3101=C3101÷A3101=A3101A33÷A3101=1A33=16.故选C.2.4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有(D)A.36种 B.72种 C.81种 D.144种解析:由题意可知4人选择了4条线路中的3条,不同的游览情况共有C24C34A33=144(种).故选D.3.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(B)A.243个 B.252个 C.261个 D.279个解析:三位数个数为9×10×10=900(个).没有重复数字的三位数有C19A29=648(个),所以有重复数字的三位数的个数为900-648=252(个).故选B.审题不仔细致错【典例】 从1~9的9个数字中取出5个数字作排列,并把五个位置自右向左编号,则奇数数字必在奇数位置上的排列有多少个?解析:1,2,…,9中只有四个偶数数字,故排列中至少有一个奇数数字.一奇四偶的排列可按下列程序得到:从五个奇数数字中选取1个放在三个奇数位置中的一个上,再把4个偶数数字排在剩下的四个位置上,因此一奇四偶的排列有C 15·C 13·A 44个.类似地,二奇三偶的排列有C 25·C 23·A 22·A 34个,三奇二偶的排列有A 35·A 24个.因此符合题意的排列个数是C 15·C 13·A 44+C 25·C 23·A 22·A 34+A 35·A 24=2 520(个).【易错剖析】题设“奇数数字必在奇数位置上”是指:①如果有奇数数字,则它们必须在奇数位置上;②如果奇数数字不是3个,甚至没有时,则奇数位置上也可以不是奇数;③偶数位置上一定是偶数.若误以为“奇数位置上必是奇数”则可能导致解题出错.基础巩固1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是(C )A .9个B .10个C .18个D .20个解析:由于lg a -lg b =lg ab (a >0,b >0),从1,3,5,7,9中任取两个作为a b有A 25种,又13与39相同,31与93相同,所以lg a -lg b 的不同值的个数有A 25-2=20-2=18(个),故选C. 2.5人排成一排,其中甲不排在两端,也不和乙相邻的排法种数为(D ) A .84种 B .78种 C .54种 D .36种 解析:按先排甲再排乙的顺序列式为 C 13C 12A 33=36.3.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有(A )A .2人或3人B .3人或4人C .3人D .4人解析:设男生有n 人,则女生有(8-n )人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.4.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞,现从中选出2名会唱歌的、1名会跳舞的去参加文艺演出,则共有选法______种.解析:以2名会跳舞的分类,分为有1人参加,都不参加两类,共有C 12C 24+C 11C 23=15(种). 答案:15 能力提升5.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有(C ) A .36种 B .48种 C .72种 D .96种解析:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.6.如图,用4种不同的颜色涂入图中的矩形A 、B 、C 、D 中(四种颜色可以不全用也可以全用),要求相邻的矩形涂色不同,则不同的涂法有(A )A.72种 B.48种 C.24种 D.12种解析:(1)4种颜色全用时,有A44=24种不同涂色方法.(2)4种颜色不全用时,因为相邻矩形不同色,故必须用三种颜色,先从4种颜色中选3种,涂入A、B、C中,有A34种涂法,然后涂D,D可以与A(或B)同色,有2种涂法,∴共有2A34=48种,∴共有不同涂色方法,24+48=72种.7.某球队有2名队长和10名队员,现选派6人上场参加比赛,如果场上最少有1名队长,那么共有______种不同的选法(用数字作答).解析:若只有1名队长入选,则选法种数为C12·C510;若两名队长均入选,则选法种数为C410,故不同选法有C12·C510+C410=714(种).答案:7148.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法有____种(用数字作答).解析:第一类,字母C排在左边第一个位置,有A55种;第二类,字母C排在左边第二个位置,有A24A33种;第三类,字母C排在左边第三个位置,有A22A33+A23A33种.由对称性可知,共有2(A55+A24 A33+A22A33+A23A33)=480种.答案:4809.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数.解析:因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯办法.然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有8C36=160(种).10.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.分析:“先选后排”,注意“选”和“不选”应优先考虑.解析:(1)先取后排,先取可以是2女3男,也可以是1女4男,先取有C35·C23+C45·C13种,后排有A55种,共有(C35·C23+C45·C13)·A55=5 400(种).(2)除去该女生后,先取后排有C47·A44=840(种).(3)先取后排,但先安排该男生,有C14·C47·A44=3 360(种).(4)先从除去该男生该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A33种,共有C36·C13·A33=360(种).。

(新课程)高中数学《1.2.1排列》教案设计-新人教A版选修2-3

(新课程)高中数学《1.2.1排列》教案设计-新人教A版选修2-3

1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

数学人教A版选修2-3学案第一章1.2.1排列

数学人教A版选修2-3学案第一章1.2.1排列

1.2.1 排列预习交流1(1)如何理解排列及排列数的定义?(2)A ,B ,C 三名同学站成一排照相留念,写出所有站队方法.2.排列数公式A m n =__________________=______,特别地,当n =m 时,A n n =n !=n (n -1)(n -2)…1,规定0!=1(n ,m ∈N *,且m ≤n ).预习交流2(1)13×12×11×10×9×8等于( ).A .A 513B .A 613C .A 713D .A 813 (2)(2n )!A n n的值为( ). A .2n ! B .A n 2n C.2n !n D .2 答案:1.排成一列 所有不同排列 A m n预习交流1:(1)提示:排列的定义包括两个方面:①取出元素;②按一定顺序排列. 两个排列相同的条件:①元素相同;②元素的顺序也相同.排列是按一定顺序排列的一列元素,而排列数是一个数,并不表示具体的排列.(2)提示:ABC ,ACB ,BAC ,BCA ,CAB ,CBA .2.n (n -1)(n -2)…(n -m +1)n !(n -m )!预习交流2:(1)提示:B(2)提示:(2n )!A n n =(2n )!n !=(2n )!(2n -n )!=A n 2n ,故选B.一、排列数公式的应用1.计算:(1)2A 34+A 25;(2)A 88A 58. 思路分析:按公式将排列数写成连乘形式计算.2.化简A m n +m A m -1n=( ). A .A m +1n B .A m nC .A m +1n +1D .A m n +1 1.若3A x 8=4A 59,则x =( ).A .4B .5C .6D .7 2.化简A m -1n -1·A n -m n -m A n -1n -1=__________.应用排列数公式时应注意以下几个方面:(1)准确展开:应用排列数公式展开时要注意展开式的项数要准确.(2)合理约分:若运算式是分式形式,则要先约分后计算.(3)合理组合:运算时要结合数据特点,应用乘法的交换律、结合律,进行数据的组合,可以提高运算的速度和准确性.二、排列的概念与简单的排列问题1.判断下列问题是否为排列问题:(1)从1,2,3,4,5中任取两个数相加,其结果有多少种不同的可能?(2)从1,2,3,4,5中任取两个数相减,其结果有多少种不同的可能?(3)有12个车站,共需要准备多少种普通票?(4)从10个人中选2人分别去植树和种菜,有多少种不同选法?(5)从10个人中选2人去参加座谈会,有多少种不同选法?思路分析:判断所给问题是否是排列问题,关键是看与顺序有无关系.2.(1)若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有( ).A .180种B .360种C .15种D .30种思路分析:直接运用排列的概念求值.(2)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面(旗的颜色无重复),并且不同的顺序表示不同的信号,则一共可以表示__________种不同的信号.思路分析:如果把3面旗看做3个元素,那么“表示信号”这件事则是从3个元素中每次取出1个、2个或3个元素的排列问题.判断下列问题是否是排列问题,若是排列问题,求出对应的排列数.(1)从1,2,3,4,5中任取两个数组成两位数,有多少个这样的两位数?(2)若一个班级有40名同学,从中选5人组成学习小组,有多少种选法?(3)8种不同的菜种,任选4种种在不同的土地上,有多少种不同的种法?解决排列问题的步骤:(1)分清问题是否与元素的顺序有关,若与顺序有关,则是排列问题.(2)注意排列对元素或位置有无特殊要求.(3)借助排列数公式计算.三、排队问题有4个男生和3个女生排成一排.(1)男生甲必须站在中间有多少种排法?(2)男生甲、乙两人不站排头和排尾有多少种不同排法?(3)甲不站排头,乙不站排尾有多少种不同排法?(4)三个女生要排在一起有多少种不同排法?(5)三个女生两两不能相邻有多少种不同排法?(6)三个女生顺序一定,共有多少种不同排法?思路分析:本题都涉及限制条件,要优先考虑有条件限制的元素或位置.相邻问题(如(4))可用捆绑法,不相邻问题(如(5))可用插空法.1.(2012山东济南2月定时练习,理6)三位老师和三位学生站成一排,要求任何学生都不相邻,则不同的排法总数为().A.720 B.144 C.36 D.122.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有().A.20种B.30种C.40种D.60种(1)排列问题的限制条件一般表现为:某些元素不能在某个位置,某个位置只能放某些元素等.要先处理特殊元素或先处理特殊位置,再去排其他元素.当用直接法比较麻烦时,可以先不考虑限制条件,把所有的排列数算出,再从中减去全部不符合条件的排列数,这种方法也称为“去杂法”,但必须注意要不重复,不遗漏.(2)对于某些特殊问题,可采取相对固定的特殊方法,如相邻问题,可用“捆绑法”,即将相邻元素看成一个整体与其他元素排列,再进行内部排列;不相邻问题,则用“插空法”,即先排其他元素,再将不相邻元素排入形成的空位中.(3)对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.四、数字的排列问题用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字且比1 325大的四位数?思路分析:该例中的每个小题都是有限制条件的排列问题.除了应注意题目中要求的明显条件外,还应注意隐含条件“0不能排在首位”.我们采取先特殊后一般的原则,将问题分解为几个易求解的简单问题.1.(2012广东执信中学期末,5)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有( ).A .120个B .80个C .40个D .20个2.由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( ).A .72B .96C .108D .144不同数字的无重复排列是排列问题中的一类典型问题.其常见的附加条件有:奇偶数、倍数、大小关系等,也可以有相邻、插空问题,也可以与数列等知识相联系等.解决这类问题的关键是搞清事件是什么,元素是什么,位置是什么,给出了什么样的附加条件;然后按特殊元素(位置)的性质分类(每一类的各种方法都能保证事件的完成),按事件发生的连续过程合理分步来解决.这类问题的隐含条件“0不能在首位”尤其不能疏忽.答案:活动与探究1:1.解:(1)2A 34+A 25=2×4×3×2+5×4=48+20=68.(2)A 88A 58=8×7×6×5×4×3×2×18×7×6×5×4=6. 2.D 解析:A m n +m A m -1n =n !(n -m )!+m ×n !(n -m +1)!=(n -m +1)×n !+m ×n !(n -m +1)!=(n -m +1+m )n !(n -m +1)!=(n +1)!(n -m +1)!=A m n +1. 迁移与应用: 解析:由3A x 8=4A 59,得3×8!(8-x )!=4×9!4!,∴(8-x )!=2!.∴x =6.故选C.2.1 解析:A m -1n -1·A n -m n -mA n -1n -1=(n -1)![(n -1)-(m -1)]!×(n -m )!×1(n -1)!=(n -1)!(n -m )!×(n -m )!×1(n -1)!=1. 活动与探究2:1.解:(1)两数相加,由加法交换律知与两数顺序无关,所以(1)不是排列问题.(2)两数相减,要确定谁是被减数,谁是减数,与顺序有关,所以(2)是排列问题.(3)票中要确定哪一个车站为起点站,哪一个车站为终点站,与顺序有关,所以(3)是排列问题.(4)要从选出的2人中确定谁去植树,谁去种菜,与顺序有关,所以(4)是排列问题.(5)只需从10人中选出2人即可,与顺序无关,所以(5)不是排列问题.2.(1)B 解析:不同的选派方案有A 46=6×5×4×3=360种.(2)15 解析:第1类,挂1面旗表示信号,有A 13种不同方法;第2类,挂2面旗表示信号,有A 23种不同方法;第3类,挂3面旗表示信号,有A 33种不同方法;根据分类加法计数原理,可以表示的信号共有A 13+A 23+A 33=3+3×2+3×2×1=15种.迁移与应用:解:(1)选取的两个数,要确定哪一个数在十位,哪一个数在个位,与顺序有关,是排列问题,且有A 25=5×4=20个这样的两位数.(2)只需选出5人即可,与顺序无关,不是排列问题.(3)选取的4种菜种,与4块不同的地对应,与顺序有关,是排列问题,且有A48=8×7×6×5=1 680种不同的种法.活动与探究3:解:(1)由于甲的位置已确定,其余6人可随意排列,共有A66=720种排法.(2)由于甲、乙两人不站排头和排尾,则这两个位置可从其余5人中选两人来站,共有A25种排法,剩下的人有A55种排法,共有A25·A55=2 400种不同排法.(3)甲站排头有A66种排法,乙站排尾有A66种排法,但两种情况都包含了“甲站排头且乙站排尾”的A55种排法,故共有A77-2A66+A55=3 720种排法.(4)先把女生看成一个元素,与其他4个男生共5个元素来排有A55种排法,再排三个女生有A33种排法,共有A55·A33=720种不同排法.(5)先排4个男生,有A44种排法,形成5个空位,将3个女生插入5个空位中,有A35种排法,因此共有A44·A35=1 440种不同排法.(6)在7个位置上任意排列7名学生共有A77种排法.由于女生的顺序一定,且在所有不同排法中,女生的某一顺序均会有A33种情况,因此=840种.三名女生顺序一定的排法共有A77A33迁移与应用:解析:先将老师排好有A33种排法,形成4个空位,将3个学生插入4个空位中,有A34种排法,∴共有A33·A34=144种排法.2.A解析:分类完成:①甲排周一,乙、丙只能从周二至周五中选2天排,有A24种排法;②甲排周二,乙、丙有A23种排法;③甲排周三,乙、丙只能排周四和周五,有A22种排法,∴共有A24+A23+A22=20种排法.活动与探究4:解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时有A35个;第二类:2在个位时,首位从1,3,4,5中选定1个(有A14种),十位和百位从余下的数字中选(有A24种),于是有A14·A24个;第三类:4在个位时,与第二类同理,也有A14·A24个.由分类加法计数原理知,共有四位偶数:A35+A14·A24+A14·A24=156(个).(2)五位数中5的倍数的数可分为两类:个位上的数字是0的五位数有A45个;个位上的数字是5的五位数有A14·A34个.故满足条件的五位数共有A45+A14·A34=216(个).(3)比1 325大的四位数可分为三类:第一类:形如2□□□,3□□□,4□□□,5□□□,共A14·A35个;第二类:形如14□□,15□□,共有A12·A24个;第三类:形如134□,135□,共有A12·A13个;由分类加法计数原理知,比1 325大的四位数共有:A14·A35+A12·A24+A12·A13=270(个).迁移与应用:解析:①若十位是3时,个位与百位从1,2中选有A22种选法;②若十位是4时,个位与百位有A23种选法;③若十位是5时,个位与百位有A24种选法;④若十位是6时,个位与百位有A25种选法,则共有A22+A23+A24+A25=2+6+12+20=40种,故选C.2.C解析:第一步,先将2,4,6全排,有A33种排法.第二步,将1,3,5分别插入2,4,6排列产生的前3个空中,若1,3相邻且不与5相邻,有A22A23种排法,若1,3,5均不相邻,有A33种排法.故总的排法有A33(A22A23+A33)=108(种).故选C.1.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是().A.1 260 B.120 C.240 D.7202.从a,b,c,d,e五人中选2人分别参加数学和物理竞赛,但a不能参加物理竞赛,则不同的选法有()种.A.16 B.12 C.20 D.103.A67-A56A45=().A.12 B.24 C.30 D.364.五人站成一排照相,其中甲与乙不相邻,且甲与丙也不相邻的不同站法有_______种.5.用1,2,3,4,5,6,7这7个数字排列组成一个七位数,要求在其偶数位必须是偶数,奇数位上必须是奇数,则这样的七位数有__________个.答案:1.D解析:由题意知有A310=10×9×8=720种分法.故选D.2.A解析:先选一人参加物理竞赛有A14种方法,再从剩下的4人中选1人参加数学竞赛,有A14种方法,共有A14·A14=16种方法.3.D解析:A67-A56A45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.4.36解析:五人全排列有A55种排法,甲、乙相邻有A22A44种排法,甲、丙相邻有A22A44种排法,甲、乙相邻且甲、丙相邻有A22A33种排法,故所有排法有A55-A22A44-A22A44+A22A33=36(种).5.144解析:先排奇数位有A44种,再排偶数位有A33种,∴共有A44A33=144种.。

人教A版数学高二选修2-3学案第一课时排列与排列数公式

人教A版数学高二选修2-3学案第一课时排列与排列数公式

1.2.1排列第一课时排列与排列数公式预习课本P14~20,思考并完成以下问题1.排列的概念是什么?2.排列数的定义是什么?什么是排列数公式?3.排列数公式有哪些性质?[新知初探]1.排列的概念从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列的两个条件(1)元素相同.(2)顺序相同.[点睛]排列中元素所满足的两个特性(1)无重复性:从n个不同元素中取出m(m≤n)个不同的元素,否则不是排列问题.(2)有序性:安排这m个元素时是有顺序的,有序的就是排列,无序的不是排列.而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变化就是有顺序,无变化就是无顺序.3.排列数及排列数公式排列数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数排列数表示法A m n排列数公式乘积式A m n=n(n-1)(n-2)…(n-m+1)阶乘式A m n=n!(n-m)!性质A0n=1备注n,m∈N*,m≤n[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)1,2,3与3,2,1为同一排列.()(2)在一个排列中,同一个元素不能重复出现.()(3)从1,2,3,4中任选两个元素,就组成一个排列.()(4)从5个同学中任选2个同学分别参加数学和物理竞赛的所有不同的选法是一个排列问题.()答案:(1)×(2)√(3)×(4)√2.集合P={x|x=A m4,m∈N*},则P中的元素个数为()A.3B.4C.6D.8答案:A3.若A m10=10×9×…×5,则m=________.答案:6排列的概念[典例]判断下列问题是否为排列问题.(1)选2个小组分别去植树和种菜;(2)选2个小组种菜;(3)某班40名同学在假期互发短信.[解](1)植树和种菜是不同的,存在顺序问题,是排列问题.(2)不存在顺序问题,不是排列问题.(3)A给B发短信与B给A发短信是不同的,所以存在顺序问题,是排列问题.判断一个具体问题是否为排列问题的方法[活学活用]判断下列问题是否为排列问题.(1)选10人组成一个学习小组;(2)从1,2,3,4,5中任取两个数相除;(3)10个车站,站与站间的车票.解:(1)不存在顺序问题,不是排列问题.(2)两个数相除与这两个数的顺序有关,是排列问题.(3)车票使用时有起点和终点之分,故车票的使用是有顺序的,是排列问题.简单排列问题[典例](1)从1,2,3,4四个数字中任取两个数字组成两位不同的数,一共可以组成多少个?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.[解](1)由题意作“树形图”,如下.故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作“树形图”,如下.故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.[活学活用]写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能站法.解:如图所示的树形图:故所有可能的站法是BACD ,BADC ,BCAD ,BDAC ,CABD ,CADB ,CBAD ,CDAB ,DABC ,DACB ,DBAC ,DCAB ,共12种.排列数公式及应用 [典例] (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且n <55);(2)计算2A 34+A 44;(3)求证:A m n -1+m A m -1n -1=A m n .[解] (1)∵55-n,56-n ,…,69-n 中的最大数为69-n ,且共有69-n -(55-n )+1=15个元素,∴(55-n )(56-n )…(69-n )=A 1569-n .(2)2A 34+A 44=2×4×3×2+4×3×2×1=48+24=72. (3)证明:A m n -1+m A m -1n -1=(n -1)!(n -1-m )!+m ·(n -1)!(n -m )!=(n -1)!(n -m +m )(n -m )!=n !(n -m )!=A m n .排列数公式的形式及选择方法排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.[活学活用] 计算下列各题: (1)A 66;(2)2A 58+7A 48A 88-A 59; (3)若3A 3n =2A 2n +1+6A 2n ,求n .解:(1)A 66=6!=6×5×4×3×2×1=720.(2)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=1. (3)由3A 3n =2A 2n +1+6A 2n ,得3n (n -1)(n -2)=2(n +1)n +6n (n -1).因为n ≥3且n ∈N *, 所以3n 2-17n +10=0. 解得n =5或n =23(舍去).所以n =5.层级一 学业水平达标1.下面问题中,是排列问题的是( ) A .由1,2,3三个数字组成无重复数字的三位数 B .从40人中选5人组成篮球队 C .从100人中选2人抽样调查 D .从1,2,3,4,5中选2个数组成集合解析:选A 选项A 中组成的三位数与数字的排列顺序有关,选项B 、C 、D 只需取出元素即可,与元素的排列顺序无关.2.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8D .10解析:选B 列树形图如下: 丙甲乙乙甲乙甲丙丙甲共4种.3.乘积m (m +1)(m +2)…(m +20)可表示为( ) A .A 2mB .A 21mC .A 20m +20D .A 21m +20解析:选D 因为m ,m +1,m +2,…,m +20中最大的数为m +20,且共有m +20-m+1=21个因式.所以m (m +1)(m +2)…(m +20)=A 21m +20. 4.计算:A 67-A 56A 45=( )A .12B .24C .30D .36解析:选DA 67=7×6×A 45,A 56=6×A 45,所以原式=36A 45A 45=36. 5.体操男队共六人参加男团决赛,但在每个项目上,根据规定,只需五人出场,那么在鞍马项目上不同的出场顺序共有( ) A .6种 B .30种 C .360种D .A 56种解析:选D 问题为6选5的排列即为A 56.6.计算:5A35+4A24=________.解析:原式=5×5×4×3+4×4×3=348.答案:3487.从a,b,c,d,e五个元素中每次取出三个元素,可组成________个以b为首的不同的排列.解析:画出树形图如下:可知共12个.答案:128.由1,4,5,x四个数字组成没有重复数字的四位数,所有这些四位数的各数位上的数字之和为288,则x=________.解析:当x≠0时,有A44=24个四位数,每个四位数的数字之和为1+4+5+x,即24(1+4+5+x)=288.解得x=2,当x=0时,每位四位数的数字之和为1+4+5=10,而288不能被10整除,即x=0不合题意,∴x=2.答案:29.写出下列问题的所有排列.(1)甲、乙、丙、丁四名同学站成一排;(2)从编号为1,2,3,4,5的五名同学中选出两名同学任正、副班长.解:(1)四名同学站成一排,共有A44=24个不同的排列,它们是:甲乙丙丁,甲乙丁丙,甲丙乙丁,甲丙丁乙,甲丁乙丙,甲丁丙乙;乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙,乙丁丙甲;丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.(2)从五名同学中选出两名同学任正、副班长,共有A25=20种选法,形成的排列是:12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54.10.(1)解关于x 的方程:A 7x -A 5xA 5x =89;(2)解不等式:A x 9>6A x -29.解析:(1)法一:∵A 7x =x (x -1)(x -2)(x -3)(x -4)(x -5)(x -6)=(x -5)(x -6)·A 5x ,∴(x -5)(x -6)A 5x -A 5x A 5x=89. ∵A 5x >0,∴(x -5)(x -6)=90. 故x =-4(舍去),x =15.法二:由A 7x -A 5x A 5x=89,得A 7x =90·A 5x , 即x !(x -7)!=90·x !(x -5)!.∵x !≠0,∴1(x -7)!=90(x -5)(x -6)·(x -7)!,∴(x -5)(x -6)=90.解得x =-4(舍去),x =15. (2)原不等式即9!(9-x )!>6·9!(9-x +2)!,由排列数定义知⎩⎪⎨⎪⎧0≤x ≤9,0≤x -2≤9,∴2≤x ≤9,x ∈N *.化简得(11-x )(10-x )>6,∴x 2-21x +104>0, 即(x -8)(x -13)>0,∴x <8或x >13. 又2≤x ≤9,x ∈N *,∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.层级二 应试能力达标1.从1,2,3,4中,任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为( ) A .2 B .4 C .12D .24解析:选C 本题相当于从4个元素中取2个元素的排列,即A 24=12.2.下列各式中与排列数A mn 相等的是( )A .n !(n -m +1)!B .n (n -1)(n -2)…(n -m )C .n A m n -1n -m +1D .A 1n ·A m -1n -1解析:选D ∵A mn =n !(n -m )!,而A 1n ·A m -1n -1=n ·(n -1)![(n -1)-(m -1)]!=n !(n -m )!,∴A mn =A 1n ·A m -1n -1,故选D .3.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为A .6B .9C .12D .24解析:选B 构成四位数,可从特殊元素0进行分类:第一类,0在个位有2110,1210,1120,共3个;第二类,0在十位有2101,1201,1102,共3个;第三类,0在百位有2011,1021,1012,共3个,故由这四张卡片可组成不同的四位数的个数为9.4.给出下列4个等式:①n !=(n +1)!n +1;②A m n =n A m -1n -1;③A m n =n !(n -m )!;④A m -1n -1=(n -1)!(m -n )!,其中正确的个数为( ) A .1 B .2 C .3 D .4解析:选C(n +1)!n +1=(n +1)×n !n +1=n !,所以①正确;n A m -1n -1=n ×(n -1)![(n -1)-(m -1)]!=n !(n -m )!=A m n ,所以②正确;③显然是正确的;A m -1n -1=(n -1)![(n -1)-(m -1)]!=(n -1)!(n -m )!(分母为(n -m )!,而不是(m -n )!),所以④不正确. 5.满足不等式A 7nA 5n>12的n 的最小值为________.解析:由排列数公式得n !(n -5)!(n -7)!n !>12,即(n -5)(n -6)>12,解得n >9或n <2.又n ≥7,所以n >9,又n ∈N *,所以n 的最小值为10. 答案:106.在编号为1,2,3,4的四块土地上分别试种编号为1,2,3,4的四个品种的小麦,但1号地不能种1号小麦,2号地不能种2号小麦,3号地不能种3号小麦,则共有______种不同的试种方案.解析:画出树形图,如下:由树形图可知,共有11种不同的试种方案.7.一条铁路线原有n 个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?解:由题意可得A 2n +2-A 2n =58,即(n +2)(n +1)-n (n -1)=58,解得n =14.所以原有车站14个,现有车站16个.8.规定A m x =x (x -1)…(x -m +1),其中x ∈R ,m 为正整数,且A 0x =1,这是排列数A m n (n ,m 是正整数,且m ≤n )的一种推广. (1)求A 3-15的值;(2)确定函数f (x )=A 3x 的单调区间.解:(1)由已知得A 3-15=(-15)×(-16)×(-17)=-4 080.(2)函数f (x )=A 3x =x (x -1)(x -2)=x 3-3x 2+2x ,则f ′(x )=3x 2-6x +2.令f ′(x )>0,得x >3+33或x <3-33,所以函数f (x )的单调增区间为 -∞,3-33,⎝ ⎛⎭⎪⎫3+33,+∞;令f ′(x )<0,得3-33<x <3+33, 所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫3-33,3+33.。

新人教A版高中数学(选修2-3)1.2《排列与组合》(组合)

新人教A版高中数学(选修2-3)1.2《排列与组合》(组合)

例6.甲、乙、丙3位志愿者安排在周一至
周五的5天中参加某项志愿者活动,要求
每人参加一天且每天至多安排一人,并要
求甲安排在另外两位前面。不同的安排方
法共有( )
种方法,
所以,一共有90+360+90=540种方法.
元素相同问题隔板策略
例.有10个运动员名额,再分给7个班,每 班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成 一排。相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个 班级,每一种插板方法对应一种分法 将n个相同共的有元__素__分__成__m__份_种(分n,法m。为正整数),每 份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
组合数性质1: 2:
特别地:
练习一
(1) (2)
(3) (4) (5)求
0 7
1,或5
的值 511
例题解读
求证: 证明:因为
左边= =左边,所以等式成立
评注: 注意阶乘的变形形式:
练习精选: 证明下列等式 : (1)
(2)
例题解读:
例1.6本不同的书,按下列要求各有多少种 不同的选法: (1)分给甲、乙、丙三人,每人2本;
你发现ad了b bda dba
acd
什么ac?d cad dac
adc cda dca
bcd cbd dbc
bcd
bdc cdb dcb
(三个元素的)1个组合,对应着6个排列
对于 ,我们可以按照以下步骤进行
概念讲解
组合数公式
排列与组合是有区别的,但它们又有联系. 一般地,求从n个不同元素中取出m个元素的

高中数学 1.2.1《排列》教案 新人教A版选修2-3

高中数学 1.2.1《排列》教案 新人教A版选修2-3

排列【教学目的】理解排列、排列数的概念,了解排列数公式的推导;能用“树型图”写出一个排列中所有的排列;能用排列数公式计算。

【教学重点】排列、排列数的概念。

【教学难点】排列数公式的推导一、问题情景〖问题1〗从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素。

a b c d这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排〖问题2〗.从,,,法?分析:解决这个问题分三个步骤:第一步先确定左边的字母,在4个字母中任取1个,有4种方法;第二步确定中间的字母,从余下的3个字母中取,有3种方法;第三步确定右边的字母,从余下的2个字母中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法二、数学构建≤)个元素(这里的被取元素各不相1.排列的概念:从n个不同元素中,任取m(m n同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同≤)个元素的所有排列的个数叫做2.排列数的定义:从n个不同元素中,任取m(m n从n个元素中取出m元素的排列数,用符号m n A表示注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排≤)个元素的所有列数”是指从n个不同元素中,任取m(m nA只表示排列数,而不表示具排列的个数,是一个数所以符号mn体的排列。

【教案】人教A版数学选修2-3集体备课学案与教学设计:1.2.1排列

【教案】人教A版数学选修2-3集体备课学案与教学设计:1.2.1排列
高二数学集体备课学案与教学设计
章节标题
排列
计划学时
2
学案作者
学案审核
高考目标
区பைடு நூலகம்以及解决基本的排列问题
三维目标
一、知识与技能
理解排列及排列数的概念
能利用排列数公式进行计算
掌握排列问题中常用的直接法和间接法
二、过程与方法
通过例子认识排列中的间接法,直接法
三、情感态度与价值观
培养严谨的数学思维能力
教学重点教学难点
3、归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理。
二、演绎推理
1、演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。简言之,演绎推理是由一般到特殊的推理。
2、“三段论”是演绎推理的一般模式:第一段:大前提——已知的一般原理;第二段:小前提——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断.
3、合情推理 ;演绎推理:由一般到特殊.




【例1】已知数列 的第1项1,且 ,试归纳出通项公式.
【例2】(课本P75)有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=
②f(n)=
【例3】类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想
【例4】在锐角三角形ABC中, ,D,E是垂足.求证:AB的中点M到D,E的距离相等.

(新课程)高中数学1.2.1排列教案1 新人教A版选修2-3

(新课程)高中数学1.2.1排列教案1 新人教A版选修2-3

1.2.1排列第一课时一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

高中数学(排列与组合)学案3 新人教A版选修2-3 学案

高中数学(排列与组合)学案3 新人教A版选修2-3 学案

排列与组合学习内容:两个原理;排列、排列数公式;组合、组合数公式。

学习要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。

2)理解排列、组合的意义。

掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。

学习安排:一般情况下,排列组合为一道以选择或填空题的形式出现的应用题。

有时还另有一道排列、组合与其他内容的综合题(大都与集合、立体几何、不等式证明等相综合)。

学习重点:两个原理尤其是乘法原理的应用。

学习难点:不重不漏。

知识要点及典型例题分析:1.加法原理和乘法原理两个原理是理解排列与组合的概念,推导排列数及组合数公式;分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。

而两者的区别在于完成一件事可分几类办法和需要分几个步骤。

例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。

解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。

(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。

(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。

故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。

例2.已知两个集合A={1,2,3},B={a,b,c,d},从A到B建立映射,问可建立多少个不同的映射?分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。

高中数学《排列与组合》学案2 新人教A版选修2-3

高中数学《排列与组合》学案2 新人教A版选修2-3

排列与组合学习要求:能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;会用二项式定理解决与二项展开式有关的简单问题。

学习目标:1.两个基本原理:(1)分类计数原理中的分类;(2)分步计数原理中的分步;2.排列:(1)排列定义,排列数;(2)排列数公式。

3.组合:(1)组合的定义,排列与组合的区别;(2)组合数公式;(3)组合数的性质。

4.二项式定理:(1)二项式展开公式;(2)通项公式。

学习过程:例1.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。

求:(1)这些直线所交成的点的个数(除原10点外)。

(2)这些直线交成多少个三角形。

解法一:(1)由题设这10点所确定的直线是C102=45条。

这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。

而在原来10点上有9条直线共点于此。

所以,在原来点上有10C92点被重复计数;所以这些直线交成新的点是:C452-10C92=630。

(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。

所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。

解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。

故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。

(2)同解法一。

点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。

例2.证明下列不等式:(1)已知a、b为正数,n∈N,则2nn ba+≥(2ba+)n;(2)已知a 、b 为正数,且a 1+b1=1,则对于n ∈N 有(a+b )n -a n -b n ≥22n -2n+1。

高中数学121排列教案新人教A版选修23

高中数学121排列教案新人教A版选修23

四川省射洪县射洪中学高中数学 121 排列 教案 新人教A 版选修2-3教学目标:理解排列、排列数的概念,了解排列数公式的推导教学重点:理解排列、排列数的概念,了解排列数公式的推导教学进程:一、温习引入:1.分类计数原理:(1)加法原理:若是完成一件工作有k 种途径,由第1种途径有n 1种方式可以完成,由第2种途径有n 2种方式可以完成,……由第k 种途径有n k 种方式可以完成。

那么,完成这件工作共有n 1+n 2+……+n k 种不同的方式。

2,乘法原理:若是完成一件工作可分为K 个步骤,完成第1步有n 1种不同的方式,完成第2步有n 2种不同的方式,……,完成第K 步有nK 种不同的方式。

那么,完成这件工作共有n 1×n 2×……×n k 种不同方式二、讲解新课:1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)依照必然..的顺序...排成一列,叫做从n 个不同元素中掏出m 个元素的一个排列....说明:(1)排列的概念包括两个方面:①掏出元素,②按必然的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的概念:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中掏出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素依照必然的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导: 求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+,排列数公式:(1)(2)(1)m n A n n n n m =---+=!()!n n m -(,,m n N m n *∈≤) 说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全数掏出的一个排列全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘)4、典例分析例1.计算:(1)316A ; (2)66A ; (3)46A .解:(1)316A =161514⨯⨯=3360 ;(2)66A =6!=720 ;(3)46A =6543⨯⨯⨯=360例2.(1)若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----用排列数符号表示 . 解:(1)n = 17 ,m = 14 .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----= 1569n A -.例3.(1)从2,3,5,7,11这五个数字中,任取2个数字组成份数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场别离比课堂练习:(1)解方程:A 42x +1=140A 3x ;(2)解不等式:A x 9>6A x -26.解 (1)按照原方程,x (x ∈N *)应知足⎩⎪⎨⎪⎧ 2x +1≥4,x ≥3,解得x ≥3.按照排列数公式,原方程化为(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2), 因为x ≥3,两边同除以4x (x -1), 得(2x +1)(2x -1)=35(x -2),即4x 2-35x +69=0,解得x =3或x =234(x ∈N *,应舍去). 所以原方程的解为x =3.(2)按照原不等式,x (x ∈N *)应知足⎩⎪⎨⎪⎧ x ≤9,x -2≤6,x >0,x -2>0,故2<x ≤8.又由A x 9>6A x -26,得9!9-x !>6×6!8-x !,所以849-x >1, 所以-75<x <9.故2<x ≤8,所以x ∈{3,4,5,6,7,8}.。

数学教案 人教a版选修2_3 同步练习-第1章计数原理第2节跟踪训练含解析

数学教案 人教a版选修2_3 同步练习-第1章计数原理第2节跟踪训练含解析

第1课时 排列与排列数公式[A 组 学业达标]1.4·5·6·…·(n-1)·n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:因为A mn =n(n -1)(n -2)…(n-m +1),所以A n -3n =n(n -1)(n -2)…[n-(n -3)+1]=n·(n-1)·(n-2)·…·6·5·4.答案:D2.将5本不同的数学用书放在同一层书架上,则不同的放法有( ) A .50种 B .60种 C .120种D .90种解析:5本书进行全排列,A 55=120种. 答案:C3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A .12种B .24种C .48种D .120种解析:∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A 44=24(种).答案:B4.已知A 2n +1-A 2n =10,则n 的值为( ) A .4 B .5 C .6D .7解析:因为A 2n +1-A 2n =10,则(n +1)n -n(n -1)=10,整理得2n =10,即n =5. 答案:B5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:lg a -lg b =lg a b ,从1,3,5,7,9中任取两个数分别记为a ,b ,共有A 25=20种,其中lg 13=lg3 9,lg31=lg93,故其可得到18种结果.答案:C6.计算A67-A56A45=________.解析:因为A67=7×6×A45,A56=6×A45,所以原式=36A45A45=36.答案:367.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)解析:根据题意,得A240=1 560,故全班共写了1 560条毕业留言.答案:1 5608.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法.(用数字作答) 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有A48=8×7×6×5=1 680(种).答案:1 6809.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号.解析:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号共有A13+A23+A33=3+3×2+3×2×1=15(种).10.一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?解析:由题意可知,原有车票的种数是A2n种,现有车票的种数是A2n+2种,∴A2n+2-A2n=58,即(n+2)(n+1)-n(n-1)=58.解得n=14.故原有14个车站,现有16个车站.[B组能力提升]11.将3张不同的电影票全部分给10个人,每人至多一张,则不同的分法种数是( )A.1 260 B.120C.240 D.720解析:相当于3个元素安排在10个位置上,共有A310=720种分法,故选D.答案:D12.下列各式中与排列数A mn 相等的是( ) A.n !n -m +1!B .n(n -1)(n -2)…(n-m) C.nA mn -1n -m +1 D .A 1n A m -1n -1 解析:∵A mn =n !n -m !,而A 1n ·A m -1n -1=n·n -1![n -1-m -1]!=n !n -m !,∴A m n =A 1n ·A m -1n -1.答案:D13.满足不等式A 7nA 5n>12的n 的最小值为________.解析:由排列数公式得n !n -5!n -7!n !>12,即(n -5)(n -6)>12,解得n >9或n <2.又n≥7,所以n >9,又n ∈N *,所以n 的最小值为10. 答案:1014.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为________.解析:这四张卡片可组成的四位数是2011、2101、2110、1021、1012、1102、1120、1201、1210共9个. 答案:915.根据要求完成下列各题. (1)计算:A 59+A 49A 610-A 510;(2)解方程 :3A x8=4A x -19.解析:(1)原式=5A 49+A 495A 510-A 510=6A 494A 510=6A 4940A 49=640=320. (2)由排列数公式,原方程可化为3×8!8-x !=4×9!10-x !,化简得3=4×910-x 9-x,即x 2-19x +78=0,解得x 1=6,x 2=13. 因为x≤8,所以原方程的解是x =6.16.(1)求由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相同数字的四位数的个数. (2)从0,1,2,3这四个数字中,每次取出3个不同的数字排成一个三位数,写出其中大于200的所有三位数.解析:(1)本题要求首位数字是1,且恰有三个相同的数字,用树形图表示为:由此可知共有12个.(2)大于200的三位数的首位是2或3,于是大于200的三位数有:201,203,210,213,230,231,301,302,310,312,320,321.第2课时排列的综合应用[A组学业达标]1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有( ) A.60种B.48种C.36种D.24种解析:把A,B视为一人,且B排在A的右边,则本题相当于4人的全排列,故有A44=24种排法.答案:D2.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A.192种B.216种C.240种D.288种解析:根据甲、乙的位置要求分类解决,分两类.第一类,甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类,乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.答案:B3.5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为( )A.5 760 B.57 600C.2 880 D.28 800解析:先选2名女生放在男生甲与男生乙之间,并捆绑在一起看作一个大元素,从大元素和另外的3名男生中选2个排在两端,剩下的和女生全排列,故有A22·A25·A24·A55=57 600(种)排法.故选B.答案:B4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个解析:当五位数的万位为4时,个位可以是0,2,此时满足条件的偶数共有2A34=48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3A34=72(个).所以比40 000大的偶数共有48+72=120(个).答案:B5.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼­15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.18种C.24种D.48种解析:把甲、乙看作1个元素和另一飞机全排列,调整甲、乙,共有A22·A22种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有A23种方法,由分步乘法计数原理可得总的方法种数为A22·A22·A23=24.答案:C6.把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44种摆法.而A,B,C这3件产品在一起,且A,B相邻,A,C相邻有2A33种摆法.故A,B相邻,A,C不相邻的摆法有A22A44-2A33=36(种).答案:367.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)解析:文娱委员有3种选法,则安排学习委员、体育委员有A24=12种方法.由分步乘法计数原理知,共有3×12=36种选法.答案:368.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.解析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4×A44=96(种).答案:969.分别求出符合下列要求的不同排法的种数.(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.解析:(1)分排与直排一一对应,故排法种数为A66=720.(2)甲不能排头尾,让受特殊限制的甲先选位置,有A14种选法,然后其他5人排,有A55种排法,故排法种数为A14A55=480.(3)甲、乙不相邻,第一步除甲、乙外的其余4人先排好;第二步,甲、乙在已排好的4人的左、右及之间的空位中排,共有A44A25=480(种)排法.10.7名班委中有A,B,C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解析:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,知共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55,因此A,B,C三人中至少有一人任正、副班长的方案有A77-A24A55=3 600(种).[B组能力提升]11.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72解析:第一步,先排个位,有A13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有A13·A44=72(个).答案:D12.航天员在进行一项太空实验时,先后要实施6个程序,其中程序B和C都与程序D不相邻,则实验顺序的编排方法共有( )A.216种B.288种C.180种D.144种解析:当B,C相邻,且与D不相邻时,有A33A24A22=144种方法;当B,C不相邻,且都与D不相邻时,有A33A34=144种方法,故共有288种编排方法.答案:B13.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A55种,当C在左边第2个位置时有A24·A33种,当C在左边第3个位置时,有A23·A33+A22·A33种.这三种情况的和为240种,乘以2得480.则不同的排法共有480种.答案:48014.在某艺术馆中展出5件艺术作品,其中不同的书法作品2件,不同的绘画作品2件,标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则展出这5件作品的不同方案有________种.解析:把2件书法作品当作一个元素,与其他3件艺术品进行全排列,有2A44=48种方案.其中,2件绘画作品相邻,有2×2A33=24种方案,则该艺术馆展出这5件作品的不同方案有48-24=24种.答案:2415.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解析:(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440种排法.(2)先排3个舞蹈节目,3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240种排法.(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880种排法.16.从1到9这9个数字中取出不同的5个数进行排列.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解析:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,有4个偶数和余下的2个奇数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1 800.(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2 520种.第1课时 组合与组合数公式[A 组 学业达标]1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法? ②有4张电影票,要在7人中确定4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种? 其中属于组合问题的个数为( ) A .0 B .1 C .2D .3解析:①与顺序有关,是排列问题;②③均与顺序无关,是组合问题. 答案:C2.计算:C 28+C 38+C 29=( ) A .120 B .240 C .60D .480解析:C 28+C 38+C 29=7×82×1+6×7×83×2×1+8×92×1=120.答案:A3.某校开设A 类选修课3门,B 类选修课5门,一位同学要从中选3门.若要求两类课程中各至少选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种解析:分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.答案:C4.方程C x14=C 2x -414的解集为( ) A .{4} B .{14} C .{4,6}D .{14,2}解析:由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x≤14,或⎩⎪⎨⎪⎧x =14-2x -4,2x -4≤14,x≤14,解得x =4或6.答案:C5.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( ) A .20 B .9 C .C 39D .C 24C 15+C 25C 14解析:分两类:第一类,在直线a 上任取一点,与直线b 可确定C 14个平面;第二类,在直线b 上任取一点,与直线a 可确定C 15个平面.故可确定C 14+C 15=9个不同的平面.答案:B6.某班级要从4名男生、2名女生中派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为________.解析:法一:分类完成.第1类,选派1名女生、3名男生,有C 12·C 34种选派方案;第2类,选派2名女生、2名男生,有C 22·C 24种选派方案.故共有C 12·C 34+C 22·C 24=14(种)不同的选派方案.法二:6人中选派4人的组合数为C 46,其中都选男生的组合数为C 44,所以至少有1名女生的选派方案有C 46-C 44=14(种).答案:147.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成1个医疗小组,则不同的选法共有________种.解析:从4名男医生中选2人,有C 24种选法,从3名女医生中选1人,有C 13种选法.由分步乘法计数原理知,所求选法种数为C 24C 13=18.答案:188.不等式C 2n -n <5的解集为________. 解析:由C 2n -n <5,得n n -12-n <5,∴n 2-3n -10<0. 解得-2<n <5.由题设条件知n≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x8. 解析:(1)原方程等价于 m(m -1)(m -2)=6×mm -1m -2m -34×3×2×1,∴4=m -3,解得m =7.(2)由已知得⎩⎪⎨⎪⎧x -1≤8,x≤8,∴x≤8,且x ∈N *,∵C x -18>3C x8,∴8!x -1!9-x !>3×8!x !8-x !.即19-x >3x ,∴x >3(9-x),解得x >274, ∴x =7,8.∴原不等式的解集为{7,8}.10.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备多少不同的素菜品种?解析:设餐厅至少还需准备x 种不同的素菜.由题意,得C 25·C 2x ≥200,从而有C 2x ≥20,即x(x -1)≥40.又x≥2且x ∈N *,所以x 的最小值为7.故餐厅至少还需准备7种不同的素菜.[B 组 能力提升]11.从8名女生和4名男生中,抽取3名学生参加某档电视节目,若按性别比例分层抽样,则不同的抽取方法数为( )A .224B .112C .56D .28 解析:由分层抽样知,应从8名女生中抽取2名,从4名男生中抽取1名,所以抽取2名女生和1名男生的方法数为C 28C 14=112.答案:B12.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种 解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯形成的10个空当中,所以关灯方案共有C 310=120(种).答案:C13.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,解得x 1=-3(舍去),x 2=5.答案:{5}14.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法有________种.解析:根据结果分类:第一类,两台甲型机,有C 24·C 15=30(种);第二类,两台乙型机,有C 14·C 25=40(种).根据分类加法计数原理,共有C 24·C 15+C 14·C 25=70(种)不同的取法.答案:7015.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值.解析:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!n -5!=n !4!n -4!+n !6!n -6!, 整理得n 2-21n +98=0,解得n =7或n =14,要求C 12n 的值,故n≥12,所以n =14,于是C 1214=C 214=14×132×1=91. 16.由13个人组成的课外活动小组,其中5个人只会跳舞,5个人只会唱歌,3个人既会唱歌也会跳舞,若从中选出4个会跳舞和4个会唱歌的人去演节目,共有多少种不同的选法?解析:设既会唱歌也会跳舞的人为“多面手”第一类,选会唱歌的4人无多面手:有C 45C 48=350;第二类,选会唱歌的4人中有一个多面手:有C 35C 13C 47=1 050;第三类,选会唱歌的4人中有2个多面手:有C 25C 23C 46=450;第四类,选会唱歌的4人中有3个多面手:有C 15C 33C 45=25.由分类加法计数原理,共有350+1 050+450+25=1 875种.第2课时组合的综合应用[A组学业达标]1.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( )A.140种B.120种C.35种D.34种解析:从7人中选4人共有C47=35(种)方法.又4名全是男生的选法有C44=1(种).故选4人既有男生又有女生的选法种数为35-1=34.答案:D2.平面内有4个红点,6个蓝点,其中只有一个红点和两个蓝点共线,其余任三点不共线,过这十个点中的任两点所确定的直线中,至少过一红点的直线的条数是( )A.28 B.29C.30 D.27解析:可分两类:第一类,红点连蓝点有C14C16-1=23(条);第二类,红点连红点有C24=6(条),所以共有29条.故选B.答案:B3.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2 B.3C.4 D.5解析:设男生人数为x,则女生有(6-x)人.依题意:C36-C3x=16.解得x=4,故女生有2人.答案:A4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A.24 B.48C.72 D.96解析:据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可.此时共有A22A24种摆放方法;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方法.由分类加法计数原理可得共有A22A24+A22A12C12C13=48种摆放方法.答案:B5.将标号分别为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中将标号为1,2的卡片放入同一信封中,则不同的放法共有( )A.12种B.18种C.36种D.54种解析:先将1,2捆绑后放入信封中,有C13种方法,再将剩余的4张卡片放入另外两个信封中,有C24C22种方法,所以共有C13C24C22=18种方法.答案:B6.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)解析:C67C36C33A22·A22=140.答案:1407.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有________种不同的选修方案.(用数字作答)解析:分两类:①A、B、C均不选,有C46=15.②A、B、C中选一门,有C13C36=60.∴共有15+60=75种不同选修方案.答案:758.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有________种.(用数字作答)解析:①不选甲、乙,则N1=A44=24(种).②只选甲,则N2=C34C13A33=72(种).③只选乙,则N3=C34C13A33=72(种).④选甲、乙,则N4=C24A23A22=72(种).故N=N1+N2+N3+N4=240(种).答案:2409.某市工商局对35件商品进行抽样检查,鉴定结果有15件假货,现从35件商品中选取3件.(1)恰有2件假货在内的不同取法有多少种?(2)至少有2件假货在内的不同取法有多少种?(3)至多有2件假货在内的不同取法有多少种?解析:(1)从20件真货中选取1件,从15件假货中选取2件,有C120C215=2 100种不同的取法.所以恰有2件假货在内的不同取法有2 100种.(2)选取2件假货有C120C215种,选取3件假货有C315种,共有C120C215+C315=2 555种不同的取法.(3)任意选取3件的种数为C335,因此符合题意的选取方式有C335-C315=6 090(种).所以至多有2件假货在内的不同的取法有6 090种.10.6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少不同的分法.解析:先分组再分配分三类:第一类,“2,2,2”类(先平均分组再分配)C26C24C22·A33=90(种)A33第二类,“1,2,3”类(先非平均分组再分配)C16C25C33·A33=360(种)第三类,“1,1,4”类(先部分平均分组,再分配)C16C15C44·A33=90(种)A22共有90+360+90=540(种).[B组能力提升]11.如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有( )A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13个“好数”;当重复数字不是1时,有C13个“好数”.由分类加法计数原理,得“好数”有C13·C13+C13=12个.答案:C12.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各三张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为( )A.135 B.172C.189 D.162解析:不考虑特殊情况,共有C312种取法,取三张相同颜色的卡片,有4种取法,只取两张红色卡片(另一张非红色),共有C23C19种取法.所求取法种数为C312-4-C23C19=189.答案:C13.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种.解析:当入选的3名队员为2名老队员1名新队员时,有C13C12A22=12种排法;当入选的3名队员为2名新队员1名老队员时,有C12C23A33=36种排法.故共有12+36=48种排法.答案:4814.现有6张风景区门票分配给6位游客,若其中A,B风景区门票各2张,C,D风景区门票各1张,则不同的分配方案共有________种.(用数字作答).解析:从6位游客中选2人去A风景区,有C26种方法,从余下4位游客中选2人去B风景区,有C24种方法,余下2人去C,D风景区,有A22种方法,所以分配方案共有C26C24A22=180(种).答案:18015.从1到6这6个数字中,取2个偶数和2个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,2个偶数排在一起的有几个?(3)2个偶数不相邻的四位数有几个?(所得结果均用数值表示).解析:(1)易知四位数共有C23C23A44=216(个).(2)上述四位数中,偶数排在一起的有C23C23A33A22=108(个).(3)由(1)(2)知两个偶数不相邻的四位数有216-108=108(个).16.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现下列结果:(1)4只鞋子没有成双的;(2)4只鞋子恰有两双;(3)4只鞋子有2只成双,另2只不成双.解析:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410×24=3 360(种).(2)从10双鞋子中选2双有C210种取法,即有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29×22=1 440种.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、排列的概念:
说明:
(1)排列的定义包括两个方面:
①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:
①元素 完全相同,②元素的排列顺序也相同
探究:从n个不同元 素中取出2个元素的排列数是多少?
2、排列数的定义:
排列与排列数的区别:
一个排列”是指:从 个不同元素中,任取 个元素按照一定的顺序排成一列,不是数;
学习重点:排列数定义,排列数公式及 其应用。
学习难点:有关排列应用题的解决。
明确目标
一复习引入:
1.分别叙述分类加法计数原理与分步乘法计数原理?并指出它们的区别?
2.阅读课本P14----P20,并完成下面填空:
①排列的概念;一般的,从 个中取出 ( ≤ )个元素,按照排成一列,叫做从 个不同元素中取出 个元素的 一个排列。
二自主合作探究:
问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方 法?
解: = 6
问题2.从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?
解: =24
所有的三位数可列举如下:
树形图如下:
并排定他们的出场顺序,有多少种不同的方法?
解:
4.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地
上进行试验,有多少种不同的种植方法?
解:
四总结提升:
五拓展延伸 :
1. 下列各式中与排列数A 不相等的是(C)
A. B.(n -m+1)(n-m+2)(n-m+3)…n
C. ·A D.A ·A
2.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为(A)
“排列数”是指从 个不同元素中,任取 ( )个元素的所有 排列的个数,是一个数 所以符号 只 表 示排列数,而不表示具体的排列
3、排列数公式及其推导:
总结:(1)公式特征:第一个因数是 ,后面每一个因数比它前面一个少1,最后一个因数是 ,共有 个因数;
(2)全排列:当 时即 个不同元素全部取出的一个排列全排列数: (叫做n的阶乘) 我们规定0! =1 .
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
解:(1) ;(2)53=125
例4.用0到 9这10个数字,可以组成多少个没有重复数字的三位数?
解:
三.当堂达标:
1.若 ,则 17, 14.
2 .课本P20第1,2,3,4题。
3.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,
A.36B.30C.40D.60
3.若 ,则 的值为(A )
4.计算: 1; 1.
回顾知识
了解新知
引入新知
知识的理解与应用:
山东省泰安市肥城市第三中学高中数学排列学案新人教A版选修2-3
教学内容
学习指导
即时感悟
学习目标:1.正确理解排列数定义,能用树形图写出简单问题的所有排列;掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
2.会分析与数字 有关的排列问题,培养学生的抽象能力和逻辑思
维能力。
例1.计算:(1) ;(2) ; (3) .
解:(1) =5040;(2) =1028160; (3) =1028160
例2.某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一 次,共进行多少场比赛?
解:
例3.(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?
思考:(1)排列的特征是什么?
(2)相同的两个排列有什么特点?
②排列数的概念:从 个元素中取出 ( )个元素的的个数,叫做从 个不同元素取出 元 素的排列数,用符合表示.
思考:(3)排列与排列数的区别是什么?
(4)排列数计算公式推导的思路是什么?
③排列数公式
(5)公式中 有什 么限制条件?
④全排列的概念;从 个不同元素中取出的一个排列,叫做 个元素的一个全排列,用公式表 示为 规定
相关文档
最新文档