培优易错试卷圆的综合辅导专题训练及答案

合集下载

中考数学圆的综合(大题培优)及详细答案

中考数学圆的综合(大题培优)及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .

(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12

,求AB 和FC 的长.

【答案】(1)见解析;(2) ⑵AB=20 , 403

CF =

【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;

(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.

详解:⑴证明:连结OC

∵AB 是⊙O 的直径

∴∠ACB=90°

∴∠B+∠BAC=90°

∵OA=OC

∴∠BAC=∠OCA

∵∠B=∠FCA

∴∠FCA+∠OCA=90°

即∠OCF=90°

∵C 在⊙O 上

∴CF 是⊙O 的切线

⑵∵AE=4,tan ∠ACD

12

AE EC = ∴CE=8

∵直径AB ⊥弦CD 于点E

∴AD AC =

∵∠FCA =∠B

∴∠B=∠ACD=∠FCA

∴∠EOC=∠ECA

∴tan ∠B=tan ∠ACD=

1=2

CE BE ∴BE=16

∴AB=20

∴OE=AB÷2-AE=6

∵CE ⊥AB

∴∠CEO=∠FCE=90°

∴△OCE ∽△CFE ∴

OC OE CF CE

= 即106=8CF ∴40CF 3

= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.

中考数学圆的综合(大题培优易错难题)含详细答案

中考数学圆的综合(大题培优易错难题)含详细答案

中考数学圆的综合(大题培优 易错难题)含详细答案

、圆的综合

1.在平面直角坐标中,边长为 2的正方形OABC 的两顶点 A 、C 分别在y 轴、x 轴的正 半轴上,点

O 在原点.现将正方形OABC 绕。点顺时针旋转,当 A 点一次落在直线 y X 上 时停止旋转,旋转过

程中,

AB 边交直线y x 于点M , BC 边交x 轴于点N (如图).

C

(1)求边OA 在旋转过程中所扫过的面积;

(2)旋转过程中,当 MN 和AC 平行时,求正方形 OABC 旋转的度数;

(3)设 MBN 的周长为p ,在旋转正方形 OABC 的过程中,P 值是否有变化?请证明 你的结论.

【答案】(1) K 2 (2) 22.5。(3)周长不会变化,证明见解析 【解析】

试题分析:(1)根据扇形的面积公式来求得边

OA 在旋转过程中所扫过的面积;

(2)解决本题需利用全等,根据正方形一个内角的度数求出

/AOM 的度数;

(3)利用全等把4MBN 的各边整理到成与正方形的边长有关的式子.

试题解析:(1) ; A 点第一次落在直线 y=x 上时停止旋转,直线 y=x 与y 轴的夹角是 45°,

,OA 旋转了 45 °.

(2) 「MN //AC,

/ BMN=Z BAC=45 ,° / BNM=Z BCA=45 : Z BMN=Z BNM,,BM=BN.

又,. BA=BC, .1. AM=CN.

又.. OA=OC, /OAM=/OCN, • . △ OAM^ △ OCN.

Z AOM=ZCON=- (/AOC-/ MON) =- (90 -45°) =22.5 .

初三数学圆的综合的专项培优 易错 难题练习题含详细答案

初三数学圆的综合的专项培优 易错 难题练习题含详细答案

初三数学圆的综合的专项培优易错难题练习题含详细答案

一、圆的综合

1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.

(1)若∠B=60°,求证:AP是⊙O的切线;

(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.

【答案】(1)证明见解析;(2)8.

【解析】

(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;

(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.

试题解析:连接AD,OA,

∵∠ADC=∠B,∠B=60°,

∴∠ADC=60°,

∵CD是直径,

∴∠DAC=90°,

∴∠ACO=180°-90°-60°=30°,

∵AP=AC,OA=OC,

∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,

∴∠OAP=180°-30°-30°-30°=90°,

即OA⊥AP,

∵OA为半径,

∴AP是⊙O切线.

(2)连接AD,BD,

∵CD是直径,

∴∠DBC=90°,

∵CD=4,B为弧CD中点,

∴BD=BC=,

∴∠BDC=∠BCD=45°,

∴∠DAB=∠DCB=45°,

即∠BDE=∠DAB,

∵∠DBE=∠DBA,

∴△DBE∽△ABD,

∴,

∴BE•AB=BD•BD=.

考点:1.切线的判定;2.相似三角形的判定与性质.

2.(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.

人教【数学】数学圆的综合的专项培优易错试卷练习题及详细答案

人教【数学】数学圆的综合的专项培优易错试卷练习题及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.

(1)求证:DF是⊙O的切线;

(2)若DB平分∠ADC,AB=52AD

,∶DE=4∶1,求DE的长.

【答案】(1)见解析5

【解析】

分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;

(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.

详解:(1)连接OD.

∵OD=CD,∴∠ODC=∠OCD.

∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.

∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.

又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.

(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.

∵DB平分∠ADC,∴∠ADB=∠CDB,∴AB=BC,∴BC=AB2.

在Rt△ABC中,AC2=AB2+BC2=100.

又∵AC⊥CE,∴∠ACE=90°,

∴△ADC~△ACE,∴AC

AD =

AE

AC

,∴AC2=AD•AE.

设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x5∴DE=5

点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.

2.如图AB是△ABC的外接圆⊙O的直径,过点C作⊙O的切线CM,延长BC到点D,使CD=BC,连接AD交CM于点E,若⊙OD半径为3,AE=5,

【数学】数学圆的综合的专项培优 易错 难题练习题(含答案)

【数学】数学圆的综合的专项培优 易错 难题练习题(含答案)

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,四边形ABCD是⊙O的内接四边形,AB=CD.

(1)如图(1),求证:AD∥BC;

(2)如图(2),点F是AC的中点,弦DG∥AB,交BC于点E,交AC于点M,求证:AE=2DF;

(3)在(2)的条件下,若DG平分∠ADC,GE=53,tan∠ADF=43,求⊙O的半径。

【答案】(1)证明见解析;(2)证明见解析;(3)129

【解析】

试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有

AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.

(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.

作直径AP,连接CP,通过解△APC即可得出结论.

试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.

(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,

人教数学圆的综合的专项培优 易错 难题练习题(含答案)附答案

人教数学圆的综合的专项培优 易错 难题练习题(含答案)附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .

(1)求证:OE ∥BD ;

(2)当⊙O 的半径为5,2sin 5

DBA ∠=时,求EF 的长.

【答案】(1)证明见解析;(2)EF 的长为

212

【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;

(2)根据锐角三角函数和相似三角形的性质,直接求解即可.

试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.

∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .

(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25

BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒

∵E C ∠=∠,∴△CBD ∽△EBO . ∴

BD CD BO EO

= ∴252EO =. ∵OE ∥BD ,CO =OD ,

∴CF =FB . ∴122

OF BD ==. ∴212EF OE OF =-=

2.如图,在直角坐标系中,已知点A (-8,0),B (0,6),点M 在线段AB 上。

中考数学圆的综合(大题培优 易错 难题)及详细答案

中考数学圆的综合(大题培优 易错 难题)及详细答案

中考数学圆的综合(大题培优易错难题)及详细答案

一、圆的综合

1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.

(1)求证:直线DM是⊙O的切线;

(2)若DF=2,且AF=4,求BD和DE的长.

【答案】(1)证明见解析(2)23

【解析】

【分析】

(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;

(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.

【详解】

(1)如图所示,连接OD.

∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD

=,∴OD⊥BC.

又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.

又∵OD为⊙O半径,∴直线DM是⊙O的切线.

(2)连接BE.∵E为内心,∴∠ABE=∠CBE.

∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即

∠BED=∠DBE,∴BD=DE.

又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB

DB DA

=,即DB2=DF•DA.

∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】

本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.

初三数学圆的综合的专项培优 易错 难题练习题附答案

初三数学圆的综合的专项培优 易错 难题练习题附答案

初三数学圆的综合的专项培优 易错 难题练习题附答案

一、圆的综合

1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2

tan 3

B =

,求半圆的半径.

【答案】(1)见解析;(2)413 【解析】

分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;

(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.

详解:(1)证明:如图,连接CO .

∵AB 是半圆的直径, ∴∠ACB =90°.

∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2

tan 3

AC B BC ==, ∴BC =3x .

∴()()

22

2313AB x x x =

+=.

∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴

AC AO

AB AD

=. ∵1132OA AB x =

=,AD =2x +10, ∴

1

132210

初三数学圆的综合的专项培优 易错 难题练习题附详细答案

初三数学圆的综合的专项培优 易错 难题练习题附详细答案

初三数学圆的综合的专项培优易错难题练习题附详细答案

一、圆的综合

1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.

(1)若∠B=60°,求证:AP是⊙O的切线;

(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.

【答案】(1)证明见解析;(2)8.

【解析】

(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;

(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.

试题解析:连接AD,OA,

∵∠ADC=∠B,∠B=60°,

∴∠ADC=60°,

∵CD是直径,

∴∠DAC=90°,

∴∠ACO=180°-90°-60°=30°,

∵AP=AC,OA=OC,

∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,

∴∠OAP=180°-30°-30°-30°=90°,

即OA⊥AP,

∵OA为半径,

∴AP是⊙O切线.

(2)连接AD,BD,

∵CD 是直径,

∴∠DBC=90°,

∵CD=4,B 为弧CD 中点,

∴BD=BC=,

∴∠BDC=∠BCD=45°,

∴∠DAB=∠DCB=45°,

即∠BDE=∠DAB ,

∵∠DBE=∠DBA ,

∴△DBE ∽△ABD , ∴,

∴BE•AB=BD•BD=

. 考点:1.切线的判定;2.相似三角形的判定与性质.

2.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;

初三数学 圆的综合的专项 培优 易错 难题练习题附详细答案

初三数学 圆的综合的专项 培优 易错 难题练习题附详细答案

初三数学圆的综合的专项培优易错难题练习题附详细答案

一、圆的综合

1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.

【答案】(1)4;(2)3

5

;(3)点E的坐标为(1,2)、(

5

3

10

3

)、(4,2).

【解析】

分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则

MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,

中考数学圆的综合(大题培优 易错 难题)附答案解析

中考数学圆的综合(大题培优 易错 难题)附答案解析

中考数学圆的综合(大题培优易错难题)附答案解析

一、圆的综合

1.如图,⊙A过OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).

(1)若∠BOH=30°,求点H的坐标;

(2)求证:直线PC是⊙A的切线;

(3)若OD=10,求⊙A的半径.

【答案】(1)(1,﹣3);(2)详见解析;(3)5 3.

【解析】

【分析】

(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;

(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】

(1)解:如图,过点H作HM⊥y轴,垂足为M.

∵四边形OBCD是平行四边形,

∴∠B=∠ODC

∵四边形OHCD是圆内接四边形

∴∠OHB=∠ODC

∴∠OHB=∠B

∴OH=OB=2

∴在△Rt OMH中,

∵∠BOH=30°,

∴MH=1

OH=1,OM=3MH=3,2

∴点H的坐标为(1,﹣3),

(2)连接AC.

∵OA=AD,

∴∠DOF=∠ADO

∴∠DAE=2∠DOF

∵∠PCD=2∠DOF,

∴∠PCD=∠DAE

∵OB与⊙O相切于点A

∴OB⊥OF

∵OB∥CD

∴CD⊥AF

∴∠DAE=∠CAE

∴∠PCD=∠CAE

∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;

初三数学 圆的综合的专项 培优 易错 难题练习题含详细答案

初三数学 圆的综合的专项 培优 易错 难题练习题含详细答案

初三数学 圆的综合的专项 培优 易错 难题练习题含详细答案

一、圆的综合

1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.

【答案】(1)证明见解析;(2)25°.

【解析】

试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.

(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.

试题解析:(1)∵∠AOC=∠BOD

∴∠AOC -∠COD=∠BOD-∠COD

即∠AOD=∠BOC

∵四边形ABCD 是矩形

∴∠A=∠B=90°,AD=BC

∴AOD BOC ∆≅∆

∴AO=OB

(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,

∴∠A=90°.

又∵∠OPA=40°,

∴∠AOP=50°,

∵OB=OC ,

∴∠B=∠OCB.

又∵∠AOP=∠B+∠OCB , ∴1252

B OCB AOP ∠=∠=∠=︒.

2.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,⊙O 交BC 于点D ,交CA 的延长线于点E .过点D 作DF ⊥AC ,垂足为F .

(1)求证:DF为⊙O的切线;

备战中考数学圆的综合(大题培优 易错 难题)及详细答案

备战中考数学圆的综合(大题培优 易错 难题)及详细答案

备战中考数学圆的综合(大题培优易错难题)及详细答案

一、圆的综合

1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.

(1)若∠B=60°,求证:AP是⊙O的切线;

(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.

【答案】(1)证明见解析;(2)8.

【解析】

(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;

(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.

试题解析:连接AD,OA,

∵∠ADC=∠B,∠B=60°,

∴∠ADC=60°,

∵CD是直径,

∴∠DAC=90°,

∴∠ACO=180°-90°-60°=30°,

∵AP=AC,OA=OC,

∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,

∴∠OAP=180°-30°-30°-30°=90°,

即OA⊥AP,

∵OA为半径,

∴AP是⊙O切线.

(2)连接AD,BD,

∵CD是直径,

∴∠DBC=90°,

∵CD=4,B为弧CD中点,

∴BD=BC=,

∴∠BDC=∠BCD=45°,

∴∠DAB=∠DCB=45°,

即∠BDE=∠DAB,

∵∠DBE=∠DBA,

∴△DBE∽△ABD,

∴,

∴BE•AB=BD•BD=.

考点:1.切线的判定;2.相似三角形的判定与性质.

2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

初三数学圆的综合的专项培优 易错 难题练习题含答案解析

初三数学圆的综合的专项培优 易错 难题练习题含答案解析

初三数学圆的综合的专项培优易错难题练习题含答案解析

一、圆的综合

1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.

(1)求证:∠G=∠CEF;

(2)求证:EG是⊙O的切线;

(3)延长AB交GE的延长线于点M,若tanG =3

4

,AH=33,求EM的值.

【答案】(1)证明见解析;(2)证明见解析;(3)253 8

.

【解析】

试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»

AD AC

=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;

(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;

(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明

△AHC∽△MEO,可得AH HC

EM OE

=,由此即可解决问题;

试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»

AD AC

=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.

(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,

∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.

(3)解:如图3中,连接OC.设⊙O的半径为r.

在Rt△AHC中,tan∠ACH=tan∠G=AH

HC

=

3

4

,∵AH=33,∴HC=43,在Rt△HOC中,

中考数学圆的综合(大题培优 易错 难题)附答案

中考数学圆的综合(大题培优 易错 难题)附答案

中考数学圆的综合(大题培优易错难题)附答案

一、圆的综合

1.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.

(1)求证:DE是⊙O的切线;

(2)若tan A=1

2

,探究线段AB和BE之间的数量关系,并证明;

(3)在(2)的条件下,若OF=1,求圆O的半径.

【答案】(1)答案见解析;(2)AB=3BE;(3)3.

【解析】

试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3

2

x,进而得出OE=1+2x,最后用勾股定理

即可得出结论.

试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,

∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:

∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,

∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD

AE DE AD

==.∵Rt△ABD

中,tan A=BD

AD

=

1

2

,∴

DE BE

AE DE

中考数学圆的综合(大题培优 易错 难题)含详细答案

中考数学圆的综合(大题培优 易错 难题)含详细答案
可求得 BG 的长度.
【详解】 (1)如图 1,连接 AD,OD; ∵ AB 为⊙O 的直径, ∴ ∠ ADB=90°,即 AD⊥BC, ∵ AB=AC, ∴ BD=DC, ∵ OA=OB,
∴ OD∥ AC,
∵ DE⊥AC,
∴ DE⊥OD,
∴ ∠ ODE=∠ DEA=90°,
∴ DE 为⊙O 的切线;
(2)延长 AE 交 BC 于点 G.
∵ ∠ AGC 是△ ABG 的外角,∴ ∠ AGC=∠ B+∠ BAG=60°.
∵ OE∥ BC,∴ ∠ AEO=∠ AGC=60°.
∵ OA=OE,∴ ∠ EAO=∠ AEO=60°.
(3)∵ O 是 AC 中点,∴
S COE S CAE
1. 2
S CDF S COE
(点 P 不与 A、B 重合),连结 OP,CP. (1)∠ C 的最大度数为 ; (2)当⊙O 的半径为 3 时,△ OPC 的面积有没有最大值?若有,说明原因并求出最大值; 若没有,请说明理由; (3)如图 2,延长 PO 交⊙O 于点 D,连结 DB,当 CP=DB 时,求证:CP 是⊙O 的切线.
S (3)易证 S
COE CAE
1
S
,由于
2
S
CDF COE
2
S
,所以
3
S
CDF CAE
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.

【答案】(1)4;(2)3

5

;(3)点E的坐标为(1,2)、(

5

3

10

3

)、(4,2).

【解析】

分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则

MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,

②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.

详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.

∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.

∵∠BHA=90°,∠BAO=45°,

∴tan∠BAH=BH

HA

=1,∴BH=HA=4,∴OC=BH=4.

故答案为4.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).

由(1)得:OH =2,BH =4.

∵OC 与⊙M 相切于N ,∴MN ⊥OC .

设圆的半径为r ,则MN =MB =MD =r .

∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .

∵BM =DM ,∴CN =ON ,∴MN =

12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.

在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.

解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .

∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .

∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12

BD =2,∴OF =4,

∴OG

同理可得:OB AB ,∴BG =

12AB .

设OR =x ,则RG x .

∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,

∴(

2﹣x 2=()2﹣(x )2.

解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5

在Rt △ORB 中,sin ∠BOR =BR OB

35. 故答案为35

. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.

此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.

解得:t =1.则OP =CD =DB =1.

∵DE ∥OC ,∴△BDE ∽△BCO ,∴

DE OC =BD BC =12

,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).

②当∠BED =90°时,如图3.

∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,

∴BE

BC =2DB BE OB ∴,∴BE =5

t . ∵PE ∥OC ,∴∠OEP =∠BOC .

∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,

∴OE

OB =

25

OP

BC

,=

2

t

,∴OE=5t.

∵OE+BE=OB=255

,∴t+5

t=25.

解得:t=5

3

,∴OP=

5

3

,OE=

55

,∴PE=22

OE OP

-=

10

3

∴点E的坐标为(510

33

,).

③当∠DBE=90°时,如图4.

此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.

则有OD=PE,EA=22

PE PA

+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.

∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.

在Rt△DBE中,cos∠BED=BE

DE

=

2

,∴DE=2BE,

∴t=22

(t﹣22)=2t﹣4.

解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).

综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、

(510

33

,)、(4,2).

点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数

相关文档
最新文档