课时跟踪检测(三十七)

合集下载

高中物理教科版选修3-2课时跟踪检测全集(共15份)

高中物理教科版选修3-2课时跟踪检测全集(共15份)

高中物理教科版选修3-2课时跟踪检测全集(共15份)课时跟踪检测(一)电磁感应的发现感应电流产生的条件1.关于感应电流,下列说法中正确的是( )A.只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流 B.只要闭合导线做切割磁感线运动,导线中就一定有感应电流C.若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流D.当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应电流解析:选D 如果线圈不闭合,就不能形成回路,所以不能产生感应电流,A错误;闭合线圈只有一部分导线做切割磁感线运动时,才会产生感应电流,B、C错误;当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应电流,D正确。

2.利用所学物理知识,可以初步了解常用的公交一卡通(IC卡)的工作原理及相关问题。

IC卡内部有一个由电感线圈L和电容C构成的LC振荡电路。

公交车上的读卡机(刷卡时“嘀”的响一声的机器)向外发射某一特定频率的电磁波。

刷卡时,IC卡内的线圈L中产生感应电流,给电容C充电,达到一定的电压后,驱动卡内芯片进行数据处理和传输。

下列说法正确的是( )A.IC卡工作所需要的能量来源于卡内的电池B.仅当读卡机发射该特定频率的电磁波时,IC卡才能有效工作C.若读卡机发射的电磁波偏离该特定频率,则线圈L中不会产生感应电流 D.IC卡只能接收读卡机发射的电磁波,而不能向读卡机传输自身的数据信息解析:选B IC卡工作所需要的能量是线圈L中产生的感应电流,选项A错误;要使电容C达到一定的电压,则读卡机应该发射特定频率的电磁波,IC卡才能有效工作,选项B正确;若读卡机发射的电磁波偏离该特定频率,线圈L中会产生感应电流,但电容C不能达到一定的电压,IC卡不能有效工作,选项C错误;IC卡既能接收读卡机发射的电磁波,也能向读卡机传输自身的数据信息,选项D错误。

3.如图1所示,大圆导线环A中通有电流,方向如图所示,另在导线环A所在的平面内画一个圆B,它的一半面积在A环内,另一半面积在A环外,则穿过B圆内的磁通量( )图1A.为零B.垂直向里 C.垂直向外D.条件不足,无法判断解析:选B 由环形电流的磁感线分布可知,中间密,外部稀疏,所以穿过B圆的总磁通量是垂直纸面向里的,则选项B正确。

2020届高考数学(文)总复习课件:等差数列及其前n项和

2020届高考数学(文)总复习课件:等差数列及其前n项和

以 d=-2,所以 a1=2,故 S20=20×2+20×2 19×(-2)=-340,
选 D.
答案:D
返回
3.在等差数列{an}中,已知 a5+a10=12,则 3a7+a9=( )
A.12
B.18
C.24
D.30
解析:设等差数列{an}的首项为 a1,公差为 d,
因为 a5+a10=12,
所以 2a1+13d=12,
都等于同一个常数,那么这个数列就叫做等差数列.这个常
数叫做等差数列的公差,符号表示为 an+1-an=d(n∈N *,d
为常数). (2)等差中项:数列 a,A,b 成等差数列的充要条件是 A=a+2 b,
其中 A 叫做 a,b 的等差中项. 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的 末项除外)都是它的前一项与后一项的等差中项.
法 都成立⇔{an}是等差数列
空题中的
前 n 项和 验证 Sn=An2+Bn(A,B 是常数)对任意的 判定问题
公式法 正整数 n 都成立⇔{an}是等差数列
返回
[提醒] 用定义证明等差数列时,容易漏掉对起始项的检 验,从而产生错解.比如,对于满足 an-an-1=1(n≥3)的数列 {an}而言并不能判定其为等差数列,因为不能确定起始项 a2- a1 是否等于 1.
的前 n 项和,则 S3=________. 解析:设{an}的公差为 d,由 a2=-6,a6=6,得aa11+ +d5= d=-6,6, 解得ad1==3-. 9, 于是 S3=3×(-9)+3×2 2×3=-18. 答案:-18
返回
5.(2018·北京高考)设{an}是等差数列,且 a1=3,a2+a5=36,则 {an}的通项公式为________.

高一下册语文课时跟踪检测答案

高一下册语文课时跟踪检测答案

高一下册语文课时跟踪检测答案1、下列词语中,加着重号字的注音正确的一项是()[单选题] *A、告辞(cí)菱角(léng)B、柔滑(róu)精致(zhì)(正确答案)D、晌午(shàng)吮吸(yǔn)下列词语中,加着重号字的注音不正确的一项是()[单选题] *2、下列选项中,与加着重号字的注音完全相同的一项是()[单选题] *A、鲜(xiān):鲜红新鲜屡见不鲜鲜为人知B、强(qiǎng):坚强牵强强词夺理博闻强识C、供(gōng):供给供应提供供不应求(正确答案)D、当(dāng):当家当代门当户对安步当车3、括号前的字注音正确的是,潭柘()寺[单选题] *zhêtuózhè(正确答案)zhé4、下列词语中,加着重号字的注音正确的一项是()[单选题] *A、狭隘(ài)言简意赅(hài)B、笑靥(yǎn)心宽体胖(pán)C、脸颊(jiá)诲人不倦(huǐ)D、酝酿(niàng)一蹴而就(cù)(正确答案)5、22. 下列句子中加双引号成语使用错误的一项是()[单选题] *A.让绿色生活成为时代文明的标签,需要激发出每个人的环保热情,建设美丽中国,每一个人都不能“袖手旁观”。

B.为了改变交通拥堵的现象,我校组织部分老师担任交通疏导员,交通拥堵的现象“戛然而止”。

(正确答案)C.峰会期间,青岛市主城区道路两侧“张灯结彩”,五颜六色的花卉和绿植景观营造出浓浓的盛会氛围。

D.精明的行销人员,会尽力让所有的行销元素都环环相扣、“天衣无缝”。

6、1老刘庆祝生日,对好友说:“明天是我的生日,特邀请你来贵府一叙,你不会拒绝吧?”他这样表述是得体的。

[判断题] *对(正确答案)错7、8. 下列句子中加双引号成语使用恰当的一项是()[单选题] *A.为提高全民阅读水平,目前“当务之急”是在社会营造良好的阅读氛围。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

线练学校高三英语一轮复习课时检测 课标_23

线练学校高三英语一轮复习课时检测 课标_23

始驾州参艰市线练学校课时跟踪检测37(虚拟语气)Ⅰ.单项填空1.—Tom, it is high time you ________ preparing for the final exam. There are only two weeks left.—Thank you for reminding me.A. startB. will startC. would startD. started答案与解析:D 考查虚拟语气。

it is high time后面的从句要用虚拟语气,谓语动词用过去式。

句意:——Tom,你该为期末考试做准备了,只剩下两周的时间了。

——谢谢你提醒我。

2.—Did you attend the meeting?—I ________ the news now if I ________ it.A.would have known; had attendedB.would know; attendC.would know; had attendedD.would have known; attended答案与解析:C 句意:——你参加会议了吗?——要是我参加了的话,我现在就会知道那个消息了。

本题是错综虚拟条件句。

第一句的did暗示了下文的时间是过去时,对过去的虚拟用if I had done something;答语中的主句是对现在情况的虚拟,故用would know。

3.Frankly, I'd rather you ________ anything about it for the time being. The boss is very angry.A.hadn't done B.don't doC.didn't do D.won't do答案与解析:C 句意:说实话,我宁愿你现在什么都不做,老板现在很生气。

would rather后的宾语从要用虚拟语气,用一般现在时表示与现在或将来事实相反,用过去完成时表示与过去事实相反。

高中语文必修二课时跟踪检测答案

高中语文必修二课时跟踪检测答案

高中语文必修二课时跟踪检测答案1、1“冠者五六人”一句中的冠者指成年男子。

古代男子20岁举行束发带帽的仪式叫行冠礼,表示已经成年。

[判断题] *对(正确答案)错2、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、爱而不见(xiàn)B、搔首踟蹰(zhī)(正确答案)C、静女其娈(luán)D、彤管有炜(wěi)3、下列有关《红楼梦》的说明,正确的一项是( ) [单选题] *A.《红楼梦》中长着“两弯似蹙非蹙罥烟眉,一双似喜非喜含情目”的是王熙凤,该人最擅弄权术,例如毒设相思局、弄权铁槛寺、逼死尤二姐、破坏宝黛婚姻,最后落了个“机关算尽太聪明,反误了卿卿性命”的悲剧下场。

B.《红楼梦》中贾府的“四春”分别是:孤独的贾元春、精明的贾迎春、懦弱的贾探春、孤僻的贾惜春,取“原应叹息”之意。

C.“花谢花飞飞满天,红消香断有谁怜?……一朝春尽红颜老,花落人亡两不知!”这首诗出自《红楼梦》中人物林黛玉之手。

(正确答案)D.《红楼梦》中表明贾府收入主要书回的情节在第二十五回“乌庄头交租”一事上,表明贾府“排场费用,又不肯讲究省俭”的主要情节是“可卿丧仪”和“元春省亲”两件事。

4、1李白,字太白,号青莲居士,被后人称为“诗圣”。

[判断题] *对(正确答案)错5、1鲁迅,原名周树人,字豫才,浙江绍兴人,我国著名文学家、思想家、民主战士。

[判断题] *对错(正确答案)6、下列说法中正确的一项是( ) [单选题] *A.贾氏宗族的长房是荣国府,次房是宁国府。

《红楼梦》主要写荣国府的事。

太虚幻境中有两句判词说:“漫言不肖皆荣出,造衅开端实在宁”,说明宁府的罪孽超过荣府。

B.《红楼梦》中的“金陵十二钗”指的是林黛玉、薛宝钗、元春、迎春、探春、惜春、史湘云、王熙凤、妙玉、秦可卿、香菱、李纨。

C.宝玉梦游太虚幻境时,警幻仙姑带他游历了太虚幻境,并品了千红一窟茶,饮了万艳同杯酒,看了“薄命司”的册子,听了12 支名叫《红楼梦》的曲子。

人教版高中物理选修3-2课时跟踪检测(全册共84页 附答案)

人教版高中物理选修3-2课时跟踪检测(全册共84页 附答案)

人教版高中物理选修3-2课时跟踪检测(全册共84页附答案)目录课时跟踪检测(一)划时代的发现探究感应电流的产生条件课时跟踪检测(二)楞次定律课时跟踪检测(三)法拉第电磁感应定律课时跟踪检测(四)电磁感应现象的两类情况课时跟踪检测(五)互感和自感课时跟踪检测(六)涡流、电磁阻尼和电磁驱动课时跟踪检测(七)交变电流课时跟踪检测(八)描述交变电流的物理量课时跟踪检测(九)电感和电容对交变电流的影响课时跟踪检测(十)变压器课时跟踪检测(十一)电能的输送课时跟踪检测(十二)传感器及其工作原理课时跟踪检测(十三)传感器的应用阶段验收评估(一)电磁感应阶段验收评估(二)交变电流阶段验收评估(三)传感器课时跟踪检测(一)划时代的发现探究感应电流的产生条件1.关于磁通量的概念,以下说法中正确的是()A.磁感应强度越大,穿过闭合回路的磁通量也越大B.磁感应强度越大,线圈面积越大,则磁通量也越大C.穿过线圈的磁通量为零,但磁感应强度不一定为零D.磁通量发生变化,一定是磁场发生变化引起的解析:选C穿过闭合回路的磁通量大小取决于磁感应强度、回路所围面积以及两者夹角三个因素,所以只知道其中一个或两个因素无法确定磁通量的变化情况,A、B项错误;同样由磁通量的特点,也无法判断其中一个因素的情况,C项正确,D项错误。

2.如图所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r的范围内有匀强磁场,磁场方向垂直线圈平面,若磁感应强度为B,则穿过线圈的磁通量为()A.πBR2B.πBr2C.nπBR2D.nπBr2解析:选B由磁通量的定义式知Φ=BS=πBr2,故B正确。

3.如图所示,AB是水平面上一个圆的直径,在过AB的竖直面内有一根通电直导线CD,已知CD∥AB。

当CD竖直向上平移时,电流的磁场穿过圆面积的磁通量将()A.逐渐增大B.逐渐减小C.始终为零D.不为零,但保持不变解析:选C由于通电直导线CD位于AB的正上方,根据安培定则可知,通电直导线CD产生的磁感线在以AB为直径的圆内穿入和穿出的条数相同,所以不管电流怎么变化,导线下面圆内部的磁通量始终为0。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

波粒二象性

波粒二象性

课时跟踪检测(三十七) 波粒二象性对点训练:对光电效应的理解1.用一束紫外线照射某金属时不能发生光电效应,可能使该金属发生光电效应的措施是( )A .改用红光照射B .改用X 射线照射C .改用强度更大的原紫外线照射D .延长原紫外线的照射时间2.关于光电效应的规律,下列说法中正确的是( )A .发生光电效应时,不改变入射光的频率,增大入射光强度,则单位时间内从金属内逸出的光电子数目增多B .光电子的最大初动能跟入射光强度成正比C .发生光电效应的反应时间一般都大于10-7 sD .只有入射光的波长大于该金属的极限波长,光电效应才能发生 3.用强度相同的红光和蓝光分别照射同一种金属,均能使该金属发生光电效应。

下列判断正确的是( )A .用红光照射时,该金属的逸出功小,用蓝光照射时该金属的逸出功大B .用红光照射时,该金属的截止频率低,用蓝光照射时该金属的截止频率高C .用红光照射时,逸出光电子所需时间长,用蓝光照射时逸出光电子所需时间短D .用红光照射时,逸出的光电子最大初动能小,用蓝光照射时逸出的光电子最大初动能大4.某光源发出的光由不同波长的光组成,不同波长的光的强度如图所示。

表中给出了一些材料的极限波长,用该光源发出的光照射表中材料材料钠 铜 铂 极限波长(nm)541 268 196 A C .仅铜、铂能产生光电子 D .都能产生光电子5.(多选)分别用波长为λ和2λ的光照射同一种金属,产生的速度最快的光电子速度之比为2∶1,普朗克常量和真空中光速分别用h 和c 表示,那么下列说法正确的有( )A .该种金属的逸出功为hc 3λB .该种金属的逸出功为hc λC .波长超过2λ的光都不能使该金属发生光电效应D .波长超过4λ的光都不能使该金属发生光电效应6.如图甲所示,合上开关,用光子能量为2.5 eV 的一束光照射阴极K ,发现电流表读数不为零。

调节滑动变阻器,发现当电压表读数小于0.60 V 时,电流表计数仍不为零,当电压表读数大于或等于0.60 V 时,电流表读数为零。

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学课时跟踪检测(全一册)苏教版必修课时跟踪检测一棱柱棱锥和棱台课时跟踪检测二圆柱圆锥圆台和球课时跟踪检测三直观图画法课时跟踪检测四平面的基本性质课时跟踪检测五空间两条直线的位置关系课时跟踪检测六直线与平面平行课时跟踪检测七直线与平面垂直课时跟踪检测八两平面平行课时跟踪检测九两平面垂直课时跟踪检测十空间几何体的表面积课时跟踪检测十一空间几何体的体积课时跟踪检测十二直线的斜率课时跟踪检测十三直线的点斜式方程课时跟踪检测十四直线的两点式方程课时跟踪检测十五直线的一般式方程课时跟踪检测十六两条直线的平行课时跟踪检测十七两条直线的垂直课时跟踪检测十八两条直线的交点课时跟踪检测十九平面上两点之间的距离课时跟踪检测二十点到直线的距离课时跟踪检测二十一圆的标准方程课时跟踪检测二十二圆的一般方程课时跟踪检测二十三直线与圆的位置关系课时跟踪检测二十四圆与圆的位置关系课时跟踪检测二十五空间直角坐标系课时跟踪检测二十六空间两点间的距离课时跟踪检测(一)棱柱、棱锥和棱台层级一学业水平达标1.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.2.下面结论是棱台具备的性质的是( )①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.A.①③B.①②④C.②④D.②③④解析:选B 用棱台的定义可知选B.3.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:选 C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.4.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.5.一个棱锥的各条棱都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D 若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.6.一个棱柱至少有________个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.答案:5 4 37.两个完全相同的长方体,长、宽、高分别为5 cm,4 cm,3 cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,表面积最大的长方体的表面积为________ cm2.解析:将两个长方体侧面积最小的两个面重合在一起,得到的长方体的表面积最大,此时,所得的新长方体的长、宽、高分别为10 cm,4 cm,3 cm,表面积的最大值为2×(10×4+3×4+3×10)=164.答案:1648.如图,三棱台ABC­A′B′C′,沿A′BC截去三棱锥A′­ABC,则剩余部分是________.解析:在图中截去三棱锥A′­ABC后,剩余的是以BCC′B′为底面,A′为顶点的四棱锥.答案:四棱锥A′­BCC′B′9.如图,观察并分别判断①中的三棱镜,②中的螺杆头部模型有多少对互相平行的平面,其中能作为棱柱底面的分别有几对.解:图①中有1对互相平行的平面,只有这1对可以作为棱柱的底面.图②中有4对互相平行的平面,只有1对可以作为棱柱的底面.10.在一个长方体的容器中,里面装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解:(1)不对;水面的形状是矩形,不可能是其他非矩形的平行四边形.(2)不对;此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.层级二 应试能力达标1.下列命题正确的是( )A .有两个面互相平行,其余各面都是四边形的几何体叫做棱柱B .棱柱中互相平行的两个面叫做棱柱的底面C .棱柱的侧面是平行四边形,底面不是平行四边形D .棱柱的侧棱都相等,侧面都是平行四边形解析:选D 根据棱柱的定义可知D 正确.2.下列说法正确的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C .各侧面都是正方形的四棱柱一定是正方体D .九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A 错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B 错误;选项C 错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.3.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm,则棱台的高是( )A .12 cmB .9 cmC .6 cmD .3 cm解析:选D 设原棱锥的高为h cm,依题意可得⎝ ⎛⎭⎪⎫3h 2=14,解得h =6,所以棱台的高为6-3=3(cm).4.五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A .20条B .15条C .12条D .10条解析:选D 由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.在正方体上任意选择4个顶点,则可以组成的平面图形或几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,另一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:如图,在正方体ABCD­A1B1C1D1上,若取A,B,C,D四个顶点,可得矩形;若取D,A,C,D1四个顶点,可得③中所述几何体;若取A,C,D1,B1四个顶点,可得④中所述几何体;若取D,D1,A,B四个顶点,可得⑤中所述几何体.故填①③④⑤.答案:①③④⑤6.如图,M是棱长为2 cm的正方体ABCD­A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.根据下列关于空间几何体的描述,说出几何体的名称.(1)由6个平行四边形围成的几何体.(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2. 课时跟踪检测(二) 圆柱、圆锥、圆台和球层级一 学业水平达标1.有下列四个说法,其中正确的是( )A .圆柱的母线与轴垂直B .圆锥的母线长等于底面圆直径C .圆台的母线与轴平行D .球的直径必过球心解析:选D A :圆柱的母线与轴平行;B :圆锥的母线长与底面圆的直径不具有任何关系;C :圆台的母线延长线与轴相交.故D 正确.2.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A .0B .1C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的( )解析:选A 由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析:∵截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶3,故小圆锥与大圆锥的母线长之比为1∶3,故小圆锥与所得圆台的母线长比为1∶(3-1).答案:1∶(3-1)8.将边长为4 cm和8 cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4 cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=8π.∴S轴截面=4×8π=32π(cm)2.当以8 cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=4π.∴S轴截面=8×4π=32π(cm)2.综上,圆锥的轴截面面积为32πcm 2. 答案:32π9.将长为4宽为3的矩形ABCD 沿对角线AC 折起,折起后A ,B ,C ,D 在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC 是直角三角形ABC 和直角三角形ADC 的公共斜边,所以AC 的中点O 到四个点的距离相等,即O 为该球的球心.所以AC 为球的一条直径,由勾股定理得AC =42+32=5.10.如图所示,直角梯形ABCD 中,AB ⊥BC ,绕着CD 所在直线l 旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A ,B 分别作AO 1⊥CD ,BO 2⊥CD ,垂足分别为O 1,O 2,则Rt △CBO 2绕l 旋转一周所形成的曲面围成几何体是圆锥,直角梯形O 1ABO 2绕l 旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO 1绕l 旋转一周所形成的曲面围成的几何体是圆锥.① ② 综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是( )A.①②B.②④C.①②③D.②③④解析:选C 当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为( )A.1 B.2C.1或7 D.2或6解析:选C 由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3,故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.5.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r,母线为l,则2πr=πl,∴l=2r.故两条母线的夹角为60°.答案:60°6.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则这个内接正方体的棱长为________ cm.解析:圆锥的轴截面SEF、正方体对角面ACC 1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm,OE =1 cm.∵△EAA 1∽△ESO ,∴AA 1SO =EA 1EO ,即x 2=1-22x1.∴x =22,即该内接正方体的棱长为22 cm. 答案:227.一个圆锥的底面半径为2,高为6,在其中有一个高为x 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?解:(1)如图,设内接圆柱的底面圆半径为r , 由已知得6-x 6=r2,∴r =6-x3,∴S =2×6-x3×x =-23x 2+4x (0<x <6).(2)当x =-42×⎝ ⎛⎭⎪⎫-23=3时,S 最大.8.如图所示,已知圆柱的高为80 cm,底面半径为10 cm,轴截面上有P ,Q 两点,且PA =40 cm,B 1Q =30 cm,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解:将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A1B 1=10π(cm).∴PQ=PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.课时跟踪检测(三)直观图画法层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( ) A.90°,90°B.45°,90°C.135°,90° D.45°或135°,90°解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500 的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( ) A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形. 6.利用斜二测画法得到 ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④矩形的直观图是矩形.以上结论,正确的是________(填序号).解析:斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.答案:①②7.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2.答案:36 28.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:由题意知平面图形为直角梯形ABCD ,其中,AD =AD ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =(1+1+2)2×2=2+ 2.答案:2+ 29.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm,CD =2 cm,∠DAB =30°,AD =3 cm,试画出它的直观图.解:(1)如图(a)所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图(b)所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图(a)中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm,A ′E ′=AE =3×32≈2.598 (cm);过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连结A ′D ′,B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(c)所示,则四边形A ′B ′C ′D ′就是所求作的直观图.10.已知底面是正六边形,侧面都是全等的等腰三角形的六棱锥.请画出它的直观图. 解:作法:(1)画六棱锥P ­ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴交于点O .画相应的x ′轴和y ′轴、z ′轴,三轴交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.②以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以N ′为中点画B ′C ′,使B ′C ′∥O ′x ′,B ′C ′=BC ;再以M ′为中点画E ′F ′,使E ′F ′∥O ′x ′,E ′F ′=EF .③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥的顶点.在O ′z ′上截取点P ,使PO ′=PO .(3)成图,连结PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,并擦去辅助线,改被遮挡部分为虚线,即得六棱锥P ­ABCDEF 的直观图六棱锥P ­A ′B ′C ′D ′E ′F ′.层级二 应试能力达标1.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形解析:选A 根据斜二测画法的原则,得BC =B ′C ′=2,OA =2A ′O ′=2×32=3,AO ⊥BC ,∴AB =AC =BC =2,∴△ABC 是等边三角形. 2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.57.在水平位置的平面M内有一边长为1的正方形A′B′C′D′.如图,其中对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示.∵A′C′为水平位置,∴四边形ABCD中,DA⊥AC.∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.8.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连结O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.课时跟踪检测(四)平面的基本性质层级一学业水平达标1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.2.下列命题中正确命题的个数是( )①三角形是平面图形;②梯形是平面图形;③四边相等的四边形是平面图形;④圆是平面图形.A.1个B.2个C.3个D.4个解析:选C 根据公理1可知①②④正确,③错误.故选C.3.已知直线m⊂平面α,P∉m,Q∈m,则( )A.P∉α,Q∈αB.P∈α,Q∉αC.P∉α,Q∉αD.Q∈α解析:选D 因为Q∈m,m⊂α,所以Q∈α.因为P∉m,所以有可能P∈α,也可能有P∉α.4.如果两个平面有一个公共点,那么这两个平面( )A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D 根据公理2可知,两个平面若有一个公共点,则这两个平面有且只有一个经过该点的公共直线.故选D.5.若直线l上有两个点在平面α外,则( )A.直线l上至少有一个点在平面α内B.直线l上有无穷多个点在平面α内C.直线l上所有点都在平面α外D.直线l上至多有一个点在平面α内解析:选D 由已知得直线l⊄α,故直线l上至多有一个点在平面α内.6.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定平面的个数是________.解析:设四条直线为a,b,c,d,则这四条直线中每两条都确定一个平面,因此,a与b,a 与c,a与d,b与c,b与d,c与d都分别确定一个平面,共6个平面.答案:67.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.解析:用平面四边形和三棱锥的四个顶点判断,经过其中三个点的平面有1或4个.答案:1或49.如图,在正方体ABCD­A1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).证明:∵在梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.层级二应试能力达标1.能确定一个平面的条件是( )A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D 不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:选C 当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.3.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )A.直线MP B.直线NPC.直线PR D.直线MR解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P ∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理2可知点P一定在直线AC上.5.三条直线两两相交,它们可以确定________个平面.解析:若三条直线两两相交,且不共点,则只能确定一个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.答案:1或36.三个平面两两相交,则将空间分成________个部分.解析:三个平面两两相交(1)若交于同一条直线,则将空间分成6个部分;(2)若交于三条交线①三条交线交于一点,则将空间分成8个部分;②若三条交线互相平行,则将空间分成7个部分;所以,三个这样的平面将空间分成6或7或8个部分.答案:6或7或87. 如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解:延长AC,BD交于T, 连结ST,∵T∈AC,AC⊂平面SAC,。

高考物理复习高三一轮复习:课时跟踪检测37交变电流的产生及描述

高考物理复习高三一轮复习:课时跟踪检测37交变电流的产生及描述

高考物理复习课时跟踪检测(三十七) 交变电流的产生及描述高考常考题型:选择题+计算题1.(2012·北京高考)一个小型电热器若接在输出电压为10 V的直流电源上,消耗电功率为P;若把它接在某个正弦交流电源上,其消耗的电功率为P2。

如果电热器电阻不变,则此交流电源输出电压的最大值为( )A.5 V B.5 2 VC.10 V D.10 2 V2.(2012·广东高考)某小型发电机产生的交变电动势为e=50 sin 100πt(V)。

对此电动势,下列表述正确的有( )A.最大值是50 2 VB.频率是100 HzC.有效值是25 2 VD.周期是0.02 s3.(2012·宁波联考)如图1所示电路,电阻R1与电阻R2阻值相同,都为R,和R1并联的D为理想二极管(正向电阻可看作零,反向电阻可看作无穷大),在A、B间加一正弦交流电u=202sin(100πt) V,则加在R2上的电压有效值为( )A.10 V B.20 V 图1C.15 V D.510 V4.(2012·全国高考)一台电风扇的额定电压为交流220 V。

在其正常工作过程中,用交流电流表测得某一段时间内的工作电流I随时间t的变化如图2所示。

这段时间内电风扇的用电量为( )图2A.3.9×10-2度B.5.5×10-2度C.7.8×10-2度D.11.0×10-2度5.(2012·福州质检)有一不动的矩形线圈abcd,处于范围足够大的可转动的匀强磁场中,如图3所示。

该匀强磁场是由一对磁极N、S产生,磁极以OO′为轴匀速转动。

在t=0时刻,磁场的方向与线圈平行,磁极N开始离开纸面向外转动,规定由a→b→c→d→a方向的感应电流为正,则能反映线圈中感应电流I 随时间t变化的图线是( )图3图46.(2012·合肥模拟)一台发电机的结构示意图如图5所示,其中N 、S 是永久磁铁的两个磁极,它们的表面呈半圆柱面形状。

2019届高考数学一轮复习 第七章 不等式 推理与证明 37 基本不等式及其应用 文

2019届高考数学一轮复习 第七章 不等式 推理与证明 37 基本不等式及其应用 文

课时跟踪训练(三十七) 基本不等式及其应用[基础巩固]一、选择题1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +ab≥2[解析] ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +a b ≥2b a ·ab=2. [答案] D2.(2017·福建福州外国语学校期中)在下列各函数中,最小值为2的函数是( ) A .y =x +1x(x ≠0)B .y =cos x +1cos x ⎝ ⎛⎭⎪⎫0<x <π2 C .y =x 2+3x 2+2(x ∈R )D .y =e x+4ex -2(x ∈R )[解析] 对于A 项,当x <0时,y =x +1x ≤-2,故A 错;对于B 项,因为0<x <π2,所以0<cos x <1,所以y =cos x +1cos x≥2中等号不成立,故B 错;对于C 项,因为x 2+2≥2,所以y =x 2++1x 2+2=x 2+2+1x 2+2≥2中等号也不能取到,故C 错;对于D 项,因为e x >0,所以y =e x+4e x -2≥2e x ·4ex -2=2,当且仅当e x=2,即x =ln2时等号成立.故选D.[答案] D3.(2017·陕西咸阳质检)已知x +y =3,则2x+2y的最小值是( ) A .8 B .6 C .3 2 D .4 2[解析] 因为2x>0,2y>0,x +y =3,所以由基本不等式得2x+2y≥22x·2y=22x +y=42,当且仅当2x =2y,即x =y =32时等号成立,故选D.[答案] D4.(2017·湖南衡阳四校联考)设x ,y 为正实数,且x +2y =1,则1x +1y的最小值为( )A .2+2 2B .3+2 2C .2D .3[解析] 因为x ,y 为正实数,且x +2y =1,所以1x +1y=(x +2y )·⎝ ⎛⎭⎪⎫1x +1y =3+2y x +x y≥3+22y x ·x y =3+22,当且仅当x =2y =2-1时取等号.所以1x +1y的最小值为3+2 2.故选B.[答案] B5.(2017·江西九江一中期中)已知a >0,b >0,如果不等式2a +1b ≥m 2a +b 恒成立,那么m的最大值等于( )A .10B .7C .8D .9[解析] 不等式2a +1b ≥m 2a +b 恒成立,即不等式m ≤(2a +b )·⎝ ⎛⎭⎪⎫2a +1b 恒成立,而(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+2 2a b ·2ba=9,当且仅当a =b 时“=”成立,所以m ≤9,m的最大值等于9,故选D.[答案] D6.(2015·陕西卷)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q[解析] ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f (ab )=p ,∴p=r <q .故选B.[答案] B 二、填空题7.(2017·山东卷)若直线x a +yb=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. [解析] ∵直线x a +y b=1(a >0,b >0)过点(1,2),∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =2+b a +2+4a b≥4+2b a ·4ab=8(当且仅当b =2a ,即a =2,b =4时取等号).[答案] 88.设b >a >0,且a +b =1,则12,2ab ,a 2+b 2,b 四个数中最大的是________.[解析] 根据基本不等式知a 2+b 2>2ab (b >a >0),因为b >a >0,且a +b =1,所以b >12>a .因为b -a 2-b 2=b (a +b )-a 2-b 2=a (b -a )>0,所以12,2ab ,a 2+b 2,b 四个数中最大的是b .[答案] b9.(2017·江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.[解析] 本题考查基本不等式及其应用. 设总费用为y 万元,则y =600x×6+4x =4⎝ ⎛⎭⎪⎫x +900x ≥240.当且仅当x =900x,即x =30时,等号成立.[答案] 30 三、解答题10.(1)已知a >0,b >0,c >0,且a +b +c =1, 求证:1a +1b +1c≥9.(2)设a 、b 均为正实数,求证:1a 2+1b2+ab ≥2 2.[证明] (1)∵a >0,b >0,c >0,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +bc=3+⎝⎛⎭⎪⎫b a +ab +⎝⎛⎭⎪⎫c a +ac +⎝⎛⎭⎪⎫c b +bc≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.(2)∵1a 2+1b 2≥21a2·1b 2=2ab,当且仅当a =b 时取等号.又2ab+ab ≥22,当且仅当ab =2时取等号,∴1a 2+1b 2+ab ≥22,当且仅当⎩⎨⎧a =b ,ab =2,即a =b =42时取等号.[能力提升]11.(2017·河北保定一模)司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析( )A .甲合适B .乙合适C .油价先高后低甲合适D .油价先低后高甲合适[解析] 设甲每次加m 升油,乙每次加n 元钱的油,第一次加油x 元/升,第二次加油y 元/升.甲的平均单价为mx +my 2m =x +y 2,乙的平均单价为2n n x +n y =2xyx +y ,因为x ≠y ,所以x +y22xyx +y=x 2+y 2+2xy 4xy >4xy4xy=1,即乙的两次平均单价低,乙的方式更合适,故选B.[答案] B12.(2018·贵州铜仁一中月考)若两个正实数x ,y 满足1x +2y =1,且不等式x +y 2<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-4,1)C .(-∞,-1)∪(4,+∞)D .(-∞,-4)∪(1,+∞)[解析] x +y 2=⎝ ⎛⎭⎪⎫x +y 2⎝ ⎛⎭⎪⎫1x +2y =2+y 2x +2xy≥2+2y 2x ·2x y =4.当且仅当y 2x =2xy,即y =2x 时等号成立,所以x +y2最小值为4.因为x +y2<m 2-3m 有解,所以m 2-3m >4.解得m <-1或m >4.故选C.[答案] C13.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.[解析] 因为xy +2x +y =4,所以x =4-y y +2.由x =4-yy +2>0,得-2<y <4,又y >0, 则0<y <4,所以x +y =4-y y +2+y =6y +2+(y +2)-3≥26-3,当且仅当6y +2=y +2(0<y <4),即y =6-2时取等号.[答案] 26-314.(2017·四川资阳期末)已知函数f (x )=x 3+3x (x ∈R ),若不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则实数m 的取值范围是________.[解析] 因为f (x )=x 3+3x (x ∈R ),满足f (-x )=-f (x ),所以f (x )为奇函数且f (x )在R 上单调递增.因为不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则2m +mt 2<-4t 在t ≥1时恒成立,分离参数得m <-4t t 2+2=-4t +2t.因为t +2t≥2t ·2t=22(当且仅当t =2时取等号),所以m <- 2.[答案] (-∞,-2)15.(2017·河北唐山一模)已知x ,y ∈(0,+∞),x 2+y 2=x +y . (1)求1x +1y的最小值.(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.[解] (1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x+1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ). 又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤x ++y +22≤4,因此不存在x ,y 满足(x +1)(y +1)=5.16.某品牌电脑体验店预计全年可以销售360台电脑,已知该品牌电脑的进价为3000元/台,为节约资金,经理决定分批购入,若每批都购入x 台(x 为正整数),则每批需付运费300元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,且每批购入20台时,全年需用去运费和保管费7800元.(1)求全年所付运费和保管费之和y 关于x 的函数关系式;(2)若全年只有8000元资金可用于支付运费和保管费,则能否恰当地安排每批进货的数量,使资金够用?如果够用,求出每批进货的数量;如果不够用,最少还需多少?[解] (1)设储存购入的电脑全年所付保管费与每批购入电脑总价值的比例系数为k ,则y =360x ×300+k (3000×x )=108000x+3000kx .又当x =20时,y =7800,代入可得k =0.04.故所求y 关于x 的函数关系式为y =108000x+120x (x ∈N *).(2)由(1)知,y =108000x+120x (x ∈N *).根据基本不等式可得,y =108000x+120x ≥2108000x ×120x =2×3600=7200,当且仅当108000x=120x ,即x =30时,等号成立.故当每批购入30台时,支付的运费和保管费最低,为7200元,此时资金够用.[延伸拓展](2017·内蒙古包头二模)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得 a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.94D.256[解析] 解法一(常数代换法):设数列{a n }的公比为q (q >0),由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4,所以q 2-q -2=0,所以q =2.因为a m a n =4a 1,所以qm +n -2=16,所以2m +n -2=24,所以m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当n m =4m n 时,等号成立.所以1m +4n 的最小值为32,故选A.解法二(拼凑法):由解法一可得m +n =6,所以n =6-m , 又m ,n ≥1,所以1≤m ≤5. 故1m +4n =1m +46-m =6-m +4m m -m =3m +m-m =3m-m m +2=-3m +-m +-8]m +2=-3m ++16m +2-10.由基本不等式可得(m +2)+16m +2-10≥2m +16m +2-10=-2(当且仅当m +2=16m +2,即m =2时等号成立),易知(m +2)+16m +2-10<0,所以1m +4n ≥-3-2=32.故选A.[答案] A。

外研社必修七课时跟踪检测(三十七)

外研社必修七课时跟踪检测(三十七)
英语
首页
上一页
下一页
末页
课时跟踪检测(三十七)
结束
13.解析:根据固定搭配take a course“学习课程”可知,应选D项。
答案:D
14.解析:虽然戴安娜遇到了语言障碍,但她„„though意为“尽 管,虽然”,符合语境。
答案:A
15.解析:go ahead意为“向前冲”,充分表现了戴安娜全力以赴的 性格,与文章第一段的开头相呼应,故答案为C。
答案:B
英语
首页
上一页
下一页
末页
课时跟踪检测(三十七)
结束
7.解析:句意:出国旅行后回到公司时,我总有很多事要处理。attend to 此处意为“处理”,符合句意。add to“增加”;contribute to“促成, 是„„的成因之一”;appeal to“吸引”。
答案:C
8. 解析: 句意: 我的电脑坏了。 你能告诉我一些关于钓鱼岛的最新消息吗? latest 为形容词,意为“最新的”,符合句意。lately 为副词,意为“近 来,最近”;later 为副词,意为“后来”;latter 为形容词,意为“后 者的,后面的”。
首页
课时跟踪检测(三十七)
结束
6.解析:根据固定搭配 make one’s dream a reality“梦想成真”可知, 答案应为 A。
答案:A
7.解析:要想梦想成真就意味着要上学接受一些必要的教育和得到相 应的证书。necessary 意为“必要的”,符合语境,故选 D。
答案:D
8.解析:在哥伦比亚开过店和做过设计师的经历让她对自己的能力充 满信心。confidence in sth.意为“在某方面有自信”,符合语境,故 选 D。

课时跟踪检测(三十七)

课时跟踪检测(三十七)
数学
首页
上一页
下一页
末页
课时跟踪检测(三十七)
结束
(2) 设 该 楼 房 每 平 方 米 的 平 均 综 合 费 用 为 g(x) , 则 g(x) = fx×10 000 10fx 10x2+71x+100 1 000 = x = = 10x+ x + 710≥2 x 1 000x 1 000 10x· x +710=910. 1 000 当且仅当 10x= x ,即 x=10 时等号成立.综上可知应把楼 层建成 10 层,此时平均综合费用最低,为每平方米 910 元.
首页 上一页 下一页 末页
数学
课时跟踪检测(三十七)
结束
第Ⅱ组:重点选做题 3 3 1.解析:由 + =1 可化为 xy=8+x+y,∵x,y 均为正 2+x 2+y 实数, ∴xy=8+x+y≥8+2 xy(当且仅当 x=y 时等号成立), 即 xy-2 xy-8≥0,解得 xy≥4,即 xy≥16,故 xy 的最小 值为 16. 答案:D 2 2.解析:由 f(x)>0 得 3 -(k+1)3 +2>0,则 k+1<3 + x,而 3 2 2 x x 3 + x≥2 2.当且仅当3 =3x,即x=log3 2时,等号成立, 3 ∴k+1<2 2,k<2 2-1.
2x x x
答案:B
数学
首页
上一页
下一页
末页
结束
谢谢观看
数学
首页
上一页
下一页
末页
2
2y 9x 2 y 9x 2 2 · = 19 + 6 2 ,当且仅当 = ,即 9 x = 2 y 时取 x y x y
等号,故 x+2y 的最小值为 19+6 2.

基本不等式

基本不等式

(
答案:
C
教师备选题(给有能力的学生加餐)
1.函数 y=a1 x(a>0,且 a≠1)的图象恒过定点 A,

1 若点 A 在直线 mx+ny-1=0(mn>0)上,则m 1 +n的最小值为________.
解题训练要高效 见“课时跟踪检 测(三十七)”
解析:因 y=ax 恒过点(0,1), 则 A(1,1), 又 A 在直线上, 所以 m+n=1(mn>0). 1 1 m+ n 1 1 故m+n= mn =mn≥ =4, m + n 2 2 1 当且仅当 m=n= 时取等号. 2
求最值,这三个条件缺一不可.
3.在运用基本不等式时,还要特别注意“拆”“拼”“凑 ”等技巧,使其满足基本不等式中“正”“定”“等”的条件.
针对训练
1.(2012· 福建高考)下列不等式一定成立的是 ) 1 2 A. lgx + > lg x(x> 0) 4
1 B. sin x+ ≥ 2(x≠ kπ, k∈ Z) sin x C. x2+ 1≥ 2|x|(x∈ R) 1 D. 2 > 1(x∈ R) x +1
答案:4
1 2.(2012· 郑州质检)若 a>b>0,则代数式 a + 的 ba-b
2
最小值为
(
)
A.2 C.4
B.3 D.5
1 解析:依题意得 a-b>0,所以代数式 a + ≥a2+ ba-b
2
1 4 2 b+a-b = a + a2 ≥2 2 2 b=a-b>0, 2 4 a= 2 a,
所以当a不超过6千米时,可击中目标.
利用基本不等式求解实际应用题的方法
(1)问题的背景是人们关心的社会热点问题,如“物

高考人教版数学(理)一轮复习跟踪检测37 绝对值不等式(选修4-5) Word版含解析[ 高考]

高考人教版数学(理)一轮复习跟踪检测37 绝对值不等式(选修4-5) Word版含解析[ 高考]

课时跟踪检测(三十七)绝对值不等式(选修4-5) 第Ⅰ组:全员必做题1.如果|x-a|<ε2,|y-a|<ε2,则一定有()A.|x-y|<εB.|x-y|>εC.|x-y|<ε2D.|x-y|>ε22.不等式2<|x+1|<4的解集为()A.(1,3) B.(-5,-3)∪(0,3)C.(-5,0) D.(-5,-3)∪(1,3)3.(2012·哈尔滨模拟)不等式|x+1|>|2x-3|-2的解集为()A.(-∞,-6) B.(-6,0)C.(0,6) D.(6,+∞)4.不等式|x+3|+|x-1|≥a2-3a对任意实数x恒成立,则实数a的取值范围为()A.[-1,4] B.(-∞,-2]∪[5,+∞)C.(-∞,-1]∪[4,+∞) D.[-2,5]5.已知不等式|a-2x|>x-1,对任意x∈[0,2]恒成立,则a的取值范围为() A.(-∞,1)∪(5,+∞) B.(-∞,2)∪(5,+∞)C.(1,5) D.(2,5)6.若关于x的不等式|ax+2|<6的解集为(-1,2),则实数a的值为________.7.(2014·青岛一模)不等式|2x+1|-|x-4|>2的解集是________.8.(2014·西安检测)已知函数f(x)=|x-2|,g(x)=-|x+3|+m.若函数f(x)的图象恒在函数g(x)图象的上方,则m的取值范围为________.9.(2013·福建高考)设不等式|x-2|<a(a∈N*)的解集为A,且32∈A,12∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.10.(2013·郑州模拟)已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.第Ⅱ组:重点选做题1.(2013·广州一模)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是________.2.(2013·湖北八校联考)若不等式|x +1|-|x -4|≥a +4a ,对任意的x ∈R 恒成立,则实数a 的取值范围是________.答 案第Ⅰ组:全员必做题1.选A |x -y |=|(x -a )+(a -y )|≤|x -a |+|y -a |<ε,即|x -y |<ε.2.选D ∵2<|x +1|<4,∴2<x +1<4或-4<x +1<-2,∴1<x <3或-5<x <-3.3.选C 原不等式等价于①⎩⎪⎨⎪⎧x ≤-1,-(x +1)>-(2x -3)-2 或②⎩⎨⎧ -1<x <32,x +1>-(2x -3)-2或③⎩⎨⎧ x ≥32,x +1>2x -3-2.不等式组①的解集为∅,不等式组②的解集为⎝ ⎛⎭⎪⎫0,32,不等式组③的解集为⎣⎢⎡⎭⎪⎫32,6,因此原不等式的解集为(0,6). 4.选A 由绝对值的几何意义易知:|x +3|+|x -1|的最小值为4,所以不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.5.选B 当0≤x <1时,不等式|a -2x |>x -1对a ∈R 恒成立;当1≤x ≤2时,不等式|a -2x |>x -1,即a -2x <1-x 或a -2x >x -1,x >a -1或3x <1+a ,由题意得1>a -1或6<1+a ,a <2或a >5;综上所述,则a 的取值范围为(-∞,2)∪(5,+∞).6.解析:由题意可知,-1和2都是|ax +2|=6的根,所以|-a +2|=6且|2a +2|=6,解得a =-4.答案:-47.解析:原不等式等价于⎩⎨⎧ x ≤-12,-(2x +1)+(x -4)>2,或⎩⎨⎧ -12<x ≤4,(2x +1)+(x -4)>2,或⎩⎪⎨⎪⎧x >4,(2x +1)-(x -4)>2,解得x ∈(-∞,-7)∪⎝ ⎛⎭⎪⎫53,+∞. 答案:(-∞,-7)∪⎝ ⎛⎭⎪⎫53,+∞ 8.解析:函数f (x )的图象恒在函数g (x )图象的上方,即为|x -2|>-|x +3|+m 对任意实数x 恒成立,即|x -2|+|x +3|>m 恒成立.因为对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5,所以m <5,即m 的取值范围是(-∞,5).答案:(-∞,5)9.解:(1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a , 且⎪⎪⎪⎪⎪⎪12-2≥a , 解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号.所以f (x )的最小值为3.10.解:(1)由f (x )≤3得,|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧ a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧ -2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2,所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].第Ⅱ组:重点选做题1.解析:由题意知,不等式|x -1|+|x +m |>3恒成立,即函数f (x )=|x -1|+|x +m |的最小值大于3,根据不等式的性质可得|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,故只要满足|m +1|>3即可,所以m +1>3或m +1<-3,解得m 的取值范围是(-∞,-4)∪(2,+∞).答案:(-∞,-4)∪(2,+∞)2.解析:只要函数f (x )=|x +1|-|x -4|的最小值不小于a +4a 即可.由于||x+1|-|x -4||≤|(x +1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +4a 即可.当a >0时,将不等式-5≥a +4a 整理,得a 2+5a +4≤0,无解;当a <0时,将不等式-5≥a+4a整理,得a2+5a+4≥0,则有a≤-4或-1≤a<0.综上可知,实数a的取值范围是(-∞,-4]∪[-1,0).答案:(-∞,-4]∪[-1,0)。

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)




x+1≤y, y≤2x,

x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题

高中物理课时跟踪检测三速度和加速度鲁科版必修371

高中物理课时跟踪检测三速度和加速度鲁科版必修371

平均速度为零,选项 A 正确;某段时间内平均速度为零,只能说明该段时间内位移为零,
但并不一定每时刻的瞬时速度都为零,选项
B 错误;做匀速直线运动的物体,速度保持不
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
变,故瞬时速度等于平均速度,选项 C 正确;做变速直线运动的物体,速度随时间变化,
D .位移的大小可能等于路程
解析:选 D 平均速度的方向一定与位移方向相同,选项
C 错误;如果是曲线运动,
物体运动方向不断变化,所以瞬时速度的方向不断变化,选项
A 、B 错误;如果物体做单向
直线运动,则位移的大小等于路程,选项 D 正确。
7.一辆汽车沿直线运动,以速度
2 v 行驶了 3的路程,接着以 20 km/h 的速度行驶完剩余
2 m/s
解析: 选 B 物体做加速度为 2 m/s 2 的直线运动时, 每经过一秒, 速度都要比前一秒增
加 2 m/s , A 错误, B 正确;物体在某秒初的速度即为前秒末的速度,
C 错误;从前秒初到
下秒末经历了 2 s,所以速度应增加 4 m/s , D 错误。
5.关于速度、速度改变量、加速度,正确的说法是
度方向相反,由于取初速度方向为正方向,故甲做匀加速直线运动,乙做匀减速直线运动。 比较加速度的大小时, 应比较加速度的绝对值, 乙的加速度的绝对值大, 故乙的速度变化率 大,速度变化得快。分析可知,选项 A、 C 正确, B、 D 错误。
11.一辆汽车从原点 O 由静止出发沿 x 轴做直线运动,为研究汽车的运动而记下它在
最小加速度
vt-v0 50- 0 a= t = 8
m/s 2= 6.25 m/s 2。

第五节 “数列”大题增分策略

第五节  “数列”大题增分策略

(2)由(1)可得 bn=5×n2n-1,
∴Sn=151+22+232+…+2nn-1,

12Sn=1512+222+233+…+2nn,

(①-②)×2 可得 Sn=251+12+212+…+2n1-1-2nn
=2511--2112n-2nn=252-2+2nn<45.
∴Sn<45,
又∵Sn+1-Sn=bn+1=5n×+21n>0, ∴数列{Sn}单调递增,Sn≥S1=15. 综上,对任意 n∈N *,都有15≤Sn<45.
[针对训练] 给定一个数列{an},在这个数列中,任取 m(m≥3,m∈N *)项,并且不改变它 们在数列{an}中的先后次序,得到的数列称为数列{an}的一个 m 阶子数列.已 知数列{an}的通项公式为 an=n+1 a(n∈N *,a 为常数),等差数列 a2,a3,a6 是 数列{an}的一个 3 阶子数列. (1)求 a 的值; (2)设等差数列 b1,b2,…,bm 是{an}的一个 m(m≥3,m∈N *)阶子数列,且 b1 =1k(k 为常数,k∈N *,k≥2),求证:m≤k+1.
[思路点拨] 关键信息
信息转化
Sn 为等差数列{an}的前 n 项和, 且 a1=1,S7=28
可以求得数列{an}的通项公式
bn=[lg an],[x]的定义
可以分别求出 b1,b2,…,b1 000
数列{bn}的前 1 000 项和
分组求和
[解] (1)设数列{an}的公差为 d, 由已知得 7+21d=28,解得 d=1. 所以数列{an}的通项公式为 an=n. b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2. (2)记{bn}的前 n 项和为 Tn, 则 T1 000=b1+b2+…+b1 000=[lg a1]+[lg a2]+…+[lg a1 000],
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
获得脂肪酶活性更高的菌株。
答案:A
8.解析:牛肉膏为微生物提供碳源、氮源、维生素以及磷酸盐等, 其中磷酸盐属于无机盐。
答案:D
生物
首页
上一页
下一页
末页
课时跟踪检测(三十七)
结束
9.(1)4
葡萄糖
尿素
(2)固体
选择
(3)该培养基中唯一的氮
源是尿素,只有能分解尿素的微生物才能在该培养基上生长和 繁殖 (4)在细菌分解尿素的化学反应中,细菌合成的脲酶将尿 酚红 酵母菌 红 (3)
课时跟踪检测(三十七)
结束
课时跟踪检测(三十七) 1.解析:灭菌是指杀灭物体内外所有的微生物,包括芽孢和孢子, 消毒只能杀死部分微生物,不能杀死芽孢和孢子。 答案:B 2.解析:直接计数法是利用特定的计数板,在显微镜下计算一定容积
量样品中微生物的数量,不能区分死菌与活菌;质量法是用于微生 物生长测定的一种方法,有湿重法和干重法,也可以通过测蛋白质 和 DNA 含量反映细胞的物质质量; 比浊法是在一定范围内, 悬液中 细胞浓度与浑浊度成正比,即与光密度成正比,菌越多,光密度越 大;活菌在适宜培养基和良好生长条件下通过生长形成菌落,此法 又称活菌计数法,可采用稀释涂布平板法接种。 答案:A
素分解成氨,氨会使培养基的碱性增强,pH 升高 10. (1)3、 2、 1 (2)①有机碳源 青霉素 ②硝化细菌
防止杂菌污染(无菌技术)
(4)稀释涂布平板法
生物
首页
上一页
下一页
末页
课时跟踪检测(三十七)
结束
11.(1)芽孢
(2)(NH4)2SO4、无机盐、琼脂、H2O 呈现黑色
先调 pH 再灭菌 800
培养不同的微生物,所需配方存在差异;培养乳酸杆菌时需要 在培养基中添加维生素。 答案:C
首页 上一页 下一页 末页
生物
课时跟踪检测(三十七)
结束
6.解析:使用液体选择培养基培养纤维素分解菌,一方面可以获 得大量纤维素分解菌,另一方面便于稀释涂布平板。纤维素分 解菌也可以在固体培养基上生长;鉴别纤维素分解菌使用的是 固体培养基。 答案:A 7.解析:基因突变是不定向的,紫外线处理后再进行筛选有可能
生物
首页
上一页

下一页
末页
课时跟踪检测(三十七)
结束
3.解析:经选择培养后,需经稀释后才能将样品涂布到鉴别纤维 素分解菌的培养基上。
答案:A
4.解析:分离土壤中分解尿素的细菌,培养基中要有碳源,且尿 素作为唯一的氮源,不能添加硝酸盐。
答案:C 5.解析:微生物在固体培养基上生长,可以形成肉眼可见的菌落;
生物
首页
上一页
下一页
末页
(3)葡萄糖、伊红美蓝染料
(4)涂布器 淀粉
12. (1)限制性核酸内切酶、 DNA 连接酶 得分解淀粉能力强的酵母菌 (2)稀释涂布平板法 (3)工程酵母 涂布不均匀
进一步筛选纯化获
工程酵母菌分解淀粉产生葡萄糖的能力强,导致 (4)小
酒精发酵产生 CO2 的速率更快
生物
首页
上一页
下一页
末页
结束
谢谢观看
相关文档
最新文档