立体图形的表面积和体积复习课件

合集下载

北师大版数学六年级下册《立体图形表面积总复习》课件

北师大版数学六年级下册《立体图形表面积总复习》课件

正方体
圆柱
圆锥
只列式、不计算
(1)我们学校的一间教室长9米,宽6米, 高3米。在四周墙壁和顶部抹石灰,扣除门窗 以及黑板面积共20平方米后,需抹石灰的面 积是多少平方米?
(2)李师傅要做一个无盖的圆柱形铁皮水桶, 高6分米,底面半径4分米,做这个水桶至少 要用铁皮多少平方分米?
只列式、不计算
北师大版六年级数学下册
立体图形表面积总复习
名称
图形特征Fra bibliotek长方体
有6个面,每个面一般是长方形,特殊两个面是 正方形,相对的两个面面积相等。 有12条棱,相对的四条棱互相平行且相等。 有8个顶点。 有6个面,每个面都是正方形,每个面面积都相 等。 有12条棱,每条棱长度都相等。 有8 个顶点。 有两个底面,是相等的两个圆。 有一个侧面,是个曲面,沿高展开一般是个长 方形。(当底面周长和高相等时是正方形。) 有无数条高,每条高长度都相等。 有一个底面,是个圆形。 有一个侧面,是个曲面,展开是个扇形。 有一个顶点。 有一条高。
(3)大厅里有十根圆柱形柱子,它的底 面直径是10分米,高是6米,在这些柱 子的表面涂漆,1千克能涂2平方米,共 需油漆多少千克?
拓展练习: (1)一个圆柱体,底面半径3分米,切拼 成一个近似的长方体后,表面积增加了60 平方分米,这个圆柱体的高是多少分米?
(2)一个长方体,底面是个正方形,高每 减少2厘米,长方体的表面积就减少32平方 厘米,这个长方体的的底面边长是多少?

六年级数学下册回顾整理图形与几何立体图形体积和表面积省公开课一等奖新优质课获奖课件

六年级数学下册回顾整理图形与几何立体图形体积和表面积省公开课一等奖新优质课获奖课件

选择
水桶侧面展开图是长方形
水桶底面是圆形(或正方形)
选择长方形和圆形(或正方形)材料
平面
计算 答案
长方形长或宽等于底面周长 形成制作水桶方案
立体
17/37
● 我们是怎样用转化方法推导出立体图形体积计算公式?
转化图形
长方体体积 = 底面积 × 高
圆柱体积 = 底面积 × 高
V=Sh
找出关系 推导公式
6.底面半径为2厘米圆柱,侧面积和体积相等。( ×) 辨析:因为圆柱侧面积和体积是两个不一样量,无 法比较大小。
34/37
这节课你有哪 些收获?
35/37
作业
请完成教材第105页应用与 反思,第18、20、21、22、26、 28题。
36/37
37/37

62.8cm

15.7cm
返回
水桶侧面展开图是长方形,水桶底面 31.4cm 是正方形。
以62.8cm边作为底面周长。 正方形边长:62.8÷4=15.7(cm) 能够选择长62.8cm、宽31.4cm长方形 做水桶侧面,边长为15.7cm正方形做 水桶底。
15/37

62.8cm
31.4cm
回顾整理 ——总复习
图形与几何——立体图形体 积和表面积
1/37
我们学过立体图形体积计算公式是怎样推导出来?它 们之间有怎样联络?
回顾整理要求: 1.小组合作,回想立体图形和立体图形知识; 2.依据知识间关系合理地整理; 3.把整理结果用表格、流程图、树状图等自己喜欢
方式表示出来。
2/37
我们学过哪些立体图形?
4.5×2 = 9(平方分米) 4.5×2×1.5 = 9×1.5 = 13.5(立方分米) 13.5立方分米 = 13.5升 答:鱼缸底面积是9平方分米,它能装13.5升水。

小学数学苏教版六年级上册《立体图形表面积和体积总复习》课件(公开课)

小学数学苏教版六年级上册《立体图形表面积和体积总复习》课件(公开课)
1)一个正方体,底面周长是8dm。 2)一个长方体,底面是边长12cm的正方形,
高是50cm。 3)一个圆柱,底面周长是12.56cm,高是5cm。 4)一个圆锥,底面半径是3cm,高是4.5cm。
练习与实践
变式应用
已知长方体的底面积是3.14cm²,体积是9.42cm³,高是( )cm。
V=S h
已知圆锥的底面直径是 2dm,体积是12.56dm³,高是( )dm。
r=d÷2
S=πr²
h= V÷ ÷S V= S h
2÷2=1(dm)
12.56÷ ÷3.14=12(dm)
3.14×1²=3.14(dm²)
把一个圆柱切成若干等分,拼成一个近似的 长方体。圆柱的侧面积是72平方米,底面半 径是3米。求圆柱的体积是多少?
立体图形的表面积: 是指立体图形表面所有面的面积总和。
长方体表面积=(长×宽+长×高+宽×高)×2
正方体表面积= 棱长×棱长×6
圆柱表面积= 侧面积+底面积×2 圆柱侧面积= 底面周长×高
体积:物体所占空间的大小。 容积:容器所能容纳的物体的体积。
体积单位: 立方厘米 1000 立方分米 1000 立方米
= =
容积单位: 毫升
1000

体积和容积有什么联系和区别?
联系:都是指所占空间的大小,计算方法是相同的,计量单位是有联系的。 区别:计算体积在物体的外面测量数据,计算容积要在容器的里面测量数据。
这几个立体图形的体积公式的推导过程是 怎样的?
知识回顾
h
a
b
长方体的体积 =长x宽 x高=底面积x高
h=V÷S 9.42÷3.14=3(cm)
已知圆柱的高是 2m,体积是10m³ቤተ መጻሕፍቲ ባይዱ底面积是( )m²。

六年级数学下册课件立体图形的表面积和体积苏教版81

六年级数学下册课件立体图形的表面积和体积苏教版81

底面周长
底面
S侧=ch=πdh=2πrh
圆柱体积的大小与哪些条件有关? 怎样求圆柱的体积呢?
底面积

底面r
r
h h
因为长方体的体πr积=底面积 ×高
所以圆柱的体积= 底面积×高
V长方体 =
V圆柱
V=abh
V= = πr ×r × h
= πr ×2 h
πr 2 × h
V=Sh
等底等高的:
1 10 ÷( 1 - 1 )=60(L)
23
答:圆柱的容积是60L。
11.把一个圆柱切成若干等分,拼成一个近似 的长方体。圆柱的侧面积是72平方米,底面 半径是3米。求圆柱的体积是多少?
72÷2×3
圆柱的体积=侧面积÷2×半径 底面积 × 高
12.一个用塑料薄膜覆盖的草莓大棚,长15米, 横截面是一个半径2米的半圆。
这是我们学过的立体图形, 如果把它们分为两类,可以怎么样分呢?
名称 长方体 (a,b,h) (a,a,h)
(a,a,a) 正方体




12条 8
6个
个 L=4a+4b+4h (相对的面完全相同)
(分为3组,有 S表=(ab+ah+bh) ×2
4长、4宽、4
高)
(有两个相对的面是正
L=4(a+b+h) 方形,其余四个都是
A、 54
B、 18
C 、 0.6 D、 6
四、选择正确答案的序号填入括号里
3. 等高等体积的圆柱和圆锥,圆柱的底面积是6平方厘米,那么圆锥的底面积是( )平方厘米。
B
A、6 C、2
B、18 D、36

4.-立体图形的体积、表面积、侧面积-几何重心与转动惯量计算公式

4.-立体图形的体积、表面积、侧面积-几何重心与转动惯量计算公式

§4立体图形的体积、表面积、侧面积几何重心与转动惯量计算公式一、立体图形的体积、表面积、侧面积、几何重心与转动惯量计算公式图形体积V、表面积S、侧面积M、几何重心G与转动惯量*Ja为棱长,d为对角线a,b,h分别为长,宽,高,d为对角线体积3aV=表面积26aS=侧面积24aM=对角线ad3=重心G在对角线交点上2aGQ=体积abhV=表面积)(2bhahabS++=侧面积)(2bahM+=对角线222hbad++=重心G在对角线交点上2hGQ=转动惯量取长方体中心为坐标原点,坐标轴分别平行三个棱边mhbJx)(12122+=mhaJy)(12122+=mbaJz)(12122+=mhbaJo)(121222++=(当hba==时,即为正方体的情况)*表中m为物体的质量,物体都为匀质.一般物体的转动惯量计算公式见第六章,§3,五.图形体积V、表面积S、侧面积M、几何重心G与转动惯量Ja,b,c为边长,h为高a为底边长,h为高,d为对角线n为棱数,a为底边长,h为高,g为斜高体积FhV=表面积MFS+=2侧面积hcbaM)(++=式中F为底面积重心2hGQ=(P、Q分别为上下底重心)转动惯量对于正三棱柱(a=b=c)取G为坐标原点,z轴与棱平行mahaJz1248324==体积hahaV225981.2233≈=表面积ahaahaS61962.563322+≈+=侧面积ahM6=对角线224ahd+=重心2hGQ=(P、Q分别为上下底重心)转动惯量取G为坐标原点,z轴与棱平行mahaJz12583524==体积FhV31=表面积FMS+=侧面积agnnFM2'==式中F为底面积,'F为一侧三角形面积。

青岛版(五·四学制)小学五年级数学下册《立体图形的表面积和体积整理与复习》课件

青岛版(五·四学制)小学五年级数学下册《立体图形的表面积和体积整理与复习》课件

体积公式
长×宽×高 底面积×高 棱长×棱长×棱长 底面积×高 底面积×高
棱长×棱长× 6
侧面积+底面积×2 S=底面周长×高
底面积×高× 1 3
立体图形
表面积公式
(长×宽+长×高+宽×高)×2 长×宽×2 +长×高×2 +宽 ×高×2
体积公式
棱长×棱长× 6
侧面积+底面积×2 S=底面周长×高 底面积×高× 1 3
体积公式
棱长×棱长× 6
侧面积+底面积×2 S=底面周长×高
底面积×高
底面积×高× 1 3
立体图形
表面积公式
体积公式
底面积×高
侧面积+底面积×2
底面积×高× 1 3
立体 图形
侧面积
表面积
体积
底面周长×高 侧面积+底面积×2
底面积×高
1 底面积×高× 3
立体 图形
侧面积
表面积
体积
底面周长×高 侧面积+底面积×2
V=长×宽×高 或=底面积×高 V=棱长×棱长×棱长 或=底面积×高 V=底面积×高 V=底面积×高×
1 3
面积的大小等于含有面积单位数的多少,体积 的大小也就等于含有体积单位数的多少? 所以把长方体切割成1立方厘米的小正方体,再 数一数有多少个,就知道体积是多少了。
3cm
3cm 6cm
一共有36个小正方体,所以长方体的体积是36立方厘米。
青岛版(五· 四学制)小学五年级数学下册
回顾整理——空间与几何
立体图形表面积与体积
回顾整理
表面积
物体表面的面积的总和 表面积:
体积
物体表面所有面面积的和。 表面积:

(北师大版)六年级数学下册《立体图形的表面积和体积复习》教学课件

(北师大版)六年级数学下册《立体图形的表面积和体积复习》教学课件

四、一个游泳池长30米,宽20米,池深1.6 米,在池的四周和底面铺上面积是0.04平方 米的方砖,铺方砖的面积是多少平方米?共 需多少块方砖?
30 ×20+(30 ×1.6+20 ×1.6) ×2
=600+160 =760(平方米) 760÷0.04=19000(块)
五、一个棱长为6厘米的正方体铁块, 熔铸成半径为5厘米的圆锥形铁块,求 圆锥的高。(用方程解,要求只列方程)
列式计算, 单位:厘米
1
3 2 2 2 2
3 2
3 2
表 (3×2+3 面 ×1+2× 积 1)×2
体 3× 2× 1 积
2×3.14×2 2×2×6 ×3+3.14× 22×2
2 ×2 ×2 3.14×22×3
1 3 × 3.14×
22 × 3
一. 判断题,对的打√, 错的打×. 1.一个圆锥底面直径是2分米,高是10分米, 它的体积是多少立方分米? 2 列式是: 3.14 × ( 2 )2 ×10 ( × )
改:
1 × 3.14 × ( 2)2 ×10 2 3
2.一块正方体钢材,棱长10厘米,每立方厘米 重7.8克,这块钢重多少克?
列式是:7.8 ×(10 × 10 × 6) ( ) ×
改:7.8×(10×10×10)
二、把一个直径是2分米,长是3分米的 圆柱体木块,加工成一个最大的圆锥体, 圆锥的体积是多少立方分米?
教学目标
1.使同学们掌握所学的立体图形的表面 积和体积的含义,会计算它们的表面积 和体积。 2.体会数学的实用价值,提高同学们对 学习数学的兴趣。

1.什么是立体图形的表面积?你能举 例说说吗? 一个立体图形所有的面的面积总和叫做 它的表面积。 2.怎样计算长方体、正方体、圆柱的 表面积?

苏教版六年下《立体图形的表面积和体积》复习ppt课件

苏教版六年下《立体图形的表面积和体积》复习ppt课件
积是多少?
(2)水池的四周和 底面抹水泥,抹水泥 部分的面积是多少? (3)如果每立方米 水重1吨,池内最多能 容水多少吨?
314+3.14×20×2 =314+125.6 =439.6(平方米)
3.14×(20÷2)2×2
=314×2 =628(立方米) 628×1=628(吨)
灵活运用:
牙膏出口处直径为4毫米,小红每次刷牙都挤出 1厘米长的牙膏。这支牙膏可用45次。该品牌牙膏 推出的新包装只是将出口处直径改为6毫米,小红 还是按习惯每次挤出1厘米长的牙膏。现在,这一 支牙膏能用多少次?
只列式不计算:
形体名称 已知条件 体 积
长方体 长4米,宽3米,高2米 正方体 圆 棱长3米
4× 3× 2 3× 3× 3
柱 底面直径8厘米,高4厘米 3.14 ×(8÷2 )2×4

1 × 3.14 ×8 2×6 底面半径 8 分米,高 6 分米 锥 3
×
√ × × × ×
练一练:
一个圆柱形状的水池底面直径20米,深2米。 (1)水池的占地面 3.14×(20÷2)2=314(平方米)
体积
立方厘米
立方分米
容积
立方厘米
立方分米
立方米
立方米 毫升 升
下面的图形是不是柱体?
( ) ( × ) ( × ) (√ )
填一填: 0.5立方米=(500 )立方分米
1.04升=(1040)毫升 60立方厘米=(0.06)立方分米 75毫升=( 75 )立方厘米
现有一张长40厘米、宽20厘米的长方形 铁皮。请你用它做一个深5厘米的无盖长方 体铁盒(焊接处不计),你有多少种设计方 案?哪种容积最大?
边长5厘米 的正方形

北师大版小学数学六年级下册 总复习2-5 立体图形的表面积和体积 教学课件

北师大版小学数学六年级下册 总复习2-5  立体图形的表面积和体积 教学课件
上课时衣着要整洁,不得穿无袖背心、吊带 上衣、超短裙、拖鞋等进入教室。
尊敬谢老师,服谢从任课老师大管理。 家
不做与课堂教学无关的事,保持课堂良好纪 律秩序。
听课时有问题,应先举手,经教师同意后, 起立提问。
上课期间离开教室须经老师允许后方可离开。
上课必须按座位表就坐。
5×5×6=150(平方厘米) 答:做出这个化妆品盒至少需要150平方厘米纸板。
一个游泳池从里面量长是80米,宽是60米,深是
2.5米,在它的内壁四周和底部涂抹水泥,如果每平
方米需要水泥6千克,那么一共需要水泥多少千克?
(80×2.5×2+60×2.5×2+80×60)×6
=(400+300+4800)×6 =5500×6 =33000(千克) 答:一共需要水泥33000千克。
变,则体积扩大到原来的( 4 )倍。
7.把12立方分米的水倒入一个长3分米、宽2分米、
高4分米的长方体玻璃缸内,水面距缸口有( 2 ) 分米。
8.一个正方体的棱长总和是60厘米,那么它的表
面积是( 150 )平方厘米,体积是( 125 )立方厘米。
9.把一根长48厘米的铁丝做成一个长方体的框架
(接头处不计)。已知长、宽、高的比为3∶2∶1, 则这个长方体最大一个面的面积是( 24 )平方 厘米。
10.一个圆柱的侧面展开图是正方形,已知它的底 面周长是31.4厘米,则它的高是( 31.4 )厘米。
二、我是聪明的小法官
1.两个圆柱的侧面积相等,它们的底面周长也一
定相等。 ( × )
2.正方体、长方体、圆柱体都可以用它们各自
的底面积乘高求得体积。( √ )
3.圆柱体的底面半径扩大到原来的2倍,高也扩大

小升初专题复习-立体图形的表面积和体积(课件)人教版六年级下册数学

小升初专题复习-立体图形的表面积和体积(课件)人教版六年级下册数学

六、(江苏·盐城)如下图,用涂色部分做一个圆柱体(接头处不计),这 个圆柱体的体积是多少立方厘米?(9 分)
解:设圆柱的底面直径为 d 厘米。 3.14d+d=41.4 d=10
3.14×(10÷2)2×(10×2)=1570(cm3)
答:这个圆柱体的体积是 1570 立方厘米。
第18课时 立体图形的表面积和体 积
名称 长方体 正方体
圆柱
圆锥
图形
字母意义
表面积公
体积公式
a——长 b——宽
h——高 S 表——表面积 S 表=22((aabb++aahh++bbhh))V=aabbhh =S 底 h
S 底——底面积 V——体积
a——棱长 S 表——表面积 V——体积 S 底——底面积
6.小明新买了一管容积约为 45 cm3 的牙膏,牙膏圆形出口的直径为 6 mm。 他早晚各刷一次牙,每次挤出的牙膏长约 20 mm。这管牙膏估计能用
( 42 )天。(π 取 3) 7.一个长方体木料,横截面是边长 10 厘米的正方形,从这根木料上截 下 6 厘米长的一段,切削成一个最大的圆锥,圆锥的体积是( 157 )立 方厘米,削去部分的体积是( 443 )立方厘米。 8.(江苏·南京)一个圆锥和一个圆柱的底面积相等,体积的比是 1∶12。
4.(浙江·绍兴)学校体育馆底层用 10 根圆柱形柱子支撑着,每根柱子
高 3 m,底面直径为 5 dm,油漆这些柱子的面积是( 47.1 )m2。 5.如右图,如果这两个图形分别绕各自 3 cm 的边旋转一周,可以形成 一个圆锥和一个圆柱。圆柱的体积为( 150.72 )cm3,圆锥的体积为 ( 50.24 )cm3。
【答案】(1)60÷1.5=40(m) 60×40×2=4800(m3) 答:这个游泳池最多能蓄水 4800 立方米。 (2)60×40+(60×2+40×2)×2=2800(m2) 答:抹水泥的面积是 2800 平方米。

人教版高中数学必修立体几何复习课件(共102张PPT)

人教版高中数学必修立体几何复习课件(共102张PPT)

1 1
1
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是_____8_0__0.0 cm 3
3
2 0 20
主视图
10
10
2 俯0视图
2 侧0视图
第二章 点、直线、平面之间的位置关系
• 四个公理
直线与直线位置关系 • 三类关系 直线与平面位置关系
平面与平面位置关系
(3)
a a
// b
b
(较常用);
(4)
a
//
a

(5)
a a
b
a
(面面垂直 线面垂直)
a b
4.面面垂直
向的侧视图(或称左视图)为(
A
A
H
G
Q
B
C
侧视 B
)A
C
I
P
E
图1
F
B
D
E
D
图2
F
B
B
B
E A.
E B.ቤተ መጻሕፍቲ ባይዱ
E C.
E D.
练习10:(1)如图是一个空间几何体的三
视图,如果直角三角形的直角边长均为
正视图 侧视图
1,那么几何体的体积为( ) C
A.1 B.1 C. 1 D.1
俯视图
2
3
6
V1 3S底 h1 31111 3
②判定定理:如果一个平面内的两条相交直线都平行于 另一个平面,那么两个平面互相平行;
符号表述: a,b , a b O, a //,b // //
//
③面面平行的性质定理:
a
a
//

《长方体和正方体的表面积、体积》完整版ppt课件

《长方体和正方体的表面积、体积》完整版ppt课件

21
0.4m
做一个微波炉的包装箱, 至少要用多少平方米的硬纸板?
这里要求的是这个长方 体包装箱的表面积。
上、下每个面,长_0_._7_m_,宽_0_._5_m_,面积是_0_._3_5_m__2; 前、后每个面,长_0_._7_m_,宽_0_._4_m_,面积是_0_._2_8_m__2; 左、右每个面,长_0_._5_m_,宽_0_._4_m_,面积是_0_._2_m__2_。
精选ppt课件2021
7
折叠后,哪些图形能围成左侧的正 方体?在括号中画“√”。
(√)
(√)
(×)
精选ppt课件2021
8
亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易 衣柜换布罩(如下图,没有底面)。至少需要用布多少 平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2 =0.375+1.6+2.4 =4.375(m2) 答:至少需要用布4.375m2。
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
精选ppt课件2021
44
一根长方体木料,长5m,横截面的 面积是0.06m2。这根木料的体积是多少?
精选ppt课件2021
24
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。
可以分别写成cm3,dm3和m3。 (1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1cm3
(2)棱长是1dm的正方体,体积是1dm3。

立体图形的表面积和体积的整理和复习

立体图形的表面积和体积的整理和复习
证明几何定理
立体图形的表面积和体积是证明几何定理的重要工具,如利用表面 积和体积证明等积定理、等周定理等。
在日常生活中的应用
01
02
03
建筑设计
在建筑设计中,需要计算 建筑物的表面积和体积, 以确定建筑物的外观、材 料用量和建筑成本。
包装设计
在包装设计中,需要计算 包装盒的表面积和体积, 以确定包装盒的大小、材 料用量和运输成本。
工、铸造等。
经济学
在经济学中,立体图形的表面积 和体积用于计算资源的分布、利 用和优化,如题与解析
基础习题
题目
一个长方体的长、宽、高 分别为5cm、4cm、3cm, 求其表面积和体积。
题目
一个正方体的棱长为4cm, 求其表面积和体积。
题目
一个圆柱体的底面半径为 3cm,高为5cm,求其表 面积和体积。
02
立体图形的表面积
表面积的定义与计算方法
定义
立体图形的表面积是指其外部表面的总面积。
计算方法
对于规则的立体图形,如长方体、圆柱体等,可以通过公式直接计算其表面积; 对于不规则的立体图形,通常需要将其拆分成若干个规则的立体图形进行计算。
常见立体图形的表面积计算
长方体
圆柱体
圆锥体
球体
长方体的表面积 = 2 × (长×宽 + 长×高 + 宽×
面积和体积。
感谢您的观看
THANKS
04
立体图形的表面积和体积 的应用
在几何学中的应用
计算几何形状的面积和体积
立体图形的表面积和体积是几何学中的基本概念,用于计算各种 几何形状的面积和体积,如长方体、圆柱体、圆锥体等。
解决几何问题
立体图形的表面积和体积是解决几何问题的关键,如计算几何体的 表面积和体积、求几何体的侧面积、求几何体的体积等。

8.3.1棱柱、棱锥、棱台的表面积和体积课件

8.3.1棱柱、棱锥、棱台的表面积和体积课件

在直角梯形EOO1E1中,
O1E1=12A1B1=3
cm,OE=1AB=5 2
cm,
∴O1O= 142 -5-32 =8 3 (cm).
故该正四棱台的体积为 V=1×8 3
1568
3 ×(62+102+6×10)= 3
3
(cm3).
例题讲解 LOGO
1.等积变换法
如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1-D1EF的体积.
故侧棱长即为直棱柱的高.
探究新知 LOGO
问题5 取一摞书放在桌面上,并改变它们的位置,高度、书中每页纸面积和 顺序不变,观察改变前后的体积是否发生变化?
探究新知 LOGO
课本P 121-122
祖暅[gèng]原理 “幂势既同,则积不容异”
夹在两个平行平面之间的两个几何体,被平行于这 两个平面的任何平面所截,如果截得的两个截面的 面积总相等,那么这两个几何体的体积相等.
我国古代著名数学家祖冲之在计算圆周率等问题方面有光辉的 成就.祖冲之的儿子祖暅也在数学上有突出贡献.祖暅在实践的基础 上,于5世纪末提出了这个体积计算原理.
祖暅提出这个原理,要比其他国家的数学家早一千多年.在欧 洲只到17世纪,才有意大利数学家卡瓦列里(Cavalieri .B,1598 年--1647年)提出上述结论.
(Sh
(S
S'
)h1
)
S' h S S'
1 (Sh (S S' ) S' h) 1 h(S (S S ' ) S'( S S')) 1 (S
3
S S' 3
S S'
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结提示 本节课你知道了什么?
半径:12.56÷3.14÷2=2(厘米) 体积:2×2×π×5=20π(立方厘米)
(4)、一个圆锥,底面半径是3厘米,高是4.5厘米
3×3×π×4.5÷3=13.5π(立方厘米)
基础练习
5、判断
1)一个圆锥体与一个长方体,等底等高,则圆
锥的体积是长方体的 1 。… 3
(√ )
2)正方体的棱长扩大2倍,体积就扩大8倍。
S表面积=2ab+2ah+2bh
= 2(a+b)h+2ab
S表面积=2πrh + 2πr 2
一个侧面积 2个底面积
h
h
ab
c
a
h
aa
c
交流整理
a aa
h ab
h
r
h r
a3
abh
лr 2 h 13Лr 2h
过程回顾 我们是如何学习长方体的体积的。
长方体的体积= 长 × 宽× 高
体积单位的个数=
苏教版教材六年级数学下册
交流整理
请同学们将已经整理出的立体图形的表面积和 体积有关知识,按要求在小组里交流各自整理 的过程和结果。 (1)、在小组内交流自己整理的内容和方法、 并说说为什么这样整理。 (2)、其他小组成员可以随时质疑、补充或 完善。
交流整理
a aa
h
a
b
h
r
S表面积=6a 2 =4a×a+ 2a 2
一个排数×
排数 ×
层 数
过程回顾
我们是如何学习正方体的体积的。
正方体的体积=棱长3
过程回顾 我们是如何学习圆柱体积的。
过程回顾
过程回顾
过程回顾
圆柱体积 = 底面积 × 高
长方体体积 = 底面积 × 高
过程回顾 我们是如何学习圆锥体积的。
过程回顾
过程回顾
过程回顾
过程回顾
过程回顾
过程回顾
…………………………………( √ )
3)一个圆锥和圆柱的体积和底面积都相等,则
圆锥的高是圆柱高13 的
……×( )
4)圆柱的底面半径扩大2倍,高不变,它的侧面
积扩大4倍,它的体积也扩大4倍。
…………………………………( × )
综合练习 1、一个蔬菜大棚,长20米,横截面是半径为2米
的半圆形(1)、这个大棚占地面积是多少? 4×20=80(平方米)
2×5×4+2×4×3+2×5×3
10×π×6+5×5×π×2
6厘米 10厘米
基础练习
4、求下面立体图形的体积
(1)、一个正方体,底面周长是8分米。
8÷4=2(分米) 2×2×2=8(立方分米)
(2)、一个长方体,底面边长12厘米的正方形,高是
50厘米
12×12×50=7200(立方厘米)
(3)、一个圆柱,底面周长是12.56厘米,高是5厘米
容积是25( 升 )
基础练习
0.5立方米 =( 500)立方分米 4050平方分米=( 40.5 )平方米 0.09立方分米=( 90 )立方厘米 60立方厘米=( 0.06 )立方分米
1.04升=( 1040 )毫升
基础练习
3、只列式不计算下列图形的表面积
4Hale Waihona Puke 米4厘米 4厘米4×4×6
3厘米 4厘米 5厘米
V = sh
过程回顾
V=sh
V= 1 sh 3
过程回顾
侧面展开图 h c
h
r πr
h d
基础练习
1、在括号里填上合适的单位 (1)、一间卧室地面的面积是15( 平方米 ) (2)、一瓶牛奶大约有250( 毫升 ) (3)、一间教室的空间大约是144( 立方米 ) (4)、一台微波炉的体积是92( 立方分米),
过程回顾
过程回顾
过程回顾
过程回顾
过程回顾
h
a
b
V = abh
a
a a
V = a3
h r
V = лr 2h
h r
V=
1
3
лr2 h
过程回顾
1.5 × 2.5
75 30 3 .7 5
15 × 25
75 30 375
交流整理
h ab
V=abh
a aa
hh
r
r
v=a 3 v=Πr 2h v= 13лr 2h
r: 6.28÷3.14=2(厘米) v: 2×2×π×4=16π(立方厘米) 答:圆柱的体积为16π立方厘米。
(2)、如果长方体的表面积比圆柱多24平方厘米, 且圆柱的高为6厘米,则圆柱的体积为多少? r: 24÷2 ÷6=2 (厘米) v: 2×2×π×6=24π(立方厘米) 答:圆柱的体积为24π立方厘米。
(2)、搭这个大棚至少要用塑料薄膜多少平 方米?
2×2×π×20÷2+2×2×π=44π(平方米)
(3)、这个大棚的体积是多少立方米?
2×2×π×20÷2=40π(立方米)
综合练习
2、一个圆柱体沿底面直径分成若干等分,拼成一 个近似的长方体
(1)、如果长方体的长是6.28厘米,高是4厘米,
则圆柱的体积为多少?
相关文档
最新文档