2011-2018年新课标全国卷2理科数学试题分类汇编——13.概率、统计

合集下载

2011-2018新课标全国卷高考数学考点汇总(理科)

2011-2018新课标全国卷高考数学考点汇总(理科)
由散点图所给的函数图像进行非线性拟合;线性回归方程求法;利用回归方程进行预报预测
离散型随机变量及其分布列
服从正态分布模型及数学期望
直线与椭圆的位置关系;探究直线斜率关系
20
解析几何与函数(轨迹、导数)
抛物线与直线位置关系(圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式等)
解析几何:轨迹方程(定义法)、韦达定理
圆与圆锥曲线的综合;抛物线的简单性质.
抛物线与过焦点弦长问题
几何概型
11
三角函数(性质)
球与空间几何体(锥体及其外接球的结构特征)
函数性质:数形结合
考察导数、函数的零点,意在考察学生综合运用数学知识解题能力及运算求解能力
借助着简单组合体的三视图考察球及圆柱的表面积
异面直线及其所成的角
指数与函数结合
双曲线
与二面角有关的立体几何综合题
空间面面垂直判定与性质;二面角余弦值
空间面面垂直判定与性质;线面角正弦值
19
统计概率(分布列)
立体几何线线垂直、二面角(空间直线与直线、直线与平面、平面与平面的位置关系;二面角的概念和计算)
统计与概率:独立重复试验概率、分布列
考察空间中的线面关系及其二面角的求解,意在考查空间想象能力及运算求解能力
正余弦定理的综合应用,数型结合思想
简单线性规划的应用
平面图形折叠后最大体积
三角函数最值
17
等比数列(列项求和)
解斜三角形(正余弦定理应用)
解三角形:正弦定理、余弦定理
考察等差数列,意在考察学生的运算求解能力、逻辑推理能力
递推公式和等差数列的通项公式;裂项消去法求其前n项和.
解三角形
三角函数与解三角形

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.1+2i1-2i=( ) A .- 45 - 35iB .- 45 + 35iC .- 35 - 45iD .- 35 + 45i解析:选D2.已知集合A={(x,y)|x 2+y 2≤3,x ∈Z,y ∈Z },则A 中元素的个数为 ( ) A .9 B .8 C .5 D .4 解析:选A 问题为确定圆面内整点个数 3.函数f(x)= e x-e-xx2的图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e 2-e-24>1,故选B4.已知向量a ,b 满足|a|=1,a ·b=-1,则a ·(2a-b)= ( ) A .4 B .3 C .2D .0解析:选B a ·(2a-b)=2a 2-a ·b=2+1=35.双曲线x 2a 2-y2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y=±2xB .y=±3xC .y=±22x D .y=±32x 解析:选A e= 3 c 2=3a 2b=2a6.在ΔABC 中,cos C 2=55,BC=1,AC=5,则AB= ( )A .4 2B .30C .29D .2 5解析:选A cosC=2cos 2C 2 -1= - 35AB 2=AC 2+BC 2-2AB ·BC ·cosC=32 AB=4 27.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧的程序框图,则在空白框中应填入( )A .i=i+1B .i=i+2C .i=i+3D .i=i+4 解析:选B 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .118解析:选C 不超过30的素数有2,3,5,7,11,13,17,19,23,29共10个,从中选2个其和为30的为7+23,11+19,13+17,共3种情形,所求概率为P=3C 102=1159.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A .15 B .56 C .55 D .22解析:选C 建立空间坐标系,利用向量夹角公式可得。

2011年高考新课标全国卷理科数学试题(附答案)

2011年高考新课标全国卷理科数学试题(附答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

全国Ⅰ,Ⅱ,Ⅲ卷2011-2018年高考分类分析理科数学

全国Ⅰ,Ⅱ,Ⅲ卷2011-2018年高考分类分析理科数学

A.3
B.2
C.1
D.0
2016 年
(1)设集合 S x (x 2)(x 3) 0 , T x | x 0 ,则 S T= A.[2,3] C. [3,+ ) B.(- ,2] [3,+ ) D.(0,2] [3,+ )
Ⅱ卷 2018 年 2017 年
1
任后兵整理
一、集合与简易逻辑小题 1.集合小题:Ⅲ卷 3 年 3 考,Ⅱ卷 6 年 6 考,Ⅰ卷 8 年 6 考,每年 1 题,都是交并补子运 算为主,多与不等式交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题, 相信命题小组对集合题进行大幅变动的决心不大. 年份 Ⅲ卷 2018 年
2016 年
1.设集合 A {x | x 2 4 x 3 0} , B {x | 2 x 3 0} ,则 A B A. ( 3, )
3 2
B. ( 3, )
2
3 2
C. (1, )
3 2
D. ( ,3)
3 2
2014 年
1.已知集合 A={ x | x 2 x 3 0 },B= x 2 x 2 ,则 A B =


Ⅰ卷 2018 年
2. 已知集合 A x x x 2 0 ,则 CR A

2

A.
x 1 x 2
B.
x 1 x 2
C. x | x 1x | x 2
D. x | x 1x | x 2
2017 年
1.已知集合 A={x|x<1},B={x| 3x 1 },则 A. A B {x | x 0} B. A B R C. A B {x | x 1} D. A B

2018年全国普通高等学校招生统一考试理科数学(新课标II卷)-附答案解析

2018年全国普通高等学校招生统一考试理科数学(新课标II卷)-附答案解析
2018年全国普通高等学校招生统一考试理科数学(新课标II卷)
学校:___________姓名:___________班级:___________考号:___________
1.
A. B. C. D.
2.已知集合 ,则 中元素的个数为
A.9B.8C.5D.4
3.函数 的图像大致为()
A. B.
C. D.
8.C
【解析】
分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.
详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为 ,选C.
(1)证明: 平面 ;
(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值.
21.已知函数 .
(1)若 ,证明:当 时, ;
(2)若 在 只有一个零点,求 的值.
22.在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数).
(1)求 和 的直角坐标方程;
(2)若曲线 截直线 所得线段的中点坐标为 ,求 的斜率.
分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.
详解:因为
所以 ,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
7.B
【解析】
分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.
A. B. C. D.
9.在长方体 中, , ,则异面直线 与 所成角的余弦值为

2018高考全国卷2理科数学真题(含答案)

2018高考全国卷2理科数学真题(含答案)

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合{(x,y)|x ²²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)²²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·1,则a·(2)=A.4B.3C.2D.05.双曲线x ²²²²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为±x ±x ±±6.在中,,1,5,则A.4B.C. D.27.为计算1…,设计了右侧的程序框图,则在空白框中应填入1 2 3 48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.B.C.D.9.在长方体1B 1C 1D 1中,1,1=则异面直线1与1所成角的余弦值为A. B.10.若f (x )在[,a ]是减函数,则a 的最大值是 A. B. C.D. π11.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1)(1)。

若f (1)=2,则f (1)+ f (2)+ f (3)+…(50)=50 B.0 C.2 D.50 12.已知F 1,F 2是椭圆C: =1(a>b>0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△1F 2为等腰三角形,∠F 1F 2120°,则C的离心率为A..B.C.D. 二、填空题:本题共4小题,每小题5分,共20分。

2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编试题及参考答案

2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编试题及参考答案
C.A和B分别是a1,a2,…,aN中最大的数和最小的数
D.A和B分别是a1,a2,…,aN中最小的数和最大的数
(2011·3)执行右面的程序框图,如果输入的N是6,那么输出的p是()
A.120 B.720 C.1440 D.5040
2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编
3.程序框图
A.{1}B.{2}C.{0,1}D.{1,2}
(2013·1)已知集合M={x|(x-1)2< 4,x∈R},N={-1,0,1,2,3},则M∩N=()
A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}
(2012·1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()
A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}
(2015·1)已知集合A={-2,-1,0,2},B={x|(x-1)(x+2)<0},则A∩B=()
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}
(2014·1)设集合M={0,1,2},N= ,则 =()
P1:|z|=2,P2:z2=2i,P3:z的共轭复数为1+i,P4:z的虚部为-1.
A.P2,P3B.P1,P2C.P2,P4D.P3,P4
(2011·1)复数 的共轭复数是()
A. B. C. D.
2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编
2.复数
(2018·1) ()
A. B. C. D.
(2013·6 )(2012·6)(2011·3)
(2013·6)执行右面的程序框图,如果输入的 ,那么输出的 ()

2011-2019年新课标全国卷2理科数学试题分类汇编——12.概率、统计

2011-2019年新课标全国卷2理科数学试题分类汇编——12.概率、统计

2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编(逐题解析版)12.排列组合、概率统计一、选择题(2019·全国卷Ⅱ,理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差(2018·8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .118(2017·6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 (2016·5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .9(2016·10)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4nmB .2n mC .4mnD .2mn(2015·3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D.2006年以来我国二氧化硫年排放量与年份正相关.(2014·5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45(2012·2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有()A. 12种B. 10种C. 9种D. 8种(2011·4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34二、填空题(2019·全国卷Ⅱ,理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.(2017·13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D X=.(2016·15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.(2013·14)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______.(2012·15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N(1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为.三、解答题(2019·全国卷Ⅱ,理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.(2018·18)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型①:30.413.5y t =-+:根据2010年至2016年的数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型②:9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.(2017·18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:22()()()()()n ad bc K a b c d a c b d -=++++(2016·18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.(2015·18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.(2014·19)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆnii i ni i tty y btt==--=-∑∑,ˆˆa y bt=-.(2012·18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.t(2011·19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为2(94)2(94102)4(102),t<y,t<,t-⎧⎪=≤⎨⎪≥⎩,从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编12.排列组合、概率统计(解析版)一、选择题(2019·全国卷Ⅱ,理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差【答案】A 解析:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.(2018·新课标Ⅱ,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .118【答案】C 解析:30以内的素数有10个,满足和为30的素数对有3对,概率为2103314515C ==,选C. (2017·6)【解析】解法一:将三人分成两组,一组为三个人,有336A =种可能,另外一组从三人在选调一人,有133C =种可能;两组前后在排序,在对位找工作即可,有222A =种可能;共计有36种可能. 解法二:工作分成三份有246C =种可能,在把三组工作分给3个人有336A =可能,共计有36种可能. (2016·5)B 解析:E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法,故选B .(2016·10)C 解析:由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .(2015·3)D 解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.(2014·5)A 解析:设 A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===. (2012·2)A 解析:只需选定安排到甲地的1名教师2名学生即可,共有1224C C 种安排方案.(2011·4)A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,故选A. 二、填空题(2019·全国卷Ⅱ,理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________. 【答案】0.98 解析:0.98200.97100.99100.9840⨯+⨯+⨯=.(2017·13)1.96【解析】随机变量()100,0.02∽B X ,()()1 1.96D X np p =-=.(2016·15)(1,3)解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足; 若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3).(2013·14)8解析:从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3),共2种,所以221C 14n =,即24111142n n n n ==(-)(-),亦即n 2-n -56=0,解得n =8.(2012·15)38解析:由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为2113[1(1)]228--⨯=. 三、解答题(2019·全国卷Ⅱ,理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.18.解:(1)X =2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.【解答】解:(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…), 则P (X =2)=P (A 1A 2)+P ()=P (A 1)P (A 2)+P ()P ()=0.5×0.4+0.5×0.6=0.5. (2)P (X =4且甲获胜)=P (A 2A 2A 4)+P ()=P ()P (A 2)P (A 3)P (A 4)+P (A 1)P ()P (A 3)P (A 4)=(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.(2018·新课标Ⅱ,18)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型①:30.413.5y t =-+:根据2010年至2016年的数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型②:9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y=-+⨯=(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ9917.5yt =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(2017·18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;22()()()()()n ad bc K a b c d a c b d -=++++(2017·18)解析:(Ⅰ)旧养殖法的箱产量低于50kg 的频率为0.012×5+0.014×5+0.024×5+0.034×5+0.040×5=0.62,由于两种养殖方法的箱产量相互独立,于是P (A )=0.62×0.66=0.4092(Ⅱ)旧养殖法的箱产量低于50kg 的有100×0.62=62箱,不低于50kg 的有38箱,新养殖法的箱产量不低于50kg 的有100×0.66=66箱,低于50kg 的有34箱,得到2×2列联表如下:所以22200(62663438)122515.7059610410010078K ⨯⨯-⨯==≈⨯⨯⨯ 2 6.635K ∴>,所以有99%的把握认为箱产量与养殖方法有关。

2011-2018年新课标全国卷2理科数学试题分类汇编——12.概率、统计

2011-2018年新课标全国卷2理科数学试题分类汇编——12.概率、统计

2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编(逐题解析版)12.排列组合、概率统计一、选择题(2018·8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A .112B .114C .115D .118(2017·6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种(2016·5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A .24B .18C .12D .9(2016·10)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为()A .4n mB .2n mC .4m nD .2m n(2015·3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.(2014·5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A .0.8B .0.75C .0.6D .0.45(2012·2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由GFE。

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1+2i/(1-2i),则结果为:A。

--iB。

-+iC。

--iD。

-+i解析:选D。

2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。

9B。

8C。

5D。

4解析:选A。

问题为确定圆面内整点个数。

3.函数f(x)=2/x的图像大致为:A。

B。

C。

D。

解析:选B。

f(x)为奇函数,排除A。

当x>0时,f(x)>0,排除D。

取x=2,f(2)=1,故选B。

4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。

4B。

3C。

2D。

2-2xy解析:选B。

a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。

y=±2xB。

y=±3xC。

y=±2x/abD。

y=±3x/ab解析:选A。

e=3,c=3ab=2a。

6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。

42B。

30C。

29D。

25解析:选A。

cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。

2018年全国2卷理科数学十年真题分类汇编12 概率与统计

2018年全国2卷理科数学十年真题分类汇编12 概率与统计

12 概率和统计一.基础题组1. 【2014新课标,理5】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】A【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则,故选A.2. 【2011新课标,理4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A .B .C .D .【答案】A 【解析】3. 【2017课标II ,理13】一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则____________.【答案】【考点】 二项分布的期望与方差()0.6(|)0.8()0.75P A B P B A P A ⋂===131223340.02100X DX =1.96【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且表示在独立重复试验中,事件A 恰好发生k 次的概率.4. 【2006全国2,理16】一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄,学历,职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在2 500,3 000)(元)月收入段应抽出 人.【答案】:255. 【2015高考新课标2,理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )()()C 1n kk kn p X k p p -==-2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D .【考点定位】正、负相关. 二.能力题组1. 【2013课标全国Ⅱ,理14】从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n =__________. 【答案】:82. 【2013课标全国Ⅱ,理19】(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;114(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈100,110),则取X=105,且X=105的概率等于需求量落入100,110)的频率),求T的数学期望.【解析】:(1)当X∈100,130)时,T=500X-300(130-X)=800X-39 000,当X∈130,150]时,T=500×130=65 000.所以(2)由(1)知利润T不少于57 000元当且仅当120≤X≤150.由直方图知需求量X∈120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为所以ET=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400.3. 【2012全国,理19】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.80039000,100130,65000,130150.X XTX-≤<⎧=⎨≤≤⎩(2)(理)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3.P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·)=P (A 0)P ()=0.16×0.6=0.096, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3)=1-0.144-0.352-0.096=0.408.E ξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=0.408+2×0.352+3×0.096=1.400.4. 【2010全国2,理20】如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9,电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(1)求p ;(2)求电流能在M 与N 之间通过的概率;(3)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望.AA(3)由于电流能通过各元件的概率都是0.9,且电流能否通过各元件相互独立,ξ~B (4,0.9),E ξ=4×0.9=3.6. 三.拔高题组1. 【2005全国3,理15】设为平面上过点(0,1)的直线,的斜率等可能地取用ξ表示坐标原点到的距离,则随机变量ξ的数学期望E ξ= . 【答案】,22,3,25,0,25,3,22---74有斜率值,可得的分布列:1所以.2.【2016课标II ,理10】从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率的近似值为 (A )(B ) (C )(D )【答案】C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为,所以.选C.【考点】几何概型【名师点睛】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.3.【2016高考新课标2理数】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:E ξ=[]0,11x 2x n x 1y 2y n y ()11,x y ()22,x y (),n n x y 4n m 2n m4mn2mn22π4S R mS R n==圆正方形4πm n =(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.【答案】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人本年度的保费为,求的分布列为,在根据期望公式求解..【解析】【考点】条件概率,随机变量的分布列、期望【名师点睛】条件概率的求法:(1)定义法:先求P(A)和P(AB),再由P(B|A)=,求出P(B|A);(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数n(AB),得P(B|A)=.X X()()P ABP A()()n ABn A求离散型随机变量均值的步骤:(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 取每个值时的概率;(3)写出X 的分布列;(4)由均值定义求出EX 4.【2017课标II ,理18】(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,【答案】(1);(2)有的把握认为箱产量与养殖方法有关;(3). 【解析】22()()()()()n ad bc K a b c d a c b d -=++++0.409299%52.35kg因此,事件A 的概率估计值为. (2)根据箱产量的频率分布直方图得列联表:的观测值,由于,故有的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于的直方图面积为,箱产量低于的直方图面积为, 故新养殖法箱产量的中位数的估计值为.【考点】 独立事件概率公式、独立性检验原理、频率分布直方图估计中位数【名师点睛】(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大.0.620.660.4092⨯=2K ()22006266343815.70510010096104k ⨯⨯-⨯=≈⨯⨯⨯15.705 6.635>99%50kg ()0.0040.0200.04450.340.5++⨯=<55kg ()0.0040.0200.0440.06850.680.5+++⨯=>0.50.345052.35(kg)0.068-+≈(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5. 【2011新课标,理19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(1)(2)(理)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)(2)用B 配方生产的100件产品中,其质量指标值落入区间90,94),94,102),102,110]的频率分别为0.04,0.54,0.42,因此P (X =-2)=0.04,P (X =2)=0.54,P (X =4)=0.42,即X 的分布列为X 的数学期望E (X )=-2×0.04+2×0.54+4×0.42=2.68.2,942,941024,102t y t t -<⎧⎪=≤≤⎨⎪≥⎩6. 【2006全国2,理18】某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一,二,三箱中分别有0件,1件,2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(文19(1))求抽检的6件产品中恰有一件二等品的概率;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.7. 【2005全国3,理17】(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.【解析】:记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C ,由题意.各台机器是否需要照顾相互之间没有影响,因此,A ,B ,C 是相互独立事件 (Ⅰ)由题意得: P (A ·B )=P(A)·P(B)=0.05 P (A ·C )=P(A)·P(C)=0.1 P (B ·C )=P(B)·P(C)=0.125解得:P(A)=0.2;P(B)=0.25;P(C)=0.5所以, 甲、乙、丙每台机器需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)记A 的对立事件为B 的对立事件为,C 的对立事件为, 则,于是 所以这个小时内至少有一台机器需要照顾的概率为0.7. 8. 【2005全国2,理19】(本小题满分12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令为本场比赛的局数,求的概率分布和数学期望.(精确到0.001)所以的概率分布表如下34 5 9. 【2015高考新课标2,理18】(本题满分12分)某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满,A B C 5.0)(,75.0)(,8.0)(===C P B P A P 7.0)()()(1)(1)(=⋅⋅-=⋅⋅-=++C P B P A P C B A P C B A P A B意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 【答案】(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下0.48A 地区B 地区4 5 6 7 8 9【考点定位】1、茎叶图和特征数;2、互斥事件和独立事件. 10.【2014全国2,理19】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:A 地区B 地区45 6 7 8 96 8 1 3 6 4 32 4 5 5 6 4 23 34 6 9 6 8 8 6 4 3 3 2 1 9 2 8 65 11 37 5 5 2(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:,()()()121niii ni i t t y y b t t ∧==--=-∑∑ˆˆay bt =-。

2011年—2018年新课标全国卷1理科数学分类汇编——11.排列组合、概率统计.docx

2011年—2018年新课标全国卷1理科数学分类汇编——11.排列组合、概率统计.docx

2011 年—2018 年新课标高考全国Ⅰ卷理科数学分类汇编11.排列组合、概率统计一、选择题【2018, 3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列选项中不正确的是:A.新农村建设后,种植收入减少。

B.新农村建设后,其他收入增加了一倍以上。

C.新农村建设后,养殖收入增加了一倍。

D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【2018,10】下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边AB, AC ,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1, p2, p3,则()A. p1p2B. p1p3C. p2p3D. p1p2p3【 2017, 2】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1π1πA .B .C. D .4824【 2017, 6】(116展开式中 x2的系数为()x2 )(1 x)A. 15B. 20C. 30D.35【 2016, 4】某公司的班车在7 : 30 , 8 : 00, 8 : 30 发车,小明在7 : 50 至 8 : 30 之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10 分钟的概率是( A)1( B)1( C)2( D)3 3234【 2015,4】投篮测试中, 每人投 3 次,至少投中 2 次才能通过测试 .已知某同学每次投篮投中的概率为 0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( A ) 0.648( B )0.432(C ) 0.36( D ) 0.312【 2015, 10】 (x 2 x y)5 的展开式中, x 5 y 2 的系数为()( A ) 10 (B ) 20 (C )30( D ) 60【 2014,5】4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A . 1B .3C .5D .788 8 8【 2013, 3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、 初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大. 在下面的抽样方法中,最合理的抽样方法是 ( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样【 2013, 9】设 m 为正整数, (x + y)2 m展开式的二项式系数的最大值为 m+1展开式的二项式系数a , (x + y)2的最大值为 b.若 13a = 7b ,则 m = ().A .5B . 6C . 7D . 8【 2012, 2】 将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和2 名学生组成,不同的安排方案共有()A . 12 种B . 10种C . 9 种D . 8 种【 2011, 4】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )1( B )1( C )2( D )33234【 2011, 8】xa15的展开式中各项系数的和为2,则该展开式中常数项为2xxx( A ) -40( B ) -20( C ) 20(D ) 40二、填空题【 2018, 15】 从 2 名女生, 4名男生中选 3 人参加科技比赛,且至少有1名女生入选,则不同的选法共有种(用数字填写答案) .【 2016, 14】 (2xx) 5 的展开式中, x 3 的系数是.(用数字填写答案) 【 2014, 13】 (x y)( xy)8 的展开式中 x 2 y 2 的系数为.(用数字填写答案 )【 2012, 15】某一部件由三个电子元件按下图方式连接而成,元件1 或元件2 正常工作,且元元件 1件 3 正常工作,则部件正常工作。

2011-2018年新课标全国卷2理科数学试题分类汇编——10.数列

2011-2018年新课标全国卷2理科数学试题分类汇编——10.数列

10.数列一、选择题【2018,4】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .12【2017,4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为()A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是()A .440B .330C .220D .110【2016,3】已知等差数列}{n a 前9项的和为27,810=a ,则=100a ()A .100B .99C .98D .97【2013,7】设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =().A .3B .4C .5D .6【2013,12】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则().A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列【2013,14】若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________.【2012,5】已知{n a }为等比数列,472a a +=,568a a =-,则110a a +=()A .7B .5C .-5D .-7(2017·3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏(2015·4)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=()A .21B .42C .63D .84(2013·3)等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =()A .13B .13-C .19D .19-(2012·5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=8,则a 1+a 10=()A.7B.5C.-5D.-7二、填空题【2018,14】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.【2016,15】设等比数列}{n a 满足1031=+a a ,542=+a a ,则12n a a a L 的最大值为.【2012,16】数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为__________.(2017·15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑.(2015·16)设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________.(2013·16)等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n nS 的最小值为____.(2012·16)数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为.三、解答题【2015,17】n S 为数列{}n a 的前n 项和.已知n a >0,2243n n n a a S +=+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和.【2014,17】已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.【2011,17】等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log ......log ,n nb a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.(2018·17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2016·17)(满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1000项和.(2014·17)已知数列{a n }满足a 1=1,a n +1=3a n +1.(Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111 (2)na a a +++<.(2011·17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++LL ,求数列1{}nb 的前n 项和.。

2011-2018年全国Ⅰ,Ⅱ,Ⅲ卷分类汇编概率统计

2011-2018年全国Ⅰ,Ⅱ,Ⅲ卷分类汇编概率统计

2011-2018年全国Ⅰ,Ⅱ,Ⅲ卷分类汇编概率统计概率选填题Ⅲ卷3年1考,Ⅱ卷6年5考,Ⅰ卷8年7考,难度不大.较多出现几何概型与线性规划交汇式命题,这个问题教材上也有.是不是全国卷也该考一下二维的几何概型了?于5的概率为114,则n =________. Ⅰ卷 2018年10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则A. 21p p =B.31p p =C. 32p p =D. 321p p p +=2017年(2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .B .C .D .2016年(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐 班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C ) 23 (D )342015年(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432(C )0.36(D )0.3122014年(5).4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .782012年(13)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为14π812π4统计选填题Ⅲ卷3年2考,Ⅱ卷6年2考,Ⅰ卷8年2考.其实统计考个小题比较好的,各地高考及模拟高考小题居多.因为这个考点内容实在太多:频率分布表、直方图、抽样方法、样本平均数、方差、标准差、散点图、线性回归、回归分析、独立性检验、二项分布、正态分布等.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个Ⅱ卷2017年13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX .2015年 3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B)2007年我国治理二氧化硫排放显现(C)2006年以来我国二氧化硫年排放量呈减少趋势(D)2006年以来我国二氧化硫年排放量与年份正相关Ⅰ卷2018年3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是2004200520062007200820092010201120122013 190020002100220023002400250026002700A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进概率统计解答题每年考1题.特点:实际生活背景在加强,阅读量大.注意点:回归分析,独立性检验,正态分布.第1问多为统计问题,第2问多为分布列、期望计算问题;特点:实际生活背景在加强.冷点:回归分析,独立性检验. 2015年课标全国Ⅰ已经非常灵活地考了回归分析,独立性检验在2018年课标卷Ⅲ考过,估计近年可能会在求分布列上设计应用情景.有人说,理科的概率分布列应该属于创新行列.我不这么认为,概率与分布列不是追求创新,而是追求与实际的完美结合.概率不是新颖,而是力求联系实际,与实际问题相吻合.但苦于找不到合适的案例,所以有时会事与愿违,但命题人的初衷却是如此,概率的初衷不是创新,而是应用,目标是贴近生活、背景公平、控制难度.(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:m m m m m ()()()()()22n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k 3.841 6.63510.828(18)(12分)计算公式两种形式的互推.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型 ①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.2017年 18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.050 0.010 0.001 k3.8416.63510.828箱产量<50kg 箱产量≥50kg旧养殖法 新养殖法52a50.10 0. 0557 000元的概率;在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量x∈=105的概率等于需求量落入[100,110)的频率),2016年 (19)( 12分) 某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?(19)( 12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费1x 和年销售量1y (i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω821()i i x x =-∑821()i i ωω=-∑ 81()()i i i x x y y =--∑81()(ii ωω=-∑46.6 5636.8289.81.61469108.8表中i i x ω=,8118i i ωω==∑.(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程; (Ⅲ)已知这种产品的年利率z 与,x y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费49x =时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,…,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:18. ( 12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i)利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX . 附:150≈12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.(19)( 12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)。

2011—2018年新课标全国卷2文科数学试题分类汇编——12.概率、统计

2011—2018年新课标全国卷2文科数学试题分类汇编——12.概率、统计

12.概率统计一、选择题【2018,3】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【2017,2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,,n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.12,,,n x x x 的平均数B.12,,,n x x x 的标准差C.12,,,n x x x 的最大值D.12,,,n x x x 的中位数【2017,4】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4【2016,3】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是().A .13B .12C .23D .56【2015,4】如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A .310B .15C .110D .120【2013,3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是().A .12B .13C .14D .16【2012,3】在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为()A .-1B .0C .12D .1【2011,6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为().A.13B.12C.23D.34(2018·5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3(2017·11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310 D.25(2016·8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A .710B .58C .38D .310(2015·3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈逐渐减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关(2012·3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为()A .-1B .0C .12D .1(2011·6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34二、填空题【2014,13】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.(2014·13)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.(2013·13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.三、解答题【2018,19】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,()161()8.5 2.78i i x x i =--=-∑,其中x i 为抽取的第i 个零件的尺寸,i =1,2,…,16.(1)求(),i x i (i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数(niix x y y r --=∑0.09≈.【2016,19】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量(单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i ,和年销售量y i (i =1,2,3,…,8)的数据作了初步处理,得到下面的散点图及一些统计量的值,表中8118i ii ωωω===∑(Ⅰ)根据散点图判断,y=a+bx与y c =+,哪一个宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;xyω21()ni i x x =-∑21()ni i ωω=-∑1()()ni i i x x y y =--∑1()()nii i y y ωω=--∑46.65636.8289.8 1.61469108.8(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(Ⅱ)的结果回答下列问题:(1)当年宣传费x=49时,年销售量及年利润的预报值时多少?(2)当年宣传费x为何值时,年利润的预报值最大?【2013,18】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【2012,18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。

2011-2018年新课标全国卷2理科数学试题分类汇编——2.复数

2011-2018年新课标全国卷2理科数学试题分类汇编——2.复数

2.复数一、选择题【2018,1】设1i2i 1i z −=++,则||z =A .0B .12 C .1 D【2017,3】设有下面四个命题1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为( )A .13,p pB .14,p pC .23,p pD .24,p p【2016,2】设yi x i +=+1)1(,其中y x ,是实数,则=+yi x ( )A .1B .2C .3D .2【2015,1】设复数z 满足1i 1zz +=−,则||z =( )A .1BCD .2【2014,2)】32(1)(1)i i +−=( )A .1i +B .1i −C .1i −+D .1i −−【2013,2】若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45− C .4 D .45【2012,3】下面是关于复数21z i =−+的四个命题:1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1−.其中的真命题为( )A .2p ,3pB .1p ,2pC .2p ,4pD .3p ,4p 【2011,1】复数212ii +−的共轭复数是( )A .35i − B .35i C .i − D .i(2018·1)12i12i +=−A .43i 55−− B .43i 55−+ C .34i 55−− D .34i55−+(2017·1)31i i+=+( ) A .12i + B .12i − C .2i + D .2i −(2016·1)已知(3)(1)i z m m =++−在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3)(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .2(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i(2013·2)设复数z 满足(1i)2i z −=,则z =( )A .1i −+B .1i −−C .1i +D .1i −(2012·3)下面是关于复数i z +−=12的四个命题中,真命题为( ) P 1: |z |=2,P 2: z 2=2i , P 3: z 的共轭复数为1+i , P 4: z 的虚部为-1 . A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4 (2011·1)复数212i i+−的共轭复数是( ) A .35i − B .35i C .i − D .i。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编13.排列组合、概率统计一、选择题(2018·8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .118(2017·6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 (2016·5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .9(2016·10)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4nmB .2n mC .4mnD .2mn(2015·3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.(2014·5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8B .0.75C .0.6D .0.45(2012·2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( )A. 12种B. 10种C. 9种D. 8种(2011·4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12C .23D .34二、填空题(2017·13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = . (2016·15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . (2013·14)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______.(2012·15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N (1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 . 三、解答题(2017·18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++(2016·18)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.7.(2015·18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.(2014·19)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆnii i nii tty y btt==--=-∑∑,ˆˆa y bt=-. t(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100, 110),则取x=105,且x=105的概率等于需求量落入[100, 110)的概率),求利润T的数学期望.(2012·18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.(2011·19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为2(94)2(94102)4(102),t<y,t<,t-⎧⎪=≤⎨⎪≥⎩,从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)(2018·18)18.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.学科*网2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编13.排列组合、概率统计(解析版)一、选择题 (2018·8)C(2017·6)【解析】解法一:将三人分成两组,一组为三个人,有336A =种可能,另外一组从三人在选调一人,有133C =种可能;两组前后在排序,在对位找工作即可,有222A =种可能;共计有36种可能. 解法二:工作分成三份有246C =种可能,在把三组工作分给3个人有336A =可能,共计有36种可能. (2016·5)B 解析:E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法,故选B .(2016·10)C 解析:由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .(2015·3)D 解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.(2014·5)A 解析:设 A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===. (2012·2)A 解析:只需选定安排到甲地的1名教师2名学生即可,共有1224C C 种安排方案.(2011·4)A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,故选A. 二、填空题(2017·13)1.96【解析】随机变量()100,0.02∽B X ,()()1 1.96D X np p =-=.(2016·15)(1,3)解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足; 若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3).(2013·14)8解析:从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3),共2种,所以221C 14n =,即24111142n n n n ==(-)(-),亦即n 2-n -56=0,解得n =8.(2012·15)38解析:由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为2113[1(1)]228--⨯=. 三、解答题(2017·18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;22()()()()()n ad bc K a b c d a c b d -=++++(2017·18)解析:(Ⅰ)旧养殖法的箱产量低于50kg 的频率为0.012×5+0.014×5+0.024×5+0.034×5+0.040×5=0.62,由于两种养殖方法的箱产量相互独立,于是P (A )=0.62×0.66=0.4092(Ⅱ)旧养殖法的箱产量低于50kg 的有100×0.62=62箱,不低于50kg 的有38箱,新养殖法的箱产量不低于50kg 的有100×0.66=66箱,低于50kg 的有34箱,得到2×2列联表如下:所以22200(62663438)122515.7059610410010078K ⨯⨯-⨯==≈⨯⨯⨯ 2 6.635K ∴>,所以有99%的把握认为箱产量与养殖方法有关。

相关文档
最新文档