Attached primes and Matlis duals of local cohomology modules
专业课老师英语作文范文
When I first stepped into the hallowed halls of high school, I was a bundle of nerves and excitement. Little did I know that my journey through these corridors would be marked by a profound encounter with a teacher who would not only teach me the intricacies of my major subject but also impart life lessons that would resonate with me for years to come.My major subject was Physics, a subject that I found both fascinating and daunting. The laws of nature, the principles governing the universe, and the sheer beauty of mathematical equations were all part of what made Physics a subject I was eager to delve into. However, it was also a subject that demanded precision, analytical thinking, and a deep understanding of concepts that could be quite abstract at times.Enter Mr. Smith, our Physics teacher. He was a man of few words, but when he spoke, it was with an eloquence that belied his quiet demeanor. His classes were not just about solving problems or memorizing formulas they were about understanding the why behind every what. He would often start a lesson by posing a question that seemed simple at first glance but would lead us on a journey of discovery, unraveling the complexities of the subject matter.One of the most memorable lessons was when we were studying the concept of gravity. Instead of just explaining the law of universal gravitation, Mr. Smith brought a large ball of string into the classroom. He tied one end to a chair and began to roll the ball across the floor, letting the string unravel behind it. As the ball moved, it created a spiral pattern on the floor, illustrating the path of an object in free fall under theinfluence of gravity. It was a simple yet effective demonstration that made the concept click for me.Mr. Smiths teaching style was not just about imparting knowledge it was about fostering a love for learning. He encouraged us to ask questions, to challenge assumptions, and to think critically. He would often say, The best way to learn is to teach. And so, he would assign us roles in class, where we would take turns explaining concepts to our peers. This not only helped us understand the material better but also boosted our confidence in expressing our thoughts.Beyond the classroom, Mr. Smith was a mentor and a guide. He would often stay back after school to help students who were struggling with the subject. He would patiently work through problems with them, explaining concepts in different ways until they understood. His dedication to our learning was truly inspiring.What set Mr. Smith apart from other teachers was his ability to relate Physics to reallife situations. He would often bring in articles or videos that showcased the application of Physics in various fields, from engineering to astronomy. This helped us see the relevance of what we were learning and sparked our interest in the subject.One of the most impactful lessons I learned from Mr. Smith was about the importance of perseverance. There were times when I found myself struggling with a concept or a problem, and the temptation to give up was strong. But Mr. Smith would remind us that every great discovery orinvention was the result of persistence and hard work. He would often quote Albert Einstein, saying, The only source of knowledge is experience, encouraging us to keep trying, to learn from our mistakes, and to grow from our experiences.In conclusion, my experience with Mr. Smith as my major subject teacher was transformative. He not only equipped me with a strong foundation in Physics but also instilled in me a passion for learning, critical thinking, and perseverance. His unique teaching style, dedication to our learning, and ability to relate the subject to reallife situations made him more than just a teacher he was a mentor, a guide, and an inspiration. As I continue my academic journey, the lessons I learned from him will undoubtedly serve as a compass, guiding me towards success.。
研究生英语课文AUnit1翻译(跨文化交流中的跘脚石)
Unit 1 跨文化交流中的绊脚石1.为什么我们与来自其他文化的人们的交流总是充满了误会,让人感到沮丧呢?令很多人奇怪的是,即使怀着良好的愿望、使用自己认为是友好的方式,甚至有互利的可能性,也似乎都不足以保证交流的成功。
有时候,出现排斥现象正是因为一方所属的文化群体团体是“不同”的。
在这个国际舞台发生重大变化的时刻,探讨为什么尝试交流的结果却令人失望的原因是必要的,这些原因实际上是跨文化交流中的绊脚石。
2.相似性的假设为什么误解或反对会产生呢?这个问题的一个回答就是,大部分的人天真地认为世界上的人有足够的相似之处,可以让我们成功地交流信息或感受,解决共同关注的一些问题,加强商业关系,或者只是产生我们所希望产生的印象。
所有的人都会生儿育女,组成家庭或社会,发展一种语言以及适应他们周围环境, 这种倾向特别具有欺骗性,因为它带来了一种期望,这种期望就是这些行为的形式以及围绕这些行为的态度与价值观念将是相似的。
相信“人就是人”和“我们内在本质是相似的”,这让人感到心安理得,但是下定决心去寻找证据却只会令人失望。
3.力求证明达尔文关于面部表情是共同的这一理论的跨文化研究给人极大的希望,研究者发现脸部的某些看得见的形状,即因愤怒、恐惧、惊讶、悲伤、厌恶、幸福而紧缩的肌肉组合,我们人类各成员都是一样的。
但是这似乎无济于事,只要我们意识到一个人生长的文化决定了这种情感是否会表露或压抑,决定了在何种场合和多大的程度上会表露或压抑。
带来这种情绪感受的情形也因文化而异,例如:由于崇拜的文化信仰不同,一个心爱的人死亡可能带来欢乐、悲哀或其他情感。
4.因为似乎没有普遍的人性可以作为自动理解的基础,所以我们必须把每次交往当作个别案例来处理,寻求任何共同的认知和交流方法并以此作为出发点。
“脱冕的同貌人”:20世纪西方“戏仿型”小说主人公的“反英雄”形象
‘齐齐哈尔大学学报“(哲学社会科学版)2023年4月Journal of Qiqihar University(Phi&Soc Sci) Apr.2023 收稿日期:2022-11-16 作者简介:程军(1975-)男,副教授,博士㊂主要从事西方文艺理论和美学研究㊂胡嘉琪(2002-),女,在读学生㊂主要从事文学研究㊂ 基金项目:2019年度国家社科基金一般项目:后现代主义文学戏仿研究(19BZW034)脱冕的同貌人”:20世纪西方 戏仿型”小说主人公的 反英雄”形象程 军,胡嘉琪(安徽财经大学文学院,安徽蚌埠233030)摘 要:作为一种依托于经典叙事作品的 二手文本”,西方现代 戏仿型”小说通过对源文本中英雄式主角进行降格处理,获得了一个与古代原型平行并置的现代对应角色 一个 脱冕的同貌人”或 反英雄” 作为主人公,来实现独特的作品意旨和艺术效果㊂尽管因其形象的滑稽可笑而常常成为作者和读者嘲弄和讥讽的对象,但这些被脱冕或降格的反英雄式的主人公却并非被彻底否定的反面人物,而是一些集双重性格或二元品格于一身的正反同体式的悲喜剧角色㊂关键词:脱冕的同貌人;戏仿型小说;主人公;反英雄中图分类号:I106.4 文献标识码:A 文章编号:1008-2638(2023)04-0089-05ADecrowning Double ”:The Anti -hero ”Image of Protagonistin Modern Western Parodistic NovelsCHENG Jun ,HU Jia -qi(School of Literature,Anhui University of Finance &Economics,Bengbu Anhui,233030) Abstract :As a kind of second-hand text”based on the previous classical narrative works,modern western parodistic novelsdegrade the heroic protagonists in its source texts and gets their modern correspondent protagonists- decrowning double”or anti-he⁃ro”-parallel to their ancient models,in order to achieve unique intention and artistic effect.Although often being scorned and ridiculedby authors and readers because of their funny image,these decrowned or degraded anti-heroic protagonists are not the completely nega⁃tive villain,but the ambivalent,tragicomic characters of double personalities,two faces or dual characters. Key words :decrowning double;parodistic novels;protagonist;Anti-hero 戏仿(parody,又常被译为 讽拟”㊁ 戏拟”或 滑稽模仿”等),是一种别具特色的文艺创作手法,常常通过对源文本((source text))进行反讽㊁戏谑式的模仿与改写来创造新的作品㊂在20世纪西方的文学实践来看,戏仿的大量运用是一个非常重要的创作现象,正如著名后现代批评家哈琴(L.Hutcheon)所言, 这个世纪(20世纪)的戏仿是构建文本形式与主题的一种主要方式㊂”[1]2同样,在20世纪西方小说创作领域也是如此㊂从西方现代主义和后现代主义小说创作实绩来看,许多小说家都把对古代史诗㊁神话㊁传奇㊁童话等经典叙事作品(或经典叙事体裁)的戏仿作为构建其作品情节㊁结构和主题的基本手段(我们把这类作品称为 戏仿型”小说),从而实现自己的创作意图和特殊的艺术效果,并由此创作出许多在20世纪西方文坛上享有盛誉的伟大小说,包括像‘尤利西斯“(乔伊斯)㊁‘约瑟夫和他的兄弟们“(托马斯㊃曼)㊁‘我弥留之际“(福克纳)㊁‘羊童贾尔斯“(约翰㊃巴斯)㊁‘洛丽塔“(纳博科夫)㊁‘白雪公主后传“(巴塞尔姆)㊁‘赫索格“(贝娄)㊁‘五号屠场“(冯内古特)㊁‘小世界“(戴维㊃洛奇)等作品㊂从文体特征上看,这种 戏仿型”小说都是依托于源文本(多为前代经典叙事作品)的二度创作形式或 二手文本”(second-hand text)㊂与源文本相比,它们通常具有自己独特的文体结构㊁创作机制和叙述逻辑㊂而本文在这里主要关注的,则是此类小说在作品 主人公”(protagonist)的塑造㊁定位与处理上与源文本对立㊁相反的逻辑,以及由此而表现出来的与源文本截然不同的主题意旨㊁气质格调和艺术效果㊂一㊁20世纪之前西方文学作品中 英雄式”主人公的衰落20世纪西方 戏仿型”小说所依托的源文本中的主人公大多是一些高贵㊁崇高㊁伟大的 英雄”式人物,如古代史诗或神话中的神灵㊁英雄,浪漫传奇故事中的骑士,童话中的王子或真实历史中的帝王㊁圣贤㊁领袖等一些 高模仿”(high mimetic,弗莱语)模式的主人公;而在这些源文本的现代戏仿作品中,通常会在主人公的形象定位和性格塑造方面按照一种相反的逻辑重新设计,对源文本中的 英雄”式主人公进行一种 降格式”(degradative)的处理㊂当代著名批评家巴赫金曾经指出,戏仿是一种典型的 狂欢化”(carnival)的体裁,是一种 令人开心的降格游戏”[2]97,集中表现为对源文本中被过于理想化㊁崇高化的主角进行降格,将其 脱冕”(Decrowning), 被放到当今现实的水平上加以描绘,放到了当今的日常生活环境里,用今天的低俗语言来描绘”[3]524,从而让古代英雄变得 现代化”㊁ 世俗化”甚至 粗鄙化”㊂经过这番降格处理后,我们在这些戏仿作品中就几乎看不到那些拥有高贵的品格㊁伟大的理想㊁执着的信念㊁坚定的意志㊁行动的热情以及超人的力量(智力㊁体力)的英雄式主人公,取而代之的则是往往一些充满物质㊁肉体欲望的世俗㊁平庸甚至低级委琐的小人物㊂于是, 反英雄”(anti-hero)在这里代替了前作中的 英雄”成了小说的主角㊂当代学者亨克㊃阿尔岑(H.Aertsen)指出,在一部戏仿之作中,主人公往往会以一种粗俗的(churl)或反英雄的形象出现[4]133;巴赫金也指出, 讽刺性的模拟(parody),意味着塑造一个脱冕的同貌人(decrowning double)”[5]167,都直接点明了戏仿作品中主人公的反英雄特性㊂通过戏仿对源文本中英雄式主角做反英雄化处理,这种手法的运用在西方小说史上早有先例,比如,塞万提斯创作的戏仿中世纪骑士小说的巨著‘堂㊃吉诃德“㊂法国学者勒内㊃基拉尔(Rene Girard)曾断言,西方小说所有的概念都已经在塞万提斯的作品中初露端倪[6]54,同样,塞万提斯对中世纪骑士传奇(‘堂㊃吉诃德“的源文本)中主人公的反英雄化处理也开近代小说的英雄 脱冕”之先河㊂按照一般读者惯常的阅读期待,骑士传奇中的主角多出身高贵,不是王公贵族,就是国王㊁将军,但塞万提斯戏仿之作中的主人公堂㊃吉诃德(他以高贵的骑士自许)只是一个小村镇的破落乡绅,出身贫苦,地位低贱;在传奇中,骑士往往被描绘得英武神勇㊁年轻俊朗㊁相貌堂堂,而堂㊃吉诃德骑士则年逾五旬,形销骨立㊁身体羸弱;传奇中的骑士通常都有一套光鲜华贵的装备和行头 高头大马㊁金盔银甲㊁宝剑神枪等,而堂㊃吉诃德则骑着一匹皮包骨头的瘦马 驽骍难得”,头戴理发师的铜盆改制的 曼布里诺头盔”,手持一把据说是祖上留传下来的锈迹斑斑的破剑;传奇中塑造的骑士通常都英勇无比㊁所向披靡,再加上神灵护佑,虽然迭遇凶险㊁历经磨难,也总能逢凶化吉并最终战胜强敌而建立辉煌的功绩;而堂㊃吉诃德则在仗义行侠过程中先被一骡夫打翻在地而狼狈逃跑,接着又在大战风车时被摔得鼻青脸肿,后来又在苦修赎罪时被折磨的赤身裸体㊁面黄肌瘦㊁萎顿不堪㊂另外,在骑士传奇中,为了突出主人公崇高的㊁近乎神性的理想化形象,通常极少去描述其吃喝拉撒等日常生活琐事,而塞万提斯则不厌其烦地详细描绘堂㊃吉诃德的日常衣食起居: 吃的大锅杂烩里常放的是牛肉,而不是羊肉;晚餐几乎顿顿是葱头拌肉末,星期六炖点羊蹄羊骨,星期五只吃扁豆,星期日添上一道鸽肉, ㊂”[7]12通过对英雄骑士的一番降格的㊁漫画化的处理,塞万提斯为我们生动展示了一个日常的㊁世俗的㊁跌落凡尘的伪骑士形象,从而与源文本中高贵的㊁理想化的㊁充满神性光辉的英雄式主人公形成鲜明的对照和巨大的反差㊂文学作品中英雄式主人公的缺位,在20世纪的西方已成为一种典型的文坛现象和创作趋势㊂20世纪是一个平庸㊁世俗的 散文”时代,普通的平民大众开始登上历史舞台并逐渐走向中心,而传统的英雄和大写的 人”则日益萎缩和边缘化㊂对此,现代德国大哲雅斯贝尔斯曾感叹道: 在今天,我们看不见英雄㊂我们甚至愧于使用这一字眼㊂历史性的决定不再由孤立的个人作出,不再由那种能够抓住统治权并且孤立无援地为一个时代而奋斗的人作出㊂”[8]162在这样一个社会语境之下,英雄式的伟大人物再也不可能成为时代的偶像和主角,再也没有了叱咤风云㊁一呼百应的气魄和领导历史潮流的能力㊂与现代文化中的主体或 人”的日益逼仄的境遇走向几乎同步,英雄式的主人公在现代小说中的地位也日益衰微㊂传统小说中将英雄人物作为绝对主角并给予热情无度的褒扬和礼赞的做法,在现代小说中已经变得不合时宜㊂这一趋势实际上早在19世纪晚期就已初现端倪㊂自然主义大作家左拉就敏锐地意识到在其生活的时代表现普通生活的一般过程”成为小说创作的 基本原则”,主人公已不可避免地走向了凡俗㊁普通的日常生活世界,因此小说家在他们的小说中 必须去掉 英雄’”,必须抛弃这种 过度夸大了的人物,木偶化的巨人㊂”[9]470这种趋势发展到20世纪,小说中英雄式主人公缺位的现象日趋明显,已逐渐形成一种强大的创作潮流㊂对此现象,批评家弗莱(Northrop Frye)的解释是,20世纪文学正处于文学发展历史诸阶段的 反讽”阶段,在此阶段作家们虽然仍需要依赖 神话”来进行创作,但却往往是通过 反讽”㊁戏仿 神话”来解构它们㊂而在这种 反讽”戏仿模式主导下创作出来的作品中,主人公往往 比我们自己在能力和智力上低劣”[10]5,是一群常被人们轻蔑㊁嘲笑的软弱幻灭型的人物,一种典型的 反英雄”㊂弗莱接着强调, 在英雄已逝的舞台上,反英雄,即在陌生孤寂的世界里显得渺小无能的小人物,正扮演着主角”[11]22,已成为现代文学的核心角色㊂这一观点是对20世纪 戏仿型”小说主人公的类型特征所做出的最恰当的规定㊂二㊁20世纪西方 戏仿型”小说主人公的反英雄形象 从现代小说到后现代小说西方20世纪 戏仿型”小说对主人公进行 反英雄”化处理的常规做法,是设置一个和源文本中 英雄式”的古代主人公平行并列的 降格”版的现代对应角色作为小说主人公,来实现对前者的戏仿㊂这一角色与古代英雄表面相似但骨子里却截然不同,他/她是一个经过降格㊁变形的 山寨”版 英雄”,按照巴赫金的说法,是对应于前者的一个 脱冕的同貌人”,是古代英雄的一个漫画化的形象,或者说是一个披着英雄外衣的 小丑”㊂他/她多多少少拥有古代英雄某09齐齐哈尔大学学报(哲学社会科学版) 方面的高贵品格和伟大理想,但却往往缺乏实现这种理想所必需的坚定的意志㊁行动的热情和超出凡人的力量(当然也没有了神的眷顾和帮助);他/她所秉持的理想和英雄观念固然美好,但随着时移势迁已经变成了不合时宜的过时之物,失去了现实可行性;他/她多少能够意识到自己所负有的与古代英雄相似的崇高使命或责任并试图用传统的理想主义信念改变当代现实,恢复往日英雄的伟业和荣光,但却往往在残酷扭曲的现实面前寸步难行㊁处处碰壁,陷入堂㊃吉诃德式的荒诞㊁尴尬的可笑境地,遭遇与古代英雄的赫赫功绩完全相反的惨败下场;他/她本该像古代英雄一样获得民众的尊重和敬仰,然而在现实社会中却由于其自身的种种弱点和英雄气质的缺失而成为他人嘲笑甚至同情的对象㊂我们以20世纪的经典戏仿作品为例来说明这个问题㊂乔伊斯的现代 戏仿型”小说‘尤利西斯“(其源文本是希腊史诗‘奥德赛“)就是这种将主人公 反英雄”化的佳例,其中的主人公布鲁姆是希腊英雄奥德修斯的现代版的 脱冕的同貌人”㊂在‘奥德赛“中,主角奥德修斯是一位人神合一的英雄,在史诗中被誉为 猛勇的狮子”㊁ 足智多谋的奥德修斯”㊂他功业显赫,事迹辉煌:在特洛伊战争中献出木马计里应外合攻破特洛伊城池;在率领同伴归国途中,先后遭遇独目巨人㊁海神㊁魔女㊁海妖㊁海怪㊁神女等妖魔神怪的重重阻挠,历经十年,历尽各种难以想象的艰辛和危难,孤身一人返归故土;返乡回家后,又同儿子一起设计杀死纠缠自己妻子并挥霍自己家财的求婚者,最后全家得以团圆㊂奥德修斯的诸多事迹,体现出他的英雄本色和各种可贵的美德:足智多谋㊁英勇无畏㊁意志坚定㊁爱憎分明㊁善良忠贞㊂而在‘尤利西斯“中,主人公布鲁姆(他以18个小时的都柏林漫游,对应了奥德修斯的十年海上历险)则是一个现代大众社会的庸人典型㊂在事业上,他才能平庸,也无一技之长,虽做过不少工作,但至中年仍一事无成,只能靠做小广告经纪人来养家糊口㊂在社会和政治地位上,他作为一个外来的犹太人,属于当时都柏林社会的边缘人群和 异类”,常常不得不战战兢兢地小心过活,对别人种族歧视的言论忍气吞声,遭人白眼也不敢反抗㊂在家庭生活中,布鲁姆也颇不如意:儿子早年的不幸夭折,给其心灵蒙上了深重的阴影;因收入不如妻子莫莉,使得他更多地担任照顾家庭的 家庭妇男”的角色;长期的性无能使得妻子有了外遇,他却甘戴 绿帽”,甚至明知妻子在家与情人约会时,还主动为他们提供 方便” 离开自己的家外出漫游㊂‘尤利西斯“中还通过大量的细节描写,不厌其烦地对布鲁姆一天所经历的纷繁杂乱的日常琐事㊁吃喝拉撒的生理活动,以及各种各样荒诞不经㊁低俗龌龊的心理活动进行详尽无遗的展示,以凸显出主人公的庸人形象和整个世纪初爱尔兰社会的庸俗气质㊂像下面的一段文字:布卢姆先生吃起牲口和家禽的下水来,真是津津有味㊂他喜欢浓郁的杂碎汤㊁有嚼头的胗㊁ ㊂他尤其爱吃在烤架上烤的羊腰子㊂那淡淡的骚味微妙地刺激着他的味觉㊂[12]117通过对布鲁姆喜食动物内脏(在西方文化中,动物下水是污秽不洁之物,属于应抛弃的废物之列)的特殊嗜好的描写,乔伊斯将一个贪图口腹之欲㊁看重世俗享受㊁生活品味低劣的俗人形象生动鲜活地展现在读者面前㊂除了像乔伊斯这样的现代小说家之外,20世纪后期的后现代小说家更喜欢采用类似于‘尤利西斯“的降格手法,通过设置一个当代反英雄式的对应角色作为主人公,来完成对前作中英雄主角的 脱冕”,像后现代著名小说家巴塞尔姆㊁索尔㊃贝娄㊁冯内古特等人,都莫不如此㊂在‘白雪公主后传“中,巴塞尔姆设置了一个现代都市的 庸人”保罗与格林童话‘白雪公主“中高贵的王子 白雪公主的拯救者 相对应:他虽然具有贵族血统,也确知自己负有拯救现代 白雪公主”的责任,但面对这个崇高的使命,他却不断选择逃跑和躲避,为此躲藏到修道院,甚至发明一个 远距离早期警报系统”来偷窥现代 白雪公主”的一举一动以履行自己保护责任,就是始终不敢将拯救行动付诸实践,最后落了个误饮毒酒倒地身亡的可笑下场㊂在巴塞尔姆的另一部戏仿作品‘玻璃山“中,在源文本(同名童话)中的那个勇敢机智㊁历尽艰险并最终成功攀上玻璃山顶救出公主的青年英雄,在戏仿作品中的现代对应角色变成了一个虽然装备了一套整齐的攀岩设施(使用了诸如登山钉㊁管工橡皮粘等辅助工具)却仍然半天也挪动不了一步的毫无英雄气概的胆小鬼㊂另外,在索尔㊃贝娄的小说‘赫索格“中,源文本(‘圣经“中的摩西事迹)的主人公摩西是上帝的代言人和其旨意的执行者,是一个无所不能的领袖㊁先知㊁民族英雄,他不远万里㊁历尽艰辛领导以色列人回归故土,立下不世功勋㊂而这位伟大英雄的现代对应角色赫索格却是一个陷于巨大精神危机的现代西方知识分子的典型形象:面对现代社会混乱多元的价值观念,他找不到自己安身立命的生命支点和精神支柱,像一个悬空吊着的 晃来晃去的人”;虽然坚守自己的高尚理想,秉持传统人道主义的信念,却只是整天沉醉于空想和冥思而始终不敢付诸实际行动,是一个善于思考㊁拙于行动的 意志薄弱㊁满怀希望的大傻瓜”,一个 好心肠”的懦弱无能的浪漫主义者㊁理想主义者㊂类似地,库尔特㊃冯内古特的小说‘五号屠场“的主人公毕利也是‘圣经“中耶稣的现代 脱冕的同貌人”,耶稣作为伟大的上帝之子㊁世间万民的救世主和替罪羊,通过其崇高的人间赎罪行动和死而复生以拯救尘世人类;在‘圣经“中,耶稣神通广大㊁无所不能,处处显露神迹,显示上帝的神圣万能,得以顺利传播上帝的福音㊂而毕利虽然具有耶稣的同样的身份 随军牧师的助理,却扮演一个小丑式的 多余人”的角色,一个不仅无法普度众生而且连自身都难保的可怜无助的小人物㊂他外表和行为都十分滑稽可笑,被德国士兵笑称为 整个第二次世界大战中所看到的最令人发笑的人之一”[13]71;在战争中,他只是胆怯懦弱㊁无精打采㊁孤立无助的小卒子,既不能丝毫影响战争的走势,也无法抚慰被俘战友的精神创痛,还往往被战友们取笑和欺辱㊂显然,在这个 新生的基督”毕利的身上,神圣万能的耶稣的光辉形象已被消磨殆尽,其英雄气质已荡然无存㊂三㊁20世纪西方 戏仿型”小说主人公 反英雄”形象的双重意义所有的这些20世纪西方 戏仿型”小说中的被 脱冕”的主人公的 反英雄”形象,给读者带来的直接阅读反应就是一种滑稽可笑㊁荒诞不经的喜剧感,因为无论是对英雄的19 第4期 脱冕的同貌人”:20世纪西方 戏仿型”小说主人公的 反英雄”形象脱冕”㊁降格,还是对他们的世俗化㊁粗鄙化描写或处理,往往都很容易产生一种笑谑㊁滑稽的喜剧效果㊂德国当代美学家耀斯(H.R.Jauss)指出,喜剧一般带给读者的心理效应并不会像史诗或悲剧那样会产生一种对其中的英雄人物的 钦慕式认同”,它只会让读者产生一种 反讽式认同”,其中最常用的方法就是对主人公加以嘲讽,把他/她从史诗般的理想中降回到日常生活的现实中㊂[14]293西方20世纪的 戏仿型”小说正是通过降格和 脱冕”手段把古代史诗㊁神话中理想化的崇高英雄人物降低到普通㊁平凡的小人物水平,使普通读者不再把他们当做高高在上的崇拜来偶像,而是把他们看作与自己一样的普通人,与他们近距离接触并展开亲昵的交往和对话,甚至对他们施以讥讽㊁嘲笑,由此获得一种放松感㊁优越感,进而与小说主人公获得认同㊂这种认同体验往往会使读者获得一种从权威的沉重压力下解脱的快感和愉悦轻松的感受,而这些都是引发笑声的源泉㊂对此,巴赫金指出: 脱冕,亦即把事物从遥远的前景中移近,消除史诗的距离, 把事物打破,使它裸露(扒去等级装束),这样一来光着身子的对象就显得好笑了㊂”[3]527值得注意的是,被脱冕的 反英雄”形象之所以能够产生喜剧性效应,还需要以源文本中的英雄式主人公作为参照而产生的对比效果才能得以真正实现㊂也就是说,这些 反英雄”人物所以让人发笑,是源自于这些人物实际的差劲㊁拙劣的表现与读者对他们的高期望值(崇高的品质㊁伟大的人格等)所形成的强烈对比和反差㊂正如耀斯所言, 喜剧主角本身并不引人发笑,只是把他置于某些期望视域中时才显得滑稽可笑,他的滑稽可笑是因为他否定了这些期望或者规范㊂”[14]291因此,上述诸多小说中的反英雄主人公所带来的笑声和喜剧性,实际上都来自于读者精神上摆脱压抑㊁解除禁锢之后而获得的解脱㊁自由而快乐的笑声,因而具有一种精神解放的意义㊂需要强调的是,戏仿作品中对源文本中英雄式主人公的降格或脱冕,并不是对传统英雄及其高贵品格的单纯否定,在其自身之内同时还包含着肯定㊁创造㊁变革等积极因素,因而具有两面性或双重性的特征㊂如同狂欢节中的脱冕和加冕(当移植到文学作品中时就显示为一种脱冕型结构)是合二为一㊁不可分割㊁相互转化的双重仪式一样,戏仿作品中的脱冕也具有双重性㊁双面性,同加冕不可分离㊂[5]163小说中把这些反英雄人物与古代英雄进行平行类比,正是因为二者之间存在一定相似㊁相像之处,具有一定的可比性㊂这种平行类比,实际上就是首先对这些 反英雄”人物的一种 加冕”,使其经历一个向上的运动和 升格”的过程,赋予他们 英雄”的外衣㊁高贵的冠冕和耀眼的光环,然后再通过对其内在 反英雄”本质的暴露,让这些英雄性的光环㊁冠冕和象征物成为虚有其表㊁大而无当的空壳和伪装,使得这些人物如同穿着国王外衣的乞丐那样显得怪诞反常㊁滑稽可笑,从而让他们最终走下神坛㊂这样看来,20世纪西方的 戏仿型”小说中所有对源文本中英雄式主人公的 脱冕”㊁降格,也就不是对他们的简单㊁绝对的否定,而是通过对他们进行世俗化㊁卑琐化的处理来暴露出这些英雄人物形象本身的局限性和相对性,是从世俗的㊁现时代的角度来重新审视他们,破除长期笼罩在他们身上的虚幻的浪漫主义耀眼光环,让这些为传统意识形态所神化㊁理想化的英雄恢复其人性化㊁世俗化的本来面目㊂在前面我们所举的 戏仿型”小说主人公身上, (他们所对应)古代英雄的 神”性气质几乎已荡然无存;像当代大众社会中的凡夫俗子一样,他们身上展现出来的更多的是各种毛病㊁缺陷和弱点,比如布鲁姆的庸俗㊁保罗的胆怯㊁赫索格的迷惘㊁毕利的懦弱等,但恰恰正因为这些弱点和缺陷,让他们显得更接地气㊁更易亲近㊁更具现实性,是与我们读者一样的普通而真实的 人”,而不再是一个理想化的㊁近乎完美的 神”㊂于是,在这些 戏仿型”小说中我们可以发现,被脱冕或降格的反英雄式主人公虽然常常会成为嘲笑㊁讥讽的目标,但同时他们又并不是被彻底否定的反面人物㊂尽管作者揭露了他们身上的许许多多的缺陷㊁弱点㊁恶习或可笑之处,但却没有把他们刻画成大奸大恶的㊁㊁一无是处的负面角色;相反,他们大多是一些 好人”,甚至还多少拥有其英雄原型的某些优秀的品质㊁崇高的理想或高尚的情操,比如像在布鲁姆身上表现出来的面对困境的积极态度和博爱悲悯的情怀,保罗对自己的拯救公主使命的最终承担,赫索格对传统人道主义信仰的坚守以及在毕利㊃皮尔格里姆身上所体现出来渴望拯救人类和世界的伟大悲悯情怀等等,都能让读者依稀看到其古代原型的影子㊂于是,在经历了类似于狂欢节仪式的具有 双重性”的 脱冕”和降格手法的处理之后, 戏仿型”小说中主人公的形象也相应获得了双重性质,因而成为一个狂欢体(戏仿就是一种典型的狂欢体)形象, 这种形象力图在自身中能包括事物形成中的两极,或对照事物中的双方,并且把他们结合起来,如诞生/死亡㊁少年/老年㊁上/下㊁正面/背面㊁夸奖/斥骂㊁肯定/否定㊁悲剧性/喜剧性,如此等等㊂”[2]236这是一些 正反同体”的复杂多维的人物形象,常常集双重人格㊁两副面孔或矛盾对立的品格于一身㊂他们身上的双重性或矛盾性品质的表现是多方面的:他们既具有 原型”的某些英雄品格,同时又是彻彻底底的 反英雄”;他们既坚持自己拯救人类和世界的理想,同时又没有实现它们的自信和能力;他们既追慕古代英雄的崇高行为,渴望恢复他们往日的荣光,同时又因为时代的转变而沦落为对英雄的一种拙劣模仿;他们既渴望干预㊁改变同时代的社会现实,同时又是 生活在别处”的精神流浪者;他们既是思想的巨人㊁英雄,同时又是行动的矮子和现实的小丑;他们既无法改变污浊㊁庸俗的现实世界,同时又不愿与这个世界同流合污;他们既是古代人(在精神归属方面),又是现代人;他们既老又新,既传统又现代;他们既高尚又庸俗,既勇敢又怯懦,既浪漫又现实;他们既可爱可敬,同时又滑稽可怜;他们既是遭人嘲弄㊁讥笑的喜剧性人物,同时又扮演着让人唏嘘㊁同情的悲剧性角色㊂发生在这些 反英雄”人物身上的都是一种堂㊃吉诃德式的当代悲剧,根源在于其坚守的传统价值和当今世俗价值之间的错位㊁冲突㊂他们似乎是一群被动穿越到现代社会的古典 英雄”:同样的拯救人类和世界的理想与行为,在古典的英雄时代就显得是那么崇高悲壮,让人感动,受人敬仰;而在英雄逝去的现代世俗社会中,这些观念和行为就显得是那么的不合时宜而成为众人的笑柄㊂时代语境的巨大变化让原来极其伟大㊁崇高的理想和行动变成了喜剧性十足的可笑念头和荒诞行径㊂对于这样的双重性的复杂角色,我们不应该只看到或强调其中的某一方面,而完全忽视和否29齐齐哈尔大学学报(哲学社会科学版) 。
高中英语外研社选修六模块五 课文原文译文
You cannot imagine the horror of that face! I had seen him when he was unfinished – he was ugly then. But when he stood up and moved, he became a creature from my worst nightmares.
弗兰肯斯坦的怪物 第一部分 《弗兰肯斯坦》的故事 弗兰肯斯坦是瑞士日内瓦一位年轻科学家的名字。 还在上大学时,他就发现了怎样创造生命的秘密。 利用死人的骨头,他制造出一个像人的怪物,并赋 予了它生命。那个怪物异乎寻常地高大、强壮,并 且极其丑陋,所有的人见了它都感到害怕。但是, 怪物却有着人类的智力和情感(emotion),并学会了 说话。由于找不到任何朋友,他感到非常孤独和难 过,并开始憎恨创造他的那个人——弗兰肯斯坦。
and I thought I held the body of my dead mother in
my with fear. At that same moment, I saw the creature that I had created. He was standing by my bed and watching me. His mouth opened and he made a sound, then seemed to smile. I think he wanted to speak, but I did not hear. He put out a hand, as if he wanted to keep me there, but I ran out of the room. I hid in the garden and stayed there till morning, terrified by what I had done. Again and again I thought, ―I wish I had not done this terrible thing, I wish I was dead!‖
现代研究生英语教程(外研社)U3_Writing
外语教学与研究出版社
Like the real-life apartment, the impossible expensive setting of her day-dreams strengthens her unhappiness and her avoidance of reality. All the rooms of her fantasies are large and expensive, draped in silk, and filled with nothing but the best furniture. With dreams like these filling her mind, her despair is even greater. Ironically, this despair, together with her inability to live with reality, brings about her undoing. It makes her agree to borrow the necklace (which is just as unreal as her daydreams of wealth), and losing the necklace drives her into the reality of giving up her apartment and moving into an attic flat. Also ironically, the attic flat is related to the coarsening of Mathilde's character while at the same time it brings out her best qualities of cooperativeness and honesty. Maupassant emphasizes the drudgery of the work she endures to maintain the flat, such as walking up many stairs, washing floors with large buckets of water, cleaning greasy and encrusted pots and pans, taking out the
Some aspects of normal development in the colonial ciliate zoothamnium alternans(生活史重要文献)
water level in the Petri dish was adjusted by a slight turn of the dish on the slanted microscope stage until the surface film flattened the
INTRODUCTION
This is the first of a series of inquiries into some of the problems of organization and regulation in a colonial protozoan of a rather special
FIG.
1.
A
relatively
mature
colony
of
Zoöthamnium
alternans
showing
the
characteristic arrangement of the zoOids and branches. Axial microzoöids on branches E, G, L, and N are differentiating into ciliospores; one of them at E is in an advanced stage of metamorphosis, almost ready to break away from the parent colony. Approximately X 100. GENERAL FORM OF THE MATURE COLONY
AVVIO RAPIDO Router mobili 5G 安装指南说明书
Per caricare la batteria, collegare il cavo USB al router mobile, quindi collegarlo a una presa a muro utilizzando l'adattatore di alimentazione CA o una porta USB del computer.Assicurarsi che l'orientamento della scheda nano SIM coincida con l'orientamento indicato sull'etichetta del dispositivo e inserirla delicatamente, quindi posizionare la batteria e il coperchio posteriore.NOTA: utilizzare solo le dita per inserire o rimuovere la scheda nano SIM. L'utilizzo di altri oggetti potrebbe danneggiare il dispositivo.1. COM'È FATTO IL DISPOSITIVO2. INSTALLAZIONE DELLA SIM E DELLA BATTERIAIl router mobile viene fornito con i seguenti componenti:• Router mobile Nighthawk® M6 o M6 Pro 5G*• Coperchio della batteria • Batteria• Cavo USB Tipo C• Alimentatore (varia in base all’area geografica)• Adattatori con presa Tipo C (per la maggior parte dei Paesi europei)•Adattatori con presa Tipo G (per il Regno Unito)*Illustrazioni del modello Nighthawk M6 per scopi illustrativi.antenna esterna (TS-9)antenna esterna (TS-9)USB Tipo CEthernetCONFORMITÀ NORMATIVA E NOTE LEGALIPer informazioni sulla conformità alle normative, compresala Dichiarazione di conformità UE, visitare il sito Web https:///it/about/regulatory/.Prima di collegare l'alimentazione, consultare il documento relativo alla conformità normativa.Può essere applicato solo ai dispositivi da 6 GHz: utilizzare il dispositivo solo in un ambiente al chiuso. L'utilizzo di dispositivi a 6 GHz è vietato su piattaforme petrolifere, automobili, treni, barche e aerei, tuttavia il suo utilizzo è consentito su aerei di grandi dimensioni quando volano sopra i 3000 metri di altezza. L'utilizzo di trasmettitori nella banda 5.925‑7.125 GHz è vietato per il controllo o le comunicazioni con sistemi aerei senza equipaggio.SUPPORTO E COMMUNITYDalla pagina del portale di amministrazione Web, fare clic sull'icona con i tre puntini nell'angolo in alto a destra per accedere ai file della guida e del supporto.Per ulteriori informazioni, visitare il sito netgear.it/support per accedere al manuale dell'utente completo e per scaricare gli aggiornamenti del firmware.È possibile trovare utili consigli anche nella Community NETGEAR, alla pagina /it.GESTIONE DELLE IMPOSTAZIONI TRAMITE L'APP NETGEAR MOBILEUtilizzare l'app NETGEAR Mobile per modificare il nome della rete Wi-Fi e la password. È possibile utilizzarla anche per riprodurre e condividere contenutimultimediali e accedere alle funzioni avanzate del router mobile.1. Accertarsi che il dispositivo mobile sia connesso a Internet.2. Eseguire la scansione del codice QR per scaricare l'appNETGEAR Mobile.Connessione con il nome e la password della rete Wi-Fi 1. Aprire il programma di gestione della rete Wi‑Fi deldispositivo.2. Individuare il nome della rete Wi‑Fi del router mobile(NTGR_XXXX) e stabilire una connessione.3. Only Connessione tramite EthernetPer prolungare la durata della batteria, l'opzione Ethernet è disattivata per impostazione predefinita. Per attivarla, toccare Power Manager (Risparmio energia) e passare a Performance Mode (Modalità performance).4. CONNESSIONE A INTERNETÈ possibile connettersi a Internet utilizzando il codice QR del router mobile da uno smartphone oppure selezionando manualmente il nome della rete Wi‑Fi del router e immettendo la password.Connessione tramite codice QR da uno smartphone 1. Toccare l'icona del codice QR sulla schermata inizialedello schermo LCD del router mobile.NOTA: quando è inattivo, lo schermo touch si oscura per risparmiare energia. Premere brevemente e rilasciare il pulsante di alimentazione per riattivare lo schermo.3. CONFIGURAZIONE DEL ROUTER MOBILETenere premuto il pulsante di accensione per due secondi, quindi seguire le istruzioni visualizzate sullo schermo per impostare un nome per la rete Wi‑Fi e una password univoci.La personalizzazione delle impostazioni Wi‑Fi consente di proteggere la rete Wi‑Fi del router mobile.Impostazioni APNIl router mobile legge i dati dalla scheda SIM e determina automaticamente le impostazioni APN (Access Point Name) corrette con i piani dati della maggior parte degli operatori. Tuttavia, se si utilizza un router mobile sbloccato con un operatore o un piano meno comune, potrebbe essere necessario immettere manualmente le impostazioni APN.Se viene visualizzata la schermata APN Setup Required (Configurazione APN richiesta), i dati APN dell’operatore non sono presenti nel nostro database ed è necessario inserirli manualmente. Immettere i valori fornitidall’operatore nei campi corrispondenti, quindi toccare Save (Salva) per completare la configurazione.NOTA: l’operatore determina le proprie informazioni APN e deve fornire le informazioni per il proprio piano dati. Si consiglia di contattare il proprio operatore per le impostazioni APN corrette e di utilizzare solo l’APN suggerito per il piano specifico.Schermata inizialeAl termine della configurazione, il router visualizza la schermata iniziale:Wi‑FiPotenza Carica Rete Codice QR connessione rapida Wi‑FiNome e Wi‑FiIcona del codice QR。
OSHA现场作业手册说明书
DIRECTIVE NUMBER: CPL 02-00-150 EFFECTIVE DATE: April 22, 2011 SUBJECT: Field Operations Manual (FOM)ABSTRACTPurpose: This instruction cancels and replaces OSHA Instruction CPL 02-00-148,Field Operations Manual (FOM), issued November 9, 2009, whichreplaced the September 26, 1994 Instruction that implemented the FieldInspection Reference Manual (FIRM). The FOM is a revision of OSHA’senforcement policies and procedures manual that provides the field officesa reference document for identifying the responsibilities associated withthe majority of their inspection duties. This Instruction also cancels OSHAInstruction FAP 01-00-003 Federal Agency Safety and Health Programs,May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045,Revised Field Operations Manual, June 15, 1989.Scope: OSHA-wide.References: Title 29 Code of Federal Regulations §1903.6, Advance Notice ofInspections; 29 Code of Federal Regulations §1903.14, Policy RegardingEmployee Rescue Activities; 29 Code of Federal Regulations §1903.19,Abatement Verification; 29 Code of Federal Regulations §1904.39,Reporting Fatalities and Multiple Hospitalizations to OSHA; and Housingfor Agricultural Workers: Final Rule, Federal Register, March 4, 1980 (45FR 14180).Cancellations: OSHA Instruction CPL 02-00-148, Field Operations Manual, November9, 2009.OSHA Instruction FAP 01-00-003, Federal Agency Safety and HealthPrograms, May 17, 1996.Chapter 13 of OSHA Instruction CPL 02-00-045, Revised FieldOperations Manual, June 15, 1989.State Impact: Notice of Intent and Adoption required. See paragraph VI.Action Offices: National, Regional, and Area OfficesOriginating Office: Directorate of Enforcement Programs Contact: Directorate of Enforcement ProgramsOffice of General Industry Enforcement200 Constitution Avenue, NW, N3 119Washington, DC 20210202-693-1850By and Under the Authority ofDavid Michaels, PhD, MPHAssistant SecretaryExecutive SummaryThis instruction cancels and replaces OSHA Instruction CPL 02-00-148, Field Operations Manual (FOM), issued November 9, 2009. The one remaining part of the prior Field Operations Manual, the chapter on Disclosure, will be added at a later date. This Instruction also cancels OSHA Instruction FAP 01-00-003 Federal Agency Safety and Health Programs, May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045, Revised Field Operations Manual, June 15, 1989. This Instruction constitutes OSHA’s general enforcement policies and procedures manual for use by the field offices in conducting inspections, issuing citations and proposing penalties.Significant Changes∙A new Table of Contents for the entire FOM is added.∙ A new References section for the entire FOM is added∙ A new Cancellations section for the entire FOM is added.∙Adds a Maritime Industry Sector to Section III of Chapter 10, Industry Sectors.∙Revises sections referring to the Enhanced Enforcement Program (EEP) replacing the information with the Severe Violator Enforcement Program (SVEP).∙Adds Chapter 13, Federal Agency Field Activities.∙Cancels OSHA Instruction FAP 01-00-003, Federal Agency Safety and Health Programs, May 17, 1996.DisclaimerThis manual is intended to provide instruction regarding some of the internal operations of the Occupational Safety and Health Administration (OSHA), and is solely for the benefit of the Government. No duties, rights, or benefits, substantive or procedural, are created or implied by this manual. The contents of this manual are not enforceable by any person or entity against the Department of Labor or the United States. Statements which reflect current Occupational Safety and Health Review Commission or court precedents do not necessarily indicate acquiescence with those precedents.Table of ContentsCHAPTER 1INTRODUCTIONI.PURPOSE. ........................................................................................................... 1-1 II.SCOPE. ................................................................................................................ 1-1 III.REFERENCES .................................................................................................... 1-1 IV.CANCELLATIONS............................................................................................. 1-8 V. ACTION INFORMATION ................................................................................. 1-8A.R ESPONSIBLE O FFICE.......................................................................................................................................... 1-8B.A CTION O FFICES. .................................................................................................................... 1-8C. I NFORMATION O FFICES............................................................................................................ 1-8 VI. STATE IMPACT. ................................................................................................ 1-8 VII.SIGNIFICANT CHANGES. ............................................................................... 1-9 VIII.BACKGROUND. ................................................................................................. 1-9 IX. DEFINITIONS AND TERMINOLOGY. ........................................................ 1-10A.T HE A CT................................................................................................................................................................. 1-10B. C OMPLIANCE S AFETY AND H EALTH O FFICER (CSHO). ...........................................................1-10B.H E/S HE AND H IS/H ERS ..................................................................................................................................... 1-10C.P ROFESSIONAL J UDGMENT............................................................................................................................... 1-10E. W ORKPLACE AND W ORKSITE ......................................................................................................................... 1-10CHAPTER 2PROGRAM PLANNINGI.INTRODUCTION ............................................................................................... 2-1 II.AREA OFFICE RESPONSIBILITIES. .............................................................. 2-1A.P ROVIDING A SSISTANCE TO S MALL E MPLOYERS. ...................................................................................... 2-1B.A REA O FFICE O UTREACH P ROGRAM. ............................................................................................................. 2-1C. R ESPONDING TO R EQUESTS FOR A SSISTANCE. ............................................................................................ 2-2 III. OSHA COOPERATIVE PROGRAMS OVERVIEW. ...................................... 2-2A.V OLUNTARY P ROTECTION P ROGRAM (VPP). ........................................................................... 2-2B.O NSITE C ONSULTATION P ROGRAM. ................................................................................................................ 2-2C.S TRATEGIC P ARTNERSHIPS................................................................................................................................. 2-3D.A LLIANCE P ROGRAM ........................................................................................................................................... 2-3 IV. ENFORCEMENT PROGRAM SCHEDULING. ................................................ 2-4A.G ENERAL ................................................................................................................................................................. 2-4B.I NSPECTION P RIORITY C RITERIA. ..................................................................................................................... 2-4C.E FFECT OF C ONTEST ............................................................................................................................................ 2-5D.E NFORCEMENT E XEMPTIONS AND L IMITATIONS. ....................................................................................... 2-6E.P REEMPTION BY A NOTHER F EDERAL A GENCY ........................................................................................... 2-6F.U NITED S TATES P OSTAL S ERVICE. .................................................................................................................. 2-7G.H OME-B ASED W ORKSITES. ................................................................................................................................ 2-8H.I NSPECTION/I NVESTIGATION T YPES. ............................................................................................................... 2-8 V.UNPROGRAMMED ACTIVITY – HAZARD EVALUATION AND INSPECTION SCHEDULING ............................................................................ 2-9 VI.PROGRAMMED INSPECTIONS. ................................................................... 2-10A.S ITE-S PECIFIC T ARGETING (SST) P ROGRAM. ............................................................................................. 2-10B.S CHEDULING FOR C ONSTRUCTION I NSPECTIONS. ..................................................................................... 2-10C.S CHEDULING FOR M ARITIME I NSPECTIONS. ............................................................................. 2-11D.S PECIAL E MPHASIS P ROGRAMS (SEP S). ................................................................................... 2-12E.N ATIONAL E MPHASIS P ROGRAMS (NEP S) ............................................................................... 2-13F.L OCAL E MPHASIS P ROGRAMS (LEP S) AND R EGIONAL E MPHASIS P ROGRAMS (REP S) ............ 2-13G.O THER S PECIAL P ROGRAMS. ............................................................................................................................ 2-13H.I NSPECTION S CHEDULING AND I NTERFACE WITH C OOPERATIVE P ROGRAM P ARTICIPANTS ....... 2-13CHAPTER 3INSPECTION PROCEDURESI.INSPECTION PREPARATION. .......................................................................... 3-1 II.INSPECTION PLANNING. .................................................................................. 3-1A.R EVIEW OF I NSPECTION H ISTORY .................................................................................................................... 3-1B.R EVIEW OF C OOPERATIVE P ROGRAM P ARTICIPATION .............................................................................. 3-1C.OSHA D ATA I NITIATIVE (ODI) D ATA R EVIEW .......................................................................................... 3-2D.S AFETY AND H EALTH I SSUES R ELATING TO CSHO S.................................................................. 3-2E.A DVANCE N OTICE. ................................................................................................................................................ 3-3F.P RE-I NSPECTION C OMPULSORY P ROCESS ...................................................................................................... 3-5G.P ERSONAL S ECURITY C LEARANCE. ................................................................................................................. 3-5H.E XPERT A SSISTANCE. ........................................................................................................................................... 3-5 III. INSPECTION SCOPE. ......................................................................................... 3-6A.C OMPREHENSIVE ................................................................................................................................................... 3-6B.P ARTIAL. ................................................................................................................................................................... 3-6 IV. CONDUCT OF INSPECTION .............................................................................. 3-6A.T IME OF I NSPECTION............................................................................................................................................. 3-6B.P RESENTING C REDENTIALS. ............................................................................................................................... 3-6C.R EFUSAL TO P ERMIT I NSPECTION AND I NTERFERENCE ............................................................................. 3-7D.E MPLOYEE P ARTICIPATION. ............................................................................................................................... 3-9E.R ELEASE FOR E NTRY ............................................................................................................................................ 3-9F.B ANKRUPT OR O UT OF B USINESS. .................................................................................................................... 3-9G.E MPLOYEE R ESPONSIBILITIES. ................................................................................................. 3-10H.S TRIKE OR L ABOR D ISPUTE ............................................................................................................................. 3-10I. V ARIANCES. .......................................................................................................................................................... 3-11 V. OPENING CONFERENCE. ................................................................................ 3-11A.G ENERAL ................................................................................................................................................................ 3-11B.R EVIEW OF A PPROPRIATION A CT E XEMPTIONS AND L IMITATION. ..................................................... 3-13C.R EVIEW S CREENING FOR P ROCESS S AFETY M ANAGEMENT (PSM) C OVERAGE............................. 3-13D.R EVIEW OF V OLUNTARY C OMPLIANCE P ROGRAMS. ................................................................................ 3-14E.D ISRUPTIVE C ONDUCT. ...................................................................................................................................... 3-15F.C LASSIFIED A REAS ............................................................................................................................................. 3-16VI. REVIEW OF RECORDS. ................................................................................... 3-16A.I NJURY AND I LLNESS R ECORDS...................................................................................................................... 3-16B.R ECORDING C RITERIA. ...................................................................................................................................... 3-18C. R ECORDKEEPING D EFICIENCIES. .................................................................................................................. 3-18 VII. WALKAROUND INSPECTION. ....................................................................... 3-19A.W ALKAROUND R EPRESENTATIVES ............................................................................................................... 3-19B.E VALUATION OF S AFETY AND H EALTH M ANAGEMENT S YSTEM. ....................................................... 3-20C.R ECORD A LL F ACTS P ERTINENT TO A V IOLATION. ................................................................................. 3-20D.T ESTIFYING IN H EARINGS ................................................................................................................................ 3-21E.T RADE S ECRETS. ................................................................................................................................................. 3-21F.C OLLECTING S AMPLES. ..................................................................................................................................... 3-22G.P HOTOGRAPHS AND V IDEOTAPES.................................................................................................................. 3-22H.V IOLATIONS OF O THER L AWS. ....................................................................................................................... 3-23I.I NTERVIEWS OF N ON-M ANAGERIAL E MPLOYEES .................................................................................... 3-23J.M ULTI-E MPLOYER W ORKSITES ..................................................................................................................... 3-27 K.A DMINISTRATIVE S UBPOENA.......................................................................................................................... 3-27 L.E MPLOYER A BATEMENT A SSISTANCE. ........................................................................................................ 3-27 VIII. CLOSING CONFERENCE. .............................................................................. 3-28A.P ARTICIPANTS. ..................................................................................................................................................... 3-28B.D ISCUSSION I TEMS. ............................................................................................................................................ 3-28C.A DVICE TO A TTENDEES .................................................................................................................................... 3-29D.P ENALTIES............................................................................................................................................................. 3-30E.F EASIBLE A DMINISTRATIVE, W ORK P RACTICE AND E NGINEERING C ONTROLS. ............................ 3-30F.R EDUCING E MPLOYEE E XPOSURE. ................................................................................................................ 3-32G.A BATEMENT V ERIFICATION. ........................................................................................................................... 3-32H.E MPLOYEE D ISCRIMINATION .......................................................................................................................... 3-33 IX. SPECIAL INSPECTION PROCEDURES. ...................................................... 3-33A.F OLLOW-UP AND M ONITORING I NSPECTIONS............................................................................................ 3-33B.C ONSTRUCTION I NSPECTIONS ......................................................................................................................... 3-34C. F EDERAL A GENCY I NSPECTIONS. ................................................................................................................. 3-35CHAPTER 4VIOLATIONSI. BASIS OF VIOLATIONS ..................................................................................... 4-1A.S TANDARDS AND R EGULATIONS. .................................................................................................................... 4-1B.E MPLOYEE E XPOSURE. ........................................................................................................................................ 4-3C.R EGULATORY R EQUIREMENTS. ........................................................................................................................ 4-6D.H AZARD C OMMUNICATION. .............................................................................................................................. 4-6E. E MPLOYER/E MPLOYEE R ESPONSIBILITIES ................................................................................................... 4-6 II. SERIOUS VIOLATIONS. .................................................................................... 4-8A.S ECTION 17(K). ......................................................................................................................... 4-8B.E STABLISHING S ERIOUS V IOLATIONS ............................................................................................................ 4-8C. F OUR S TEPS TO BE D OCUMENTED. ................................................................................................................... 4-8 III. GENERAL DUTY REQUIREMENTS ............................................................. 4-14A.E VALUATION OF G ENERAL D UTY R EQUIREMENTS ................................................................................. 4-14B.E LEMENTS OF A G ENERAL D UTY R EQUIREMENT V IOLATION.............................................................. 4-14C. U SE OF THE G ENERAL D UTY C LAUSE ........................................................................................................ 4-23D.L IMITATIONS OF U SE OF THE G ENERAL D UTY C LAUSE. ..............................................................E.C LASSIFICATION OF V IOLATIONS C ITED U NDER THE G ENERAL D UTY C LAUSE. ..................F. P ROCEDURES FOR I MPLEMENTATION OF S ECTION 5(A)(1) E NFORCEMENT ............................ 4-25 4-27 4-27IV.OTHER-THAN-SERIOUS VIOLATIONS ............................................... 4-28 V.WILLFUL VIOLATIONS. ......................................................................... 4-28A.I NTENTIONAL D ISREGARD V IOLATIONS. ..........................................................................................4-28B.P LAIN I NDIFFERENCE V IOLATIONS. ...................................................................................................4-29 VI. CRIMINAL/WILLFUL VIOLATIONS. ................................................... 4-30A.A REA D IRECTOR C OORDINATION ....................................................................................................... 4-31B.C RITERIA FOR I NVESTIGATING P OSSIBLE C RIMINAL/W ILLFUL V IOLATIONS ........................ 4-31C. W ILLFUL V IOLATIONS R ELATED TO A F ATALITY .......................................................................... 4-32 VII. REPEATED VIOLATIONS. ...................................................................... 4-32A.F EDERAL AND S TATE P LAN V IOLATIONS. ........................................................................................4-32B.I DENTICAL S TANDARDS. .......................................................................................................................4-32C.D IFFERENT S TANDARDS. .......................................................................................................................4-33D.O BTAINING I NSPECTION H ISTORY. .....................................................................................................4-33E.T IME L IMITATIONS..................................................................................................................................4-34F.R EPEATED V. F AILURE TO A BATE....................................................................................................... 4-34G. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-35 VIII. DE MINIMIS CONDITIONS. ................................................................... 4-36A.C RITERIA ................................................................................................................................................... 4-36B.P ROFESSIONAL J UDGMENT. ..................................................................................................................4-37C. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-37 IX. CITING IN THE ALTERNATIVE ............................................................ 4-37 X. COMBINING AND GROUPING VIOLATIONS. ................................... 4-37A.C OMBINING. ..............................................................................................................................................4-37B.G ROUPING. ................................................................................................................................................4-38C. W HEN N OT TO G ROUP OR C OMBINE. ................................................................................................4-38 XI. HEALTH STANDARD VIOLATIONS ....................................................... 4-39A.C ITATION OF V ENTILATION S TANDARDS ......................................................................................... 4-39B.V IOLATIONS OF THE N OISE S TANDARD. ...........................................................................................4-40 XII. VIOLATIONS OF THE RESPIRATORY PROTECTION STANDARD(§1910.134). ....................................................................................................... XIII. VIOLATIONS OF AIR CONTAMINANT STANDARDS (§1910.1000) ... 4-43 4-43A.R EQUIREMENTS UNDER THE STANDARD: .................................................................................................. 4-43B.C LASSIFICATION OF V IOLATIONS OF A IR C ONTAMINANT S TANDARDS. ......................................... 4-43 XIV. CITING IMPROPER PERSONAL HYGIENE PRACTICES. ................... 4-45A.I NGESTION H AZARDS. .................................................................................................................................... 4-45B.A BSORPTION H AZARDS. ................................................................................................................................ 4-46C.W IPE S AMPLING. ............................................................................................................................................. 4-46D.C ITATION P OLICY ............................................................................................................................................ 4-46 XV. BIOLOGICAL MONITORING. ...................................................................... 4-47CHAPTER 5CASE FILE PREPARATION AND DOCUMENTATIONI.INTRODUCTION ............................................................................................... 5-1 II.INSPECTION CONDUCTED, CITATIONS BEING ISSUED. .................... 5-1A.OSHA-1 ................................................................................................................................... 5-1B.OSHA-1A. ............................................................................................................................... 5-1C. OSHA-1B. ................................................................................................................................ 5-2 III.INSPECTION CONDUCTED BUT NO CITATIONS ISSUED .................... 5-5 IV.NO INSPECTION ............................................................................................... 5-5 V. HEALTH INSPECTIONS. ................................................................................. 5-6A.D OCUMENT P OTENTIAL E XPOSURE. ............................................................................................................... 5-6B.E MPLOYER’S O CCUPATIONAL S AFETY AND H EALTH S YSTEM. ............................................................. 5-6 VI. AFFIRMATIVE DEFENSES............................................................................. 5-8A.B URDEN OF P ROOF. .............................................................................................................................................. 5-8B.E XPLANATIONS. ..................................................................................................................................................... 5-8 VII. INTERVIEW STATEMENTS. ........................................................................ 5-10A.G ENERALLY. ......................................................................................................................................................... 5-10B.CSHO S SHALL OBTAIN WRITTEN STATEMENTS WHEN: .......................................................................... 5-10C.L ANGUAGE AND W ORDING OF S TATEMENT. ............................................................................................. 5-11D.R EFUSAL TO S IGN S TATEMENT ...................................................................................................................... 5-11E.V IDEO AND A UDIOTAPED S TATEMENTS. ..................................................................................................... 5-11F.A DMINISTRATIVE D EPOSITIONS. .............................................................................................5-11 VIII. PAPERWORK AND WRITTEN PROGRAM REQUIREMENTS. .......... 5-12 IX.GUIDELINES FOR CASE FILE DOCUMENTATION FOR USE WITH VIDEOTAPES AND AUDIOTAPES .............................................................. 5-12 X.CASE FILE ACTIVITY DIARY SHEET. ..................................................... 5-12 XI. CITATIONS. ..................................................................................................... 5-12A.S TATUTE OF L IMITATIONS. .............................................................................................................................. 5-13B.I SSUING C ITATIONS. ........................................................................................................................................... 5-13C.A MENDING/W ITHDRAWING C ITATIONS AND N OTIFICATION OF P ENALTIES. .................................. 5-13D.P ROCEDURES FOR A MENDING OR W ITHDRAWING C ITATIONS ............................................................ 5-14 XII. INSPECTION RECORDS. ............................................................................... 5-15A.G ENERALLY. ......................................................................................................................................................... 5-15B.R ELEASE OF I NSPECTION I NFORMATION ..................................................................................................... 5-15C. C LASSIFIED AND T RADE S ECRET I NFORMATION ...................................................................................... 5-16。
数学名言(中英)
The problem is the heart of mathematics.(问题是数学的心脏。
)??哈尔莫斯He who seeks for methods without having a difinite problem in mind seeks for the most part in vain.(心中没有一定的问题而要寻找方法的人,多半都是徒劳无获的。
)?? 希尔伯特The problem solver may do creative work even if he does not succeed in solving his own problem;his effort may lead him to means applicable to other problems,Then the problem solver may be creative indirectly be leaving a good unsolved problem which eventually leads others to discovering fertile means.(即使在解某一道题时,解题者未获成功,他也可能做了有独创性的工作;他的努力可能使他得到适用于解决其他问题的工具。
此外,他可能留下一个很好的未解决问题,这个问题最终能使其他人发现更有成效的解题手段。
这样,他间接地作出了独创性的贡献。
)??波利亚One of the virtues of a good problem is that it generates other good problems.(一道好题的价值之一在于它能产生其他一些好题。
)??波利亚Each problem that I solved became a rule which served afterwards to solve other problems.(我解决过的每一个问题都成为日后用以解决其他问题的法则。
乳液聚合胶束成核机理谁提出来的对应的英文文章
乳液聚合胶束成核机理谁提出来的对应的英文文章乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的。
该理论在1971年由他在《Journal of Colloid and Interface Science》发表的一篇名为"Polymerization of Micelles: A Phenomenological Approach"的英文文章中详细阐述。
后附译文Introduction:Emulsion polymerization is a widely used technique for the synthesis of various polymers. The process involves the formation of polymer particles in a water-insoluble monomer phase dispersed in water through the use of surfactants and emulsifiers. The understanding of the nucleation mechanism in this process is crucial for optimizing the synthesis and controlling the particle size and morphology. In this regard, the groundbreaking work of Jean-Pierre Chapel on the mechanism of micelle nucleation in emulsion polymerization provides valuable insights and has been of significant interest to researchers.Brief Background:Emulsion polymerization involves the formation of micelles, which are colloidal aggregates of surfactant molecules, to stabilize the monomer droplets in water. These micelles act as the nucleation sites for the polymerization reaction. Jean-Pierre Chapel proposed a phenomenological approach to explain the micelle nucleation process in emulsion polymerization. His work focused on understandingthe role of surfactants and their interactions with the monomer molecules in the nucleation process.Chapel's Phenomenological Approach:Chapel's approach involved the use of classical thermodynamics to model the micelle nucleation mechanism in emulsion polymerization. He considered the system as a two-phase mixture of monomer droplets dispersed in water and the impact of surfactant molecules on the nucleation process. Chapel formulated his theory based on well-established thermodynamic principles and made a few key assumptions.Assumptions:1. The surfactant molecules are assumed to spontaneously adsorb at the monomer-water interface due to the hydrophobicity of the monomers.2. The adsorption of surfactant at the monomer-water interface leads to the formation of a monolayer around the monomer droplet, stabilizing it against coalescence.3. Polymerization occurs within the surfactant-stabilized monomer droplets.Theoretical Explanation:Chapel's phenomenological approach involved the use of classical nucleation theory and the Gibbs free energy change associated with micelle formation. He derived equations that describe the change in free energy due to the adsorption of surfactant molecules at the monomer-water interface, the deformation of the surfactant monolayer, and the formation of micelles. Chapel recognized that the monomer-water interfaceequilibrium must be considered in the calculations. His model allowed for the prediction of the critical micelle concentration (CMC) and the rate of polymerization based on the thermodynamic parameters of the system.Significance of Chapel's Work:Chapel's model provided a deeper understanding of the nucleation process in emulsion polymerization. His approach allowed for the prediction and control of the CMC, which is a critical parameter in determining the stability of the emulsion and the particle size distribution. Chapel's work also highlighted the importance of surfactant properties, such as hydrophobicity and molecule structure, in the nucleation and stabilization processes. This knowledge has been invaluable for the design and synthesis of emulsion polymerization systems with desired properties.Further Research and Applications:Since Chapel's seminal work, researchers have built upon his model and expanded the understanding of emulsion polymerization mechanisms. The development of more efficient and versatile surfactants, advancements in experimental techniques, and computational modeling have further enhanced the understanding of the nucleation process. This knowledge has led to the development of new emulsion polymerization techniques and the synthesis of polymers with tailored properties for a wide range of applications, including coatings, adhesives, and biomaterials.Conclusion:Jean-Pierre Chapel's phenomenological approach to understanding the micelle nucleation mechanism in emulsion polymerization has provided valuable insights into the roleof surfactants in this process. His work has laid the foundation for further research in the field and has contributed significantly to the design and synthesis of polymer particles with controlled properties. The understanding of the nucleation mechanism is crucial for optimizing emulsion polymerization processes and enables the production of polymers for diverse applications.乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的.该理论在1971年由他在《胶体和界面科学杂志》发表的一篇名为“胶束聚合:现象学方法”的英文文章中详细阐述。
汉语动词的屈折机制与限定性问题
汉语动词的屈折机制与限定性问题*杨亦鸣蔡冰徐州师范大学语言研究所提要根据生成语法的动词混合形态理论,普遍语法中存在着两种不同类型的动词屈折机制。
本文依据这一理论,运用“否定结构测试”,确定了汉语动词的屈折类型,在此基础上修正了动词限定性的定义,提出限定性是动词屈折成分的一种本质属性,汉语动词存在抽象的限定性特征,并从理论依据、语言事实和实验证据等三个方面论证了这一观点。
关键词动词屈折特征动词混合形态理论抽象限定性一引言一般认为,与西语语法相比,汉语语法有两个最为重要的特点,一是汉语词类的多功能性,二是词组和句子构造上的一致性。
事实上,对这两个特点的认识都与对动词限定性的看法有着密切的关系(参见朱德熙1985)。
1.1关于动词的限定性按照通行的英语语法书的解释,限定性是指对动词的一种语法描述,根据动词在表达时制、体貌、情态和一致等语法范畴时形态标记的有无,可将动词区分为限定动词(finite verbs)和非限定动词(non-finite verbs)。
例如在英语中,限定动词在上述几个方面都体现出形式上的区分,而非限定动词则没有相应的形式区分:(1)a. I am/was walking. b. They are/were walking.c. I have/had walked. d. He has/had walked.在(1)中,动词be和have在表达时制和一致等语法范畴时,表现出形式上的区分,是限定动词,而分词walking和walked则不随时态和人称的变化而变化,是非限定动词。
此外,两者的句法表现也不同:限定动词只能充当谓语,非限定动词可以充当主语、宾语和定语等其他句子成分。
如:(2)a. He works in a factory. b. Working is a happy thing.c. He enjoys working.d. No talking during working time.在(2)中,works和enjoys充当句子的谓语,work和talk的非限定形式则出现在句子的主语、宾语和定语的位置上。
生药学和植物疗法的基本原理英文版_部分10
ARALIACEAEImportant medicinal plants from the familyl Hedera helix L.[(common)ivy],used as a cough remedyl Panax ginseng C.A.Meyer(ginseng),used as an adaptogene(a very ill-defined category)and to combat mental and physical stress[and sometimes replaced by Eleutherococcus(Acanthopanax)senticosus(Rupr.and Maxim) Maxim from the same family].Morphological characteristics of the family This family consists mostly of woody species,charac-terized by hermaphrodite flowers in a simple umbel (see the closely related Apiaceae with a double umbel).The leaf lobes are hand-shaped,and the flow-ers relatively inconspicuous with two pistils,an infer-ior gynaecium,a small calyx and generally a white to greenish corolla,with free petals and sepals. DistributionThis family of>700species is widely dispersed in tropical and subtropical Asia and in the Americas. Hedera helix is the only species native to Europe.Chemical characteristics of the familyOf particular importance from a pharmacognostical perspective are the saponins,triterpenoids and some acetylenic compounds.The triterpenoids(gin-sengosides)are implicated in the pharmacological effects of Panax ginseng,while saponins(hederasa-ponins)are of relevance for the secretolytic effect of Hedera helix.ASPHODELACEAE(‘MONOCOTYLEDONEAE’)This family is often included in the Liliaceae(lily family).Important medicinal plants from the familyl Aloe vera(L.)Burman f.(syn.Aloe barbadensis, Barbardos aloe)and A.ferox Miller(Cape aloe), both strong purgatives(see p206and208).Aloe leaves contain a gel which is also applied topically for skin conditions;for botanical description.(see p.286,Chapter22).Morphological characteristics of the family Members of this family are generally perennials,and,in the case of Aloe,usually woody,with a basal rosette and the typical radial hermaphrodite flower structure of the Liliales.The petals and sepals are identical in form and colour,and composed of 3þ3free or fused,3þ3free stamens and three fused superior carpels.DistributionThis family,with about600species,is widely dis-tributed in South Africa(a characteristic element of the Cape flora);some species occur naturally in the Mediterranean(Asphodelus).Chemical characteristics of the family Typical for the genus Aloe are anthranoids and anthraglycosides(aloe-emodin),which are respon-sible for the species’laxative effects,as well as poly-saccharides accumulating in the leaves.Contrary to other related families,the Asphodelaceae do not accumulate steroidal saponins.ASTERACEAE–THE‘DAISY’FAMILY(ALSO KNOWN AS COMPOSITAE)This large family has kept botanists busy for many centuries and still no universally accepted classifica-tion exists.All members of the family have a complex inflorescence(the capitula),which gave rise to the older nameofthefamily:Compositae(¼inflorescence composed of many flowers).In other features,the family is rather diverse,especially with respect to its chemistry.Important medicinal plants from the familyl Arnica montana L.(arnica),used topically, especially for bruisesl Artemisia absinthum L.(wormwood or absinthium),used as a bitter tonic and choleretic l Calendula officinalis L.(marigold),used topically, especially for some skin afflictionsl Cnicus benedictus L.(cnicus),used as a cholagogue (a bitter aromatic stimulant)l Cynara scolymus L.(artichoke),used in the treatment of liver and gallbladder complaints and several other conditionsl Echinacea angustifolia DC.,E.pallida Nuttall andE.purpurea(L.)Moench(Cone flower),now commonly used as an immunostimulantl Matricaria recutita L.(chamomille/camomille; several botanical synonyms are also commonly used,including Chamomilla recutita andMatricaria chamomilla)(see Chapter14,p.208). l Tussilago farfara L.(coltsfoot),a now little used expectorant and demulcent.Morphological characteristics of the family (Fig.4.3)The family is largely composed of herbaceous and shrubby species,but some very conspicuous trees are also known.The most important morphological trait is the complex flower head,a flower-like struc-ture,which may in fact be composed of a few or many flowers(capitulum or pseudanthium).In some sections of the family(e.g.the subfamilyRay floretFlowerheadDisk floret Stigma(a)FruitM. maritima ssp inodora L.Scentless chamomile Matricaria chamomilla L.Wild ChamomileFig.4.3(a)Two members of the genus Matricaria.(Left)Matricaria chamomilla L.is aromatic and used medicinally.(Right) Matricaria maritima L.subsp.inodora Schultz[¼Tripleurospermum perforatum(Me´rat)Wagenitz],also known as Matricaria inodora,is not aromatic and is not used medicinally.The illustration shows typical morphological differences in these two species, such as the form of the flower heads and the fruit,but it also shows how similar the two species are in many other characteristics. From Fitch(1924).(b)Schematic of typical flower heads(a capitulum)of the Asteraceae(compositae).df,disk flowers;tf,tubular flowers;in,involucre,from Brimble(1942).Lactucoideae,which includes lettuce and dande-lion),only ligulate(tongue-shaped)or disk(ray) florets are present in the dense heads.In the other major segment(subfamily Asteroideae),both ligu-late and radiate/discoid flowers are present on the same flower head,the former generally forming an outer,showy ring with the inner often containing large amounts of pollen.The flowers are epigynous, bisexual or sometimes female,sterile or functionally male.The(outer)calyx has five fused sepals and in many instances later develops into a pappus(feath-erlike in dandelions,in other instances more bristly),which is used as a means for dispersingthe fruit;it is lacking in many other taxa.The fused petals(generally five)form a tubus or a ligula.The two gynaecia are epigynous and develop into tiny, nut-like fruits(achene or cypsela).The leaves are generally spirally arranged,simple,dissect or more or less compound.DistributionMore than21,000species are known from practi-cally all parts of the world,with the exception of Antarctica,and the family has found niches in a large variety of ecosystems.The family is particu-larly well-represented in Central America and southern North America(Mexico).Chemical characteristics of the familyA typical chemical trait of this family is the presence of polyfructanes(especially inulin)as storage carbo-hydrates(instead of polysaccharides)in perennial taxa.Inulin-containing drugs are used for preparing malted coffee(e.g.from the rootstocks of Cichorium intybus,chicory).In many taxa,some segments of the family accumulate sesquiterpene lactones(typi-cally with15-carbon atoms such as parthenolide; Fig.4.4),which are important natural products responsible for the pharmacological effects of many botanical drugs such as Chrysanthemum parthenium(feverfew)and Arnica montana(arnica). Polyacetylenic compounds(polyenes),and essential oil,are also widely distributed.Some taxa accumu-late pyrrolizidine alkaloids,which,for example,are present in Tussilago farfara(coltsfoot)in very small amounts.Many of these alkaloids are known for their hepatotoxic effects.Other taxa accumulate unusual diterpenoids;the diterpene glycoside stevioside(Fig.4.4),for example,is of interest because of its intensely sweet taste.CAESALPINIACEAEThis family was formerly part of the Leguminosae(or Fabaceae)and is closely related to two other families: the Fabaceae(seebelow)andtheMimosaceae(not dis-cussed).Many contain nitrogen-fixing bacteria in root nodules.This symbiotic relationship is beneficial to both partners(for the plant,increased availability of physiologically usable nitrogen;for the bacterium, protection and optimal conditions for growth).Important medicinal plants from the familyl Cassia senna L.and C.angustifolia Vahl(Senna), used as a cathartic.Morphological characteristics of the family (Fig.4.5)Nearly all of the taxa are shrubs and trees.Typically the leaves are pinnate.The free or fused calyx is composed of five sepals,the corolla of five generally free petals,the androecium of ten stamens,with many taxa showing a reduction in the number of stamens(five)or the development of staminodes instead of stamens.The flowers are zygomorphic and have a very characteristic shape,if seen from above,resembling a shallow cup.DistributionThe2000species of this family are mostly native to tropical and subtropical regions,with some species common in the Mediterranean region.The family includes the ornamental Cercis siliquastrum L.(the Judas tree),native to the western Mediterranean, which according to(very doubtful)legend was the tree on which Judas Iscariot hangedhimself. Parthenolide SteviosideCH2OHO OOHOHOOHOHOOHHOH2CFig.4.4Chemical characteristics of the familyFrom a pharmaceutical perspective the presence of anthranoides with strong laxative effects is of parti-cular interest.Other taxa accumulate alkaloids,such as the diterpene alkaloids of the toxic Erythrophleum.FABACEAEThis family is also classified together with the Mimosaceae and the Caesalpiniaceae as the Legu-minosae(or Fabaceae,s.l.;see note under Caesalpi-niaceae).One of its most well-known characteristics is that many of its taxa are able to bind atmospheric nitrogen.Important medicinal plants from the familyl Cytisus scoparius(L.)Link(common or Scotch broom),which yields sparteine(formerly used in cardiac arrhythmias,as an oxytoxic,and in hypotonia to raise blood pressure)l Glycyrrhiza glabra L.(liquorice),used as an expectorant and for many other purposesl Melilotus officinalis L.(melilot or sweet clover);the anticoagulant drug warfarin was developed from dicoumarol,first isolated from spoiled hay of sweet clover l Physostigma venenosum Balfour(Calabar bean),a traditional West African arrow poison,which contains the cholinesterase inhibitor physostigmine,used as a myotic in glaucoma,in postoperative paralysis of the intestine and to counteract atropine poisoning.Morphological characteristics of the family This family is characterized by a large number of derived traits.Most of the taxa of this family are her-baceous,sometimes shrubby and only very rarely trees.Typically,the leaves are pinnate and some-times the terminal one is modified to form a tendril, used for climbing.Bipinnate leaves are not found in this family.The five sepals are at least basally uni-ted.The corolla is formed of five petals and has a very characteristic butterfly-like shape(papilionac-eous),with the two lower petals fused and forming a keel-shaped structure,the two lateral ones pro-truding on both sides of the flower and the largest petal protruding above the flower,being particu-larly showy.The androecium of ten stamens gener-ally forms a characteristic tubular structure with at least nine out of ten of the stamens forming a sheath. Normally,the fruit are pods,containing beans(tech-nically called legumes)with two sutures,which open during the drying of the fruit(Fig.4.6).(a)(c)(d)(b)Fig.4.6Flower of Pisum sativum(common pea,Fabaceae, sensu stricto):(a)entire flower showing the various elements of the corolla(co;b,banner;w,wing(two);k,keel;ca calyx);(b) calyx;(c)stamens(nine fused and one free);(d)gynaecium;(e) the four petals of the corolla.Modified after Frohne&Jensen(1998).(c)(a)(b)Fig.4.5Cassia angustifolia,a typical Caesalpiniaceae:(a) typical zygomorphic flower(yellow in its natural state);(b) fruit(one of the botanical drugs obtained from the species);(c) flowering branch showing the leaves composed of leaflets,and the inflorescence.Modified after Frohne&Jensen(1998).DistributionThis is a cosmopolitan family with about 11,000species,and is one of the most important families.It includes many plants used as food:for example,numerous species of beans (Phaseolus and Vigna spp.,Vicia faba L.),peas (Pisum sativum L.),soy [Gly-cine max (L.)Merrill],fodder plants (Lupinus spp.)and medicines (see above).Chemical characteristics of the familyThis large family is characterized by an impressive phytochemical diversity.Polyphenols (especially flavonoids and tannins)are common,but from a phar-maceutical perspective various types of alkaloids are probably the most interesting and pharmaceutically relevant groups of compounds.In the genera Genista and Cytisus (both commonly called broom)as well as Laburnum ,quinolizidine alkaloids,including cytisine and sparteine (Fig.4.7),are common.The hepatotoxic pyrrolizidine alkaloids are found in this family (e.g.in members of the genus Crotolaria ).Other important groups of natural products are the isoflavonoids,known for their oestrogenic activ-ity,and the coumarins used as anticoagulants (see Melilotus officinalis above).Glycyrrhiza glabra L.(licor-ice)is used because of its high content of the triterpe-noid glycyrrhic acid,which,if joined to a sugar,is called glycyrrhizin (a saponin)and is used in confec-tionery as well as in the treatment of gastric ulcers (controversial).Last but not least,the lectins must be mentioned.These large (MW 40,000–150,000),sugar-binding proteins agglutinate red blood cells and they are a common element of the seeds of many species.Some are toxic to mammals,for example phasin from the common bean (Phaseolus spp.),which is the cause of the toxicity of uncooked beans.HYPERICACEAEThis small family was formerly part of the Gutti-ferae and is of pharmaceutical importance becauseof St John’s wort,which in the last decade of the 20th century became one of the most important medicinal plants in Western medicine.Important medicinal plants from the familyl Hypericum perforatum L.(St John’s wort)hasclinically well-established effects in mild forms of depression.It has also been employed topically for inflammatory conditions of the skin.Morphological characteristics of the familyThe leaves are opposite,often dotted with glands.A characteristic feature of this family is a secondary increase in the number of stamens (polyandrous flowers).The fruit are usually capsules,but berries may occur in some species.DistributionThis family,with about 900species,has its main area of distribution in the tropics and in temperate regions.Chemical characteristics of the familyThe former name Guttiferae is an important indicator of a characteristic chemical feature:the presence of resins,balsam and other glands containing excretory products.For example,the hypericin glands,with a characteristic red colour,are present especially in the flowers and contain naphthodianthrones,includ-ing hypericin (Fig.4.8)and pseudohypericin,which are characteristic for some sections of the genus.Typi-cal for the family in general are also xanthones (found nearly exclusively in this family and in the Gentiana-ceae).The genus is known to accumulate flavonoids and their glycosides (rutoside,hyperoside),as well as hyperforin (Fig.4.8)and its derivatives,which are derived from the terpenoidpathway.QuinolizidineCytisineSparteineNNN HHHO Fig.4.7。
生物化学的发现英文
生物化学的发现英文In the realm of biochemistry, the discovery of DNA's double helix structure stands as a monumental breakthrough.It revolutionized our understanding of genetic informationand paved the way for modern molecular biology.The intricate dance of enzymes and substrates, orchestrating the metabolic pathways within cells, is amarvel of nature's design. Each enzyme, with its unique shape, ensures the specificity and efficiency of biochemical reactions.Another significant revelation in biochemistry is therole of amino acids in protein synthesis. The sequence ofthese building blocks determines the structure and functionof proteins, which are the workhorses of the biological world.The exploration of lipid bilayers and their role in cell membranes has deepened our comprehension of how cellsmaintain their integrity and selectively interact with their environment.The study of biochemistry also unveils the mysteries of cellular energy production. The citric acid cycle andoxidative phosphorylation are processes that convertnutrients into the energy currency of the cell, ATP.Understanding the molecular mechanisms of disease hasbeen greatly advanced by biochemistry. For instance, the identification of the molecular basis of cystic fibrosis has led to more targeted and effective therapies.The emerging field of epigenetics, where biochemistry intersects with genetics, has shed light on how environmental factors can influence gene expression without altering the DNA sequence itself.Finally, the ongoing quest to decode the human proteomeis a testament to the vastness of biochemical knowledge. Each protein's unique function contributes to the symphony of life, and understanding them is key to unlocking the mysteries of health and disease.。
数学期刊名称缩写
Abbreviations of Names of SerialsThis list gives the form of references used in Mathematical Reviews(MR).The abbreviation is followed by the complete title,the place of publication and other pertinent information.∗not previously listed E available electronically §journal reviewed cover-to-cover V videocassette series †monographic series¶bibliographic journal∗Abh.Braunschw.Wiss.Ges.Abhandlungen derBraunschweigischen Wissenschaftlichen Gesellschaft.J.Cramer Verlag,Braunschweig.(Formerly Abh.Braunschweig.Wiss.Ges.)Abh.Braunschweig.Wiss.Ges.Abhandlungen derBraunschweigischen Wissenschaftlichen Gesellschaft.Goltze,G¨o ttingen.(Continued as Abh.Braunschw.Wiss.Ges.)§Abh.Math.Sem.Univ.Hamburg Abhandlungen aus dem Mathematischen Seminar der Universit¨a t Hamburg.Vandenhoeck&Ruprecht,G¨o ttingen.ISSN0025-5858.†Abh.Math.-Naturwiss.Kl.Akad.Wiss.Lit.Mainz Abhandlungen der Mathematisch-NaturwissenschaftlichenKlasse.Akademie der Wissenschaften und der Literaturin Mainz.[Transactions of the Mathematical-ScientificSection.Academy of Sciences and Literature in Mainz]Steiner,Stuttgart.ISSN0002-2993.§Abstr.Appl.Anal.Abstract and Applied Analysis.Mancorp,Tampa,FL.ISSN1085-3375.¶Abstracts Amer.Math.Soc.Abstracts of Papers Presented to the American Mathematical Society.Amer.Math.Soc.,Providence,RI.ISSN0192-5857.Acad.Roy.Belg.Bull.Cl.Sci.(6)Acad´e mie Royale deBelgique.Bulletin de la Classe des Sciences.6e S´e rie.Acad.Roy.Belgique,Brussels.ISSN0001-4141.Acad.Roy.Belg.Cl.Sci.M´e m.Collect.8o(3)Acad´e mieRoyale de Belgique.Classe des Sciences.M´e moires.Collection in-8o.3e S´e rie.Acad.Roy.Belgique,Brussels.ISSN0365-0936.Acad.Serbe Sci.Arts Glas Acad´e mie Serbe des Scienceset des Arts.Glas.Classe des Sciences Naturelles etMath´e matiques.Srpska Akad.Nauk.i Umetnost.,Belgrade.ISSN0374-7956.†Acc`e s Sci.Acc`e s Sciences.[Access to Sciences]De Boeck Univ.,Brussels.§E ACM J.Exp.Algorithmics The ACM Journal ofExperimental Algorithmics.ACM,New York.ISSN1084-6654.E ACM Trans.Math.Software Association for ComputingMachinery.Transactions on Mathematical Software.ACM,New York.ISSN0098-3500.∗§Acta Acad.Paedagog.Agriensis Sect.Mat.(N.S.)Acta Academiae Paedagogicae Agriensis.Nova Series.SectioMatematicae.Eszterh´a zy K´a roly Coll.,Eger.∗§Acta Anal.Funct.Appl.Acta Analysis Functionalis Applicata.AAFA.Yingyong Fanhanfenxi Xuebao.SciencePress,Beijing.ISSN1009-1327.§E Acta Appl.Math.Acta Applicandae Mathematicae.An International Survey Journal on Applying Mathematics andMathematical Applications.Kluwer Acad.Publ.,Dordrecht.ISSN0167-8019.§Acta Arith.Acta Arithmetica.Polish Acad.Sci.,Warsaw.ISSN0065-1036.Acta Astronom.Sinica Acta Astronomica Sinica.TianwenXuebao.Kexue Chubanshe(Science Press),Beijing.(Translated in Chinese Astronom.Astrophys.)ISSN0001-5245.Acta Astrophys.Sinica Acta Astrophysica Sinica.TiantiWuli Xuebao.Kexue Chubanshe(Science Press),Beijing.(Translated in Chinese Astronom.Astrophys.)ISSN0253-2379.Acta Automat.Sinica Acta Automatica Sinica.ZidonghuaXuebao.Kexue Chubanshe(Science Press),Beijing.ISSN0254-4156.Acta Cienc.Indica Math.Acta Ciencia Indica.Mathematics.Pragati Prakashan,Meerut.ISSN0970-0455.Acta Cient.Venezolana Acta Cient´ıfica Venezolana.Asociaci´o n Venezolana para el Avance de la Ciencia.Asoc.Venezolana Avance Cien.,Caracas.ISSN0001-5504.Acta Comment.Univ.Tartu.Math.Acta etCommentationes Universitatis Tartuensis de Mathematica.Univ.Tartu,Fac.Math.,Tartu.ISSN1406-2283.E Acta Cryst.Sect.A Acta Crystallographica.Section A:Foundations of Crystallography.Munksgaard,Copenhagen.ISSN0108-7673.§Acta Cybernet.Acta Cybernetica.J´o zsef Attila Univ.Szeged,Szeged.ISSN0324-721X.Acta Hist.Leopold.Acta Historica Leopoldina.DeutscheAkad.Naturforscher Leopoldina,Halle an der Saale.ISSN0001-5857.§E Acta Inform.Acta Informatica.Springer,Heidelberg.ISSN0001-5903.§Acta Math.Acta Mathematica.Inst.Mittag-Leffler, Djursholm.ISSN0001-5962.§E Acta Math.Acad.Paedagog.Nyh´a zi.(N.S.)Acta Mathematica.Academiae Paedagogicae Ny´ıregyh´a ziensis.New Series.Bessenyei Gy¨o rgy Coll.,Ny´ıregyh´a za.ISSN0866-0182.§Acta Math.Appl.Sinica Acta Mathematicae Applicatae Sinica.Yingyong Shuxue Xuebao.Kexue Chubanshe(Science Press),Beijing.ISSN0254-3079.§Acta Math.Appl.Sinica(English Ser.)Acta Mathematicae Applicatae Sinica.English Series.Yingyong ShuxueXuebao.Science Press,Beijing.ISSN0168-9673.§E Acta Math.Hungar.Acta Mathematica Hungarica.Akad.Kiad´o,Budapest.ISSN0236-5294.§Acta rm.Univ.Ostraviensis Acta Mathematica et Informatica Universitatis Ostraviensis.Univ.Ostrava,Ostrava.ISSN1211-4774.§Acta Math.Sci.(Chinese)Acta Mathematica Scientia.Series A.Shuxue Wuli Xuebao.Chinese Edition.KexueChubanshe(Science Press),Beijing.(See also Acta Math.Sci.(English Ed.))ISSN1003-3998.§Acta Math.Sci.(English Ed.)Acta Mathematica Scientia.Series B.English Edition.Shuxue Wuli Xuebao.SciencePress,Beijing.(See also Acta Math.Sci.(Chinese))ISSN0252-9602.§E Acta Math.Sin.(Engl.Ser.)Acta Mathematica Sinica.English Series.Springer,Heidelberg.ISSN1000-9574.§Acta Math.Sinica Acta Mathematica Sinica.Chinese Math.Soc.,Acta Math.Sinica m.,Beijing.ISSN0583-1431.§E Acta enian.(N.S.)Acta Mathematica Universitatis Comenianae.New enius Univ.Press,Bratislava.ISSN0862-9544.§Acta Math.Vietnam.Acta Mathematica Vietnamica.Nat.Center Natur.Sci.Tech.,Hanoi.ISSN0251-4184.∗Acta Mech.Sin.Engl.Ser.Acta Mechanica Sinica.English Series.The Chinese Society of Theoretical and AppliedMechanics.Chinese J.Mech.Press,Beijing.(FormerlyActa Mech.Sinica(English Ed.))ISSN0567-7718.Acta Mech.Sinica(Beijing)Acta Mechanica Sinica.LixueXuebao.Chinese J.Mech.Press,Beijing.(See also ActaMech.Sinica(English Ed.))ISSN0459-1879.Acta Mech.Sinica(English Ed.)Acta Mechanica Sinica.English Edition.Lixue Xuebao.Kexue Chubanshe(SciencePress),Beijing.(Continued as Acta Mech.Sin.Engl.Ser.)(See also Acta Mech.Sinica(Beijing))ISSN0567-7718.∗Acta Mech.Solida Sin.Acta Mechanica Solida Sinica.Chinese Journal of Solid Mechanics.Huazhong Univ.Sci.Tech.,Wuhan.ISSN0894-9166.†Acta Numer.Acta Numerica.Cambridge Univ.Press, Cambridge.ISSN0962-4929.Acta Phys.Polon.B Jagellonian University.Institute ofPhysics and Polish Physical Society.Acta Physica PolonicaB.Jagellonian Univ.,Krak´o w.ISSN0587-4254.Acta Phys.Sinica Acta Physica Sinica.Wuli Xuebao.Chinese Phys.Soc.,Beijing.ISSN1000-3290.Acta put.Manage.Eng.Ser.Acta Polytechnica Scandinavica.Mathematics,Computingand Management in Engineering Series.Finn.Acad.Tech.,Espoo.ISSN1238-9803.§Acta Sci.Math.(Szeged)Acta Universitatis Szegediensis.Acta Scientiarum Mathematicarum.Univ.Szeged,Szeged.ISSN0001-6969.Acta Sci.Natur.Univ.Jilin.Acta Scientiarum NaturaliumUniversitatis Jilinensis.Jilin Daxue.Ziran Kexue Xuebao.Jilin University.Natural Sciences Journal.Jilin Univ.Nat.Sci.J.,Editor.Dept.,Changchun.ISSN0529-0279.Acta Sci.Natur.Univ.Norm.Hunan.Acta ScientiarumNaturalium Universitatis Normalis Hunanensis.HunanShifan Daxue Ziran Kexue Xuebao.J.Hunan Norm.Univ.,Editor.Dept.,Changsha.ISSN1000-2537.Acta Sci.Natur.Univ.Pekinensis See Beijing DaxueXuebao Ziran Kexue BanActa Sci.Natur.Univ.Sunyatseni Acta ScientiarumNaturalium Universitatis Sunyatseni.Zhongshan DaxueXuebao.Ziran Kexue Ban.Journal of Sun Yatsen University.Natural Sciences.J.Zhongshan Univ.,Editor.Dept.,Guangzhou.ISSN0529-6579.Acta Tech.CSA V Acta Technica CSA V.Acad.Sci.CzechRepub.,Prague.ISSN0001-7043.§Acta Univ.Carolin.Math.Phys.Acta Universitatis Carolinae.Mathematica et Physica.Karolinum,Prague.ISSN0001-7140.§Acta Univ.Lodz.Folia Math.Acta UniversitatisLodziensis.Folia Mathematica.Wydawn.Uniw.Ł´o dzkiego,Ł´o d´z.ISSN0208-6204.Acta Univ.Lodz.Folia Philos.Acta UniversitatisLodziensis.Folia Philosophica.Wydawn.Uniw.Ł´o dzkiego,Ł´o d´z.ISSN0208-6107.∗§Acta Univ.M.Belii Ser.Math.Acta Universitatis Matthiae Belii.Natural Science Series.Series Mathematics.MatejBel Univ.,Bansk´a Bystrica.(Formerly Acta Univ.MathaeiBelii Nat.Sci.Ser.Ser.Math.)§Acta Univ.Mathaei Belii Nat.Sci.Ser.Ser.Math.Matej Bel University.Acta.Natural Science Series.Series Mathematics.Matej Bel Univ.,Bansk´a Bystrica.(Continued as Acta Univ.M.Belii Ser.Math.)Acta Univ.Oulu.Ser.A Sci.Rerum Natur.ActaUniversitatis Ouluensis.Series A.Scientiae RerumNaturalium.Univ.Oulu,Oulu.ISSN0355-3191.§Acta Univ.Palack.Olomuc.Fac.Rerum Natur.Math.Acta Universitatis Palackianae Olomucensis.Facultas Rerum Naturalium.Mathematica.ISSN0231-9721.†Acta Univ.Ups.Stud.Philos.Ups.Acta Universitatis Upsaliensis.Studia Philosophica Upsaliensia.Uppsala Univ., Uppsala.ISSN0585-5497.†Acta Univ.Upsaliensis Skr.Uppsala Univ.C Organ.Hist.Acta Universitatis Upsaliensis.Skrifter r¨o randeUppsala anisation och Historia.[ActaUniversitatis Upsaliensis.Publications concerning Uppsalaanization and History]Uppsala Univ.,Uppsala.ISSN0502-7454.†Actualit´e s Math.Actualit´e s Math´e matiques.[Current Mathematical Topics]Hermann,Paris.†Actualit´e s Sci.Indust.Actualit´e s Scientifiques etIndustrielles.[Current Scientific and Industrial Topics]Hermann,Paris.†Adapt.Learn.Syst.Signal mun.Control Adaptive and Learning Systems for Signal Processing,Communications,and Control.Wiley,New York.Adv.Appl.Clifford Algebras Advances in Applied Clifford Algebras.Univ.Nac.Aut´o noma M´e xico,M´e xico.ISSN0188-7009.†Adv.Appl.Mech.Advances in Applied Mechanics.Academic Press,Boston,MA.ISSN0065-2165.∗†Adv.Astron.Astrophys.Advances in Astronomy andAstrophysics.Gordon and Breach,Amsterdam.ISSN1025-8206.†Adv.Book Class.Advanced Book Classics.Perseus, Reading,MA.†Adv.Bound.Elem.Ser.Advances in Boundary Elements put.Mech.,Southampton.(Continued as Int.Ser.Adv.Bound.Elem.)ISSN1368-258X.†Adv.Chem.Phys.Advances in Chemical Physics.Wiley, New York.†put.Econom.Advances in Computational Economics.Kluwer Acad.Publ.,Dordrecht.§E put.Math.Advances in ComputationalMathematics.Baltzer,Bussum.ISSN1019-7168.†put.Sci.Advances in Computing Science.Springer,Vienna.ISSN1433-0113.∗†Adv.Des.Control Advances in Design and Control.SIAM, Philadelphia,PA.§Adv.Differential Equations Advances in Differential Equations.Khayyam,Athens,OH.ISSN1079-9389.†Adv.Discrete Math.Appl.Advances in DiscreteMathematics and Applications.Gordon and Breach,Amsterdam.ISSN1028-3129.†Adv.Fluid Mech.Advances in Fluid put.Mech.,Southampton.ISSN1353-808X.†Adv.Fuzzy Systems Appl.Theory Advances in Fuzzy Systems—Applications and Theory.World Sci.Publishing,River Edge,NJ.§E Adv.in Appl.Math.Advances in Applied Mathematics.Academic Press,Orlando,FL.ISSN0196-8858.§Adv.in Appl.Probab.Advances in Applied Probability.Appl.Probab.Trust,Sheffield.ISSN0001-8678.∗†Adv.Ind.Control Advances in Industrial Control.Springer, London.†Adv.Lectures Math.Advanced Lectures in Mathematics.Vieweg,Braunschweig.ISSN0932-7134.§E Adv.Math.Advances in Mathematics.Academic Press, Orlando,FL.ISSN0001-8708.§Adv.Math.(China)Advances in Mathematics(China).Shuxue Jinzhan.Peking Univ.Press,Beijing.ISSN1000-0917.†Adv.Math.Econ.Advances in Mathematical Economics.Springer,Tokyo.†Adv.Math.Sci.Advances in the Mathematical Sciences.Amer.Math.Soc.,Providence,RI.§Adv.Math.Sci.Appl.Advances in Mathematical Sciences and Applications.An International Journal.Gakk¯o tosho,Tokyo.ISSN1343-4373.§Adv.Nonlinear Var.Inequal.Advances in Nonlinear Variational Inequalities.An International Journal.Internat.Publ.,Orlando,FL.ISSN1092-910X.†Adv.Numer.Math.Advances in Numerical Mathematics.Teubner,Stuttgart.†Adv.Partial Differ.Equ.Advances in Partial Differential Equations.Wiley-VCH,Berlin.†Adv.Partial Differential Equations Advances in Partial Differential Equations.Akademie Verlag,Berlin.†Adv.Ser.Dynam.Systems Advanced Series in Dynamical Systems.World Sci.Publishing,River Edge,NJ.†Adv.Ser.Math.Phys.Advanced Series in Mathematical Physics.World Sci.Publishing,River Edge,NJ.†Adv.Ser.Math.Sci.Eng.Advanced Series in Mathematical Science and Engineering.World Fed.Publ.,Atlanta,GA.†Adv.Ser.Neurosci.Advanced Series in Neuroscience.World Sci.Publishing,River Edge,NJ.†Adv.Ser.Nonlinear Dynam.Advanced Series in Nonlinear Dynamics.World Sci.Publishing,River Edge,NJ.†Adv.Ser.Stat.Sci.Appl.Probab.Advanced Series on Statistical Science&Applied Probability.World Sci.Publishing,River Edge,NJ.†Adv.Ser.Theoret.Phys.Sci.Advanced Series onTheoretical Physical Science.World Sci.Publishing,RiverEdge,NJ.∗†Adv.Soft Comput.Advances in Soft Computing.Physica, Heidelberg.†Adv.Spat.Sci.Advances in Spatial Science.Springer, Berlin.†Adv.Stud.Contemp.Math.Advanced Studies inContemporary Mathematics.Gordon and Breach,New York.∗§Adv.Stud.Contemp.Math.(Pusan)Advanced Studies in Contemporary Mathematics(Pusan).Adv.Stud.Contemp.Math.,m.,Saga.ISSN1229-3067.†Adv.Stud.Pure Math.Advanced Studies in PureMathematics.Kinokuniya,Tokyo.†Adv.Textb.Control Signal Process.Advanced Textbooks in Control and Signal Processing.Springer,London.∗†Adv.Texts Phys.Advanced Texts in Physics.Springer,Berlin.ISSN1439-2674.§E Adv.Theor.Math.Phys.Advances in Theoretical and Mathematical Physics.Internat.Press,Cambridge,MA.ISSN1095-0761.†Adv.Theory put.Math.Advances in the Theory of Computation and Computational Mathematics.Nova Sci.Publ.,Commack,NY.†Adv.Top.Math.Advanced Topics in Mathematics.PWN, Warsaw.§E Aequationes Math.Aequationes Mathematicae.Birkh¨a user,Basel.ISSN0001-9054.§Afrika Mat.(3)Afrika Matematika.Journal of the African Mathematical Union.Journal de l’Union Math´e matiqueAfricaine.S´e rie3.Union Math.Africaine,Caluire.†Agr´e g.Math.Agr´e gation de Math´e matiques.Masson,Paris.AI Commun.AI Communications.The European Journal onArtificial Intelligence.IOS,Amsterdam.ISSN0921-7126.†AIAA Ed.Ser.AIAA Education Series.AIAA,Washington, DC.†AIP Conf.Proc.AIP Conference Proceedings.Amer.Inst.Phys.,New York.ISSN0094-243X.†AIP Ser.Modern Acoust.Signal Process.AIP Series in Modern Acoustics and Signal Processing.Amer.Inst.Phys.,New York.†AKP Class.AKP Classics.A K Peters,Wellesley,MA.∗†Al-Furq¯a n Islam.Herit.Found.Publ.Al-Furq¯a n Islamic Heritage Foundation Publication.Al-Furq¯a n Islam.Herit.Found.,London.†Albion Math.Appl.Ser.Albion Mathematics&Applications Series.Albion,Chichester.§E Algebr.Represent.Theory Algebras and Representation Theory.Kluwer Acad.Publ.,Dordrecht.ISSN1386-923X.Algebra and Logic Algebra and Logic.Consultants Bureau,New York.(Translation of Algebra Log.and Algebra iLogika)ISSN0002-5232.†Algebra Ber.Algebra Berichte.[Algebra Reports]Fischer, Munich.ISSN0942-1270.§E Algebra Colloq.Algebra Colloquium.Springer,Singapore.ISSN1005-3867.§Algebra i Analiz Rossi˘ıskaya Akademiya Nauk.Algebrai Analiz.“Nauka”S.-Peterburg.Otdel.,St.Petersburg.(Translated in St.Petersburg Math.J.)ISSN0234-0852.§Algebra i Logika Sibirski˘ıFond Algebry i Logiki.Algebrai Logika.Izdat.NII Mat.-Inform.Osnov Obuch.NGU,Novosibirsk.(Continued as Algebra Log.)(Translatedin Algebra and Logic)ISSN0373-9252.∗§Algebra Log.Algebra i Logika.Institut Diskretno˘ıMatematiki i Informatiki.Sib.Fond Algebry Log.,Novosibirsk.(Formerly Algebra i Logika)(Translatedin Algebra and Logic)ISSN0373-9252.†Algebra Logic Appl.Algebra,Logic and Applications.Gordon and Breach,Amsterdam.ISSN1041-5394.§E Algebra Universalis Algebra Universalis.Univ.Manitoba, Winnipeg,MB.ISSN0002-5240.§Algebras Groups Geom.Algebras,Groups and Geometries.Hadronic Press,Palm Harbor,FL.ISSN0741-9937.§E Algorithmica Algorithmica.An International Journal in Computer Science.Springer,New York.ISSN0178-4617.†Algorithms Combin.Algorithms and Combinatorics.Springer,Berlin.ISSN0937-5511.†Algorithms Comput.Math.Algorithms and Computation in Mathematics.Springer,Berlin.ISSN1431-1550.§Aligarh Bull.Math.The Aligarh Bulletin of Mathematics.Aligarh Muslim Univ.,Aligarh.Aligarh J.Statist.The Aligarh Journal of Statistics.AligarhMuslim Univ.,Aligarh.ISSN0971-0388.§pok Alkalmazott Matematikai Lapok.Magyar Tudom´a nyos Akad.,Budapest.ISSN0133-3399.∗Allg.Stat.Arch.Allgemeines Statistisches Archiv.AStA.Journal of the German Statistical Society.Physica,Heidelberg.ISSN0002-6018.†´Alxebra´Alxebra.[Algebra]Univ.Santiago deCompostela,Santiago de Compostela.†Am.Univ.Stud.Ser.IX Hist.American University Studies.Series IX:ng,New York.ISSN0740-0462.∗§E AMA Algebra Montp.Announc.AMA.AlgebraMontpellier Announcements.AMA Algebra Montp.Announc.,Montpellier.§E Amer.J.Math.American Journal of Mathematics.Johns Hopkins Univ.Press,Baltimore,MD.ISSN0002-9327.Amer.J.Math.Management Sci.American Journal ofMathematical and Management Sciences.Amer.Sci.Press,Syracuse,NY.ISSN0196-6324.E Amer.J.Phys.American Journal of Physics.Amer.Assoc.Phys.Teach.,College Park,MD.ISSN0002-9505.Amer.Math.Monthly The American MathematicalMonthly.Math.Assoc.America,Washington,DC.ISSN0002-9890.†Amer.Math.Soc.Colloq.Publ.American Mathematical Society Colloquium Publications.Amer.Math.Soc.,Providence,RI.ISSN0065-9258.†Amer.Math.Soc.Transl.Ser.2American Mathematical Society Translations,Series2.Amer.Math.Soc.,Providence,RI.(Selected translations of Russian language publications Tr.St.-Peterbg.Mat.Obshch.)ISSN0065-9290.E Amer.Statist.The American Statistician.Amer.Statist.Assoc.,Alexandria,V A.ISSN0003-1305.†Amer.Univ.Stud.Ser.V Philos.American University Studies.Series V:ng,New York.ISSN0739-6392.†AMS Progr.Math.Lecture Ser.AMS Progress in Mathematics Lecture Series.Amer.Math.Soc.,Providence,RI.†AMS Short Course Lecture Notes AMS Short Course Lecture Notes.Amer.Math.Soc.,Providence,RI.†AMS-MAA Joint Lecture Ser.AMS-MAA Joint Lecture Series.Amer.Math.Soc.,Providence,RI.†AMS/IP Stud.Adv.Math.AMS/IP Studies in Advanced Mathematics.Amer.Math.Soc.,Providence,RI.ISSN1089-3288.E An.Acad.Brasil.Ciˆe nc.Anais da Academia Brasileira deCiˆe ncias.Acad.Brasil.Ciˆe nc.,Rio de Janeiro.ISSN0001-3765.†An.F´ıs.Monogr.Anales de F´ısica.Monograf´ıas.[Annals of Physics.Monographs]CIEMAT,Madrid.§An.S¸tiint¸.Univ.Al.I.Cuza Ias¸i Inform.(N.S.)Analele S¸tiint¸ifice ale Universit˘a t¸ii“Al.I.Cuza”din Ias¸i.Informatic˘a.Serie Nou˘a.Ed.Univ.“Al.I.Cuza”,Ias¸i.ISSN1224-2268.§An.S¸tiint¸.Univ.Al.I.Cuza Ias¸i.Mat.(N.S.)Analele S¸tiint¸ifice ale Universit˘a tii“Al.I.Cuza”din Ias¸i.SerieNou˘a.Matematic˘a.Univ.Al.I.Cuza,Ias¸i.ISSN1221-8421.§An.S¸tiint¸.Univ.Ovidius Constant¸a Ser.Mat.Universit˘a t¸ii “Ovidius”Constant¸a.Analele S¸tiint¸ifice.Seria Matematic˘a.“Ovidius”Univ.Press,Constant¸a.ISSN1223-723X.§An.Univ.Bucures¸ti Mat.Analele Universit˘a t¸ii Bucures¸ti.Matematic˘a.Univ.Bucharest,Bucharest.ISSN1013-4123.An.Univ.Craiova rm.Analele Universitˇa t¸iidin Craiova.Seria Matematic˘a-Informatic˘a.Univ.Craiova,Craiova.ISSN1223-6934.∗§An.Univ.Oradea Fasc.Mat.Analele Universit˘a t¸ii din Oradea.Fascicola Matematica.Univ.Oradea,Oradea.ISSN1221-1265.§An.Univ.Timis¸oara Ser.Mat.-Inform.Universit˘a t¸ii din Timis¸oara.Analele.Seria Matematic˘a-Informatic˘a.Univ.Timis¸oara,Timis¸oara.ISSN1224-970X.An.Univ.Timis¸oara Ser.S¸tiint¸.Fiz.Analele Universit˘a t¸iidin Timis¸oara.Seria S¸tiint¸e Fizice.Univ.Vest Timis¸oara,Timis¸oara.†Anal.Appl.Analysis and its Applications.IOS,Amsterdam.ISSN1345-4240.§E Anal.Math.Analysis Mathematica.Akad.Kiad´o,Budapest.ISSN0133-3852.†Anal.Methods Spec.Funct.Analytical Methods and Special Functions.Gordon and Breach,Amsterdam.ISSN1027-0264.†Anal.Modern.Apl.Analiz˘a Modern˘a s¸i Aplicat¸ii.[Modern Analysis and Applications]Ed.Acad.Romˆa ne,Bucharest.§Analysis(Munich)Analysis.International Mathematical Journal of Analysis and its Applications.Oldenbourg,Munich.ISSN0174-4747.E Analysis(Oxford)Analysis.Blackwell,Oxford.ISSN0003-2638.†Angew.Statist.¨Okonom.Angewandte Statistik und¨Okonometrie.[Applied Statistics and Econometrics]Vandenhoeck&Ruprecht,G¨o ttingen.§E Ann.Acad.Sci.Fenn.Math.Annales AcademiæScientiarium Fennicæ.Mathematica.Acad.Sci.Fennica,Helsinki.ISSN1239-629X.§Ann.Acad.Sci.Fenn.Math.Diss.AcademiæScientiarum Fennicæ.Annales.Mathematica.Dissertationes.Acad.Sci.Fennica,Helsinki.ISSN1239-6303.§E Ann.Appl.Probab.The Annals of Applied Probability.Inst.Math.Statist.,Hayward,CA.ISSN1050-5164.§E b.Annals of Combinatorics.Springer,Singapore.(Continued as b.)ISSN0218-0006.∗§E b.Annals of Combinatorics.Birkh¨a user,Basel.(Formerly b.)ISSN0218-0006.§Ann.Differential Equations Annals of DifferentialEquations.Weifen Fangcheng Niankan.Fuzhou Univ.,Fuzhou.ISSN1002-0942.†Ann.Discrete Math.Annals of Discrete Mathematics.North-Holland,Amsterdam.Ann.´Econom.Statist.Annales d’´Economie et deStatistique.Inst.Nat.Statist.´Etud.´Econom.,Amiens.ISSN0769-489X.§Ann.Fac.Sci.Toulouse Math.(6)Annales de la Facult´e des Sciences de Toulouse.Math´e matiques.S´e rie6.Univ.Paul Sabatier,Toulouse.ISSN0240-2963.†Ann.Fac.Sci.Univ.Kinshasa Annales de la Facult´e des Sciences.Universit´e de Kinshasa.[Annals of the Facultyof Science.University of Kinshasa]Presses Univ.Kinshasa,Kinshasa.Ann.Fond.Louis de Broglie Fondation Louis de Broglie.Annales.Fond.Louis de Broglie,Paris.ISSN0182-4295.§E Ann.Global Anal.Geom.Annals of Global Analysis and Geometry.Kluwer Acad.Publ.,Dordrecht.ISSN0232-704X.∗E Ann.Henri Poincar´e Annales Henri Poincar´e.A Journal of Theoretical and Mathematical Physics.Birkh¨a user,Basel.(Merged from Ann.Inst.H.Poincar´e Phys.Th´e or.and Helv.Phys.Acta)ISSN1424-0637.∗Ann.I.S.U.P.Annales de l’I.S.U.P..Univ.Paris,Inst.Stat., Paris.§E Ann.Inst.Fourier(Grenoble)Universit´e de Grenoble.Annales de l’Institut Fourier.Univ.Grenoble I,Saint-Martin-d’H`e res.ISSN0373-0956.§E Ann.Inst.H.Poincar´e Anal.Non Lin´e aire Annales de l’Institut Henri Poincar´e.Analyse Non Lin´e aire.Gauthier-Villars,´Ed.Sci.M´e d.Elsevier,Paris.ISSN0294-1449.Ann.Inst.H.Poincar´e Phys.Th´e or.Annales de l’InstitutHenri Poincar´e.Physique Th´e orique.Gauthier-Villars,´Ed.Sci.M´e d.Elsevier,Paris.(Merged into Ann.HenriPoincar´e)ISSN0246-0211.§E Ann.Inst.H.Poincar´e Probab.Statist.Annales de l’Institut Henri Poincar´e.Probabilit´e s et Statistiques.Gauthier-Villars,´Ed.Sci.M´e d.Elsevier,Paris.ISSN0246-0203.E Ann.Inst.Statist.Math.Annals of the Institute ofStatistical Mathematics.Kluwer Acad.Publ.,Norwell,MA.ISSN0020-3157.†Ann.Internat.Soc.Dynam.Games Annals of the International Society of Dynamic Games.Birkh¨a userBoston,Boston,MA.†Ann.Israel Phys.Soc.Annals of the Israel Physical Society.IOP,Bristol.ISSN0309-8710.Ann.Japan Assoc.Philos.Sci.Annals of the JapanAssociation for Philosophy of Science.Japan Assoc.Philos.Sci.,Tokyo.ISSN0453-0691.§Ann.Mat.Pura Appl.(4)Annali di Matematica Pura ed Applicata.Serie Quarta.Zanichelli,Bologna.ISSN0003-4622.E Ann.Math.Artificial Intelligence Annals of Mathematicsand Artificial Intelligence.Baltzer,Bussum.ISSN1012-2443.§Ann.Math.Blaise Pascal Annales Math´e matiques Blaise Pascal.Univ.Blaise Pascal,Lab.Math.Pures Appl.,Aubi`e re.ISSN1259-1734.§Ann.Math.Sil.Annales Mathematicae Silesianae.Wydawn.Uniw.´Sl‘askiego,Katowice.(See also Pr.Nauk.Uniw.´Sl.Katow.)ISSN0860-2107.†Ann.New York Acad.Sci.Annals of the New York Academy of Sciences.New York Acad.Sci.,New York.ISSN0077-8923.§E Ann.of Math.(2)Annals of Mathematics.Second Series.Princeton Univ.Press,Princeton,NJ.ISSN0003-486X.†Ann.of Math.Stud.Annals of Mathematics Studies.Princeton Univ.Press,Princeton,NJ.E Ann.of Sci.Annals of Science.Taylor&Francis,London.ISSN0003-3790.E Ann.Oper.Res.Annals of Operations Research.Baltzer,Bussum.ISSN0254-5330.E Ann.Phys.(8)Annalen der Physik(8).Wiley-VCH,Berlin.ISSN0003-3804.E Ann.Physics Annals of Physics.Academic Press,Orlando,FL.ISSN0003-4916.§Ann.Polon.Math.Annales Polonici Mathematici.Polish Acad.Sci.,Warsaw.ISSN0066-2216.§Ann.Probab.The Annals of Probability.Inst.Math.Statist., Bethesda,MD.ISSN0091-1798.§E Ann.Pure Appl.Logic Annals of Pure and Applied Logic.North-Holland,Amsterdam.ISSN0168-0072.§E Ann.Sci.´Ecole Norm.Sup.(4)Annales Scientifiques de l’´Ecole Normale Sup´e rieure.Quatri`e me S´e rie.Gauthier-Villars,´Ed.Sci.M´e d.Elsevier,Paris.ISSN0012-9593.§Ann.Sci.Math.Qu´e bec Annales des SciencesMath´e matiques du Qu´e bec.Groupe Cherch.Sci.Math.,Montreal,QC.ISSN0707-9109.§Ann.Scuola Norm.Sup.Pisa Cl.Sci.(4)Annali della Scuola Normale Superiore di Pisa.Classe di Scienze.SerieIV.Scuola Norm.Sup.,Pisa.§Ann.Statist.The Annals of Statistics.Inst.Math.Statist., Hayward,CA.ISSN0090-5364.§Ann.Univ.Ferrara Sez.VII(N.S.)Annali dell’Universit`a di Ferrara.Nuova Serie.Sezione VII.Scienze Matematiche.Univ.Ferrara,Ferrara.§Ann.Univ.Mariae Curie-Skłodowska Sect.A Annales Universitatis Mariae Curie-Skłodowska.Sectio A.Mathematica.Uniw.Marii Curie-Skłodowskiej,Lublin.ISSN0365-1029.Ann.Univ.Sarav.Ser.Math.Annales UniversitatisSaraviensis.Series Mathematicae.Univ.Saarlandes,Saarbr¨u cken.ISSN0933-8268.§Ann.Univ.Sci.Budapest.E¨o tv¨o s Sect.Math.Annales Universitatis Scientiarum Budapestinensis de RolandoE¨o tv¨o s Nominatae.Sectio Mathematica.E¨o tv¨o s Lor´a ndUniv.,Budapest.ISSN0524-9007.§put.AnnalesUniversitatis Scientiarum Budapestinensis de RolandoE¨o tv¨o s Nominatae.Sectio Computatorica.E¨o tv¨o s Lor´a ndUniv.,Budapest.ISSN0138-9491.†Annu.Rev.Fluid Mech.Annual Review of FluidMechanics.Annual Reviews,Palo Alto,CA.ISSN0066-4189.Annuaire Univ.Sofia rm.Godishnik naSofi˘ıskiya Universitet“Sv.Kliment Okhridski”.Fakultetpo Matematika i Informatika.Annuaire de l’Universit´e deSofia“St.Kliment Ohridski”.Facult´e de Math´e matiques etInformatique.Presses Univ.“St.Kliment Ohridski”,Sofia.ISSN0205-0808.Annuaire Univ.Sofia Fac.Phys.Godishnik na Sofi˘ıskiyaUniversitet“Sv.Kliment Okhridski”.Fizicheski Fakultet.Annuaire de l’Universit´e de Sofia“St.Kliment Ohridski”.Facult´e de Physique.Presses Univ.“St.Kliment Ohridski”,Sofia.ISSN0584-0279.†Anu.Filol.Univ.Barc.Anuari de Filologia(Universitat de Barcelona).[Philology Yearbook(University ofBarcelona)]Univ.Barcelona,Barcelona.†Anwend.orientier.Stat.Anwendungsorientierte Statistik.[Applications-Oriented Statistics]Lang,Frankfurt am Main.ISSN1431-7982.Anz.¨Osterreich.Akad.Wiss.Math.-Natur.Kl.¨Osterreichische Akademie der Wissenschaften.Mathematisch-Naturwissenschaftliche Klasse.Anzeiger.¨Osterreich.Akad.Wissensch.,Vienna.∗§E ANZIAM J.The ANZIAM Journal.The Australian& New Zealand Industrial and Applied Mathematics Journal.Austral.Math.Soc.,Canberra.(Formerly J.Austral.Math.Soc.Ser.B)ISSN0334-2700.†Aportaciones Mat.Aportaciones Matem´a ticas.[Mathematical Contributions]Soc.Mat.Mexicana,M´e xico.†Aportaciones un.Aportaciones Matem´a ticas: Comunicaciones.[Mathematical Contributions:Communications]Soc.Mat.Mexicana,M´e xico.∗†Aportaciones Mat.Invest.Aportaciones Matem´a ticas: Investigaci´o n.[Mathematical Contributions:Research]Soc.Mat.Mexicana,M´e xico.(Formerly Aportaciones Mat.Notas Investigaci´o n)†Aportaciones Mat.Notas Investigaci´o n Aportaciones Matem´a ticas:Notas de Investigaci´o n.[MathematicalContributions:Research Notes]Soc.Mat.Mexicana,M´e xico.(Continued as Aportaciones Mat.Invest.)†Aportaciones Mat.Textos Aportaciones Matem´a ticas: Textos.[Mathematical Contributions:Texts]Soc.Mat.Mexicana,M´e xico.§E Appl.Algebra put.Applicable Algebra in Engineering,Communication and Computing.Springer,Heidelberg.ISSN0938-1279.§E Appl.Anal.Applicable Analysis.An International Journal.Gordon and Breach,Yverdon.ISSN0003-6811.§E Appl.Categ.Structures Applied Categorical Structures.A Journal Devoted to Applications of Categorical Methods inAlgebra,Analysis,Order,Topology and Computer Science.Kluwer Acad.Publ.,Dordrecht.ISSN0927-2852.†put.Control Signals Circuits Applied and Computational Control,Signals,and Circuits.Birkh¨a userBoston,Boston,MA.ISSN1522-8363.§E put.Harmon.Anal.Applied and Computational Harmonic Analysis.Time-Frequency and Time-Scale Analysis,Wavelets,Numerical Algorithms,andApplications.Academic Press,Orlando,FL.ISSN1063-5203.†Appl.Log.Ser.Applied Logic Series.Kluwer Acad.Publ., Dordrecht.†Appl.Math.Applications of Mathematics.Springer,New York.ISSN0172-4568.§Appl.Math.Applications of Mathematics.Acad.Sci.Czech Repub.,Prague.ISSN0862-7940.∗†Appl.Math.Applied Mathematics.Chapman&Hall/CRC, Boca Raton,FL.(Formerly put.)§E put.Applied Mathematics andComputation.North-Holland,New York.ISSN0096-3003.†Appl.Math.Engrg.Sci.Texts Applied Mathematics and Engineering Science Texts.CRC,Boca Raton,FL.∗rm.Applied Mathematics and Informatics.Tbilisi Univ.Press,Tbilisi.ISSN1512-0074.∗§Appl.Math.J.Chinese Univ.Ser.A Applied Mathematics.A Journal of Chinese Universities.Series A.Appl.Math.J.Chinese Univ.,m.,Hangzhou.(FormerlyGaoxiao Yingyong Shuxue Xuebao Ser.A)(See also Appl.Math.J.Chinese Univ.Ser.B)ISSN1000-4424.§Appl.Math.J.Chinese Univ.Ser.B Applied Mathematics.A Journal of Chinese Universities.Ser.B.Appl.Math.J.Chinese Univ.,m.,Hangzhou.(See also Appl.Math.J.Chinese Univ.Ser.A and Gaoxiao Yingyong Shuxue。
科学家性格缺点英语作文
As a high school student with a keen interest in the sciences, Ive often found myself marveling at the brilliance of scientists who have shaped our world. However, its not just their groundbreaking discoveries that fascinate me, but also the unique character traits that both propel them to greatness and sometimes lead to their downfall. While the public often sees the triumphs of these scientific titans, its important to recognize that they, like all humans, have their flaws.One of the most common traits among scientists is their intense focus and dedication to their work. This singleminded pursuit of knowledge can be a doubleedged sword. On one hand, it allows them to delve deeply into their research, making groundbreaking discoveries that can change the course of history. But on the other hand, this obsession can lead to a neglect of other aspects of life. Personal relationships, social interactions, and even selfcare can suffer as a result of their relentless drive to uncover the mysteries of the universe.Take, for instance, the case of Isaac Newton, a towering figure in the scientific community. His contributions to physics and mathematics are unparalleled, but his personal life was fraught with conflicts and isolation. His intense focus on his work led to a life that was, by many accounts, lonely and filled with disputes with his contemporaries. This is not to say that all scientists are destined for a life of solitude, but it does highlight a potential pitfall of their character.Another common trait among scientists is their stubbornness, which can sometimes border on inflexibility. This trait can be beneficial when itcomes to defending a wellreasoned hypothesis against all odds. However, it can also lead to a refusal to accept new evidence that contradicts their established beliefs. A classic example of this is the story of Alfred Wegener, the father of the theory of continental drift. Despite his innovative ideas, he faced significant resistance from the scientific community, largely due to the rigid mindset of his peers who were unwilling to entertain the possibility of his theory being correct.Moreover, the meticulous nature of scientific work can sometimes lead to an overemphasis on detail, causing scientists to miss the bigger picture. This can result in a lack of creativity and an inability to think outside the box. While the scientific method relies heavily on evidence and logical reasoning, its also important for scientists to maintain a level of curiosity and openmindedness that allows them to explore new ideas and possibilities.In addition, the competitive nature of the scientific field can sometimes foster a sense of elitism among scientists. This can lead to a disregard for the opinions and contributions of others, particularly those outside of their specific area of expertise. This attitude can stifle collaboration and hinder the advancement of knowledge, as it closes off potential avenues of exploration and innovation.Its also worth noting that the pressure to publish and secure funding can sometimes lead scientists to cut corners or even engage in unethical practices. The desire to be the first to make a significant discovery can overshadow the importance of integrity in research. While this is not a flawinherent to all scientists, it is a potential pitfall that can tarnish the reputation of the scientific community as a whole.In conclusion, while the character of scientists is often celebrated for its positive traits such as curiosity, dedication, and intelligence, its important to acknowledge the potential downsides as well. The intense focus, stubbornness, meticulousness, elitism, and the pressures of the scientific community can sometimes lead to negative outcomes. As a student looking to the future, I am inspired by the achievements of scientists but also mindful of the need to balance these traits with a broader perspective, collaboration, and ethical conduct.。
Taming
Tamingfirst order logic:relating the semantic and the syntactic approachMaarten MarxAbstractOut of the joint work of Johan van Benthem and the Hungarian group round HajnalAndr´e ka,Istv´a n N´e meti and Ildik´o Sain and their PhD students,two approaches fortaming a logic evolved.With taming a logic we mean changing the logic in such a waythat it becomes decidable.Forfirst order logic,they took a semantic route using rela-tivisation of models,and a syntactic route focusing on guarded fragments.The purposeof this paper is to show that these two routes are really two sides of the same coin.Wedo this by showing that a certain guarded fragment(called here the packed fragment)offirst order logic forms precisely the set offirst order sentences which are invariant for relativisation with a tolerance relation.Besides this technical contribution we providean intuitive explanation of relativisation in terms of information transmission.Contents1Introduction22Relativisation interpreted as a sceptical information processing strategy2 3Relativised semantics forfirst order logic53.1Admissible assignments (5)3.2Different relativisations (8)3.3Bisimulations (10)4Packed fragment135Conclusion17Dedicated to Johan van Benthem on hisfiftieth birthday.1IntroductionThe main purpose of this paper is to give a semantic characterisation of the guarded fragment(here called the packed fragment)in terms of invariance for relativisation(Theorem4.11).We will argue that relativisation in afirst order setting is the analogue of taking generated submodels in modal logic.Our tentative conclusion will be that the packed fragment is the true modal fragment offirst order logic,because it has the same“localflavour”and is decidable for very similar reasons.Besides this technical result we provide an interpretation of relativisation as a sceptical information processing strategy in section2.We show that for sentences in the packed fragment,this sceptical strategy leads to the same results(in terms of validity and satisfaction)as the classicalfirst order interpretation.This result makes the sceptical strategy an interesting alternative because it has great computational advantages over the classical first order way of interpreting sentences.The technical part of this paper is organised as follows.We introduce relativised semantics forfirst order logic in Section3.We take a modal view onfirst order logic and arrive to the notion of admissible assignments.We show how relativised semantics can be obtained from two primitive concepts:context sets and tolerance relations.Then we introduce our version of the(loosely)guarded fragment,called the packed fragment,and relate it to relativised semantics.We conclude by arguing that the packed fragment is the true modal fragment of first order logic.2Relativisation interpreted as a sceptical informa-tion processing strategyWe employ a very simple model of information transmission:there are two participants of which one does all the talking and the other merely listens and interprets the incoming information.It will be convenient to ascribe gender to the two participants.We assume that the speaker is male and the listener is female.The language used by the speaker is afirst order language,which will be interpreted dynamically,in the style of Dynamic Predicate Logic(DPL)of [3,4].The update–semantics version of DPL provides a model for the interpreta-tion process performed by the listenerIn the dynamic view the interpretation process consists of two components:1.finding antecedents for anaphora(interpreting discourse information)2.building a model of the world described by the speaker(interpretation ofworld–information).The speaker however is not God or some other embodiment of the world just reporting what is the case,the speaker is an observer of the world reportinghow he perceives it.Thus the interpretation of the world–information is more accurately described by2’building a model of the world perceived by the speaker on the basis of his report of it.Once the listener realises that she is building a model of the world relative to the perception of the speaker,a number of information processing strategies are open to her.In this paper,we will focus on one such a strategy:the listener does not accept universal statements made by the speaker unconditionally,but relativises them with the proviso“provided that the elements quantified over are perceived together bythe speaker.”We will make this proviso more precise in due course.First an example Example2.1A company like McDonald’s can be modeled in many different ways.A natural way to think about it is as a collection of databases each containing the employees of one outlet,databases containing the managers of a region,databases containing the whatevers of some larger geographical unit, and so on,all the way up to the database containing the president and his com-panions.In other words,a hierarchical setup of partially overlapping databases.Let’s look at the following situation.The president of McDonald’s gives his yearly address and says:“In this company,everybody loves each other.”A logician who ows his money baking hamburgers raises hisfinger and says that he doesn’t love his neighbour in the audience at all,since that man works in an outlet at the other side of the world.The president answers,rather annoyed, that he meant of course that“everyone within a unit in McDonald’s loves each other”.The president and the logician interpret thefirst sentence differently because they amalgamated the databases in a different way.The logician used the classical way,while the president amalgamated them in a relativised manner.In this way he could keep the natural structure of the company.For the president, the natural way of interpreting his universal statement was using the proviso given above.Before we go into the strategy,let’s look at some more basic questions.Why would a listener employ such a strategy?And,supposing there are good reasons, how does she know when elements of discourse are perceived together by the speaker?In other words,can she practically perform such a strategy at all?To start with thefirst question,why would a listener not want to accept universal statements unconditionally?The answer is that the computational costs connected to universal statements are very high.They can quickly lead to infinite models,moreover it is undecidable tofind out whether a set of sentences has a model at all.Given this it is reasonable to postulate that the listener uses some kind of mechanism to cope with these difficulties of interpretation.What kind of mechanism she uses is of course open to debate.Whatever mechanism she will use,we can expect some natural properties of it:•It should be sound:“whatever can still be deduced,can also be deduced in the“classical setting”.•It shouldn’t lead to too much loss of information:on a large natural frag-ment of natural language,the classical and the adjusted interpretation process should lead to the same results.•It should have definite computational advantages.The strategy we propose satisfies all these.So let’s look at the second question: suppose the listener uses the“proviso–strategy”,how does she implement it? In particular how does she know which elements in the domain of discourse are perceived together by the speaker,and what does that mean?We start with the latter.Given a domain D of individuals,and a subset X⊆D,how can we describe when the elements in X are perceived together by the speaker?One natural way to do this is to postulate that there exists a“dis-tance”function f:D×D−→R,which describes for the speaker the distance between each two elements in D.With distance we mean something inherently vague with many dimensions.It has at least spatial,temporal,conceptual and cultural components,but also cognitive ones,individualised to each speaker. The listener could now state that the elements in X are perceived together by the speaker if for all a,b in X,the distance between a and b is less than some fixed value d.But if the listener cannot know the function f,she also has no idea about d.So what is left for her is just the abstract information that there exists a tolerance relation on D for the speaker.With the assumption that the distance between one object is arbitrarily small,the only thing she knows then is that there exists a binary relationδ(x,y)on D which is reflexive and symmetric.So far so good,but how does she know which elements stand in this rela-tion?She can’t know anything but the discourse of the speaker provides her with clues.That is,from the discourse she gets information which makes it reasonable to assume that indeed the speaker can perceive certain individuals together.The following are examples of such clues:Named individuals all individuals which the speaker gives a name are per-ceived together.Existentially introduced individuals If the speaker introduces two individ-uals existentially in the same discourse,then their denotation can be per-ceived together by him.Primitive relations If the speaker puts certain individuals together in a prim-itive relation,then he can perceive them together.(We can view this as “naming”a group.)Related to named individuals Quite a bit stronger is to postulate that the distance between any individual and any named individual is arbitrarily small.Macho or classicalδis the universal relation on the domain of discourse.That is,the speaker can perceive each two individuals in the domain of discourse together.The last clue brings us back to the classical interpretation of a discourse.Clearlysuch clues can be provided by the speaker.We will assume though that he canonly do this outside the object language that we are studying.So the speakershould make a kind of meta–statement in order to effectuate this information.(Think of a math teacher who starts a class with:“Everything I will say holdsfor all the natural numbers and for them only”.)This concludes our view on relativisation in a discourse setting.We wil nowturn to the technical work.The clues presented above will re-occur there.3Relativised semantics forfirst order logicWe providefirst order logic with a different semantics than the standard seman-tics.We assume we are working with a standardfirst order language withoutfunction symbols:thus the language contains equality,the usualfirst order con-nectives,a countable stock of variables and individual constants,and a count-able stock of n-ary relation symbols,for every n.In addition we will assumethat we have as primitive symbols also∃¯v,where¯v is afinite set of variables.When¯v={v1,...,v k},then∃¯vϕjust means∃v1...∃v kϕin classical logic.For ϕa formula in this language,FV(ϕ)denotes the set of free variables ofϕ,defined in the standard way.In classicalfirst order logic,the interpretation of a formula in a model(D,I)is given relative to an assignment of the variables s.Given a domainD,the set of assignments consists of all functions from the set of variables intoD.The key idea of relativised semantics is that meaning of formulas becomesrelativised to a subset of the set of all assignments.We call such a set theadmissible assignments.In what follows we willfirst define this relativised semantics.Then we seewhat intuitions one can develop about the set of admissible assignments.Wefinish with providing the connection with standardfirst order logic and establisha notion of bisimulation.3.1Admissible assignmentsAssignments.Given a model(D,I),an assignment is a function from the setof variables into D.We assume our language hasωmany variables v0,v1,...,.An assignment g can then be viewed as a sequence fromωD:g(i)then givesthe value of v i according to g.To define the meaning of the existential quantifier,it is handy to create thefollowing relation between assignments:s≡i t ifffor all j=i:s(j)=t(j).(1) That is:two assignments s and t are≡i related iffthey agree on all values of the variables except possibly for v i.We can also define these relations for sets of variables¯v:s≡¯v t ifffor all j∈¯v:s(j)=t(j).(2)Using the relation≡i,we can give an alternative equivalent definition of the meaning of the existential quantifier.Given a model M=(D,I)and an assign-ment s∈ωD,defineM|=∃v iϕ[s]⇐⇒there exists a t≡i s such that M|=ϕ[t].Let us now look at this definition from a modal perspective.We view the as-signments as worlds and≡i as an accessibility relation.Then this definition is just the standard modal truth–definition of the“diamond”∃v i.Given afirst order model(D,I),the set of assignments(worlds)is uniquely determined:it is the setωD.The theory we will develop below abandons this classical rigidness:we will allow other subsets ofωD to be set of“worlds”of ourfirst order models.Before we can start we have to solve a technical difficulty.First order logic satisfies the following appealing locality condition.It says that the meaning of a formula depends only on the model and the variables occurring free in the formula.Fact3.1[Locality]Letϕbe afirst order formula.Let M=(D,I)be a model, and s,t be two assignments such that s(i)=t(i)for all v i∈FV(ϕ).ThenM|=ϕ[s]if and only if M|=ϕ[t].When we givefirst order logic a relativised semantics,locality does not neces-sarily hold,cf[1,6].We will give meaning to the existential quantifier using the dual of the relation≡¯v.This relation was introduced into cylindric alge-bra theory by Y.Venema.On relativised models,this will ensure locality,and on standard models,the meaning of the existential quantifier is just the same. Define for s,t assignments,¯v a set of variables,s≡∂¯v t ifffor all v i∈¯v s(i)=t(i).(3) Admissible assignments.The key idea of relativised semantics forfirst or-der logic is that given a model M=(D,I),only a subset of the set of all assignmentsωD is available for the interpretation of the formulas.We will now provide the truth definition for afirst order language relative to such an admis-sible set of assignments V⊆ωD.First we give meaning to terms:let s be an assignment,and M=(D,I)a model.We define a function i from the set ofterms into D asi(t)=I(t)if t is a constants(i)if t is the variable v i(4)Now for M=(D,I)a model,and V⊆ωD a set of assignments,we define truth of a formula in M relative to assignments in V.For s∈V,M|=V R(t1,...,t n)[s]⇐⇒(i(t1),...,i(t n))∈I(R)M|=V t1=t2[s]⇐⇒i(t1)=i(t2)M|=V¬ϕ[s]⇐⇒M|=Vϕ[s]M|=Vϕ∧ψ[s]⇐⇒M|=Vϕ[s]and M|=Vψ[s]M|=V∃¯vϕ[s]⇐⇒there exists a t∈V such thats≡∂FV(∃¯vϕ)t and M|=Vϕ[t].Note that the only difference with the definition in any textbook onfirst order logic is in the clause for the existential quantifier:the assignment t witnessing ϕmust be admissible,and we use the dual relation≡∂.For comparison,let us define|=c V—for“classical|=”,where all clauses are the same as for|=V above, except the existential quantifier is defined asM|=c V∃¯vϕ[s]⇐⇒there exists a t∈V such that s≡¯v t and M|=c Vϕ[t]. The next fact states that the two definitions are equivalent on classical models. Fact3.2Let M=(D,I)be a model and let V=ωD.Then for any s∈V, for any formulaϕ,M|=Vϕ[s]if and only if M|=c Vϕ[s].Proof.The only difference is in the meaning of the existential quantifier.That case goes through by the facts that locality holds on classical models and s≡¯v t implies that s≡∂FV(∃¯vϕ)t.qed The next fact states that on relativised models,locality holds as well.Fact3.3Let M=(D,I)be a model and V⊆ωD a set of admissible assign-ments.For any formulaϕ,for any s,t∈V such that s≡∂FV(ϕ)t(that is,s and t assign the same values to the free variables inϕ):M|=Vϕ[s]if and only if M|=Vϕ[t].Truth at non–admissible assignments.Given a model M=(D,I)and a set of admissible assignments V⊆ωD,we have defined what it means for a formula to be true in M at assignments in V.But what about the assignments inωD\V?The obvious way to do this for s∈ωD\V is as follows,M|=Vϕ[s]⇐⇒there exists t∈V such that t≡∂FV(ϕ)s and M|=Vϕ[t]. Note that for formulasϕ,M|=Vϕ[s]can still be undefined.If we assume that V is always non–empty,then for sentences however it is always defined.We now have two ways of defining truth in a model for sentences:M|=1Vϕiff(∀s∈ωD):M|=Vϕ[s]M|=2Vϕiff(∀s∈V):M|=Vϕ[s].For sentences,these two definitions give the same result:Fact3.4For every model M,for every non–empty V⊆ωD,for every sentence ϕ,M|=1Vϕif and only if M|=2Vϕ.Since|=2V is more economical,we will use this notion from now on and delete the superscript.Finally we define the notion of validity and of valid consequence.As usual we will overload the meaning of the symbol|=.LetΣbe a set of conditions onsets of admissible assignments.Letϕbe a sentence andΓa set of sentences. We define|=Σϕifffor everyfirst order model M=(D,I),for every V⊆ωD satisfyingΣ,M|=Vϕ.Γ|=Σϕifffor everyfirst order model M=(D,I),for every V⊆ωD satisfyingΣ,M|=VΓimplies M|=Vϕ.3.2Different relativisationsAbove we have defined relativised semantics for any choice of V⊆ωD.In the literature several restrictions on V have been proposed.Here we will show how one can define a set of admissible assignments from a tolerance relation on the domain of the model and from the notion of a context set[9].Tolerances were introduced in the previous section.For M=(D,I) a model,a context is just a subset of D.The intuitive meaning of a context X⊆D isall elements in X can be perceived together by the speaker.We will now define these notions and investigate their effects.Let M=(D,I)be afirst order model.Suppose f:D×D−→R+0is a function associating with every pair of elements in the model a value,which we think of as the distance between the elements.We can then defineδ(x,y)⇐⇒f(x,y)≤d for somefixed positive d.If we assume that f(x,x)=0,thenδsatisfiesδ1(∀x∈D):δ(x,x)δ2(∀xy∈D):(δ(x,y)→δ(y,x)).We call a relationδ⊆D×D satisfying these two requirements a tolerance on D.Let C be a collection of subsets of D.Let C satisfy the following two conditions: C1all singleton sets belong to CC2C is closed under subsets.If in addition C satisfies the following packed dense condition,C PD if for all x,y∈X,{x,y}∈C,then also X∈C,we call C a context set.Tolerances and context sets are closely related.Fact3.5(i)Ifδis a tolerance on D,then the set C defined byX∈C ifffor all x,y∈X,δxy,satisfies C1,C2and C PD.(ii)If C⊆P(D)satisfies C1,thenδdefined byδxy iffthere exists a set X∈C such that{x,y}⊆X,defines a tolerance on D.(iii)Tolerances and context sets are inter definable by the above definitions.We now relate tolerances and context sets to sets of admissible assignments.Definition3.6Let(D,I)be a model,and letδbe a tolerance and C a context set on(D,I).We define two sets of admissible assignments Vδand V C as the smallest subsets ofωD satisfyings∈Vδiff(∀i,j):δ(s(i),s(j))s∈V C iff{s(i)|i∈ω}∈C,respectively.The following fact is immediate by Fact3.5.Fact3.7Let(D,I)be a model,and letδbe a tolerance and C a context set on(D,I).Then Vδ=V C.Until now we have given only minimal requirements on the notions of context sets and tolerances.With our intended interpretation it makes sense to make them language–dependent as well(cf.,the clues provided in Section2).The following extra conditions make sense in a language with constants.¿From the perspective of a distance function,it says that the distance between any element and a named element is arbitrarily small.δ3(∀x∈D):δ(x,I(m))for all constants mC3(∀x∈D):{x,I(m)}∈C for all constants m.A further restriction onδ(and hence C)is to ask that the distance between two elements which stand together in a primitive relation is arbitrarily small. This would lead to the following extra conditions onδand C:δ4(∀x,y∈D):if(∃z1...z k(x=z i∧y=z j∧(z1,...,z k)∈I(R) for some R,i,j,thenδ(x,y).C4(∀x,y∈D):if(∃z1...z k(x=z i∧y=z j∧(z1,...,z k)∈I(R) for some R,i,j,then{x,y}∈C.We now look at the effect of the extra restrictions about constants and primitive relations on the logic.The conditionδ3does have an effect(of course only in languages with constants in the signature),whileδ4does not.Fact3.8There exists a sentence which can be falsified on a model with a set of admissible assignments Vδdefined by a toleranceδ,but which holds on all models where Vδis defined by a tolerance satisfyingδ3.Proof.Consider thefirst order tautology[∀x∃yRxy∧∀xyz((Rxy∧Ryz)→Sxz)]→∃xySxy.The counter model has the natural numbers as its domain,R is interpreted as successor,S=∅andδis generated by the successor relation(that isδ(x,y)iffx=y or Rxy or Ryx holds).Clearlyδis a tolerance and the consequent fails on this model.To see that the antecedent holds,observe that for no assignments∈Vδ,the range of s contains more than two elements.Thus the second conjunct in the antecedent cannot be falsified.On the other hand,consider any model M where Vδis defined from a tol-erance satisfyingδ3.Assume the antecedent holds in M.Let a be the element named by some constant a.Then by thefirst conjunct,there exists a b∈D such that Rab.Let s be the assignment sending every variable to b.Then M|=V∃yRby[s],whence there exists a c such that Rbc andδ(b,c)holds.But byδ3,alsoδ(a,b)andδ(b,c).But then{a,b,c}∈Vδ,whence by the truth of the second conjunct of the antecedent,Sac must hold.qedFor sentences,conditionδ4does not lead to extra validities.Fact3.9For every sentenceϕ,|={δ1,δ2,δ3}ϕif and only if|={δ1,δ2,δ3,δ4}ϕ.The same holds when we disregard conditionδ3.Proof.From left to right is obvious.For the other direction,assume M|=Vϕwhere V is defined from a tolerance not satisfyingδ4.Change the valuation of the relation symbols such thatδ4holds as well,by deleting any tuple¯a containing elements a i,a j which are notδ–related from the interpretation of every relation symbol.Call this model M .But then still M |=Vϕ,since to determine the truth of a sentence at an assignment in Vδone only needs toconsider assignments in Vδ.qedSumming up.We have given several ways of defining relativised semantics. Now it is time to make a choice.In a language without constants this would be easy:we only allow admissible assignments defined from a toleranceδ.Then, just because it is handy,we can ask for conditionδ4as well,since it does not alter the logic anyway.With constants in the language we should make a decision aboutδ3.Since it seems a natural condition and it makes the logic stronger,we have chosen to include that as well.So from now on we only use relativised models where the set of admissible assignments is defined from a toleranceδsatisfyingδ3andδ4(or equivalently,from a context set C which satisfies C3and C4).¿From now on a tolerance means a tolerance satisfying δ3andδ4.Definition3.10Let M=(D,I)be a model,andδ⊆D×D.The relationδis called a tolerance if it satisfiesδ1,δ2,δ3andδ4.3.3BisimulationsExplicit relativisations.Let M=(D,I)be a model and C⊂P(D)a context set on it.Recall that the intuitive meaning of C was as follows: X∈C if and only if all elements in X can be perceived together by thespeaker.The language does not have explicit means to state that two elements are per-ceived together.So we could add constants δij for every i,j ∈ω,and provide them with the following meaning.For any s ∈ωD ,M |=δij [s ]if and only if {s (i ),s (j )}∈C .(5)Following Tarski,we call an operation logical if it’s truth is preserved under automorphisms.Clearly δij is not a logical constant.But intuitively it should not be one in this sense.δij indicates that the elements denoted by s (i )and s (j )are part of a group of elements which can be perceived together.Arbitrary automorphisms can destroy this intuitive meaning of δij .On the other hand,the truth of δij is preserved under automorphisms which respect C .Fact 3.11Let M =(D,I )be a model and C ⊂P (D )a context set on it.Let g be an automorphism of M such that for any set X ⊆D ,X ∈C if and only if {g (x )|x ∈X }∈C .Then for any s ∈ωD ,M |=δij [s ]if and only if M |=δij [g (s )].Note that δij is true on every s ∈V C ,so on admissible assignments it is equiv-alent to .In particular the following equivalence holds.M |=V C ∃¯v ϕ[s ]if and only if M |=V C ∃¯v ( {δij |v i ,v j ∈FV (ϕ)}∧ϕ)[s ].What we just did is to make the implicit relativisation to admissible assignments in the meaning definition of the quantifiers explicit in the object language.This provides us with a translation to ordinary first order logic as follows.Define recursively the following translation function (·)δfrom first order for-mulas to first order formulas.(·)δdoes nothing to atomic formulas,it commutes with the booleans and(∃¯v ϕ)δ=∃¯v ( {δ(v i ,v j )|v i ,v j ∈FV (ϕ)}∧ϕδ).Here δis just a binary predicate.As expected we have,Fact 3.12Let M =(D,I )be a model and δa tolerance on it.Then for every formula ϕ,for all s ∈V δ,M |=V δϕ[s ]if and only if (D,I,δis defined as the set{(x,y )∈D ×D |x,y stand in the tolerance relation δ},and forms the interpretation of the binary predicate δ.Bisimulations and packed sets.Let(D,I)be a model andδa tolerance on it.We call a set X⊆Dδ–packed ifδ(x,y)holds for all x,y∈X.Then Vδ—the set of admissible assignments defined fromδ—is just the set of all sequences whose elements form aδ–packed subset of ing this we can define the appropriate notion of bisimulation for this logic.Note that the definition is very close to the one for the guarded fragment in[2].Two pieces of notation come handy:define for s∈ωD,R(s)={s(i)|i∈ω}.Also for g a function from D to D ,and s∈ωD,defineg(s)=that sequence inωD such that for all i,g(s)(i)=g(i).Definition3.13(Bisimulation)Let M=(D,I)and N=(D ,I )be two models for the same signature.LetδM andδN be tolerances on them respec-tively.A family F offinite partial isomorphisms between D to D is called a δ–bisimulation if F satisfies the following conditions:•if f∈F and g⊆f,then also g∈F•(totality)–for everyδ–packed set X⊆D,there exists an f∈F whose domain is X–similar forδ–packed subsets of D•(forth)if f∈F and dom(f)⊆X for someδ–packed set X,then there exists a g∈F which extends f and whose domain is X•(back)a similar condition in the other direction.Note that bisimulations are always non–empty,by totality and the fact that every singleton set isδ–packed.Of course we have the followingFact3.14For everyϕ,for every M,N,for everyδ–bisimulation F between them,for every f∈F,and for every assignment s such that R(s)=dom(f),M|=Vϕ[s]if and only if N|=Vϕ[f(s)].Proof.The proof is by induction on formulas.We only consider the case for the existential quantifier.So let M|=V∃¯vϕ[s]and f∈F with dom(f)=R(s). The case when∃¯vϕis a sentence is easy and left to the reader(use totality). So suppose otherwise.Then there exists a t∈Vδsuch that t≡∂FV(∃¯vϕ)s and M|=Vϕ[t].Let s be such that R(s )={s(i)|v i∈FV(∃¯vϕ)}.Then by locality also M|=V∃¯vϕ[s ].Since F is closed under subsets,also f R(s )∈F. From t≡∂FV(∃¯vϕ)s it follows that R(s )⊆R(t).Whence by forth,there exists a g⊇f R(s )with dom(g)=R(t).Thus by induction hypothesis,N|=Vϕ[g(t)]. But g⊇f s implies f R(s )(s )≡∂FV(∃¯vϕ)g(t).Thus N|=V∃¯vϕ[f R(s )(s )], whence by locality N|=V∃¯vϕ[f(s)].qed4Packed fragmentIn this section,we look for sentences whose truth in a model is unaffected by adding or deleting a tolerance.The syntactic characterisation of this fragment forms a slight generalisation of van Benthem’s loosely guarded fragment.We first define the fragment.We work in a standardfirst order language with equality with one restriction:terms are variables or constant symbols.We say that a formulaϕpacks a set of variables{x1,...,x k}ifϕis a conjunction of formulas of the form t i=t j or R(t1,...,t n)or∃¯y R(t1,...,t n) such that for every x i=x j,there is a conjunct inϕin which x i and x j both occur free.In the definition of the packed fragment we use generalised quantifiers ∀¯x(ϕ,ψ)where¯x=x1,x2,...,x n is a sequence of variables.The meaning of this quantifier is nothing but the meaning of∀x1...∀x n(ϕ→ψ)infirst order logic.A generalised quantifier∀¯x(ϕ,ψ)is called packed ifϕpacks all free variables ofψ.We callϕthe guard of∀¯x(ϕ,ψ).Note that ifψcontains only one free variable,then thefirst argument of the universal quantifier can be anything: packedness only speaks about pairs of variables.The packed fragment is defined as follows:a packed formula is constructed from atoms using the booleans and packed universal quantification∀¯x(ϕ,ψ), whereψmust be a packed formula.It will be useful to define two more fragments.A packed existential quan-tification is nothing but¬∀¯v(ϕ,¬ψ),where∀¯v(ϕ,¬ψ)is a packed universal quantification(i.e.,it is of the form∃¯v(ϕ∧ψ),whereϕpacks all free variables ofψ).The∀–packed fragment is defined as follows:formulas are constructed from atoms and their negations using∧,∨,∃and packed universal quantification ∀¯x(ϕ,ψ),whereψmust be a∀–packed formula.The∃–packed fragment is defined dually:so we may use unpacked∀,but only packed∃.The three fragments are of course closely relatedFact4.1Afirst order sentenceϕis equivalent to a packed sentence if and only if it is equivalent to a∀–and a∃–packed sentence.We will now related the packed fragment to relativised semantics.One direction is obvious,and observed in[8].Fact4.2The translation(·)δgoes to the packed fragment.Just as allfirst order sentences are invariant forδ–bisimulations when they are interpreted relativised to a set of admissible assignments,all packed sen-tences are invariant forδ–bisimulations when they are classically interpreted. Definition4.3A sentenceϕis invariant forδ–bisimulations if for all models M,N,for all tolerancesδM,δN,and for allδ–bisimulations F:M F N,M|=ϕif and only if N|=ϕ.。
英语文献
Early hydration of clinker –slag –metakaolin combination in steam curing conditions,relation with mechanical propertiesF.Cassagnabère a ,b ,⁎,M.Mouret a ,G.Escadeillas aa Universitéde Toulouse,UPS,INSA;LMDC (Laboratoire Matériaux et Durabilitédes Constructions),135,Avenue de Rangueil;F-31077Toulouse Cedex 04,France bSEAC-Gf,47Boulevard de Suisse 31021Toulouse,Francea b s t r a c ta r t i c l e i n f o Article history:Received 26January 2009Accepted 24July 2009Keywords:Cement/slag/MK binder (D)Steam curing (A)Early ageHydration product (B)High strength can be obtained at early ages for precast concrete elements by the use of CEMI 52.5R cement (OPC)and thermal treatment (steam curing).To compensate for the announced withdrawal of CEM I cements because of high CO 2emissions during their production and the ecotax that this will imply,one attractive alternative is the use of composed cements resulting from the combination of clinker with mineral admixtures.In steam curing conditions,previous studies have shown an increase in the compressive strength at one day of age for mortars incorporating an OPC/blast furnace slag (GGBS)/metakaolin (MK)combination,in comparison with mortars incorporating OPC only.The present study investigates the connection between the compressive strength,at one day of age,of steam cured mortars made with various binders and the hydration of these binders.The progress of the hydration was characterised by means of XRD,thermal and microprobe analyses.The results indicate that the increase in compressive strength when MK is incorporated (OPC/MK or OPC/MK/GGBS)can be explained by an increase in the amount of C-S-H,C-A-H,C-A-S-H phases,a decrease in the amount of CH and a change in the chemical nature of the matrix (decrease in C /S ratio).The decrease in compressive strength of OPC/slag-based material can be explained by a reduction in the amount of hydrated phases (particularly C-S-H)and compactness.These are promising results for precast concrete manufacturers who are concerned about preserving the environment.©2009Elsevier Ltd.All rights reserved.1.IntroductionAt present,the precast industry is booming and represents 20%of concrete production worldwide [1].Precasting is the production in a factory of either plain concrete elements (concrete masonry units,road kerbs,floor blocks,etc.)or reinforced/prestressed concrete elements (hollow core slabs,beams,underground arch stones,etc.).The interest in precast products can be explained by the many advantages they offer,such as reductions in building time,the multiplicity of available products,assured quality with certi fied performance levels,optimised costs,etc.A major preoccupation for the precast industry concerns time delays because of their effect on pro fitability.To keep manufacturing times down,the concrete used to make structural precast beams and slabs must have good mechanical characteristics at both early and later ages.For instance,a high com-pressive strength as early as one day of age is required for prestressed concrete so that the pretensionned strands can be relaxed.To achieve such mechanical properties,two solutions are recommended.First,CEMI-52.5R cements (OPC)complying with European standard EN 197-1[2]should be used because they combine high clinker content (at least 95%by weight,notation CEMI),high fineness (notation R ),which enables high reactivity at an early age [3]and 28-day minimum compressive strength of 52.5MPa (notation 52.5)measured on normalised mortars according to European Standard EN 196-1[4].Second,a high curing temperature (steam curing)should be employed to accelerate the maturation of precast products.It is widely reported that a high curing temperature favours the development of mechanical properties at early ages but can adversely affect the strength at later ages [5,6].The through-solution mecha-nism is accelerated in the first stages of hydration by the rise in temperature.At later ages,the hydration reactions are essentially of a topochemical nature and,as such,take place mostly on the surface of the reacting materials.High curing temperature conditions rapidly increase the occurrence of topochemical reactions.Accordingly,an uneven distribution of the hydration products has an unfavourable in fluence on the strength of the whole material [7].Combining these solutions (reactivity of CEMI 52.5R cement and acceleration of cement hydration kinetics by thermal treatment)Cement and Concrete Research 39(2009)1164–1173⁎Corresponding author.Universitéde Toulouse,UPS,INSA;LMDC (Laboratoire Matériaux et Durabilitédes Constructions),135,Avenue de Rangueil;F-31077Toulouse Cedex 04,France.Tel.:+33561556711.E-mail address:franck.cassagnabere@insa-toulouse.fr (F.Cassagnabère).0008-8846/$–see front matter ©2009Elsevier Ltd.All rights reserved.doi:10.1016/j.cemconres.2009.07.023Contents lists available at ScienceDirectCement and Concrete Researchj o u r n a l h om e p a g e :h t t p://e e s.e l s evi e r.c o m /C E M C O N /d e fa u l t.a s pallows suf ficient maturity to be reached at early ages for the prestressed elements to set in a tensile state.However,due to the high clinker content,the production of CEMI 52.5R cement releases large amounts of CO2into the atmosphere [8].For example,during the decarbonation of raw materials,the alite phase (Ca3SiO5,i.e.C 3S)produces large quantities of CO2,as shown by the following basic equation (mass proportions in italics):3CaC O 3+SiO 2→1350∘CCa 3SiO 5+3CO 230060228132Calcium carbonateSilicaC 3S ðAlite ÞCarbondioxideð1ÞFrom Eq.(1),irrespective of the type and ef ficiency of the calcination process,every ton of C 3S produced releases 579kg of CO2and generates a minimum thermal energy of about 4.70GJ at 20°C.Moreover,the reaction cannot proceed at temperatures lower than about 1250°C,even if a catalyst is used.In practice,it is necessary to bring the raw material temperature to 1400°C so that the reaction rate is high enough to be cost-effective [9,10].In such manufacturing conditions,the high CO 2emission is becoming a matter of concern with regard to protection of the environment.The planned establishment of an ecotax means that CEMI cement could disappear in the near future [11].To compensate for the increase in the consumption of CEM I cements [10],one attractive alternative is the use of compound cements resulting from the combination of clinker with mineral admixtures.However,the utilisation of such cements can become a realistic solution only if their raw constituents are present in the local market and if they do not affect the compressive strength in comparison with the CEMI cement that is currently used and gives satisfaction.The authors [12]measured compressive strengths on steam cured mortars at early age (1day).The composition of various mortars,named Mi,differed in the nature of the binder,named Bi (blended with the binder Bi=450g,Water/Bi=0.5and Sand/Bi=3).They were made according to European Standard EN 196-1[4].Combina-tions of three raw materials were used to develop the binders:CEMI 52.5R cement,blast furnace slag (GGBS)and metakaolin (MK).Four binders could be derived from the different combinations.–Primary binder B1(100%CEMI 52.5R)de fined as the reference binder.–Secondary binders B2(75%CEMI+25%MK)and B3(82%CEMI+18%GGBS).–Ternary binder B4(61.5%CEMI+13.5%GGBS+25%MK).In comparison with the compressive strength of the reference mortar M1(33.9MPa for CEMI only)at one day of age:–the replacement of 25%of the mass of CEM I cement by MK (M2)generated a relative increase of 39%;–the replacement of 18%of the mass of CEM I cement by GGBS (M3)led to a 19%decrease;–the ternary binder B4enabled a 31%increase.The compressive strength data are gathered together in Appendix 1.To try to explain these variations of strength when GGBS and/or MK partially replace cement in steam curing conditions,it would be interesting to investigate the hydration characteristics of the matrix.Appendix 2presents a review of fundamental studies dealing with the identi fication of hydrated phases existing at one day of age in materials that incorporate metakaolin or slag in high temperature curing.–MK principally reacts with portlandite (CH)derived from cement hydration in the presence of water and generates hydrated phasesidenti fied as C-S-H gels chemically different from the ones derived from the hydration of plain cement,and neoformed phases like alumina-silicate hydrates C 2ASH 8and crystallised calcium alumi-nate hydrates such as C 4AH 13and C 3AH 6[13–16].It seems that the crystal form of the hydrates principally depends on the MK/CH ratio and curing temperature.The presence of such hydration products shows that the pozzolanic reaction due to MK is thermoactivated as early as one day of age by thermal treatment [16].–Studies on slag-based material in steam curing conditions are less widespread.In comparison with OPC cement (CEMI),OPC/slag binder with a lower C /S ratio produces more C-S-H and less portlandite,and increases the matrix compactness at long time [17].Moreover,other hydrated phases are neoformed:alumino-ferrite monosulphate,secondary calcium silicate hydrates,a hydrotalcite-like phase,monocarbonate hydrogarnet [18–21].But the initial hydration of slag is very slow (glass attack by hydroxide ions released during OPC hydration).Slag hydration is a chemical reaction with calcium hydroxide in presence of water which proceeds in the long term (progressive alkali release by slag at the same time as portlandite formation).With a thermal treatment,the solubility of portlandite decreases and the slag reactivity is greatly increased [22].In the precast industry context,the cementitious material must have good mechanical properties at early age.Considering the environmental and economic problems that precast concrete makers are faced with when using CEM I cement,and in the light of the promising results obtained on steam cured mortars [12]and the hydration of low CO 2,economical binders,i.e.binary or ternary binders based on CEM I,the objective of this paper is to increase knowledge of the nature of the hydrated phases developed at one day of age in slag/cement binder and MK/cement binder subjected to steam curing conditions.An explanation is proposed for the previously observed variation of early compressive strength [12].2.Experiments 2.1.Raw constituentsFor the various binders studied,a CEM I cement (Ordinary Portland Cement,OPC)and two mineral admixtures (blast furnace slag,GGBS,and metakaolin,MK)were used.The chemical compositions of OPC,GGBS and MK are presented in Table 1.Ordinary Portland Cement (OPC),CEM I 52.5R principally composed of clinker,was obtained from Lafarge,La Malle (France).Blast Furnace Slag (GGBS)was a mineral admixture,a by-product of the steel industry (cast-iron manufacturing in blast furnace),and came from Fos/Mer (France).Table 1Physical properties and chemical compositions of OPC cement,GGBS and MK (suppliers'data).Physical propertiesSpeci fic gravity (g/cm 3)Fineness (cm 2/g)D 50(µm)OPC 3.154300a 15.0GGBS 2.904700a/MK2.50187,000b11.5Chemical compositionsSiO 2Al 2O 3Fe 2O 3CaO MgO K 2O SO 3LOI OPC c 19.9 4.8 2.863.6 1.40.9 3.5 2.2GGBS c 37.810.60.441.58.60.2/tr MK c56.237.21.41.20.21.2/2.1a Blaine method.b BET method.c%weight,tr trace.1165F.Cassagnabère et al./Cement and Concrete Research 39(2009)1164–1173Metakaolin(MK)was MK commercially available in France(Pieri). This pozzolanic admixture is obtained from the slow calcination of kaolinite by thefluidised bed process[23].It should be mentioned that the metakaolin used in this study was not pure.It was composed of68%metakaolin,13%quartz,11%illite[16,24].Binder combinations.Four combinations of the three raw consti-tuents(OPC,GGBS,MK)were studied(B1to B4).B1binder was taken as the reference in this study:it presents high reactivity at early age, and guarantees good performance at28days according to European Standard EN196-1[4].B1and B3binders are commercially available cements,named CEMI-52.5R and CEMII-A/S-52.5N respectively in European standard designation[2].They came from the same production site(La Malle)but differed in their clinker content:18% of clinker by weight was replaced by GGBS(Fos/Mer)in CEMII-52.5N. The replacement of25%by mass of B1or B3with MK gave the B2and B4binders respectively.The compositions of the four binders are given in Table2.2.2.MixesThe cement paste mixes studied were composed of500g by mass of binder(Bi)and175g of water.They were named P1to P4in reference to the binders B1to B4.The primary mix P1contained only the B1binder,P2incorporated only B2binder,etc.After mixing in the standardised sequence[4]in a mixer with2-litre maximum capacity, each mixture was placed in cylindrical moulds(diameter=30mm, height=50mm)using vibration(48Hz,1.6g).2.3.Thermal treatmentImmediately after moulding,the paste cylinders were exposed to a simulated steam curing cycle with a maximum temperature of55°C and a total duration of17.8h.The cycle included2.83h of pre-setting at30°C,followed by2.5h of heating at10°C temperature increase per hour up to55°C,12.5h of exposure at55°C and a2h cooling down period.This thermal treatment corresponded to the average cycle used in precast factories.After de-moulding(≈20h),the paste samples were stored in water(20°C±1°C)up to the time of the tests.2.4.Methods2.4.1.Stopping of hydrationFreeze-drying was applied at1day of age.This is considered to be a rapid method for stopping hydration which also avoids sample carbonation.A crushed sample of a given paste Pi wasfirst immersed in liquid nitrogen(−196°C)for5min so that the water of the interstitial solution still available for hydration was changed into essentially amorphous ice.Next,the sample was placed in a freeze-dryer for24h in which temperature and vacuum pressure were kept to−40°C and13.3Pa,respectively.This operation enabled the ice trapped in the paste porosity to be sublimated.2.4.2.Mineralogical analysis:XRDThe measuring instrument used for XRD worked with Co-Kαradiation(λKα=1789)at40kV and30mA.The2-Theta values ranged from4°to70°and were recorded in0.04°steps with a counting time of10s per step.The measurement was carried out on powder passing through a40µm sieve.The XRD technique identifies crystallised hydrated and anhydrous phases in a paste.2.4.3.Thermal analysis:DTA and TGADifferential thermal analysis(DTA)and thermogravimetric anal-ysis(TGA)were used to qualitatively and quantitatively follow the hydration reactions[25,26].For DTA,a crushed40-µm powder specimen was placed in a refractory steel crucible and analysed at a heating rate of5.8°C/min up to800°C.Sample masses ranged from1.00to1.10g.In the case of TGA,the specimens(40-µm powder)were introduced into a quartz crucible and analysed at a heating rate of7.5°C/min up to800°C.The masses of the samples were between200and220mg.DTA locates the temperature ranges corresponding to the thermal decomposition of different phases in a paste.The usual temperature intervals for the decomposition of the different phases in cement paste are as follows[27].–[30–105°C]:escape of the evaporable water and a part of the bound water,ettringite decomposition.–[110–170°C]:decomposition of gypsum(double endothermic reaction),ettringite,loss of part of water from the carbo-aluminate and aluminate hydrates and from C-S-H(100–180°C).–[180–350°C]:loss of the rest of the bound water from the decomposition of hydrated calcium silica-aluminate.–[500–570°C]:dehydroxylation of portlandite.–[700–900°C]:decarbonation of calcium carbonate.TGA measures the weight loss due to the various hydration product decompositions from ambient temperature to800°C.Three temperature intervals were investigated in this study.Thefirst concerned the temperature range of100–200°C where C-S-H and hydrated gehlenite C2ASH8decompose.This initial portion of the TG curves gave information about the amount of hydration products.The amount of hydrates of all binders could be assessed from the positions of their respective weight loss curves;the greater this weight loss,the greater the amount of hydration products in the paste.In the second temperature range[200°C–500°C],only the decomposition of aluminate hydrated phases(C4AH13and C3ASH6)were considered. The third temperature interval,from500°C to570°C in this study, was related to the decomposition of calcium hydroxide(CH).This phase could be quantified by the tangent method[28,29]and the progress of the pozzolanic reaction due to metakaolin could be evaluated.In addition,the derivative dTG(%)/d t of each TG curve was calculated to quantify hydrated phases as C-S-H or calcium aluminate hydrate(C-A-H)or calcium silico-aluminate hydrate(C-A-S-H)[30]. Spectra obtained from dTG(%)/d t=f(T°C)curves were deconvolved to determine the area of each hydrate decomposition according to the method of Lorentzian area deconvolution from the amplitude a0,the centre a1and the width(N0)a2(Eq.(2))[31].Fig.1illustrates the method of quantification for C-S-H.dTGð%Þ=a01+T−a1a2ð2ÞWith:dTG(%)/d t derived value of TG(%)with respect to time t,T temperature,a0,a1and a2amplitude,centre and width(N0)of the peak,respectively.Table2Compositions of binder used in cementitious materials.Designation OPC a GGBS a MK aB1(Binder1)100.00.00.0CEMI-52.5R,commercially available(primary binder)B2(Binder2)75.00.025.075%CEMI-52.5R—25%MK,laboratory-made(binary binder)B3(Binder3)82.018.00.0CEMII/A-S-52.5R;commercially available(binary binder)B4(Binder4)61.513.525.075%CEMII/A-S-52.5R—25%MK,laboratory-made(ternary binder)a%weight.1166 F.Cassagnabère et al./Cement and Concrete Research39(2009)1164–1173It is important to note that thermograms were plotted up to 650°C for DTA,TGA and dTG%/d t curves in Section 3because,beyond these temperatures,there was no information that was useful for the present study.The freeze-drying treatment of samples prevented their carbonation,and so no trace of calcium carbonate was detected during analysis.2.4.4.Chemical analysis:electronic microprobeCrushed pieces of paste were moulded in epoxy resin.After polymerisation of the resin,the samples were polished with a lubricant containing no water,metallized and analysed.To chemically characterise the various pastes,analyses (40points for each sample)were carried out on a 10µm 3representative volume of hydrated phase [32].The results were given as the molar percentage of oxide:CaO,SiO 2,Al 2O 3,Fe 2O 3(major oxides),SO 3,Na 2O,K 2O,MgO,MnO (minor oxides)and TiO 2(checking).Only CaO,SiO 2and Al 2O 3were used in this study.In particular,we studied:–the variation of average values of CaO/SiO 2molar ratio (C /S );–the variation of chemical composition in the CaO –SiO 2–Al 2O 3system;the results presented on ternary diagrams were normal-ised because the sum of the proportions of the three major oxides was always less than unity (variation from 62%to 92%in hydration products);–the variation of Al content versus Na or K content.3.Analysis of the hydrated phase at one day of age according to the nature of the binder in steam curing conditions:results and discussion3.1.Mineralogical analysis:identi fication of crystallised phases Fig.2shows the X-ray diffraction patterns for the reference paste (P1)and the pastes made with binary binders (P2and P3)and ternary binder (P4).Several observations and comments can be made.-The evolution of calcium hydroxide consumption (noted P on Fig.2)relative to the pozzolanic reaction can be assessed by considering the main diffraction peak at about 2θ=39.7°(2.63Å)and the secondary diffraction peak at about 2θ=20.9°(4.91Å)[25].Fig.2shows that,as early as 1day of age,CH consumption was evident in pastes containing MK (P2and P4.This observation suggests that the pozzolanic reaction through CH consumption has occurred at one day of age when MK is incorporated.–The diffraction peak at about 2θ=12.1°corresponds to the C 4AH 13hydrate (noted V)which is isostructural with portlandite and belongs to the AFm family.The peak is weakly perceptible in all cases.–Hydrogarnet C 3ASH 6(W on Fig.2)is present in paste incorporat-ing MK (P2and P4)as indicated by a diffraction peak at about 2θ=23.9°[14,15].–Except for P3(clinker+GGBS-based paste),ettringite (E)is visible according to the diffraction peak at about 2θ=10.6°.–Quartz (Q),detected at about 2θ=30.9°(3.36Å)in P2and P4pastes,comes from impurities present in the MK.These observations show that some differences in the nature of the hydration products were detected by means of XRD when MK was incorporated in steam cured cementitious pared to plain paste (P1)or GGBS-based paste (P3),the development of C 3ASH 6phases was observed and,at the same time,the amount of calcium hydroxide was reduced in spite of the decrease in lime solubility with increasing temperature [33].3.2.Thermal analysis:quali fication and quanti fication of hydrated phases3.2.1.Differential thermal analysis (DTA):identi fication of amorphous phasesFig.3shows the DTA curves for steam cured pastes P1(primary CEMI binder),P2and P3(binary binders)and P4(ternary binder).The DTA curves present a similar form between P1and P3and between P2and P4,suggesting two groups can be distinguished depending on whether metakaolin is incorporated (P2,P4)or not (P1,P3).The curves for P1and P3pastes show three marked endothermic reactions;the first two concern the temperature range of 100–180°C (T 1to T 2)corresponding to the decomposition ofhydratedFig.2.XRD diagrams of P1,P2,P3and P4pastes at 1day ofage.Fig.3.DTA diagrams for P1,P2,P3and P4pastes at 1day ofage.Fig.1.Deconvolution method for an approximate quanti fication of C-S-H,C-A(S)-H and CH obtained from dTG%/d t curves.1167F.Cassagnabère et al./Cement and Concrete Research 39(2009)1164–1173aluminates and C-S-H;the third one ranges from500°C to570°C (T5to T6)and is associated with portlandite decomposition.For P2and P4(MK-based pastes),the DT curves clearly show two endothermic reactions even though the CH peak is not very marked. The decomposition of C-S-H and hydrated gehlenite probably(T3–T4 temperature interval)can be observed.For these peaks,the intensity is greater in P2and P4than in P1and P3.The variation of temperature (X-axis)and intensity(Y-axis)of the peaks for P2and P4in comparison with P1and P3show a difference concerning the structural homogeneity of C-S-H.When considering the temperature interval from500to570°C(i.e.,T5to T6),the decomposition of CH is less observable in P2and P4pastes than in P1and P3pastes,certainly due to CH consumption by the pozzolanic reaction induced by MK.Furthermore,it can be observed that the endothermic peaks with the lowest intensity are associated with hydrated gehlenite for P3and P4(T3=205°C)[34,35],and hydrated calcium aluminate(C4AH13) for P2and P3(T4=245°C).3.2.2.Thermogravimetric analysis(TGA):quantification of CHThe TGA curves plotted in Fig.4quantify the weight loss due to decomposition of hydrated phases for the four steam cured pastes at 1day of age.Two temperature intervals were investigated regarding the evolution of hydrated phases in this study(pozzolanic reaction and slag hydration)[25].Thefirst interval[100–500°C]corresponds to the decomposition of the calcium silicate hydrate phase(C-S-H)and calcium silicate aluminate hydrates(C-A-S-H),probably hydrated gehlenite(C2ASH8). Table3presents the total percentage of mass loss per kg of material up to500°C,calculated from the TG curves(Fig.4).The second interval[500–570°C],related to the decomposition of portlandite(CH),could be quantified and the progress of the pozzolanic reaction evaluated.The molar amount of portlandite per kg of material at1day of age,deduced from thermogravimetric curves by the use of the tangent method[28,29],is shown in Table4.Based on the above preliminary remarks,some observations and comments can be made.–For a temperature of decomposition up to500°C(Table3),the amount of hydrated phases was significantly greater in MK-based pastes(P2and P4)than in the other pastes(P1and P3).The smallest amount was observed when only slag was incorporated (P3).Taking into account the dilution effect due to clinker replacement with a mineral admixture,and in comparison with paste P1(clinker alone),the use of the clinker+MK combination (P2paste)or ternary binder clinker+slag+MK(P4paste) significantly increased the amount of hydrates,by86%and78%, respectively.–When MK was incorporated in replacement of OPC cement(P2)or the OPC/slag combination(P4),there was a decrease in the amount of portlandite(500°C–570°C interval)in all cases.It can be observed that the consumption of CH was due to the pozzolanic reaction occurring when MK was incorporated rather than the hydration of slag(1.14molar quantity consumed by the pozzolanic reaction to be compared with the0.02value related to slag hydration in Table4).The above observations are consistent with XRD and DTA results indicating that the pozzolanic reaction,thermoactivated in steam curing conditions,occurs as early as1day of age.Accordingly,the increase in C-S-H and C-S-A-H quantities was as expected for P2and P4pastes.Fig.4.TGA diagrams for P1,P2,P3and P4pastes at1day of age.Table3Average percentage mass loss per kg of material in steam cured pastes at1day of age with standard deviation(measurements from3samples up to a decomposition temperature of 500°C on TG curves).%mass loss measured%mass loss calculated for equivalent OPCcontent(reference=P2,75.0%)%mass loss calculated for equivalent OPCcontent(reference=P3,82.0%)%mass loss calculated for equivalent OPCcontent(reference=P4,61.5%)P113.96(±0.55)13.9613.9613.96P219.50(±0.89)26.00//P310.94(±0.22)/13.34/P415.31(±0.36)//24.89%mass loss due to:Pozzolanic reaction(P2–P1in column3)12.04Slag reaction(P3–P1in column4)−0.62Both pozzolanic and slag reactions(P4–P1in column5)10.93Table4Average molar quantity of portlandite per kg of material in steam cured pastes at1day of age,with standard deviation(measurements from3samples).n Ca(OH)2measured n Ca(OH)2calculated for equivalent OPCcontent(reference=P2,75.0%)n Ca(OH)2calculated for equivalent OPCcontent(reference=P3,82.0%)n Ca(OH)2calculated for equivalent OPCcontent(reference=P4,61.5%)P1 1.57(±0.014) 1.57 1.57 1.57 P20.32(±0.015)0.43//P3 1.27(±0.011)/ 1.55/P40.13(±0.009)//0.21n Ca(OH)2consumed by:Pozzolanic reaction(P1–P2in column3) 1.14 Slag reaction(P1–P3in column4)0.02 Both pozzolanic and slag reactions(P1–P4in column5) 1.36 1168 F.Cassagnabère et al./Cement and Concrete Research39(2009)1164–11733.2.3.Time derivative of TG curves (dTG/dt):quanti fication of C-S-H and CHTo quantify the amounts of the hydrated phases,the time derivatives of TG curves (dTG/d t )were used [30].The derivatives were obtained from the gravimetric thermograms shown in Fig.4.The amount of hydrates can be obtained manually (Eq.(2))from the deconvolved dTG/d t curve.The quantity for each hydrate (q CSH ,q CH )corresponds to the area under the deconvolution curve.Fig.5illustrates the method for calculating the hydrated phase.The C-A-S-H and C-A-H phases,dif ficult to dissociate,were not taken into account.Fig.6presents dTG/d t diagrams within the 0–650°C temperature range for the four pastes P1to P4and their deconvolutions.Table 5gathers together the amount of hydrates (C-S-H and CH)contained in steam cured pastes at 1day of age and the associated temperatures of hydrate decomposition de fined at the centre of each peak coming from the deconvolution.3.2.3.1.Temperature of decomposition.The temperature of decom-position of each hydrate can be associated with the centre of a discriminated peak after deconvolution on the X -axis (a 1value in Fig.1).For a given hydration product,the temperature of decompo-sition (T d )differs from one paste to another.It is interesting to note that the binder B3(CEMI+GGBS)generates C-S-H phase with the smallest T d ,probably explained either by smaller hydrate particles or a weaker and less stable structure.When MK is incorporated (P2and P4pastes),CH phase has the smallest T d .3.2.3.2.Variation of the amounts of hydrates.In the following,only the amounts of C-S-H,and CH are considered.More information can be obtained when hydrated phases are discriminated because their intrinsic strengths are markedly different.It is well known that calcium silicate hydrate (C-S-H)is a mechanically strong phase,more resistant than hydrated calcium aluminate or silico-aluminates (C-A-H or C-A-S-H)[36]and portlandite (CH)which has a low strength because of its lamellar structure.From Table 5,it can be seen that the amount of C-S-H gel is the greatest when MK-based binder is used,with or without GGBS (P4and P2respectively).The smallest amount of C-S-H is observed for GGBS/OPC based paste (P3),which con firms that the B3binderFig.5.Calculation of amount of hydrates by deconvolution method with dTG%/d tcurves.Fig.6.dTG%/d t curves for P1,P2,P3and P4pastes at one day of age,and discriminated peaks after deconvolution.1169F.Cassagnabère et al./Cement and Concrete Research 39(2009)1164–1173。
人类染色体
Medical Genetics
Condensation and decondensation of the DNA are at least partially reversible processes. Each DNA segment that has to be replicated or transcribed has to be decondensed during this time.
Medical Genetics
Abundant heterochromatin is seen in resting, or reserve cells such as small lymphocytes (memory cells) waiting for exposure to a foreign antigen. Heterochromatin is considered transcriptionally inactive.
Medical Genetics
The haploid number is the number of chromosomes in a gamete. Usually, the diploid number is twice the haploid number.
Medical Genetics
Medical Genetics
Medical Genetics
Medical Genetics
Medical Genetics
DNA is bound to the histones through electrostatic forces between the negatively charged phosphate groups in the DNA backbone and positively charged amino acids (e.g., lysine and arginine) in the histone proteins.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:mat h /6432v1[mat h.AC]3A pr26Attached primes and Matlis duals of local cohomology modules Michael Hellus E-mail:michael.hellus@math.uni-leipzig.de Universit¨a t Leipzig,Fakult¨a t f¨u r Mathematik und Informatik,Mathematisches Institut,Ausgustusplatz 10/11,04109Leipzig,Germany,Tel (+49)3419732186,Fax (+49)3419732199MSC (2000):13D45,13E05,13E10Keywords:Attached prime,local cohomology,Matlis duality Abstract Let J be an ideal of a noetherian local ring R .We show new results on the set of attached primes Att R (H l J (R ))of a local cohomology module H l J (R ).To prove our results we establish and use new relations between the set Att R (H l J (R ))of attached primes of a local cohomology module and the set Ass R (D (H l J (R )))of associated primes of the Matlis dual of the same local cohomology module.The notions of attached primes and secondary decomposition of a module were developed by MacDonald [15].Attached primes of local cohomology modules have been studied by MacDonald and Sharp.They proved ([16,theorem 2.2])Att R (H dim(M )m (M ))={p ∈Ass R (M )|dim(R/p )=dim M }for every finite R -module M ,where R is a noetherian local ring.Dibaei and Yassemi generalized ([5,theorem A])this result to Att R (H dim(M )a (M ))={p ∈Ass R (M )|cd(a ,R/p )=dim(M )}for every finite R -module M and every ideal a of R .Besides reproving this result (we remark that our new proof of this result is conceptual to some degree),our main results are Att R (H n −1J (R ))={p ∈Spec(R )|dim(R/p )=n −1,comments on conjecture(*)).The details of this new evidence are in(2.5)and(2.6),the basic idea is simple:First,we know from[11]that conjecture(*)is equivalent to the fact that Ass R(D(H i(x1,...,x i)R (R)))=:X isclosed under generalization,i.e.Spec(R)∋p0⊆p1∈X implies p0∈X.Second,in section1some relations between X and Att R(H i(x1,...,x i)R(R))are established.And third,theorem(1.12)shows that a propertywhich is a consequence of stableness under generalization holds for Att R(H i(x1,...,x i)R (R)).The combinationof these three facts will lead to new evidence for conjecture(*)in a special case.1.NotionsAssociated primes are clearly related to the notion of primary decomposition;in a dual way,attached primes are related to secondary decomposition.The theories of primary resp.secondary decomposition are well-known,information on it can be found in many textbooks(e.g.[6],[18]).But as we need quite general statements where the module in question is not necessarilyfinite or artinian,we carefully repeat what is known;in this section we omit proofs as they are the same like in thefinite resp.artinian case.(1.1)Let R be a ring,M=0an R-module and N an R-submodule of M.We say M is coprimary iffthe following condition holds:For every x∈R the endomorphism M x→M given by multiplication by x is injective or nilpotent(i. e.∃N∈l N:x N·M=0).If M is coprimaryAnn R(M/U i)(for i=1,...,s)are pairwise different.It is clear that if there exists a primary decomposition of M there is also a minimal one.(1.2)Let R be a noetherian ring,M an R-module and assume there exists a minimal primary decomposition (U1,...,U s)of M.Then the set{R is noetherian and M is aAnn R(U i)are pairwise different.Again existence of a secondary decomposition implies existence of a minimal one.2(1.6)Let R be a noetherian ring and M an R-module;assume there exists a minimal secondary decomposition (U1,...,U s)of M.Then the setAtt R(M):={Ann R(U i)|i=1,...s}does not depend on the choice of a minimal secondary decomposition of M.We say the prime ideals in Att R(M)are attached to M.(1.7)Let R be a noetherian ring and M an artinian R-module.Then there exists a(minimal)secondary decomposition of M.The proof is simply a dual version of the proof of(1.3).Again this works also if R is not noetherian.(1.8)Let R be a noetherian ring and M an R-module.We defineAtt R(M):={p⊆R prime ideal|∃an R-submodule U⊆M:p=Ann R(M/U)}.Is is not very difficult to see that this definition agrees with thefirst one if M has a secondary decomposition.(1.9)Let(R,m)be a noetherian local ring,M an R-module and(U1,...,U s)a minimal primary decompo-sition of M.By D(and the sets of prime ideals maximal in each side respectively coincide:{p|p maximal in Ass R(D(M))}={p|p maximal in Att R(M)}.Proof:Let p∈Ass R(D(M))be arbitrary.There exists a submodule U′of D(M)such that U′=R·u′∼=R/p for some u′∈U′⊆D(M).u′induces a monomorphismu′)=Ann R(M/ker(u′));this implies p∈Att R(M).Having proved this we only have to show that an arbitrary prime ideal p of R which is maximal in Att R(M)is associated to D(M):p∈Att R(M)implies M/p M=0and so we must have Hom R(R/p,D(M))=D(M/p M)=0;but by the maximality hypothesis on p implies p∈Ass R(D(M)). (1.12)TheoremLet(R,m)be a noetherian local ring and M an R-module.Assume(p i)i∈l N is a sequence of prime ideals attached to M;assume furthermore that q:= i∈l N p i is a prime ideal of R.Then q is also attached to M. Proof:For every i we choose a quotient M i of M such that Ann R(M i)=q i.Now the canonically induced map ι:M→ i∈l N M i induces a surjection M→im(ι);we obviously have i∈l N p i⊆Ann R(im(ι));on the other hand,for every i and every s∈R\p i there is a m i=0. But this implies that s cannot annihilate im(ι);therefore Ann R(im(ι))= i∈l N p i=q and the statement follows.2.ResultsThere are some results on the set of attached primes of local cohomology modules:In[16,theorem2.2]it was shown that if(R,m)is a noetherian local ring and M is afinitely generated R-module thenAtt R(H dim(M)m(M))={p∈Ass R(M)|dim(R/p)=dim(M)}.In[5,Theorem A]this was generalized toAtt R(H dim(M)a(M))={p∈Ass R(M)|cd(a,R/p)=dim(M)},where a⊆R is an ideal and cd(a,R/p):=max{l∈l N|H l a(R/p)=0}.We are going to show(theorem2.1) that the results of section1lead to a natural proof of this theorem and,furthermore,to new results on the attached primes of local cohomology modules((2.3)–(2.6)).Let(R,m)be a noetherian local n-dimensional ring and a⊆R an ideal.Then H n a(R)is an artinian R-module and henceAss R(D(H n a(R)))=Att R(H n a(R)).Now assume that we have(H n a(R)=0and)p∈Att R(H n a(R));then we get0=H n a(R)/p H n a(R)=H n a(R/p),i.e.p∈Assh(R)(:={q∈Spec(R)|dim(R/q)=dim(R)})and cd(a,R/p)=n.R/p)= Now suppose conversely that we have a prime ideal p of R such that cd(a,R/p)=n,equivalently H n a(ˆ0.By Hartshorne-Lichtenbaum vanishing we get a prime ideal q⊆ˆR satisfying p=q∩R andMatlis duality theory shows that q∈AssˆR (D(H naˆR(ˆR))).It is easy to see thatD(H naˆR(ˆR))=D(H n a(R)),holds canonically,the D-functors taken overˆR resp.over R.Thus we have shownAtt R(H n a(R))={p|cd(a,R/p)=n}.For everyfinitely generated R-module M we can apply this result to the ring R/Ann R(M)and we get (2.1)TheoremLet(R,m)be a noetherian local ring and M afinitely generated n-dimensional R-module.ThenAtt R(H n a(M))={p∈Ass R(M)|cd(a,R/p)=n}.(2.2)Remark This is[5,Theorem A],where it was proved by different means.In section1we established several relations between attached primes of a module and associated primes of the Matlis dual of the same module;theorem2.1is a consequence of these relations;we can retrieve more information out of these to get new theorems on the attached primes of top local cohomology modules: (2.3)TheoremLet(R,m)be a d-dimensional noetherian local ring.(i)If J is an ideal of R such that dim(R/J)=1and H d J(R)=0thenAssh(R)⊆Att R(H d−1J(R)).If,in addition,R is complete,one hasAtt R(H d−1J(R))={p∈Spec(R)|dim(R/p)=d−1,By what we have proved so far it is clear that there is chain of inclusionsAss R(D(H i(x1,...,x i)R (R)))⊆Att R(H i(x1,...,x i)R(R))⊆{p∈Spec(R)|H i(x1,...,x i)R(R/p)=0}.(ii)In[11,section1]it was conjectured that the inclusionAss R(D(H i(x1,...,x i)R (R)))⊆{p∈Spec(R)|H i(x1,...,x i)R(R/p)=0}is always an equality;we denote this conjecture by(*);if true,it implies immediatelyAss R(D(H i(x1,...,x i)R ))=Att R(H i(x1,...,x i)R(R)).(iii)In the situation of theorem(2.3)(i)the attached primes of the top local cohomology module coincide with the associated primes of the Matlis dual of the top local cohomology module.(2.6)We now assume that k is afield and R=k[[X1,...,X n]]is a power series algebra in n variables X1,...,X n;let i∈{1,...,n}.[12,section3]and theorem1.11imply the following statements:(i)i=n:Att R(H n(X1,...,X n)R(R)={0}.(ii)i=n−1:Att R(H n−1(X1,...,X n−1)(R)={0}∪{pR|p∈R prime element,p∈(X1,...,X n−1)R}.(iii)i=n−2:-{0}∈Att R(H n−2(X1,...,X n−2)R(R));-if p is a height2prime ideal of R such thatReferences1.Bass,H.On the ubiquity of Gorenstein rings,Math.Z.82,(1963)8–28.2.Brodmann,M.and Hellus,M.Cohomological patterns of coherent sheaves over projective schemes,Journal of Pure and Applied Algebra172,(2002)165–182.3.Brodmann,M.P.and Sharp,R.J.Local Cohomology,Cambridge studies in advanced mathematics60,(1998).4.Bruns,W.and Herzog,J.Cohen-Macaulay Rings,Cambridge University Press,(1993).5.Dibaei,M.T.and Yassemi,S.Attached primes of the top local cohomology modules with respect toan ideal,Arch.Math.84,(2005)292–297.6.Eisenbud,mutative Algebra with A View Toward Algebraic Geometry,Springer Verlag,(1995).7.Grothendieck,A.Local Cohomology,Lecture Notes in Mathematics,Springer Verlag,(1967).8.Hellus,M.Local Homology,Cohen-Macaulayness and Cohen-Macaulayfications,to appear in AlgebraColloquium.9.Hellus,M.Matlis duals of top local cohomology modules and the arithmetic rank of an ideal,preprint.10.Hellus,M.On the set of associated primes of a local cohomology module,J.Algebra237,(2001)406–419.11.Hellus,M.On the associated primes of Matlis duals of top local cohomology modules,to appear inCommunications in Algebra33.12.Hellus,M.and St¨u ckrad,J.Matlis duals of top Local Cohomology Modules,preprint.13.Huneke,C.Problems on Local Cohomology,Res.Notes Math.2,(1992)93–108.14.Huneke,C.and Lyubeznik,G.On the vanishing of local cohomology modules,Invent.math.102,(1990)73–93.15.MacDonald I.G.Secondary representation of modules over a commutative ring,Symp.Math.XI,(1973)23–43.16.MacDonald I.G.and Sharp,R.Y.An elementary proof of the non-vanishing of certain local cohomologymodules,Quart.J.Math.Oxford23,(1972)197–204.17.Matlis,E.Injective modules over Noetherian rings,Pacific J.Math.8,(1958)511–528.18.Matsumura,mutative ring theory,Cambridge University Press,(1986).19.Scheja,G.and Storch,U.Regular Sequences and Resultants,AK Peters,(2001).7。