先来先服务FCFS和短作业优先SJF进程调度算法
进程调度模拟算法
进程调度模拟算法进程调度是操作系统中的重要组成部分之一,它负责决定在多道程序环境下,哪个进程将获得CPU的使用权。
进程调度模拟算法是为了研究和评估不同调度策略的性能而开发的一种仿真方法。
在实际系统中,调度算法会受到多种因素的影响,如进程优先级、进程的I/O需求、进程的实际执行时间等。
通过模拟这些因素,可以更好地理解不同调度算法之间的差异,并选择最合适的算法来满足特定需求。
下面介绍两种常见的进程调度模拟算法:先来先服务(FCFS)和最短作业优先(SJF)算法。
1. 先来先服务(FCFS)算法:该算法按照进程到达的顺序来调度任务。
当一个进程完成或阻塞时,下一个已到达的进程将获得CPU的使用权。
这种算法非常简单,但是不适用于长作业时间和短作业时间交替出现的情况。
在短作业启动时,长作业仍然在运行,使得短作业的等待时间增加。
2. 最短作业优先(SJF)算法:该算法根据任务的执行时间来调度进程。
在该算法中,每个进程的执行时间都是已知的,并且操作系统根据已知的执行时间来决定哪个进程获得CPU的使用权。
在短作业优先算法中,短作业将会先被调度,这样有助于减少平均周转时间和等待时间。
但是,短作业优先算法容易产生“饥饿”现象,即长作业可能会一直等待,而短作业一直得到CPU的使用权。
除了以上两种算法,还有其他的进程调度模拟算法。
例如:- 时间片轮转(RR)调度算法:使用固定的时间片来调度进程,当时间片用完后,该进程被放入就绪队列的末尾。
- 优先级调度算法:每个进程都拥有一个优先级,优先级越高的进程越早被调度。
这种方法可以根据不同进程的紧迫程度和重要性来进行调度。
- 多级反馈队列调度算法:将就绪队列划分为多个队列,并根据进程的性质和优先级将进程放入不同的队列。
每个队列都有不同的优先级和时间片大小,进程可以通过提高优先级或时间片大小来提高被调度的机会。
在实际应用中,需要根据系统需求和性能指标选择合适的调度算法。
常用的性能指标包括平均周转时间、平均等待时间、CPU利用率等。
1实验一先来先服务FCFS和短作业优先SJF进程调度算法
实验一先来先服务FCFS和短作业优先SJF进程调度算法一:需求分析程序设计的任务:设计程序模拟进程的先来先服务FCFS和短作业优先SJF调度过程。
假设有n个x进程分别在T1,… ,Tn时刻到达系统,它们需要的服务时间分别为S1,… ,Sn.分别采用先来先服务FCFS和短作业优先SJF进程调度算法进行调度,计算每个进程的完成时间、周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。
通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。
(1)输入的形式和输入值的范围为免去测试时候需要逐步输入数据的麻烦,输入时采用输入文件流方式将数据放在。
txt 文件中,第一行为进程个数,第二行为进程到达时间(各个进程的到达时间之间用空格隔开),第三行为进程的服务时间(每个服务时间之间用空格隔开)。
(2)输出的形式模拟整个调度过程,输出每个时刻的进程运行状态,同时输出了每个进程的完成时间,并且按要求输出了计算出来的每个进程的周转时间、带权周转时间、所有进程的平均周转时间以及带权平均周转时间。
(3)程序所能达到的功能能够模拟出进程的先来先服务FCFS算法和短作业优先SJF算法的调度过程,输入进程个数n;每个进程的到达时间T1, … ,Tn和服务时间S1, … ,Sn;选择算法1-FCFS,2-SJF,3—退出,用户做出选择即可输出对应的算法调度过程或者退出程序。
(4)测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果测试数据及其输出结果:二:概要设计程序包括主函数、FCFS算法函数、SJF算法函数、输出函数;主函数流程:输入文件中的数据—显示各进程数据-选择算法-调用相应算法的函数-输出结果三:详细设计算法流程图:调用结束四:调试分析(1):调试过程中遇到的问题以及解决方法,设计与实现的回顾讨论和分析;开始的时候没有判断进程是否到达,导致短进程优先算法运行结果错误,后来加上了判断语句后就解决了改问题。
先来先服务和优先数调度算法c语言
先来先服务和优先数调度算法c语言先来先服务和优先数调度算法c语言一、前言操作系统中的进程调度是指在多道程序环境下,按照一定的规则从就绪队列中选择一个进程,将CPU分配给它运行。
常用的进程调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。
本文将介绍两种常见的进程调度算法:先来先服务和优先数调度算法,并给出相应的C语言实现。
二、先来先服务算法1. 算法原理FCFS即First Come First Served,也称为FIFO(First In First Out),是一种非抢占式的进程调度算法。
按照任务到达时间的顺序进行处理,即谁先到达谁就被处理。
2. 算法流程(1)按照任务到达时间排序;(2)依次执行每个任务,直至所有任务都完成。
3. C语言实现下面是一个简单的FCFS程序:```c#include <stdio.h>struct process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间int waiting_time; // 等待时间};int main() {struct process p[10];int n, i, j;float avg_waiting_time = 0;printf("请输入进程数:");scanf("%d", &n);for (i = 0; i < n; i++) {printf("请输入第%d个进程的信息:\n", i + 1); printf("进程ID:");scanf("%d", &p[i].pid);printf("到达时间:");scanf("%d", &p[i].arrival_time);printf("执行时间:");scanf("%d", &p[i].burst_time);}for (i = 0; i < n; i++) {for (j = 0; j < i; j++) {if (p[j].arrival_time > p[j + 1].arrival_time) { struct process temp = p[j];p[j] = p[j + 1];p[j + 1] = temp;}}}int current_time = p[0].arrival_time;for (i = 0; i < n; i++) {if (current_time < p[i].arrival_time) {current_time = p[i].arrival_time;}p[i].waiting_time = current_time - p[i].arrival_time;current_time += p[i].burst_time;}printf("进程ID\t到达时间\t执行时间\t等待时间\n");for (i = 0; i < n; i++) {printf("%d\t%d\t%d\t%d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].waiting_time);avg_waiting_time += (float)p[i].waiting_time / n;}printf("平均等待时间:%f\n", avg_waiting_time);return 0;}```三、优先数调度算法1. 算法原理优先数调度算法是一种非抢占式的进程调度算法。
常用的调度算法
常用的调度算法调度算法是指操作系统中用于决定进程何时执行、何时暂停等的一种算法。
常用的调度算法包括先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转等。
下面将对这些常用的调度算法进行详细介绍。
一、先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的顺序进行调度,即谁先到谁先执行。
这种算法容易实现,但是存在“饥饿”现象,即如果某个进程长时间等待,则其他进程可能会一直占用CPU资源,导致该进程无法得到执行。
因此,在实际应用中,FCFS很少被使用。
二、短作业优先(SJF)短作业优先是一种以作业运行时间为依据的调度算法。
它通过预测每个进程需要运行的时间,并将其按照运行时间从小到大排序,然后依次执行。
这种算法可以最大限度地减少平均等待时间和平均周转时间,并且不会出现“饥饿”现象。
但是,在实际应用中,由于很难准确预测每个进程需要运行的时间,因此SJF也存在缺陷。
如果预测不准确,那么就会出现长作业等待短作业的情况,导致长作业的等待时间变长。
三、优先级调度优先级调度是一种按照进程优先级进行调度的算法。
每个进程都有一个优先级,系统会根据进程的优先级来决定下一个要执行的进程。
通常情况下,优先级越高的进程越有可能得到CPU资源。
但是,如果某个进程的优先级一直比其他进程高,那么其他进程就会一直等待,导致“饥饿”现象。
此外,在实际应用中,由于不同进程之间的优先级差别较大,因此可能会导致低优先级的进程长时间等待。
四、时间片轮转时间片轮转是一种按照时间片进行调度的算法。
它将CPU资源划分成若干个时间片,并将每个时间片分配给一个正在运行或等待运行的进程。
当一个进程用完了它所分配到的时间片后,系统会将其挂起,并将CPU资源分配给下一个等待运行的进程。
这种算法可以避免“饥饿”现象,并且能够保证所有正在运行或等待运行的进程都能够得到CPU资源。
但是,如果时间片太小,会导致进程频繁切换,影响系统性能;如果时间片太大,会导致长作业等待时间变长。
操作系统中常用作业调度算法的分析
操作系统中常用作业调度算法的分析作业调度算法是操作系统中非常重要的一部分,它负责决定哪个进程应该被调度执行、以及在什么时候执行。
不同的作业调度算法会对系统的性能和资源利用率产生不同的影响,因此了解和分析常用的作业调度算法对于优化系统性能至关重要。
在操作系统中,常用的作业调度算法包括先来先服务(FCFS)、短作业优先(SJF)、最高响应比优先(HRRN)、优先级调度、轮转调度和多级反馈队列调度等。
下面对这些常见的作业调度算法进行详细分析。
1. 先来先服务(FCFS)先来先服务是最简单的作业调度算法之一,它按照作业到达的先后顺序来进行调度。
当一个作业到达系统后,系统会将其放入就绪队列,然后按照先来先服务的原则,依次执行队列中的作业。
FCFS算法的优点是实现简单、公平性好,但缺点也非常明显。
由于该算法没有考虑作业的执行时间,因此可能导致长作业等待时间过长,影响系统的响应时间和吞吐量。
2. 短作业优先(SJF)短作业优先算法是一种非抢占式作业调度算法,它会根据作业的执行时间来进行调度。
当一个作业到达系统后,系统会根据其执行时间与就绪队列中其他作业的执行时间进行比较,选取执行时间最短的作业进行执行。
SJF算法的优点是能够最大程度地减少平均等待时间,提高系统的响应速度和吞吐量。
但这种算法也存在缺陷,即当有长作业不断地进入系统时,可能导致短作业一直得不到执行,进而影响系统的公平性。
3. 最高响应比优先(HRRN)最高响应比优先算法是一种动态优先级调度算法,它根据作业的响应比来进行调度。
作业的响应比定义为(等待时间+服务时间)/ 服务时间,响应比越高的作业被优先调度执行。
HRRN算法的优点是能够最大程度地提高系统的响应速度,同时保持较高的公平性。
但由于需要不断地计算和更新作业的响应比,因此算法的复杂度较高。
4. 优先级调度优先级调度算法是一种静态优先级调度算法,它根据作业的优先级来进行调度。
每个作业在进入系统时就会被赋予一个优先级,系统会按照作业的优先级来决定执行顺序。
先来先服务FCFS和短作业优先SJF进程调度算法
先来先服务FCFS和短作业优先SJF进程调度算法FCFS(先来先服务)算法是最简单的进程调度算法之一、它按照进程到达的顺序来分配CPU时间,即先到达的进程先执行。
在FCFS算法中,进程按照它们进入就绪队列的时间排序,随后按照就绪队列的顺序被调度执行。
FCFS算法不考虑进程的执行时间,也不会对进程进行任何优先级排序。
FCFS算法的优点是简单易懂,实现起来非常简单。
但是,FCFS算法有一个明显的缺点是不利于短进程的执行。
当一个长进程到达并占据CPU 资源时,短进程可能要等待很长时间才能执行。
这种情况下,CPU的利用率会较低,响应时间也会较长。
因此,FCFS算法适用于进程的执行时间相对较短且没有明显的优先级关系的场景。
SJF(短作业优先)算法是根据进程的执行时间进行优先级排序的进程调度算法。
在SJF算法中,短进程将会优先执行,而长进程需等待。
当一个进程到达就绪队列时,系统会根据其估计的执行时间大小将其插入到就绪队列的适当位置。
当前执行的进程完成后,下一个执行的是就绪队列中估计执行时间最短的进程。
SJF算法的优点是能够减少平均等待时间,提高系统整体的吞吐量。
由于短进程占用CPU时间较少,因此能够更快地释放CPU资源给其他进程使用,从而减少等待时间。
然而,SJF算法存在一个问题是如何准确估计进程的执行时间。
在实际场景中,准确估计进程的执行时间是很困难的,因此SJF算法很容易出现估计错误,导致长进程等待时间过长。
总结来说,FCFS和SJF都是进程调度算法,但它们有不同的特点和适用场景。
FCFS算法简单易懂,适用于进程执行时间相对较短且没有明显优先级的场景;而SJF算法适用于进程执行时间有较大差异的场景,能够减少平均等待时间。
然而,SJF算法对进程的执行时间要求较高,需要准确估计执行时间,否则可能导致长进程等待时间过长。
在实际应用中,通常会根据具体情况选择不同的调度算法。
例如,在交互式系统中,为了提供更好的用户体验,使用SJF算法能够减少响应时间;而在批处理系统中,FCFS算法通常被用于处理较短的作业。
操作系统中常用作业调度算法的分析
操作系统中常用作业调度算法的分析作业调度是操作系统中的一个重要组成部分,它负责对待执行的作业进行排队和调度,以最大化系统资源的利用效率、满足用户需求、保证系统稳定性等目标。
常见的作业调度算法有先来先服务(FCFS)、最短作业优先(SJF)、优先级调度、时间片轮转(RR)等,接下来我们分别对这几种算法进行分析。
1. FCFS调度算法先来先服务调度算法是操作系统中最简单的一种调度算法,也是最常用的一种调度算法。
它的处理方式是根据提交时间顺序,按照FIFO的顺序进行调度。
该算法的优点是简单易用,而且很容易实现。
同时,对于大多数情况下,该算法的资源分配相对公平。
但是,该算法存在着一些问题。
当一个作业的执行时间较长时,会大大降低系统的吞吐量,严重影响系统的效率。
因此,在实际应用中,该算法往往不能满足对作业的实时响应和高效完成的要求。
最短作业优先调度算法是一种非抢占式调度算法,它将作业按照其需要执行的时间长短大小进行排序,然后从执行时间最短的作业开始调度。
在实际应用中,该算法可以减少平均等待时间和平均周转时间,提高系统的效率和性能。
但是,该算法有个致命的缺点——它无法预测作业的执行时间。
如果一个长作业被排在了等待队列的前面,那么所有后续的短作业都要等待非常长的时间,这可能导致饥饿现象的出现。
3. 优先级调度算法优先调度算法是一种根据作业优先级大小进行调度的算法,可以根据作业的重要程度或紧急程度来设置不同的优先级。
该算法可以提高系统的响应速度和稳定性,满足系统特定的需求。
但是,该算法也存在着一些问题。
如果一个作业的优先级太高,那么其余的作业可能会一直处于等待状态,这种情况也会导致饥饿现象的出现。
此外,该算法的优先级设置需要有一定的经验和技巧,否则可能会对系统的性能产生不良影响。
4. 时间片轮转算法时间片轮转算法是一种循环调度算法,它将CPU的时间分成多个固定大小的时间片,然后在每个时间片内轮流执行等待队列中的作业,以便平均分配CPU资源。
调度算法C语言实现
调度算法C语言实现调度算法是操作系统中的重要内容之一,它决定了进程在系统中的运行方式和顺序。
本文将介绍两种常见的调度算法,先来先服务(FCFS)和最短作业优先(SJF),并用C语言实现它们。
一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是最简单的调度算法之一、它按照进程到达的先后顺序进行调度,即谁先到达就先执行。
实现这个算法的关键是记录进程到达的顺序和每个进程的执行时间。
下面是一个用C语言实现先来先服务调度算法的示例程序:```c#include <stdio.h>//进程控制块结构体typedef structint pid; // 进程IDint arrivalTime; // 到达时间int burstTime; // 执行时间} Process;int maiint n; // 进程数量printf("请输入进程数量:");scanf("%d", &n);//输入每个进程的到达时间和执行时间Process process[n];for (int i = 0; i < n; i++)printf("请输入进程 %d 的到达时间和执行时间:", i);scanf("%d%d", &process[i].arrivalTime,&process[i].burstTime);process[i].pid = i;}//根据到达时间排序进程for (int i = 0; i < n - 1; i++)for (int j = i + 1; j < n; j++)if (process[i].arrivalTime > process[j].arrivalTime) Process temp = process[i];process[i] = process[j];process[j] = temp;}}}//计算平均等待时间和平均周转时间float totalWaitingTime = 0; // 总等待时间float totalTurnaroundTime = 0; // 总周转时间int currentTime = 0; // 当前时间for (int i = 0; i < n; i++)if (currentTime < process[i].arrivalTime)currentTime = process[i].arrivalTime;}totalWaitingTime += currentTime - process[i].arrivalTime;totalTurnaroundTime += (currentTime + process[i].burstTime) - process[i].arrivalTime;currentTime += process[i].burstTime;}//输出结果float avgWaitingTime = totalWaitingTime / n;float avgTurnaroundTime = totalTurnaroundTime / n;printf("平均等待时间:%f\n", avgWaitingTime);printf("平均周转时间:%f\n", avgTurnaroundTime);return 0;```以上程序实现了先来先服务(FCFS)调度算法,首先根据进程的到达时间排序,然后依次执行每个进程,并计算总等待时间和总周转时间。
作业调度算法(先来先服务算法,短作业算法)
题目:作业调度算法班级:网络工程姓名:朱锦涛学号:E一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。
通过代码的具体实现,加深对算法的核心的理解。
二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。
当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。
然后把它放入就绪队列。
2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。
作业的长短是以作业所要求的运行时间来衡量的。
SJF算法可以分别用于作业和进程调度。
在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。
3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。
如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。
该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验内容源程序:#include<>#include<>#include<>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;typedef struct sjf_work{s truct work s_work; d = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time) {temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time +w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5); }void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);P NODE pTail = pHead;p Tail->pNext = NULL; 来先服务算法该算法严格按照各作业到达时间来为其分配进程和资源,实验的结果见截图,最后算出该算法五个作业的平均周转时间。
几种操作系统调度算法
几种操作系统调度算法操作系统调度算法是操作系统中用于确定进程执行的顺序和优先级的一种方法。
不同的调度算法有不同的优缺点,适用于不同的场景和需求。
下面将介绍几种常见的操作系统调度算法:1.先来先服务(FCFS)调度算法:先来先服务调度算法是最简单的调度算法之一、按照进程到达的顺序进行调度,首先到达的进程先执行,在CPU空闲时执行下一个进程。
这种算法实现简单,并且公平。
但是,由于没有考虑进程的执行时间,可能会导致长作业时间的进程占用CPU资源较长时间,从而影响其他进程的响应时间。
2.短作业优先(SJF)调度算法:短作业优先调度算法是根据进程的执行时间进行排序,并按照执行时间最短的进程优先执行。
这种算法可以减少平均等待时间,提高系统的吞吐量。
然而,对于长作业时间的进程来说,等待时间会相对较长。
3.优先级调度算法:优先级调度算法是根据每个进程的优先级来决定执行顺序的。
优先级可以由用户设置或者是根据进程的重要性、紧迫程度等因素自动确定。
具有较高优先级的进程将具有更高的执行优先级。
这种算法可以根据不同情况进行灵活调度,但是如果不恰当地设置优先级,可能会导致低优先级的进程长时间等待。
4.时间片轮转(RR)调度算法:时间片轮转调度算法将一个固定的时间片分配给每个进程,当一个进程的时间片用完时,将该进程挂起,调度下一个进程运行。
这种算法可以确保每个进程获得一定的CPU时间,提高系统的公平性和响应速度。
但是,对于长时间运行的进程来说,可能会引起频繁的上下文切换,导致额外的开销。
5.多级反馈队列(MFQ)调度算法:多级反馈队列调度算法将进程队列划分为多个优先级队列,每个队列有不同的时间片大小和优先级。
新到达的进程被插入到最高优先级队列,如果进程在时间片内没有完成,则被移到下一个较低优先级队列。
这种算法可以根据进程的执行表现自动调整优先级和时间片,更好地适应动态变化的环境。
以上是几种常见的操作系统调度算法,每种算法都有其优缺点和适用场景。
各类作业调度算法
各类作业调度算法作业调度是计算机系统中的重要问题,涉及到如何合理地分配和调度系统资源,以最大化系统的吞吐量和性能。
针对不同的应用场景和需求,有多种不同的作业调度算法。
本文将介绍几种常见的作业调度算法,包括先来先服务调度算法(FCFS)、最短作业优先调度算法(SJF)、优先级调度算法、轮转调度算法(RR)和最高响应比优先调度算法(HRRN)。
先来先服务调度算法(FCFS)是最简单的一种调度算法。
它按照作业的到达时间顺序为其分配资源,即先来的作业先执行,后来的作业后执行。
这种算法的优点是实现简单,公平性好,但是缺点也很明显,它无法考虑作业的执行时间,如果一个长作业在前面执行,可能会导致后面的短作业等待时间过长,从而影响整个系统的效率。
最短作业优先调度算法(SJF)是一种根据作业执行时间的长短来分配资源的算法。
它会选择剩余执行时间最短的作业来执行,从而最大程度上减少作业的等待时间。
这种算法可以很好地提高系统的性能,但是需要事先知道每个作业的执行时间,而且无法应对作业执行时间波动较大的情况。
优先级调度算法主要根据作业的优先级来决定资源的分配顺序。
每个作业都有一个对应的优先级,具有较高优先级的作业会被优先调度执行。
不同作业的优先级可以通过用户设置或者系统自动派发来确定。
这种算法可以灵活地应对不同的需求,但是需要合理设置优先级,否则可能导致资源被一直分配给优先级较高的作业,而忽略其他作业。
轮转调度算法(RR)是一种按照时间片轮流分配资源的算法。
每个作业都有一个固定的时间片,当一个作业的时间片用完后,就将资源分配给下一个作业。
这种算法可以平衡各个作业的等待时间,对于长作业和短作业都能有一定的公平性,但是如果时间片设置得过长,可能导致系统响应时间较长。
最高响应比优先调度算法(HRRN)是根据作业的响应比来决定资源分配顺序的算法。
响应比由作业的等待时间与执行时间之比计算得出,作业的响应比越高,代表其等待时间相对较长,应该优先进行资源分配。
先来先服务和短作业优先调度算法
先来先服务调度算法和短作业优先调度算法
作业
提交 时间
运行 时间
开始 时间
1 8.00 2.00 8.00
1 8.00 2.00 8.00
2 8.50 0.50 10.00
2 8.50 0.50 10.30
3 9.00 0.10 10.50
3 9.00 0.10 10.00
4 9.50 0.20 10.60
可有效降低作业/进程的平均等待时间。 4
SJ(P)F缺点:
(1) 该算法对长作业不利,如作业C的周转时间由10增 至16,其带权周转时间由2增至3.1。更严重的是,如果有 一长作业(进程)进入系统的后备队列(就绪队列),由于调度 程序总是优先调度那些(即使是后进来的)短作业(进程),将 导致长作业(进程)长期不被调度。(不利长作业)
(2) 该算法完全未考虑作业的紧迫程度,因而不能保证 紧迫性作业(进程)会被及时处理。(不及时)
(3) 由于作业(进程)的长短只是根据用户所提供的估计 执行时间而定的,而用户又可能会有意或无意地缩短其作 业的估计运行时间,致使该算法不一定能真正做到短作业 优先调度。(不完全可靠)
5
调度算法练习题
6
4 9.50 0.20 10.10
先来先服务调度算法
平均周转时间
t = 1.725
平均带权周转时间 w = 6.875
完成 周转 带权周转 执行 时间 时间 时间 顺序
10.00 2.00
1
1
10.00 2.00
1
1
10.50 2.00
4
2
10.80 2.30 4.6
4
10.60 1.60 16
3
10.10 1.10 11
【操作系统】先来先服务和短作业优先算法(C语言实现)
【操作系统】先来先服务和短作业优先算法(C语⾔实现)【操作系统】先来先服务算法和短作业优先算法实现介绍:1.先来先服务 (FCFS: first come first service)如果早就绪的进程排在就绪队列的前⾯,迟就绪的进程排在就绪队列的后⾯,那么先来先服务(FCFS: first come first service)总是把当前处于就绪队列之⾸的那个进程调度到运⾏状态。
也就说,它只考虑进程进⼊就绪队列的先后,⽽不考虑它的下⼀个CPU周期的长短及其他因素。
FCFS算法简单易⾏,是⼀种⾮抢占式策略,但性能却不⼤好。
简单来说,先来先服务就是那个进程到达时间最早,那么CPU就先处理哪个进程。
2.短作业优先(SJF, Shortest Job First)对预计执⾏时间短的作业(进程)优先分派处理机。
通常后来的短作业不抢先正在执⾏的作业。
也就是说,不但要考虑进程的到达时间,还要考虑进程需要运⾏的时间。
当⼀个进程正在运⾏时,假如有其他的进程到达,那么这些到达的进程就需要按照其需要运⾏的时间长短排序,运⾏时间短的在前,运⾏时间长的在后。
3.例⼦:4.运⾏截图1.先来先服务2.短作业优先5.话不多说,直接上代码。
第⼀次写,有很多不⾜的地⽅。
希望⼤家看到可以帮忙纠正⼀下,谢谢⼤家。
#include <stdio.h>#include <stdlib.h>#define MAX 10typedef struct PCB {int id,arrive_time,service_time,start_time,finish_time; //进程id、到达时间、服务时间、开始时间、完成时间float zhouzhuan_time,daiquanzhouzhuan_time; //周转时间、带权周转时间。
只能说我的拼英。
emm,。
尴尬。
int status;}PCB;typedef enum {OK,ERROR}Status;typedef enum {FALSE,TRUE}Bool;typedef PCB datatype;typedef struct LinkQueue {int front;int rear;int length;datatype* base;}quene;int arrive[MAX]; // 记录每个作业的到达时间int service[MAX]; //记录每个作业的服务时间int num; //输⼊的进程个数quene init(){quene q_pcb;q_pcb.base = (datatype *)malloc(sizeof(datatype)*MAX);q_pcb.front = q_pcb.rear = 0;q_pcb.length = 0;return q_pcb;}Bool isFull(quene *q) {if ((q->rear + 1) % MAX == q->front) {return TRUE;}return FALSE;}Bool isEmpty(quene *q) {if (q->rear == q->front) {return TRUE;}return FALSE;}Status rudui(quene *q,datatype p){ //⼊队。
常用的进程调度算法
常用的进程调度算法
常用的进程调度算法有:
1. 先来先服务(FCFS):按照进程到达的顺序进行调度,先
到达的进程先执行。
2. 短作业优先(SJF):按照进程执行时间的长短进行调度,
先执行执行时间短的进程。
3. 优先级调度:每个进程都有一个优先级,按照优先级进行调度,优先级高的先执行。
4. 轮转调度(RR):按照进程到达的顺序进行调度,每个进
程执行一个时间片(时间片大小可以设定),然后进行切换。
5. 多级反馈队列调度:将进程分为多个队列,每个队列具有不同的优先级,每个队列都按照先来先服务的原则进行调度,当一个进程运行时间超过一个时间片时,将其放入下一个优先级更低的队列中。
6. 最短剩余时间优先(SRTF):在短作业优先算法的基础上,每次发生进程切换时,都会比较剩余运行时间,优先执行剩余时间最短的进程。
7. 最高响应比优先(HRRN):按照响应比(等待时间+执行
时间/执行时间)进行调度,响应比越高,优先级越高。
8. 最早截止时间优先(EDF):按照进程的截止时间进行调度,优先执行截止时间最早的进程。
这些算法适用于不同的场景和需求,可以根据具体的情况选择合适的调度算法来提高系统性能。
操作系统——先来先服务(FCFS)和短作业优先(SJF)调度算法
进程号到达时刻服务时间(⼩时)A9:002B9:301C9:400.5D10:300.4进程号到达时刻服务时间(⼩时)开始时间完成时间周转时间(⼩时)带权周转时间A9:00291121B9:3011112 2.5 2.5C9:400.51212:30 2.83 5.66D10:300.412:3012:54 2.46操作系统——先来先服务(FCFS )和短作业优先(SJF )调度算法例题:计算在单CPU 环境下,采⽤FCFS 调度算法、SJF 优先调度算法时的平均周转时间和平均带权周转时间,并指出它们的调度顺序。
公式:周转时间 = 完成时间 - 到达时间带权周转时间 = 周转时间 / 服务时间平均周转时间 = 周转时间 / 进程数量平均带权周转时间 = 带权周转时间 / 进程数量完成时间的计算⽅法不同,分别如下:先来先服务(FCFS )调度算法:FCFS 调度顺序:A 、B 、C 、D (先来先服务)FCFS 完成时间:A (完成时间)=A (到达时间)+A (服务时间)=9+2=11B (完成时间)=A (完成时间)+B (服务时间)=11+1=12C (完成时间)=B (完成时间)+C (服务时间)D (完成时间)=C (完成时间)+D (服务时间)(该进程完成时间 =上⼀进程的完成时间 + 这个进程的服务时间)单位要转化进程号到达时刻服务时间(⼩时)开始时间完成时间周转时间(⼩时)带权周转时间A9:00291121B9:30111:5412:54 3.4 3.4C9:400.511:2411:54 2.4 4.8D10:300.41111:240.9 2.25平均周转时间:(2+2.5+2.38+2.4)/4=2.32平均带权周转时间:(1+2.5+5.66+6)/4=3.79短作业优先(SJF )调度算法:SJF 调度顺序:A 、D 、C 、BSJF 完成时间: A(完成时间)=A(到达时间)+A(服务时间) D(完成时间)=A(到达时间)+D(服务时间) C(完成时间)=D(到达时间)+C(服务时间) B(完成时间)=C(到达时间)+B(服务时间)平均周转时间: (2+3.4+2.45+0.9)/4=2.6875平均带权周转时间: (1+3.4+4.8+2.25)/4=2.8625。
先来先服务FCFS和短作业优先SJF进程调度算法_实验报告材料
先来先服务FCFS和短作业优先SJF进程调度算法_实验报告材料一、实验目的本实验的目的是通过编写程序模拟先来先服务(FCFS)和短作业优先(SJF)进程调度算法,并对其效果进行评估,从而对两种算法有一个更直观的认识。
二、实验原理2. 短作业优先(Shortest-Job-First, SJF)进程调度算法:根据进程的执行时间进行调度,选择执行时间最短的进程先执行。
三、实验步骤1. 设计进程类Process,包含进程名称、到达时间、执行时间等属性,并重载比较运算符以便后续排序。
2. 设计FCFS调度算法函数fcfs_scheduling,实现进程按照先来先服务的规则进行调度。
3. 设计SJF调度算法函数sjf_scheduling,实现进程按照执行时间最短的规则进行调度。
4. 编写主函数,分别调用fcfs_scheduling和sjf_scheduling函数,并根据实际情况输出结果,比较两种算法的效果。
四、实验结果与分析1.输入样例:进程A:到达时间0,执行时间3进程B:到达时间1,执行时间4进程C:到达时间2,执行时间2进程D:到达时间4,执行时间12.输出结果:FCFS调度结果:A->B->C->D,平均等待时间为(0+3+7+9)/4=4.75SJF调度结果:A->C->B->D,平均等待时间为(0+1+3+6)/4=2.53.结果分析:从结果可以看出,短作业优先(SJF)进程调度算法能够更好地减少进程的等待时间,因为它根据进程的执行时间进行调度,优先执行执行时间较短的进程。
与之相比,先来先服务(FCFS)进程调度算法无法对不同进程的执行时间进行判断,可能导致执行时间较短的进程等待时间长。
五、实验总结通过本次实验,我对先来先服务(FCFS)和短作业优先(SJF)进程调度算法有了更深入的了解。
先来先服务(FCFS)算法简单直观,但无法保证最优解;短作业优先(SJF)算法可以减少进程的等待时间,但需要预知每个进程的执行时间。
操作系统实验_先来先服务的调度算法和短作业优先
操作系统实验_先来先服务的调度算法和短作业优先先来先服务(FCFS)调度算法是一种非抢占式调度算法,在这种算法中,进程按照到达系统的先后顺序执行,并且在一个进程执行完毕之前,不会有其他进程执行。
如果一个进程没有执行完成,后续进程需要等待。
FCFS调度算法的优点是实现简单,公平性好。
由于按照到达时间先后顺序执行进程,能够保证所有进程都能够得到执行的机会。
然而,FCFS调度算法容易出现“饥饿”现象,即如果一个进程占用了较长的CPU时间,其他进程可能需要等待较长时间。
短作业优先(SJF)调度算法是一种非抢占式调度算法,它选择下一个执行的进程是根据预计的执行时间最短的进程。
在SJF调度算法中,进程按照预计的执行时间进行排序,并按照顺序执行。
SJF调度算法的优点是能够最大程度地减少平均等待时间。
因为进程按照预计的执行时间最短的顺序执行,执行时间短的进程优先执行,可以最大限度地减少其他进程等待的时间。
然而,SJF调度算法需要预先知道所有进程的执行时间,并且如果一个进程执行时间长,其他进程需要等待的时间可能会很长。
FCFS调度算法和SJF调度算法都有各自的优点和局限性。
FCFS调度算法适用于进程执行时间相对均匀的情况,可以保证所有进程都能够得到执行的机会。
但是,如果一个进程执行时间很长,可能会导致其他进程等待的时间非常长,容易出现“饥饿”现象。
SJF调度算法适用于进程执行时间差异较大的情况,可以最大程度地减少平均等待时间。
但是,SJF调度算法需要预先知道所有进程的执行时间,而且在实际应用中,很难准确预测进程的执行时间。
在实验中,可以通过编写相应的模拟程序来实现FCFS调度算法和SJF调度算法。
可以设定一个进程队列,每个进程有自己的到达时间和执行时间。
按照FCFS算法,按照到达时间先后顺序执行进程;按照SJF算法,按照执行时间从小到大的顺序执行进程。
通过模拟进程的调度过程,可以观察到FCFS算法和SJF算法的效果差异。
操作系统实验_先来先服务的调度算法和短作业优先
操作系统实验_先来先服务的调度算法和短作业优先操作系统中的进程调度算法是实现多道程序设计的关键,作为操作系统中的调度器,它决定了进程在CPU上执行的顺序,直接影响到系统的性能和响应时间。
本文将重点介绍两种常用的进程调度算法:先来先服务调度算法(FCFS)和短作业优先调度算法(SJF)。
先来先服务调度算法是一种最简单、最基础的调度算法,其实现非常简单:按照进程到达CPU的先后顺序,将其依次调入CPU执行。
当一个进程进入就绪队列后,在CPU空闲的时候,就将其调入CPU执行,直到进程执行完成或者主动放弃CPU时间片。
这种调度算法的优势在于实现简单、公平性好;但其缺点也很明显,由于没有考虑进程的执行时间长短,如果一个长时间的进程先到达就绪队列,则会造成其他进程的等待时间过长,导致系统的响应时间较长。
与FCFS相对的是短作业优先调度算法(Shortest Job First, SJF)。
SJF调度算法会根据进程的相对执行时间长短来进行调度,即将执行时间最短的进程优先调度进入CPU执行。
SJF算法的关键在于如何估计进程的执行时间,通常有两种方法:预测和历史信息。
预测方法是根据进程的相关信息,如进程的大小、执行时间等进行预测;而历史信息方法是根据以往同类任务的执行时间的平均值或历史执行时间进行估算。
在实际操作中,通常采用后者进行调度。
SJF调度算法的优势在于可以最大程度地减少平均等待时间,提高系统的响应效率。
然而,该算法也存在一些问题,如如何准确估算进程的执行时间、对长时间任务不够友好等。
两种调度算法各自都有其优势和劣势,因此在实际操作中需要根据具体的情况选择适用的调度算法。
如果系统中存在大量长时间任务,可以考虑使用FCFS来保证公平性;而如果系统中的任务短且繁琐,可以优先考虑SJF算法来减少平均等待时间。
此外,还有一些改进版的调度算法,如最短剩余时间优先调度算法(Shortest Remaining Time First, SRTF)和多级反馈队列调度算法(Multi-Level Feedback Queue, MLFQ)等,它们在一定程度上兼顾了FCFS和SJF的优势,更适用于实际的操作系统。
操作系统中进程调度算法的比较与选择
操作系统中进程调度算法的比较与选择操作系统中的进程调度算法是决定进程如何被分配和调度执行的重要机制。
不同的调度算法采用不同的策略来优化处理器利用率、响应时间、吞吐量等性能指标。
本文将比较几种常见的进程调度算法,并介绍如何选择适合的算法应用于特定场景。
一、先来先服务(FCFS)调度算法先来先服务调度算法是最简单的调度算法之一。
按照进程到达的先后顺序进行调度,先到达的进程先执行,直到执行完毕或者出现某种阻塞情况。
尽管该算法简单易懂,但是由于无法考虑进程的执行时间和优先级等因素,可能会导致长作业优先的现象,造成短作业的等待时间过长,影响系统的吞吐量。
二、短作业优先(SJF)调度算法短作业优先调度算法根据每个进程的执行时间进行排序,选择执行时间最短的进程优先执行。
这种调度算法能够最大限度地减少平均周转时间和平均等待时间,适用于短作业频繁出现的场景。
然而,该算法存在无法预测进程执行时间、难以精确评估的缺点,可能会导致长作业等待时间过长。
三、优先级调度算法优先级调度算法根据进程的优先级来决定进程的调度顺序。
优先级可以由系统管理员或者其他调度算法赋予,数值越高表示优先级越高。
该算法能够保证高优先级进程优先执行,但是可能导致低优先级进程长时间等待,产生饥饿现象。
为了解决饥饿问题,可以引入动态优先级调度算法,即根据进程等待时间进行动态调整优先级。
四、时间片轮转调度算法时间片轮转调度算法将时间划分为固定大小的时间片,每个进程在一个时间片内执行。
当时间片用完后,进程被挂起,而后续的进程获得执行机会。
这种调度算法可以公平地分配处理器时间,并降低长作业等待时间,适用于多个进程需要竞争处理器的情况。
然而,时间片的大小需要合理设置,过小会引起上下文切换开销过大,过大会导致响应时间较长。
五、多级反馈队列调度算法多级反馈队列调度算法采用多个队列,每个队列的优先级不同。
新到达的进程最先进入最高优先级队列,如果在时间片内没有完成,则进入下一级队列继续执行。
先来先服务FCFS和短作业优先SJF进程调度算法
先来先服务FCFS和短作业优先SJF进程调度算法
先来先服务(FCFS)算法是最简单的一种进程调度算法。
它的原则是按照作业到达的顺序,将作业分配给处理器。
当一个作业到达系统后,它将占用处理器并运行,直到完成所有的工作。
在FCFS算法中,没有考虑作业的大小或者运行时间,所有的作业都按照到达的先后顺序进行处理。
FCFS算法的优点是实现简单,没有复杂的调度信息和数据结构的支持;缺点是对于长作业或者执行时间较长的作业来说,等待时间会很长,导致响应时间较慢,同时也会降低系统的吞吐量。
短作业优先(SJF)算法是一种根据作业的执行时间进行调度的算法。
它的原则是当一个作业到达系统后,系统将根据作业的执行时间,将处理器分配给执行时间最短的作业。
在SJF算法中,系统需要对每一个作业的执行时间进行估计,然后选择执行时间最短的作业。
SJF算法的优点是能够最大限度地减少作业的等待时间,提高系统的响应速度和吞吐量;缺点是需要对作业的执行时间进行准确的估计,而这往往是比较困难的。
如果估计不准确,可能会导致执行时间较长的作业一直等待,而执行时间较短的作业得到了优先处理。
总结起来,FCFS和SJF两种进程调度算法各有优缺点。
FCFS算法简单直观,但可能导致作业的等待时间较长;而SJF算法可以最大限度地减少作业的等待时间,但需要准确地估计作业的执行时间。
在实际使用中,可以根据作业的特点和系统的需求选择适合的调度算法。
同时,也可以考虑使用其他的调度算法,如时间片轮转、优先级调度等,来满足更复杂的任务调度需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先来先服务FCFS和短作业优先SJF进程调度算法1、实验目的通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。
2、需求分析(1) 输入的形式和输入值的范围输入值:进程个数Num 范围:0<Num<=100 依次输入Num个进程的到达时间范围:依次输入Num个进程的服务时间范围:输入要使用的算法(1-FCFS,2-SJF)范围:1或者2 (2) 输出的形式(X表示变量)时刻X:进程X开始运行。
其完成时间:X 周转时间:X 带权周转时间:X…(省略(Num-1)个)平均周转时间:X平均带权周转时间:X(3) 程序所能达到的功能输入进程个数Num,每个进程到达时间ArrivalTime[i],服务时间ServiceTime[i]。
采用先来先服务FCFS或者短作业优先SJF进程调度算法进行调度,计算每个进程的完成时间、周转时间和带权周转时间,并且统计Num个进程的平均周转时间和平均带权周转时间。
3、概要设计说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。
4、详细设计5、调试分析(1)调试过程中遇到的问题以及解决方法,设计与实现的回顾讨论和分析○1开始的时候没有判断进程是否到达,导致短进程优先算法运行结果错误,后来加上了判断语句后就解决了改问题。
○2基本完成的设计所要实现的功能,总的来说,FCFS编写容易,SJF 需要先找到已经到达的进程,再从已经到达的进程里找到进程服务时间最短的进程,再进行计算。
(2)算法的改进设想改进:即使用户输入的进程到达时间没有先后顺序也能准确的计算出结果。
(就是再加个循环,判断各个进程的到达时间先后,组成一个有序的序列)(3)经验和体会通过本次实验,深入理解了先来先服务和短进程优先进程调度算法的思想,培养了自己的动手能力,通过实践加深了记忆。
6、用户使用说明(1)输入进程个数Num(2)依次输入Num个进程的到达时间(3)依次输入Num个进程的服务时间(4)选择要使用的算法7、测试结果正确一(FCFS):正确一(SJF):正确二(FCFS):正确二(SJF):错误(进程个数错误):错误(选择算法错误):8、附录//*******************************************************************//** 进程调度算法 BY:09软件工程二班李群 **//*******************************************************************#include<iostream>#include<iomanip>using namespace std;static const int Max=100;int ArrivalTime[Max];//到达时间int ServiceTime[Max];//服务时间int FinishTime[Max];//完成时间int WholeTime[Max];//周转时间double WeightWholeTime[Max];//帯权周庄时间double AverageWT_FCFS,AverageWT_SJF; //平均周转时间double AverageWWT_FCFS,AverageWWT_SJF;//平均帯权周转时间int ServiceTime_SJF[Max];//在SJF算法中使用到int Num=0;int NowTime=0;//记录当前时间double SumWT=0,SumWWT=0;//SumWT用来计算总的周转时间,SumWWT用来计算总的帯权周转时间int i;int choice;//记录选择//******************************************************************// 先到先服务算法//******************************************************************void FCFS()//找最早到达的。
{cout<<"--------------------------------------------------------------"<<endl;cout<<"-----------------------------FCFS-----------------------------"<<endl;cout<<"--------------------------------------------------------------"<<endl;for(i=0;i<Num;i++){if(ArrivalTime[i]>NowTime)//假如进程到达的时间比现在已经运行的时间NowTime大,说明在NowTime时刻进程未到达{NowTime=ArrivalTime[i];//把进程的到达时间赋给NowTime}NowTime+=ServiceTime[i];//把进程的服务时间加到NowTime上FinishTime[i]=NowTime;//计算完成时间WholeTime[i]=FinishTime[i]-ArrivalTime[i];//计算周转时间=完成时间-到达时间WeightWholeTime[i]=(double)WholeTime[i]/ServiceTime[i];//计算带权周转时间=周转时间/服务时间SumWT+=WholeTime[i];//计算总的周转时间SumWWT+=WeightWholeTime[i];//计算总的帯权周转时间}AverageWT_FCFS=SumWT/Num;//平均周转时间AverageWWT_FCFS=SumWWT/Num;//平均帯权周转时间for(i=0;i<Num;i++)//依次输出结果{cout<<"时刻"<<FinishTime[i]-ServiceTime[i]<<": 进程"<<i+1<<"开始运行。
"<<" 其完成时间:"<<FinishTime[i]<<" 周转时间:"<<WholeTime[i]<<setprecision(3)<<" 帯权周转时间:"<<WeightWholeTime[i]<<setprecision(3)<<endl;}cout<<"平均周转时间:"<<AverageWT_FCFS<<endl;cout<<"平均帯权周转时间:"<<AverageWWT_FCFS<<endl;}//******************************************************************// 短进程优先算法//******************************************************************void SJF()//找已经到达的且服务时间最短的进程(假定输入的进程是按照到达时间先后输入的){cout<<"--------------------------------------------------------------"<<endl;cout<<"-----------------------------SJF------------------------------"<<endl;cout<<"--------------------------------------------------------------"<<endl;int min=0;NowTime=ArrivalTime[0]+ServiceTime[0];//计算第一次的NowTImeFinishTime[0]=NowTime;//计算第一个进程的完成时间ServiceTime_SJF[0]=1000;//赋初值。
cout<<"时刻"<<FinishTime[0]-ServiceTime[0]<<": 进程"<<1<<"开始运行。
";int allin=0,j,k;for(i=1;i<Num;i++)//进入循环,从第二个到达的进程开始{k=1;min=0;if(allin==0)//找到已经到达的进程个数{j=0;while(ArrivalTime[j]<=NowTime && j<Num)//已经到达的进程{j++;if(j>=Num){allin=1;}}}else{j=Num;}j=j-1;//j是已经到达的进程数while(k<=j)//从已经到达的进程里找到服务时间最短的进程{if(ServiceTime_SJF[k]==0)//进程的服务时间如果等于0,则跳过该进程k++;else{if(ServiceTime_SJF[min]>ServiceTime_SJF[k])//比较,找到服务时间最短的进程min=k;k++;}}ServiceTime_SJF[min]=0;//找完后置零,便于下一次循环时使用NowTime+=ServiceTime[min];//累加当前时间FinishTime[min]=NowTime;//完成时间}for(i=0;i<Num;i++)//计算周转时间,带权周转时间,总的周转时间和总的带权周转时间{WholeTime[i]=FinishTime[i]-ArrivalTime[i];WeightWholeTime[i]=(double)WholeTime[i]/ServiceTime[i];SumWT+=WholeTime[i];SumWWT+=WeightWholeTime[i];}AverageWT_SJF=SumWT/Num;//平均周转时间AverageWWT_SJF=SumWWT/Num;//平均带权周转时间cout<<" 其完成时间:"<<FinishTime[0]<<" 周转时间:"<<WholeTime[0]<<setprecision(3)<<" 帯权周转时间:"<<WeightWholeTime[0]<<setprecision(3)<<endl;for(i=1;i<Num;i++)//输出结果{cout<<"时刻"<<FinishTime[i]-ServiceTime[i]<<": 进程"<<i+1<<"开始运行。