高中北师大版数学必修2(单元测试卷):第1章章末测试 含解析
高一北师大版数学必修2第一章 立体几何初步单元测试题试卷含答案解析
第二章测试时间120分钟 满分150分一、选择题(本大题共10小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.已知点P (-3,1),点Q 在y 轴上,且直线PQ 的倾斜角为120° ,则Q 点的坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)解析 设Q (0,y ),由k =y -13=-3,得y =-2.答案 B2.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-1解析 由题意,得a (a +2)=-1,得a =-1. 答案 D3.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则m 的值为( )A .0B .-8C .2D .10解析 由4-mm +2=-2,得m =-8.答案 B4.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )A .5 B.13 C .10D.10解析 A (1,-2,-3),C (-2,-2,-5)代两点间距离公式即可.答案 B5.直线y +4=0与圆x 2+y 2-4x +2y -4=0的位置关系是( ) A .相切B .相交,但直线不经过圆心C .相离D .相交且直线经过圆心 答案 A6.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )A .x 2+y 2=4(x ≠±2)B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=2解析 由题可知,点P 的轨迹是以MN 为直径的圆(除去M 、N 两点),∴点P 的轨迹方程是x 2+y 2=4(x ≠±2).答案 A7.若直线3x +2y -2m -1=0与直线2x +4y -m =0的交点在第四象限,则实数m 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C.⎝⎛⎭⎪⎫-∞,-23D.⎝⎛⎭⎪⎫-23,+∞解析 由⎩⎪⎨⎪⎧3x +2y -2m -1=0,2x +4y -m =0,得⎩⎨⎧x =3m +24,y =-m -28.由题意,得⎩⎨⎧3m +24>0,-m +28<0,得m >-23.答案 D8.已知圆C 的方程为x 2+y 2-4x =0,若圆C 被直线l :x +y +a =0截得的弦长为23,则a =( )A .2+ 2 B.2 C .2± 2D .-2±2解析 由弦长公式,得3=4-⎝ ⎛⎭⎪⎪⎫2+a 12+122, 得a =-2± 2. 答案 D9.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11解析 将直线平移后得到y =2(x +1)+λ=2x +2+λ, 由题可知,|-2-2+2+λ|22+(-1)2=5, 得λ=-3,或λ=7,故选A. 答案 A10.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( )A .-2或2 B.12或32 C .2或0D .-2或0解析 圆的圆心(1,2),∴d =|1-2+a |2=22,得a =0,或a =2.答案 C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.当a 为任意实数时,直线ax -y +1-3a =0恒过定点________. 解析 原方程可化为a (x -3)-(y -1)=0,∴直线l 过(3,1). 答案 (3,1)12.直线x -2y +5=0与圆x 2+y 2=8相交于A ,B 两点,则|AB |=________.解析 圆心到该直线的距离d =55=5,∴弦长=2(22)2-(5)2=2 3. 答案 2313.两圆相交于两点(1,3)和(m ,-1),两圆圆心都在直线x -y +c =0上,且m 、c 均为实数,则m +c =________.解析 根据两圆相交的性质可知,两点(1,3)和(m ,-1)的中点⎝ ⎛⎭⎪⎫1+m 2,1在直线x -y +c =0上,并且过两点的直线与x -y +c =0垂直,故有⎩⎨⎧1+m2-1+c =0,3-(-1)1-m ×1=-1,∴m =5,c =-2,∴m +c =3. 答案 314.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________;圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.解析 ∵k PQ =3-a -b3-b -a =1,又k l ·k PQ =-1∴k l =-1,又(2,3)关于l 的对称点为(0,1), 故所求的圆的方程为x 2+(y -1)2=1. 答案 -1 x 2+(y -1)2=115.过圆x 2+y 2-x +y -2=0与x 2+y 2=5的交点,且圆心在直线3x -4y -1=0上的圆的方程为________.解析 设所求的圆的方程为x 2+y 2-x +y -2+ λ(x 2+y 2-5)=0,即(1+λ)x 2+(1+λ)y 2-x +y -2-5λ=0.∴圆心为⎝ ⎛⎭⎪⎫12(1+λ),-12(1+λ). 由32(1+λ)-42(1+λ)-1=0,得λ=-32 故所求的圆的方程为(x +1)2+(y -1)2=13. 答案 (x +1)2+(y -1)2=13三、解答题(本大题共有6小题,共75分.解答时应写出必要的文字说明,证明过程或演算步骤)16.(12分)已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使(1)l 1和l 2相交于点(m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解 (1)∵m 2-8+n =0,且2m -m -1=0, ∴m =1,n =7.(2)由m ·m -8×2=0,得m =±4, 由8×(-1)-n ·m ≠0,得n ≠±2,即m =4,n ≠-2时,或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当m ·2+8·m =0,即m =0时,l 1⊥l 2,又-n8=-1,∴n =8. 即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.17.(12分)△ABC 中,顶点A 的坐标为(1,2),高BE ,CF 所在直线的方程分别为2x -3y +1=0,x +y =0,求这个三角形三条边所在直线的方程.解 由已知,直线AC 的斜率为-32, 直线AB 的斜率为1.∴直线AC 的方程为3x +2y -7=0, 直线AB 的方程为x -y +1=0.再由⎩⎪⎨⎪⎧x +y =0,3x +2y -7=0,可解得C 点坐标为(7,-7).由⎩⎪⎨⎪⎧2x -3y +1=0,x -y +1=0,可解得B 点坐标为(-2,-1) . 于是直线BC 的方程为2x +3y +7=0.18.(12分)已知圆x 2+y 2-12x =0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同两点A ,B ,求实数k 的取值范围.解 x 2+y 2-12x =0可化为(x -6)2+y 2=36,又直线过点P (0,2),斜率为k ,故l 的方程为y =kx +2,即kx -y +2=0,由题意,得|6k +2|k 2+1<6,得k <43.∴k 的取值范围是⎝⎛⎭⎪⎫-∞,43.19.(13分)已知P (1,2)为圆x 2+y 2=9内一定点,过P 点任作直线,与圆相交,求弦的中点的轨迹方程.解 设过P 点的直线与圆相交于A ,B 两点,C 为AB 的中点,设C (x ,y ),由题意,得当P 与C 不重合时,△OPC 为直角三角形,∴C 点在以OP 为直径的圆上,又OP 的中点⎝ ⎛⎭⎪⎫12,1,|OP |=12+22=5,∴点C 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=54(除去P 点).又当x =1,y =2时上式仍成立,∴点C 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=54.20.(13分)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m ;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解 (1)原方程化为(x -1)2+(y -2)2=5-m . ∵此方程表示圆, ∴5-m >0. ∴m <5.(2)设M (x 1,y 1),N (x 2,y 2), 则x 1=4-2y 1,x 2=4-2y 2, 得x 1x 2=16-8(y 1+y 2)+4y 1y 2. ∵OM ⊥ON , ∴x 1x 2+y 1y 2=0.∴16-8(y 1+y 2)+5y 1y 2=0.①由⎩⎪⎨⎪⎧x =4-2y ,x 2+y 2-2x -4y +m =0,得 5y 2-16y +m +8=0. ∴y 1+y 2=165,y 1y 2=8+m 5. 代入①得m =85.(3)以MN 为直径的圆的方程为 (x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0, 即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.∴所求圆的方程为x 2+y 2-85x -165y =0.21.(13分)已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆外,过点P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足|PM |=|PO |的点P 的轨迹方程.解 (1)把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为(-1,2),半径为2.①当l 的斜率不存在时,l 的方程为x =1满足条件.②当l 的斜率存在时,设斜率为k ,则l :y -3=k (x -1),即kx -y +3-k =0.由题意,得|-k -2+3-k |1+k 2=2,得k =-34. ∴l 的方程为3x +4y -15=0.综上得,满足条件的切线l 的方程为x =1,或3x +4y -15=0. (2)设P (x ,y ),∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2. 整理得2x -4y +1=0.即点P 的轨迹方程为2x -4y +1=0.。
2020学年高中数学第1章立体几何初步章末检测试卷北师大版必修2
第1章立体几何初步章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.六棱柱的表面中,互相平行的平面最多有( )A.2对B.3对C.4对D.5对答案 C解析有3对侧面相互平行,上下两底面也相互平行.2.如图,B′C′∥x′轴,A′C′∥y′轴,则下面直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形考点平面图形的直观图题点由直观图还原平面图形答案 D解析因为B′C′∥x′轴,A′C′∥y轴,所以直观图中BC∥x轴,AC∥y轴,所以三角形是直角三角形.故选D.3.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( ) A.12对 B.24对 C.36对 D.48对考点题点答案 B解析如图所示,在正方体ABCD-A1B1C1D1中,与棱AB异面的直线有CC1,DD1,B1C1,A1D1,共4对,正方体ABCD-A1B1C1D1有12条棱,排除重复计算的异面直线,∴异面直线共有12×2=24(对).4.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与轴所成的角为( ) A.30° B.45°C.60° D.75°考点题点答案 A解析设圆锥的母线长为L,底面圆的半径为r,则由题意得πrL=2πr2,∴L=2r,∴圆锥的母线与轴所成的角为30°.5.下列命题:①在平面外的直线与平面不相交必平行;②过平面外一点只有一条直线和这个平面平行;③如果一条直线与另一条直线平行,则它和经过另一条直线的任何平面平行;④若直线上有两点到平面的距离相等,则直线平行于该平面.其中正确命题的个数为( )A.1 B.2 C.3 D.4考点直线与平面平行的判定题点直线与平面平行的判定答案 A解析①正确,②③④错误.6.分别和两条异面直线都相交的两条直线的位置关系是( )A.异面B.相交C.平行D.异面或相交考点题点答案 D解析如图所示,a,b是异面直线,AB,AC都与a,b相交,AB,AC相交;AB,DE都与a,b相交,AB,DE异面.7.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是( )A.①③ B.①④ C.②③ D.②④考点平行问题的综合应用题点线线、线面、面面平行的相互转化答案 A解析∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1.∵BC1∥AD1,∴FG∥AD1,∵FG⊈平面AA1D1D,AD1平面AA1D1D,∴FG∥平面AA1D1D,故①正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF 与平面BC1D1相交,故②错误;∵FG∥BC1,FG⊈平面BC1D1,BC1平面BC1D1,FG∥平面BC1D1,故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.故选A.8.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为( )A.3π B.6πC.18π D.24π考点 球的表面积题点 与外接、内切有关球的表面积计算问题 答案 B解析 将三棱锥补成边长分别为1,2,3的长方体,则长方体的体对角线是外接球的直径,所以2R =6,解得R =62,故S =4πR 2=6π. 9.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( ) A.316 B.916 C.38 D.932考点 题点 答案 A解析 如图所示,设球的半径为R ,由题意知OO ′=R2,OF =R ,∴r =32R . ∴S 截面=πr 2=π⎝⎛⎭⎪⎫32R 2=3π4R 2.又∵S 球=4πR 2,∴S 截面S 球=3π4R 24πR 2=316. 10.已知直线l ⊈平面α,直线m 平面α,下面四个结论:①若l ⊥α,则l ⊥m ;②若l ∥α,则l ∥m ;③若l ⊥m ,则l ⊥α;④若l ∥m ,则l ∥α,其中正确的是( ) A .①②④ B .③④ C .②③D .①④考点 线、面平行、垂直的综合应用 题点 平行与垂直的判定 答案 D解析 由直线l ⊈平面α,直线m 平面α知,在①中,若l⊥α,则由线面垂直的性质得l⊥m,故①正确;在②中,若l∥α,则l与m 平行或异面,故②错误;在③中,若l⊥m,则l与α不一定垂直,故③错误;在④中,若l∥m,则由线面平行的判定定理得l∥α,故④正确.故选D.11.如图,四边形ABCD是圆柱的轴截面,E是底面圆周上异于A,B的一点,则下面结论中错误的是( )A.AE⊥CE B.BE⊥DEC.DE⊥平面CEB D.平面ADE⊥平面BCE考点空间中的垂直问题题点空间中的垂直问题答案 C解析由AB是底面圆的直径可知,∠AEB=90°,即AE⊥EB.∵四边形ABCD是圆柱的轴截面,∴AD⊥底面AEB,BC⊥底面AEB.∴BE⊥AD,AD∩AE=A,因此BE⊥平面ADE.同理可得AE⊥CE,平面BCE⊥平面ADE.可得A,B,D正确.而DE⊥平面CEB不正确.故选C.12.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是( )A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面PAC考点空间角问题题点空间角的综合应用答案 D解析对于A,取AD的中点M,连接PM,BM,∵侧面PAD为正三角形,∴PM⊥AD,又底面ABCD是∠DAB=60°的菱形,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,∴AD⊥平面PBM,故A正确.对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确.对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=32,在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A大小为45°,故C正确.错误的是D,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.直角梯形的一个内角为45°,下底长为上底长的32倍,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积为(5+2)π,则旋转体的体积为________.考点题点答案7π3解析如图所示的是旋转体的半轴截面,设直角梯形的上底长为r,则下底长为32r,∠C=45°,所以DE =r2,DC =22r ,所以旋转体的表面积为S 表=π·r 24+2π·r 2·r +π·r 2·22r =π4r 2(5+2).又因为S 表=(5+2)π,所以r 2=4,所以r =2, 所以V =π·⎝ ⎛⎭⎪⎫r 22·r +13π·⎝ ⎛⎭⎪⎫r 22·r 2=7π3.14.如图,在长方体ABCD -A 1B 1C 1D 1中,MN 在平面BCC 1B 1内,MN ⊥BC 于点M ,则MN 与AD 的位置关系是________.考点 平面与平面垂直的性质题点 应用面面垂直的性质定理判定线线垂直 答案 垂直解析 ∵平面BCC 1B 1⊥平面ABCD ,平面BCC 1B 1∩平面ABCD =BC ,MN 平面BCC 1B 1, ∴MN ⊥平面ABCD .∴MN ⊥AD .15.已知平面α,β和直线m ,给出以下条件:①m ∥α;②m ⊥α;③m α;④α∥β.要想得到m ⊥β,则所需要的条件是________.(填序号) 考点 直线与平面垂直的判定 题点 判定直线与平面垂直 答案 ②④解析 易知⎩⎪⎨⎪⎧m ⊥α,α∥β⇒m ⊥β.16.如图,已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的大小是________.考点 题点 答案 90°解析因为OP与平面β所成的角大于等于45°,所以OP与平面β所成的角最小为45°,即OP与OP在平面β内的射影所成的角最小是45°.又因为∠POB=45°,所以AB就是OP 在平面β内的射影,所以α⊥β.所以二面角α-AB-β的大小是90°.三、解答题(本大题共6小题,共70分)17.(10分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.考点题点证明(1)∵C1C⊥平面ABC,AC平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,BC,C1C平面BCC1B1,∴AC⊥平面BCC1B1,而B1C平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD平面CDB1,AC1⊈平面CDB1.∴AC 1∥平面CDB 1.18.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点.(1)证明:EF ∥平面PAD ; (2)求三棱锥E -ABC 的体积V . 考点 直线与平面平行的判定 题点 直线与平面平行的证明(1)证明 在△PBC 中,E ,F 分别是PB ,PC 的中点,∴EF ∥BC .∵四边形ABCD 为矩形, ∴BC ∥AD ,∴EF ∥AD .又∵AD 平面PAD ,EF ⊈平面PAD , ∴EF ∥平面PAD .(2)解 连接AE ,AC ,EC ,过E 作EG ∥PA 交AB 于点G .则EG ⊥平面ABCD ,且EG =12PA .在△PAB 中,AP =AB ,∠PAB =90°,BP =2, ∴AP =AB =2,EG =22. ∴S △ABC =12AB ·BC =12×2×2=2,∴V E -ABC =13S △ABC ·EG =13×2×22=13.19.(12分)如图所示,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC ∥AD ,CD =1,AD =22,∠BAD =∠CDA =45°.(1)求异面直线CE 与AF 所成角的余弦值; (2)证明:CD ⊥平面ABF . 考点 直线与平面垂直的判定 题点 直线与平面垂直的证明(1)解 因为四边形ADEF 是正方形,所以FA ∥ED , 故∠CED 为异面直线CE 与AF 所成的角. 因为FA ⊥平面ABCD ,所以FA ⊥CD ,故ED ⊥CD .在Rt△CDE 中,因为CD =1,ED =22,所以CE =CD 2+ED 2=3,所以cos∠CED =ED CE =223.故异面直线CE 与AF 所成角的余弦值为223.(2)证明 如图,过点B 作BG ∥CD 交AD 于点G ,则∠BGA =∠CDA =45°.由∠BAD =45°可得BG ⊥AB , 从而CD ⊥AB .又因为CD ⊥FA ,FA ∩AB =A , 所以CD ⊥平面ABF .20.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,F ,F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1. 考点 线、面平行、垂直的综合应用 题点 平行、垂直综合问题的证明 证明 (1)在正三棱柱ABC -A 1B 1C 1中,∵F,F1分别是AC,A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,又B1F1平面AB1F1,∴平面AB1F1⊥平面ACC1A1.21.(12分)在矩形ABCD中,AB=2,AD=1,E为CD的中点,沿AE将△DAE折起到△D1AE的位置,使平面D1AE⊥平面ABCE.(1)若F为线段D1A的中点,求证:EF∥平面D1BC;(2)求证:BE⊥D1A.考点线、面平行、垂直的综合应用题点平行、垂直综合问题的证明证明(1)取AB的中点G,连接EG,FG,则EG∥BC,FG∥D1B,且EG∩FG=G,EG平面EFG,FG平面EFG,D1B∩BC=B,D1B平面D1BC,BC平面D1BC,∴平面EFG∥平面D1BC.∵EF平面EFG,∴EF∥平面D1BC.(2)易证BE⊥EA,平面D1AE⊥平面ABCE.平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE.又∵D1A平面D1AE,∴BE⊥D1A.22.(12分)如图所示,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ;(2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.考点 线、面平行、垂直的综合应用题点 平行、垂直综合问题的证明(1)证明 ∵M 为AB 的中点,D 为PB 的中点,∴DM ∥AP .又∵DM ⊈平面APC ,AP 平面APC ,∴DM ∥平面APC .(2)证明 ∵△PMB 为正三角形,且D 为PB 的中点,∴MD ⊥PB .又由(1)知,MD ∥AP ,∴AP ⊥PB .又已知AP ⊥PC ,PC ∩PB =P ,PB ,PC 平面PBC ,∴AP ⊥平面PBC ,∴AP ⊥BC .又∵AC ⊥BC ,AC ∩AP =A ,AC ,AP 平面ACP ,∴BC ⊥平面APC .又∵BC 平面ABC ,∴平面ABC ⊥平面APC .(3)解 由(2)知AP ⊥平面PBC ,又MD ∥AP ,∴MD ⊥平面PBC .∵AB =20,∴MB =10,∴PB =10.由(2)可知BC ⊥PC ,又BC =4,∴PC =100-16=84=221.∴S △BDC =12S △PBC =14PC ·BC =14×221×4=221. 又MD =12AP =12202-102=5 3.∴V 三棱锥D -BCM =V 三棱锥M -BCD =13S △BDC ·DM =13×221×53=107.。
高中北师大版数学必修2(45分钟课时作业与单元测试卷)第1章单元测试三 Word版含解析
单元测试三本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分分,考试时间分钟.第Ⅰ卷(选择题共分)一、选择题:本大题共小题,每小题分,共分.在下列各题的四个选项中,只有一个选项是符合题目要求的..过两直线:-+=和:++=的交点和原点的直线的方程为( ).-=.+=.-=.+=答案:解析:解方程组(\\(-+=,++=,))得(\\(=-(),=().))∴=-.又过原点,∴直线方程为+=..已知点(+),(-),直线的倾斜角是直线倾斜角的一半,则直线的斜率为( )..不存在答案:解析:=,∴直线的倾斜角为°.∴的倾斜角为°,=°=..已知点()(>)到直线:-+=的距离为,则=( ).--+答案:解析:由=得=-,=--(舍去)..三条直线:-=,:+-=,:--=构成一个三角形,则的范围是( ).∈.∈且≠±,≠.∈且≠±,≠-.∈且≠±,≠答案:.若点()和点(,)关于直线--=对称,则( ).=,=-.=,=-.=,=.=,=答案:解析:由题意,知(\\((--)=-,(+)-(+)-=)),解得(\\(==)),故选..和直线-+=关于轴对称的直线方程是( ).+-=.++=.-+-=.--=答案:解析:设对称直线上任一点坐标为(,)它关于轴对称的点的坐标为(,-).(,-)在直线-+=上∴有-(-)+=即++=即所求直线方程为++=..直线过原点(),且不过第三象限,那么的倾斜角α的取值范围是( ).[°,°] .[°,°].[°,°)或α=°.[°,°]答案:解析:画图知的倾斜角应是钝角或坐标轴上的角,中含锐角不正确,中°不在其倾斜角的范围内应被排除,中含的角不全面..设直线与轴的交点为,且倾斜角为α,若将其绕点按逆时针方向旋转°,得到直线的倾斜角为α+°,则( ).°≤α<°.°≤α<°.°<α≤°.°<α<°答案:解析:解答本题应紧扣直线的倾斜角的取值范围,还要注意到与轴相交的直线的倾斜角不为°.从而有(\\(°<α<°,°≤α+°<°)),所以°<α<°,故选..直线过点(),且与点(-)的距离最远,则的方程为( ).--=.-+=.++=.+-=答案:解析:当⊥时符合要求,∵==,∴的斜率为-.∴的方程为-=-(-),即+-=..一条直线被两条直线++=和--=截得的线段的中点恰好是坐标原点,则这条直线的方程是( ).+=.-=.+=.-=答案:解析:设与++=交于(,--),与直线--=,交于点(,),由()为的中点,故可得(-,),由,两点确定.第Ⅱ卷(非选择题共分)二、填空题:本大题共小题,每小题分,共分.把答案填在题中横线上..已知直线:(+)+--=(∈)在轴上的截距是在轴上的截距的倍,则的值为.答案:-或解析:当直线:(+)+--=(∈)过原点,即--=时,解得=-,此时该直线在两坐标轴上的截距都为,所以在轴上的截距是在轴上的截距的倍,即=-符合题意;当直线:(+)+--=(∈)不过原点,即--≠,即≠-时,易知≠-,该直线在轴上的截距是+,在轴上的截距是,所以由直线在轴上的截距是在轴上的截距的倍,得×=+,解得=.综上所述,的值为-或..直线经过(),(,)(∈)两点,则直线的倾斜角的取值范围为.答案:[°,°]∪(°,°)解析:直线的斜率==-≤.若直线的倾斜角为α,则α≠°,且α≤.又°=,且°≤α<°,∴°≤α≤°或°<α<°..已知直线:(+)+(-)=与:(-)+(+)+=互相垂直,则的值为.答案:-或解析:①若的斜率不存在,此时=,的方程为=,的方程为=-,显然⊥,符合条件;若的斜率不存在,此时=-,易知与不垂直.②当,的斜率都存在时,直线的斜率=-,直线的斜率=-,∵⊥,∴·=-,即·=-,所以=-.综上可知=-或=..已知,,为某一直角三角形的三边长,为斜边,若点(,)在直线++=上,则+的最小值为.答案:解析:求+的最小值就是在直线++=上求一点,使这点到原点的距离的平方最小,因而其最小值为原点到直线++=的距离.由题意得到+≥===,∴+的最小值为..已知直线过点(),且与轴、轴的正半轴分别交于、两点,为坐标原点,则三角形面积的最小值为.答案:。
(常考题)北师大版高中数学必修二第一章《立体几何初步》测试(包含答案解析)
一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π 2.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( )A .7B .7-C .37D .37- 3.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π4.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .325B .522C .326] D .6,22] 5.如图,在正方体1111ABCD A B C D -中,点F 是线段1BC 上的动点,则下列说法错误的是( )A .无论点F 在上1BC 怎么移动,都有11A FB D ⊥B .当点F 移动至1BC 中点时,才有1A F 与1BD 相交于一点,记为点E ,且12A E EF = C .当点F 移动至1BC 中点时,直线1A F 与平面1BDC 所成角最大且为60°D .无论点F 在1BC 上怎么移动,异面直线1A F 与CD 所成角都不可能是30°6.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为5 B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交7.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .148.如图,正方体1111ABCD A B C D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .1DC PC ⊥B .异面直线AD 与PC 不可能垂直C .1D PC ∠不可能是直角或者钝角D .1APD ∠的取值范围是,62ππ⎛⎫ ⎪⎝⎭ 9.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( )A .169πB .161πC .164πD .265π 10.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 11.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥' 12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C .34D .12二、填空题13.3ABCD 中,对角线3AC =ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.14.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.15.在正三棱锥P ABC -中,E ,F 分别为棱PA ,AB 上的点,3PE EA =,3BF FA =,且CE EF ⊥.若23PB =,则三棱锥P ABC -的外接球的体积为_________.16.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.17.一个三棱锥的三视图如图所示,该三棱锥中最长棱的长度为_______.18.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.19.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1A C 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥(4)存在某个位置,使//MB 平面1A DE20.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =,7SA SB SC ===,则该三棱锥的外接球的表面积为__________.三、解答题21.如图,ABC 是边长为2的正三角形,ABD △是以AB 为斜边的等腰直角三角形,且2CD =.(1)求证:平面ABC ⊥平面ABD ;(2)求二面角A-BC-D 的余弦值.22.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.23.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)证明://GH 平面ABCD ;(2)求H 到平面AEC 的距离.24.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 25.如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.(1)求证:1//AB 平面1BC D ;(2)求三棱锥1D BCC -的体积.26.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ;(2)求点D 到平面ACE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.C解析:C【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案.【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==, 所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得, 从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.3.B解析:B【分析】 根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=, 所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】 关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.4.A解析:A【分析】分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案.【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1,∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1,∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ;连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB ,可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF .又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上.在Rt △AA 1M 中,AM 222211215AA A M =+=+=同理,在Rt △AA 1N 中,求得AN 5=△AMN 为等腰三角形.当P 在MN 的中点时,AP 最小为222322()22+=, 当P 与M 或N 重合时,AP 最大为5.∴线段AP 长度的取值范围是32,52⎡⎤⎢⎥⎣⎦. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.5.C解析:C 【分析】A.通过证明线面垂直,证得线线垂直;B.利用相似三角形,求1A EEF的值;C.首先构造直线1A F 与平面1BDC 所成角,再通过数形结合分析最大角,以及最大角的余弦值,判选项;D.将异面直线所成角转化为相交直线所成角,求解判断. 【详解】A.AC BD ⊥,1AC BB ⊥,AC ∴⊥平面1BB D ,1AC B D ∴⊥,11//AC AC ,111B D AC ∴⊥,同理11B D BC ⊥,1111A C BC C ,1B D ∴⊥平面11A BC ,1A F ⊂平面11A BC ,11B D A F ∴⊥,故A 正确;B.连结1A D ,1B C 交1BC 于点F ,11//A B DC ,且11A B DC =,∴四边形11A DCB 是平行四边形,所以11//A D B C ,∴11A DE FB E,得1112A E A DEFB F==,故B 正确;C.1A O ⊥平面1BDC ,1111A B AC A D ==,∴点O1BDC 是等边三角形的中心,11A BC 是等边三角形,111A BC BDC ≅ 当点F 是1BC 的中点时,11A F BC ⊥,此时1A F 是点1A 和1BC 上的点连线的最短距离,设直线1A F 与平面1BDC 所成角为θ,此时11sin A O A F θ=最大,所以此时θ最大,所以111cos 32OF A F θ==<,最大角大于60,故C 不正确;D.11//A B CD ,CD ∴与1A F 所成的角,转化为11B A F ∠的大小,11B A F ∠的最小角是11B A 与平面11A BC 所成的角,即11B A F ∠,此时1111123tan 23FB B A F A B ∠==>,所以11B A F ∠的最小角大于30,故D 正确.故选:C 【点睛】关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C 和D ,C 选项的关键是1A O ⊥平面1BDC ,点O1BDC 是等边三角形的中心,D 选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.6.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 10D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.7.C解析:C 【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可. 【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C 【点睛】 识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.8.D解析:D 【分析】在正方体中根据线面垂直可判断A ,根据异面直线所成角可判断B ,由余弦定理可判断CD. 【详解】 如图,设正方体棱长为2,在正方体中易知1DC ⊥平面11A BCD ,P 为线段1A B 上的动点,则PC ⊂平面11A BCD ,所以1DC PC ⊥,故A 正确;因为异面直线AD 与PC 所成的角即为BC 与PC 所成的角,在Rt PBC 中不可能BC 与PC 垂直,所以异面直线AD 与PC 不可能垂直,故B 正确;由正方体棱长为2,则222222211114480D P PC D C A P BP A P BP +-=+++-=+>,所以由余弦定理知1cos 0D PC ∠>,即1D PC ∠不可能是直角或者钝角,故C 正确;设1(022)A P x x =≤≤,则2214D P x =+,222422cos4224AP x x x x π=+-⨯=+-,由余弦定理,222211111222cos =22AP D P AD x xAP D P A PD P AP D ∠=+--⋅⋅,当2x <1cos 0APD ∠<,所以1APD ∠为钝角,故D 错误.故选:D 【点睛】关键点点睛:判断正方体中的角的范围时,可选择合适三角形,利用正方体中数量关系,位置关系,使用余弦定理,即可判断三角形形状或角的范围,属于中档题.9.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.10.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.11.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==,ABD ∴为等边三角形,则2BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =2AE BE ==,由余弦定理可得2222cos 24AB AE BE BAE AB AE +-∠==⋅. 因此,异面直线AB 与CD 所成角的余弦值为24. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因解析:556π; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积. 【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径2252R GD OG =+=, 所以其体积为3344555(3326V R ππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置;(3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.14.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.15.【分析】证明与垂直得线面垂直从而得正三棱锥的三条侧棱两两垂直结合正方体的性质得三条侧棱的平方和为外接球直径的平方求得球半径后可得球体积【详解】∵∴∴又∴取中点连接如图由于是正三棱锥∴而平面∴平面又平解析:36π【分析】证明PB 与,CE AC 垂直得线面垂直,从而得正三棱锥的三条侧棱两两垂直,结合正方体的性质得三条侧棱的平方和为外接球直径的平方,求得球半径后可得球体积. 【详解】∵3PE EA =,3BF FA =,∴AE AFAP AB=,∴//EF PB ,又CE EF ⊥,∴PB CE ⊥,取AC 中点D ,连接,PD BD ,如图,由于P ABC -是正三棱锥,∴,PD AC BD AC ⊥⊥,而PD BD D ⋂=,,PD BD ⊂平面PBD ,∴AC ⊥平面PBD ,又PB ⊂平面PBD , ∴AC PB ⊥,∵ACCE C =,,AC CE ⊂平面PAC ,∴PB ⊥平面PAC ,而,PA PC ⊂平面PAC ,∴,PB PA PB PC ⊥⊥,同理正三棱锥中,PA PC ⊥.设三棱锥P ABC -外接球半径为R ,则22222(2)3(23)R PA PB PC =++=⨯,3R =,球的体积为343363V ππ=⨯=. 故答案为:36π.【点睛】结论点睛:三棱锥的外接球问题,解题关键是找到外接球的球心,三棱锥的外接球球心在过各面外心且与该面垂直的直线上.当从同一顶点出发的三条棱两两垂直时,可以把三棱锥补成一个长方体,而长方体的对角线就是三棱锥外接球的直径.16.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 6 【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,22OE =,23EF =. 所以6cos OE OEF EF ∠==. 故答案为:6.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.17.【分析】由三视图还原几何体得到三棱锥P-ABC 分别计算其棱长可得答案【详解】由三视图还原几何体得到三棱锥P-ABC 可将此三棱锥放入棱长为2的正方体内如下图所示所以:BC=所以该三棱锥最长棱的长度为故 解析:3【分析】由三视图还原几何体得到三棱锥P -ABC ,分别计算其棱长,可得答案. 【详解】由三视图还原几何体得到三棱锥P -ABC ,可将此三棱锥放入棱长为2的正方体内,如下图所示,所以:2AB =,BC =2,22,23BP AC PC AP ====.所以该三棱锥最长棱的长度为23. 故答案为:23.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.18.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 3 【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论. 【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AEDE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==112ME BC ==, 又113323323EO DE ==⨯=由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥,∴3cos 3EO MEO ME ∠==. 故答案为:33.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤.19.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4) 【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE A C ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3). 【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠ 所以MB 是定值,故(1)正确;B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =,则2DE CE ==,若存在某个位置,使1DE A C ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1A CE ,所以1DE A E ⊥,与11DA A E ⊥矛盾, 故(3)不正确.故答案为:(1)(2)(4) 【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.20.【详解】取的中点由题意可得:所以面ABC 所以球心在直线上所以得所以 解析:494π【详解】取AB 的中点,由题意可得:2222,3,SD DC SD DC SC ==+=,所以,SD AB SD DC ⊥⊥,SD ⊥面ABC.所以球心在直线SD 上,所以()2232R R =+-,得74R =, 所以24944S R ππ==.三、解答题21.(1)证明见解析;(2)7. 【分析】(1)取AB 中点O ,连OC 、OD ,即可得到COD ∠是二面角C AB D --的平面角,再由勾股定理逆定理得到222OC OD CD +=,即可得到二面角是直二面角,即可得证; (2)过O 作OM ⊥BC 交BC 于M ,连DM ,即可证明BC ⊥平面DOM ,从而得到ODM ∠为二面角A-BC-D 的平面角,再利用锐角三角函数计算可得; 【详解】(1)证明:取AB 中点O ,连OC 、OD ,因为ABC 是边长为2的正三角形,ABD △是以AB 为斜边的等腰直角三角形, 所以OC AB ⊥,⊥OD AB ,所以COD ∠是二面角C AB D --的平面角. 在OCD 中,因为OC =1OD =,2CD =,所以222OC OD CD +=所以90COD ∠=︒. 所以平面ABC ⊥平面ABD .(2)过O 作OM ⊥BC 交BC 于M ,连DM ,由(1)可知DO ⊥面ABC ,又BC ⊂面ABC ,所以BC DO ⊥,由OMDO O =,,OM DO ⊂面DOM所以BC ⊥平面DOM因为DM ⊂面DOM ,所以BC ⊥DM , 则ODM ∠为二面角A-BC-D 的平面角.在Rt OMD 中,1OD =,2OM =,由勾股定理:DM =,∴二面角A-BC-D 的余弦值为cos OM OMD DM ∠==.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)22;(22;(33 【分析】(1)取BD 中点G ,连接GC ,FG ,根据线面垂直的判定定理及性质,先证明EF 为1BD 与1CC 的公垂线,再由题中数据,计算出EF 的长,即可得出结果;(2)连接1ED ,由(1)得到EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,根据等体积法,由11E DBD D DBE V V --=求出d ,记直线1BD 与平面BDE 所成角为θ,由1sin dBD θ=即可得出结果; (3)由(2)得到1D 到平面BDE 的距离d ,根据题中条件,得到F 到平面BDE 的距离为2d,即可得出结果. 【详解】(1)在正四棱柱1111ABCD A B C D -中,取BD 中点G ,连接GC ,FG , ∵F ,G 分别为1,BD BD 的中点,∴1//FG D D 且112FG D D =, 又1//CE D D ,112CE D D =,所以//FG CE 且FG CE =,则四边形EFGC 为平行四边形,又CE ⊥平面ABCD ,CG ⊂平面ABCD ,∴CE CG ⊥,。
最新北师大版高中数学必修二测试题全套含答案解析
最新北师大版高中数学必修二测试题全套含答案解析章末综合测评(一)立体几何初步(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列推理错误的是()A.A∈l,A∈α,B∈l,B∈α⇒lαB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊆/α,A∈l⇒A∉αD.A∈l,lα⇒A∈α【解析】若直线l∩α=A,显然有l⊆/α,A∈l,但A∈α,故C错.【答案】 C2.下列说法中,正确的是()A.经过不同的三点有且只有一个平面B.分别在两个平面内的两条直线一定是异面直线C.垂直于同一个平面的两条直线是平行直线D.垂直于同一个平面的两个平面平行【解析】A中,可能有无数个平面;B中,两条直线还可能平行、相交;D中,两个平面可能相交.【答案】 C3.已知水平放置的△ABC是按“斜二测画法”得到如图1所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC的面积是()图1A. 3B.2 2C.32 D.34【解析】由题图可知,原△ABC的高为AO=3,∴S△ABC =12×BC×OA=12×2×3=3,故选A.【答案】 A4.下列四个命题判断正确的是()A.若a∥b,a∥α,则b∥αB.若a∥α,bα,则a∥bC.若a∥α,则a平行于α内所有的直线D.若a∥α,a∥b,b⊆/α,则b∥α【解析】A中b可能在α内;B中a与b可能异面;C中a可能与α内的直线异面;D 正确.【答案】 D5.已知一个圆锥的展开图如图2所示,其中扇形的圆心角为120°,底面圆的半径为1,则该圆锥的体积为()图2A.22π3 B.2π3C.2π3 D.3π【解析】因为扇形弧长为2π,所以圆锥母线长为3,高为22,所求体积V=1 3×π×12×22=22π3.【答案】 A6.如图3所示,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()图3A.ACB.BDC.A1DD.A1D1【解析】CE平面ACC1A1,而BD⊥AC,BD⊥AA1,所以BD⊥平面ACC1A1,所以BD⊥CE.【答案】 B7.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是()A.12 B.32C.63 D.62【解析】连接BD1,则BD1∥EF,∠BD1A是异面直线AD1与EF所成的角.∵AB⊥AD1,∴cos∠BD1A=AD1BD1=63.【答案】 C8.如图4所示,则这个几何体的体积等于()图4 A.4 B.6C.8D.12【解析】由三视图得几何体为四棱锥,如图记作S-ABCD,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且ABCD 为直角梯形, ∠DAB =90°,∴V =13SA ×12(AB +CD )×AD =13×2×12×(2+4)×2=4,故选A. 【答案】 A9.如图5,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( )图5A.BD ∥平面CB 1D 1B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1所成的角为60°【解析】 由于BD ∥B 1D 1,易知BD ∥平面CB 1D 1;连接AC ,易证BD ⊥平面ACC 1,所以AC 1⊥BD ;同理可证AC 1⊥B 1C ,因BD ∥B 1D 1,所以AC 1⊥B 1D 1,所以AC 1⊥平面CB 1D 1;对于选项D ,∵BC ∥AD ,∴∠B 1CB 即为AD 与CB 1所成的角,此角为45°,故D 错.【答案】 D10.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图6所示.若该几何体的表面积为16+20π,则r =( )图6A.1B.2C.4D.8【解析】如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.【答案】 B11.如图7,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:图7①BD⊥AC;②△BCA是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④【解析】由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.故选B.【答案】 B12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36C.23 D.22【解析】由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC=2×13×34×63=26. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.【解析】 由面面平行的性质得AC ∥BD ,AS BS =CSSD ,解得SD =9. 【答案】 914.如图8所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是________.图8【解析】 连接B ′C ,则△AB ′C 为等边三角形,设AD =a , 则B ′D =DC =a ,B ′C =AC =2a , 所以∠B ′DC =90°. 【答案】 90°15.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球面上,则此球的体积为________.【解析】 球的直径等于正六棱柱的体对角线的长.设球的半径为R , 由已知,可得2R =⎝ ⎛⎭⎪⎫62×22+(6)2=23,R = 3.所以球的体积为43πR 3=4π3×(3)3=43π. 【答案】 43π16.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,则异面直线AB 与CD 所成的角等于________.【解析】 如图所示,分别取BC ,AC 的中点G 、F , 连接EG ,GF ,EF , 则EG ∥CD ,GF ∥AB ,∴∠EGF 就是AB 与CD 所成的角. 由题意EG =GF =EF =a2,∴△EFG 是等边三角形,∴∠EGF =60°. 【答案】 60°三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如图9所示,四棱锥V -ABCD 的底面为边长等于2 cm 的正方形,顶点V 与底面正方形中心的连线为棱锥的高,侧棱长VC =4 cm ,求这个正四棱锥的体积.图9【解】 连接AC ,BD 相交于点O ,连接VO , ∵AB =BC =2 cm , 在正方形ABCD 中, 求得CO = 2 cm , 又在直角三角形VOC 中, 求得VO =14 cm , ∴V V -ABCD =13S ABCD ·VO =13×4×14=4314(cm 3). 故这个正四棱锥的体积为4314cm 3.18.(本小题满分12分)如图10所示,P 是▱ABCD 所在平面外一点,E ,F 分别在P A ,BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.图10 【证明】连接AF延长交BC于G,连接PG.在▱ABCD中,易证△BFG∽△DF A,∴GFF A=BFFD=PEEA,∴EF∥PG.而EF⊆/平面PBC,PG平面PBC,∴EF∥平面PBC.19.(本小题满分12分)如图11,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.图11(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.【解】(1)交线围成的正方形EHGF,如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.故S四边形A1EHA=12×(4+10)×8=56,S四边形EB1BH=12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝⎛⎭⎪⎫79也正确.20.(本小题满分12分)如图12所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.图12【证明】由长方体的性质可知A1B1⊥平面BCC1B1,又BM平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M=B1C21+MC21=2,同理BM=BC2+CM2=2,又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M,因为BM平面ABM,所以平面ABM⊥平面A1B1M.21.(本小题满分12分)如图13,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.图13(1)求证:AE⊥平面PCD;(2)求二面角A-PD-C的正弦值.【解】(1)证明:在四棱锥P-ABCD中,因P A⊥底面ABCD,CD平面ABCD,故CD⊥P A.由条件CD⊥AC,P A∩AC=A,∴CD⊥平面P AC,又AE平面P AC,∴AE⊥CD.由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.又PC∩CD=C,∴AE⊥平面PCD.(2)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(1)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则AM⊥PD.因此∠AME是二面角A-PD-C的平面角.由已知,可得∠CAD=30°.22.(本小题满分12分)一个空间几何体的三视图及部分数据如图14所示.图14(1)请画出该几何体的直观图,并求它的体积;(2)证明:A1C⊥平面AB1C1;(3)若D是棱CC1的中点,在棱AB上取中点E,判断DE是否平行于平面AB1C1,并证明你的结论.【解】(1)几何体的直观图如图.四边形BB1C1C是矩形,BB1=CC1=3,BC=1,四边形AA1C1C是边长为3的正方形,且垂直于底面BB1C1C,∴其体积V=12×1×3×3=32.(2)证明:∵∠ACB=90°,∴BC⊥AC.∵三棱柱ABC-A1B1C1为直三棱柱,∴BC⊥CC1.∵AC∩CC1=C,∴BC⊥平面ACC1A1,∴BC⊥A1C.∵B1C1∥BC,∴B1C1⊥A1C.∵四边形ACC1A1为正方形,∴A1C⊥AC1.∵B1C1∩AC1=C1,∴A1C⊥平面AB1C1.(3)当E为棱AB的中点时,DE∥平面AB1C1.证明:如图,取BB1的中点F,连接EF,FD,DE,∵D,E,F分别为CC1,AB,BB1的中点,∴EF∥AB1.∵AB1平面AB1C1,EF⊆/平面AB1C1,∴EF∥平面AB1C1.∵FD∥B1C1,∴FD∥平面AB1C1,又EF∩FD=F,∴平面DEF∥平面AB1C1.而DE平面DEF,∴DE∥平面AB1C1.章末综合测评(二)解析几何初步(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.空间两点A(3,-2,5),B(6,0,-1)之间的距离为()A.6B.7C.8D.9【解析】|AB|=(3-6)2+(-2-0)2+(5+1)2=7,故选B.【答案】 B2.过两点A(-2,m),B(m,4)的直线倾斜角是45°,则m的值是()A.-1B.3C.1D.-3【解析】由k AB=m-4-2-m=tan 45°=1,解得m=1.【答案】 C3.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( ) A.x -2y +7=0 B.2x +y -1=0 C.x -2y -5=0D.2x +y -5=0【解析】 ∵直线x -2y +3=0的斜率为12,∴所求直线的方程为y -3=12(x +1),即x -2y +7=0.【答案】 A4.已知直线l 1:ax -y -2=0和直线l 2:(a +2)x -y +1=0互相垂直,则实数a 的值为( ) A.-1 B.0 C.1D.2【解析】 l 1的斜率为a ,l 2的斜率为a +2, ∵l 1⊥l 2,∴a (a +2)=-1, ∴a 2+2a +1=0即a =-1. 【答案】 A5.如图1,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为( )图1A.(2,2,1)B.⎝ ⎛⎭⎪⎫2,2,23 C.⎝ ⎛⎭⎪⎫2,2,13 D.⎝ ⎛⎭⎪⎫2,2,43 【解析】 ∵|EB |=2|EB 1|,∴|EB |=23|BB 1|=43. 又E 在B 1B 上,∴E 的坐标为⎝ ⎛⎭⎪⎫2,2,43.【答案】 D6.若以点C (-1,2)为圆心的圆与直线x -2y +3=0没有公共点,则圆的半径r 的取值范围为( )A.⎝⎛⎭⎪⎫0,255 B.⎝⎛⎭⎪⎫0,355C.(0,5)D.(0,25)【解析】 设圆心到直线的距离为d ,则d =|-1-4+3|12+(-2)2=255.若直线与圆没有公共点,则0<r <255,故选A.【答案】 A7.已知直线l 1的方程为x +Ay +C =0,直线l 2的方程为2x -3y +4=0,若l 1,l 2的交点在x 轴上,则C 的值为( )A.2B.-2C.±2D.与A 有关【解析】 在2x -3y +4=0中,令y =0,得x =-2,即直线2x -3y +4=0与x 轴的交点为(-2,0).∵点(-2,0)在直线x +Ay +C =0上,∴-2+A ×0+C =0,∴C =2.【答案】 A8.若a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( ) A.⎝ ⎛⎭⎪⎫-12,-16 B.⎝ ⎛⎭⎪⎫12,-16 C.⎝ ⎛⎭⎪⎫12,16 D.⎝ ⎛⎭⎪⎫-12,16 【解析】 令a =-1,b =1或a =1,b =0,得直线方程分别为-x +3y +1=0,x +3y =0,其交点为⎝ ⎛⎭⎪⎫12,-16,此即为直线所过的定点.故选B. 【答案】 B9.已知平面内两点A (1,2),B (3,1)到直线l 的距离分别是2, 5-2,则满足条件的直线l 的条数为( )A.1B.2C.3D.4【解析】 由题知满足题意的直线l 在线段AB 两侧各有1条,又因为|AB |= 5,所以还有1条为过线段AB 上的一点且与AB 垂直的直线,故共3条.【答案】 C10.若圆心在x 轴上,半径为5的圆O 位于y 轴左侧,且与直线x +2y =0相切,则圆O 的方程是( )A.(x -5)2+y 2=5B.(x +5)2+y 2=5C.(x-5)2+y2=5D.(x+5)2+y2=5【解析】设圆心O(a,0),(a<0),则5=|a|1+22,∴|a|=5,∴a=-5,∴圆O的方程为(x+5)2+y2=5.【答案】 D11.直线y=kx被圆x2+y2=2截得的弦长为()A.2 2B.2C. 2D.与k的取值有关【解析】由于圆x2+y2=2的圆心在直线y=kx上,所以截得弦为圆x2+y2=2的直径,又其半径为2,故截得的弦长为2 2.【答案】 A12.已知点P(x,y)是直线y=22x-4上一动点,PM与PN是圆C:x2+(y-1)2=1的两条切线,M,N为切点,则四边形PMCN的最小面积为()A.43 B.23C.53 D.56【解析】由题意知,圆C的圆心为C(0,1),半径为1,故|PC|2=|PN|2+1.又S四边形PMCN=2×12×|PN|×1=|PN|,故当|PN|最小时,四边形PMCN的面积最小,此时|PC|最小,又|PC|的最小值即为点C到直线的距离d=5(22)2+1=53,此时|PN|=43,故四边形PMCN面积的最小值为43,故选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.两圆x2+y2=1,(x+4)2+(y-a)2=25相切,则实数a=________.【解析】=±25;当两圆内切时,由a2+16=4,得a=0.【答案】 0,±2 514.经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程为______.【解析】 当直线过原点时,满足要求,此时直线方程为x -y =0;当直线不过原点时,设直线方程为x a +ya =1,由于点(1,1)在直线上,所以a =2,此时直线方程为x +y -2=0.【答案】 x -y =0或x +y -2=015.已知点M (a ,b )在直线3x +4y =15上,则a 2+b 2的最小值为________. 【解析】 a 2+b 2的最小值为原点到直线3x +4y =15的距离d =|0+0-15|32+42=3. 【答案】 316.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.【解析】 圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2, 所以圆心C (0,a ),半径r =a 2+2.|AB |=23,点C 到直线y =x +2a 即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2, 所以r =2,所以圆C 的面积为π×22=4π. 【答案】 4π三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知直线l 平行于直线3x +4y -7=0,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程.【解】 设l :3x +4y +m =0,当y =0时,x =-m3; 当x =0时,y =-m4.∵直线l 与两坐标轴围成的三角形面积为24, ∴12·⎪⎪⎪⎪⎪⎪-m 3·⎪⎪⎪⎪⎪⎪-m 4=24, ∴m =±24,∴直线l 的方程为3x +4y +24=0或3x +4y -24=0.18.(本小题满分12分)如图2所示,直三棱柱ABC -A 1B 1C 1中,|C 1C |=|CB |=|CA |=2,AC ⊥CB ,D ,E 分别是棱AB ,B 1C 1的中点,F 是AC 的中点,求DE ,EF 的长度.图2【解】以点C为坐标原点,CA、CB、CC1所在直线为x轴、y轴、z 轴,建立如图所示的空间直角坐标系.∵|C1C|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由中点坐标公式可得,D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=(1-0)2+(1-1)2+(0-2)2=5,|EF|=(0-1)2+(1-0)2+(2-0)2= 6.19.(本小题满分12分)菱形ABCD中,A(-4,7),C(6,-5),BC边所在直线过点P(8,-1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.【解】(1)k BC=2,∵AD∥BC,∴k AD=2,∴直线AD方程为y-7=2(x+4),即2x-y+15=0.(2)k AC=-65,∵菱形对角线互相垂直,∴BD⊥AC,∴k BD=56,而AC中点(1,1),也是BD的中点,∴直线BD的方程为y-1=56(x-1),即5x-6y+1=0.20.(本小题满分12分)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C 于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程.【解】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线l过点P、C,所以直线l 的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-12(x-2),即x +2y -6=0.21.(本小题满分12分)自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.【解】 如图所示,已知圆C :x 2+y 2-4x -4y +7=0关于x 轴对称的圆为C 1:(x -2)2+(y +2)2=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切.设l 的方程为y-3=k (x +3),即kx -y +3+3k =0. 则|5k +5|1+k 2=1,即12k 2+25k +12=0,∴k 1=-43,k 2=-34. 则l 的方程为4x +3y +3=0或3x +4y -3=0.22.(本小题满分12分)已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0相交于P ,Q 两点,O 为原点,若OP ⊥OQ ,求实数m 的值.【解】 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由OP ⊥OQ 可得x 1x 2+y 1y 2=0, 由⎩⎨⎧x 2+y 2+x -6y +m =0,x +2y -3=0, 可得5y 2-20y +12+m =0, ①所以y 1y 2=12+m5,y 1+y 2=4.又x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2 =9-24+45(12+m ),所以x 1x 2+y 1y 2=9-24+45(12+m )+12+m 5=0, 解得m =3.将m =3代入方程①,可得Δ=202-4×5×15=100>0, 可知m =3满足题意,即实数m 的值为3.模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x 3-y3=1的倾斜角的大小为( )A.30°B.60°C.120°D.150°【解析】 由x 3-y 3=1,得该直线的斜率k =33,故倾斜角为30°.【答案】 A2.在空间直角坐标系中,点B 是A (1,2,3)在yOz 坐标平面内的射影,O 为坐标原点,则|OB |等于( )A.14B.13C.2 3D.11【解析】 点A (1,2,3)在yOz 坐标平面内的投影为B (0,2,3), ∴|OB |=02+22+32=13. 【答案】 B3.点(a ,b )关于直线x +y +1=0的对称点是( ) A.(-a -1,-b -1) B.(-b -1,-a -1) C.(-a ,-b )D.(-b ,-a )【解析】 设对称点为(x ′,y ′), 则⎩⎪⎨⎪⎧y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x ′=-b -1,y ′=-a -1. 【答案】 B4.已知M ,N 分别是正方体AC 1的棱A 1B 1,A 1D 1的中点,如图1是过M ,N ,A 和D ,N ,C 1的两个截面截去两个角后所得的几何体,则该几何体的主视图为( )图1【解析】由主视图的性质知,几何体的正投影为一正方形,正面有可见的一棱和背面有不可见的一棱,故选B.【答案】 B5.若{(x,y)|ax+2y-1=0}∩{(x,y)|x+(a-1)y+1=0}=∅,则a等于()A.32 B.2C.-1D.2或-1【解析】依题意,两直线平行.由a(a-1)-2×1=0,得a2-a-2=0,a=2或-1.又当a=-1时,两直线重合,故选B.【答案】 B6.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形中可能出现的是()A.l∥m,l⊥αB.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α【解析】如图l可以垂直m,且l平行α.【答案】 C7.已知A,B,C,D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC()A.垂直B.平行C.相交D.位置关系不确定【解析】过点A作AO⊥平面BCD,垂足为O,连接BO,CO并延长分别交CD,BD于F,E两点,连接DO.因为AB⊥CD,AO⊥CD,所以CD⊥平面AOB,所以BO⊥CD,同理DO ⊥BC ,所以O 为△BCD 的垂心,所以CO ⊥BD , 所以BD ⊥AC .故选A. 【答案】 A8.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( ) A.4 B.433 C. 6D.2【解析】 由正六棱锥可知,底面是由六个正三角形组成的,∴底面积S =6×12×2×3=63,∴体积V =13Sh =12, ∴h =36S =3663=23,在直角三角形SOB 中,侧棱长为SB =OB 2+h 2=4+12=4. 故选A. 【答案】 A9.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.(0°,30°]B.(0°,60°]C.[0°,30°]D.[0°,60°]【解析】 如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,|OA |=1, 则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是[0°,60°].选D. 【答案】 D10.若M (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A.x -y -3=0 B.2x +y -3=0 C.x +y -1=0D.2x -y -5=0【解析】 设圆心为C ,其坐标为(1,0).则AB ⊥CM ,k CM =-1, ∴k AB =1,∴直线AB 的方程为y -(-1)=1×(x -2),即x -y -3=0,故选A. 【答案】 A11.过点P (-3,4)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A.3x +4y -7=0 B.3x -4y +25=0 C.3x -4y +4=0D.3x -4y =0【解析】 先求出以PO (O 为原点)为直径的圆C 的方程为⎝ ⎛⎭⎪⎫x +322+(y -2)2=⎝ ⎛⎭⎪⎫522,即x 2+y 2+3x -4y =0,再将两圆方程相减得3x -4y +4=0,因为这条直线经过两圆的交点即切点A ,B ,所以3x -4y +4=0就是直线AB 的方程,故选C.【答案】 C12.若直线y =kx -1与曲线y =-1-(x -2)2有公共点,则k 的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,43 B.⎣⎢⎡⎦⎥⎤13,43 C.⎣⎢⎡⎦⎥⎤0,12 D.[0,1]【解析】 曲线y =-1-(x -2)2可化为(x -2)2+y 2=1它表示以(2,0)为圆心,1为半径的x 轴下方的半圆,直线y =kx -1过定点(0,-1),要使直线与曲线有公共点(如图),易知0≤k ≤1.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.【解析】 设正方体的棱长为x ,其外接球的半径为R ,则由球的体积为9π2,得43πR 3=9π2,解得R =32.由2R =3x ,得x =2R3= 3.【答案】314.在空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,对角线AC =BD =2,且AC ⊥BD ,则四边形EFGH 的面积为______.【解析】 如图,由条件,易判断EH ═∥FG ═∥12BD ,所以EH =FG =1,同样有EF ═∥GH ═∥12AC ,EF =GH =1,又BD ⊥AC ,所以EF ⊥EH ,所以四边形EFGH 是边长为1的正方形,其面积S =12=1.【答案】 115.已知圆O :x 2+y 2=5和点A (1,2),则过点A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为______.【解析】 由题意知,点A 在圆上,切线斜率为-1k OA=-121=-12,用点斜式可直接求出切线方程为y -2=-12(x -1),即x +2y -5=0,从而求出在两坐标轴上的截距分别是5和52, 所以所求面积为12×52×5=254. 【答案】 25416.如图2,三棱柱ABC -A 1B 1C 1中,侧棱AA 1垂直于底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 的中点,则下列叙述正确的是________.图2①CC 1与B 1E 是异面直线; ②AC ⊥平面ABB 1A 1;③AE 与B 1C 1是异面直线,且AE ⊥B 1C 1; ④A 1C 1∥平面AB 1E .【解析】 ①中,直线CC 1与B 1E 都在平面BCC 1B 1中,不是异面直线;②中,平面ABC ⊥平面ABB 1A 1,而AC 与AB 不垂直,则AC 与平面ABB 1A 1不垂直; ③中,AE 与B 1C 1不平行也不相交,是异面直线,又由已知得平面ABC ⊥平面BCC 1B 1,由△ABC 为正三角形,且E 为BC 的中点知AE ⊥BC ,所以AE ⊥平面BCC 1B 1,则AE ⊥B 1C 1;④中,A 1C 1与平面AB 1E 相交,故错误. 【答案】 ③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)将圆心角为120°,面积为3π的扇形作为圆锥的侧面,求圆锥的表面积和体积.【解】 设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则 120360πl 2=3π,l =3;2π3×3=2πr ,r =1; S 表面积=S 侧面+S 底面=πrl +πr 2=4π, V =13Sh =13×π×12×22=223π.18.(本小题满分12分)已知直线l 过两直线3x -y -10=0和x +y -2=0的交点,且直线l 与点A (1,3)和点B (5,2)的距离相等,求直线l 的方程.【解】 由⎩⎨⎧3x -y -10=0,x +y -2=0,得交点为(3,-1),当直线l 斜率存在时,设直线l 的方程为y +1=k (x -3), 则|-2k -4|k 2+1=|2k -3|k 2+1,解得k =-14,所以直线l 的方程为y +1=-14(x -3), 即x +4y +1=0;又当直线l 的斜率不存在时,其方程为x =3,也满足题意. 故x +4y +1=0或x =3为所求方程.19.(本小题满分12分)如图3,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.图3求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .【证明】 (1)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC . 又AD 平面ABC ,所以CC 1⊥AD .又因为AD ⊥DE ,CC 1,DE 平面BCC 1B 1,CC 1∩DE =E ,所以AD ⊥平面BCC 1B 1.又AD平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F平面A1B1C1,所以CC1⊥A1F.又因为CC1、B1C1平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD平面ADE,A1F⊆/平面ADE,所以A1F∥平面ADE.20.(本小题满分12分)已知点A(-3,0),B(3,0),动点P满足|P A|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【解】(1)设点P的坐标为(x,y),则(x+3)2+y2=2(x-3)2+y2,化简可得(x-5)2+y2=16,此即为所求.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图,则直线l是此圆的切线,连接CQ,则|QM|=|CQ|2-|CM|2=|CQ|2-16.当CQ⊥l1时,|CQ|取最小值,|CQ|=|5+3|2=42,∴|QM|最小=4.21.(本小题满分12分)如图4,多面体EF -ABCD中,已知ABCD是边长为4的正方形,EF∥AB,平面FBC⊥平面ABCD,EF=2.图4(1)若M,N分别是AB,CD的中点,求证:平面MNE∥平面BCF;(2)若△BCF中,BC边上的高FH=3,求多面体EF -ABCD的体积V.【解】 (1)若M ,N 分别是AB ,CD 的中点, 则MN ∥BC ,MN ⊆/平面BCF ,BC 平面BCF , ∴MN ∥平面BCF .又EF ∥AB ,EF =2=12AB , ∴EF =MB ,∴四边形BMEF 是平行四边形,∴ME ∥BF , 又∵ME ⊆/平面BCF ,BF 平面BCF , ∴ME ∥平面BCF ,又ME ∩MN =M ,由面面平行的判定定理知,平面MNE ∥平面BCF . (2)∵平面FBC ⊥平面ABCD ,FH ⊥BC ,AB ⊥BC , ∴FH ⊥平面ABCD ,AB ⊥平面BCF ,∴FH 是四棱锥E -AMND 的高,MB 是三棱柱BCF -MNE 的高, ∴多面体EF -ABCD 的体积 V =V E -AMND +V BCF -MNE =13S AMND ·FH +S △BCF ·MB =13×4×2×3+12×4×3×2=20.22.(本小题满分12分)在一个居民小区内设计一个边长为5 m 的菱形喷水池,规划者要求,菱形的一条对角线长不大于6 m ,另一条长不小于6 m ,试问该菱形喷水池的两条对角线的长度之和的最大值为多少?【解】 设菱形喷水池的两条对角线的长度分别为x ,y ,则⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 22=52,即x 2+y 2=100且x ≥6,y ≤6.如图作圆x 2+y 2=100,又作直线x =6,y =6,且y =6交圆周上一点P (8,6),则满足条件的点(x ,y )应在阴影部分及AP ︵上变动.令b =x +y ,则b 是直线y =-x +b 在y 轴上的截距,当直线y =-x +b 过点P (8,6)时,b =x +y 取得最大值8+6=14,即两条对角线的长度之和的最大值为14 m.。
2020-2021学年北师大版高中数学必修二模块综合测评(一)及答案解析
最新(新课标)北师大版高中数学必修二模块综合测评(一)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( ) A .x -2y +7=0 B .2x +y -1=0 C .x -2y -5=0D .2x +y -5=0解析:设所求直线方程为-2x -y +m =0,则-2×(-1)-3+m =0,所以m =1,即-2x -y +1=0,故直线方程为2x +y -1=0.答案:B2.已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3B .3πC.10π3D .6π解析:显然由三视图我们易知原几何体为一个圆柱体的一部分,并且由正视图知是一个34的圆柱体,底面圆的半径为1,圆柱体的高为4,则V=34×π×12×4=3π. 答案:B3.长方体一个顶点上的三条棱长分别为3、4、5,若它的八个顶点都在同一个球面上,则这个球的表面积是( )A .202πB .252πC .50πD .200π解析:设长方体的体对角线长为l ,球半径为R ,则⎩⎪⎨⎪⎧l =2R ,l 2=32+42+52,所以R =522,所以S 球=4πR 2=50π.答案:C4.在空间直角坐标系中,O 为坐标原点,设A ⎝ ⎛⎭⎪⎪⎫12,12,12,B ⎝ ⎛⎭⎪⎪⎫12,12,0,C ⎝ ⎛⎭⎪⎪⎫13,13,13,则( ) A .OA ⊥AB B .AB ⊥AC C .AC ⊥BCD .OB ⊥OC解析:|AB|=12,|AC|=36,|BC|=66,因为|AC|2+|BC|2=|AB|2,所以AC⊥BC.答案:C5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n解析:A中还可能m,n相交或异面,所以A不正确;B、C中还可能α,β相交,所以B、C不正确.很明显D正确.答案:D6.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.x-y-3=0 B.2x+y-3=0C.x+y-1=0 D.2x-y-5=0解析:设圆心为C(1,0),则AB⊥CP,∵k CP=-1,∴k AB=1,∴y+1=x -2,即x-y-3=0.答案:A7.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( ) A.30°B.45°C .60°D .90°解析:过A 作AE ⊥BC 于点E ,则易知AE ⊥面BB 1C 1C ,则∠ADE 即为所求,又tan ∠ADE =AEDE=3,故∠ADE =60°.答案:C8.过点M(-2,4)作圆C :(x -2)2+(y -1)2=25的切线l ,且直线l 1:ax +3y +2a =0与l 平行,则l 1与l 间的距离是( )A.85B.25C.285D.125解析:因为点M(-2,4)在圆C 上,所以切线l 的方程为(-2-2)(x -2)+(4-1)(y -1)=25,即4x -3y +20=0.因为直线l 与直线l 1平行,所以-a 3=43,即a =-4,所以直线l 1的方程是-4x +3y -8=0,即4x -3y +8=0.所以直线l 1与直线l 间的距离为|20-8|42+(-3)2=125. 答案:D9.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,半径为5的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:令a =0,a =1,得方程组⎩⎪⎨⎪⎧ -x -y +1=0,-y +2=0.解得⎩⎪⎨⎪⎧x =-1,y =2,所以C(-1,2).则圆C 的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.答案:C10.设P(x ,y)是圆x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最小值为( )A.26+2B.26-2 C .5D .6解析:如图,设A(1,1),(x -1)2+(y -1)2=|PA|,则|PA|的最小值为|AC|-r =26-2.答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.如图所示,Rt △A ′B ′C ′为水平放置的△ABC 的直观图,其中A′C ′⊥B ′C ′,B ′O ′=O ′C ′=1,则△ABC 的面积为__________.解析:由直观图画法规则将△A ′B ′C ′还原为△ABC ,如图所示,则有BO =OC =1,AO =2 2.∴S △ABC =12BC ·AO=12×2×2 2 =2 2.答案:2 212.经过点P(1,2)的直线,且使A(2,3),B(0,-5)到它的距离相等的直线方程为__________.解析:x =1显然符合条件;当A(2,3),B(0,-5)在所求直线同侧时,所求直线与AB 平行,∵k AB =4,∴y -2=4(x -1),即4x -y -2=0. 答案:4x -y -2=0或x =113.与x 轴相切并和圆x 2+y 2=1外切的圆的圆心的轨迹方程是__________.解析:设M(x ,y)为所求轨迹上任一点,则由题意知1+|y|=x 2+y 2,化简得x 2=2|y|+1.答案:x 2=2|y|+114.圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0与直线l 2:x +3y =0都对称,则D =__________,E =__________.解析:由题设知直线l 1,l 2的交点为已知圆的圆心.由⎩⎪⎨⎪⎧ x -y +4=0,x +3y =0,得⎩⎪⎨⎪⎧x =-3,y =1,所以-D 2=-3,D =6,-E2=1,E =-2.答案:6;-2三、解答题:本大题共4小题,满分50分.15.(12分)直线l 经过点P(2,-5),且到点A(3,-2)和B(-1,6)的距离之比为1∶2,求直线l 的方程.解:∵直线l 过P(2,-5),∴可设直线l 的方程为y +5=k ·(x -2), 即kx -y -2k -5=0.(2分) ∴A(3,-2)到直线l 的距离为 d 1=|k ·3-(-2)-2k -5|k 2+1=|k -3|k 2+1. B(-1,6)到直线l 的距离为d 2=|k ·(-1)-6-2k -5|k 2+1=|3k +11|k 2+1. (6分)∵d 1∶d 2=1∶2,∴|k -3||3k +11|=12.化简得k 2+18k +17=0.(10分) 解得k 1=-1,k 2=-17.∴所求直线方程为x +y +3=0或17x +y -29=0.(12分)16.(12分)如图所示,已知四棱锥P-ABCD的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,PC=a,E为PA的中点.(1)求证:平面EBD⊥平面ABCD;(2)求点E到平面PBC的距离.(1)证明:如图所示,连接AC,设AC∩BD=O,连接OE,在△PAC中,E为PA的中点,O为AC的中点,∴OE∥PC.(2分)又PC⊥平面ABCD,∴OE⊥平面ABCD.又OE⊂平面EBD,∴平面EBD⊥平面ABCD.(4分)(2)解:∵OE∥PC,PC⊂面PBC,而OE⊄面PBC,∴OE∥面PBC,∴E到平面PBC的距离等于O到平面PBC的距离.过O在底面ABCD内作OG⊥BC于G,又平面PBC⊥面ABCD,且面PBC ∩面ABCD=BC,∴OG ⊥面PBC ,即线段OG 的长度为点O 到平面PBC 的距离.(8分) 在菱形ABCD 中,∵∠ABC =120°,∴∠BCD =60°,∴△BCD 为正三角形,且BC =a ,由余弦定理可得AC =3a , ∴OB =a 2,OC =32a.(10分)在Rt △BOC 中,OG ·BC =OB ·OC , 即OG ·a =a 2·32a ,∴OG =34a.即E 到平面PBC 的距离为34a.(12分)17.(12分)已知圆C :(x -1)2+y 2=9内有一点P(2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,写出直线l 的方程; (3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x -1)2+y 2=9的圆心为C(1,0),因直线l 过点P 、C ,所以直线l 的斜率为2.故直线l 的方程为y =2(x -1),即2x -y -2=0.(4分)(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y -2=-12(x -2),即x +2y -6=0.(8分)(3)当直线l 的倾斜角为45°时,其斜率为1,直线l 的方程为y -2=x -2,即x -y =0,圆心C 到直线l 的距离为12,圆的半径为3,弦AB 的长为232-⎝ ⎛⎭⎪⎪⎫122=34.(12分)18.(14分)如图,在斜三棱柱ABC -A 1B 1C 1中,点O 、E 分别是A 1C 1、AA 1的中点,AO ⊥平面A 1B 1C 1.已知∠BCA =90°,AA 1=AC =BC =2.(1)证明:OE ∥平面AB 1C 1;(2)求异面直线AB 1与A 1C 所成的角; (3)求A 1C 1与平面AA 1B 1所成角的正弦值. (1)证明:∵点O 、E 分别是A 1C 1、AA 1的中点, ∴OE ∥AC 1,又∵EO ⊄平面AB 1C 1,AC 1⊂平面AB 1C 1, ∴OE ∥平面AB 1C 1.(4分)(2)解:∵AO ⊥平面A 1B 1C 1,∴AO ⊥B 1C 1, 又∵A 1C 1⊥B 1C 1,且A 1C 1∩AO =O ,∴B 1C 1⊥平面A 1C 1CA , ∴A 1C ⊥B 1C 1. 又∵AA 1=AC ,∴四边形A 1C 1CA 为菱形, ∴A 1C ⊥AC 1,且B 1C 1∩AC 1=C 1, ∴A 1C ⊥平面AB 1C 1,∴AB 1⊥A 1C ,即异面直线AB 1与A 1C 所成的角为90°.(9分) (3)解:设点C 1到平面AA 1B 1的距离为d , ∵VA -A 1B 1C 1=VC 1-AA 1B 1,即13·12·A 1C 1·B 1C 1·AO =13·S △AA 1B 1·d. 又∵在△AA 1B 1中,A 1B 1=AB 1=22, ∴S △AA 1B 1=7. ∴d =2217,∴A 1C 1与平面AA 1B 1所成角的正弦值为217.(14分)。
高中数学北师大版(2019)必修第二册第一章单元测试卷及答案
北师大版(2019)数学必修第二册第一章单元测试题一、单选题 1.11cos 3π=( )A B .C .12-D .122.已知角α的终边经过点()3,4-,则1sin cos αα+= A .15-B .3715C .3720D .13153.点()sin 2019,cos 2019A 位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin 2y x =的图象( )A .向左平移6π个单位 B .向右平移12π个单位 C .向左平移12π个单位D .向右平移12π个单位 5.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .6.已知51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫- ⎪⎝⎭等于( )AB .13C .13-D. 7.已知tan 3θ=,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于A .32-B .32C .0D .238.设322sin,cos ,tan 555a b c πππ===,则 A .a b c << B .a c b <<C .b c a <<D .b a c <<二、多选题9.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将该函数的图象向左平移6π个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是( ) A .()102f =B .函数()y f x =的图象关于直线6x π=对称C .函数()y f x =的图象关于点5,012π⎛⎫⎪⎝⎭对称D .函数()y f x =的图象关于直线12x π=对称 10.已知函数()1212()tan ,,,22f x x x x x x ππ⎛⎫=∈-≠ ⎪⎝⎭,则下列结论中正确的是A .()()11f x f x π+=B .()()11f x f x -=C .()()12120f x f x x x ->-D .()()()121212022f x f x x x f x x ++⎛⎫>> ⎪⎝⎭11.关于函数()cos cos f x x x =+有下述四个结论中正确的是( ) A .()f x 是偶函数 B .()f x 在区间()0,π上递减 C .()f x 为周期函数D .()f x 的值域为[]1,1-12.已知函数()sin()f x A x ωϕ=+(其中0,0,0A ωϕπ>><<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则下列判断正确的是( ) A .函数()sin()f x A x ωϕ=+中,2T πω==B .直线2x π=是函数()f x 图象的一条对称轴C .点,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心D .函数1y =与35()1212y f x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为7π三、填空题13.cos 6y x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为________.14.已知一扇形的弧所对的圆心角为54°,半径r =20cm ,则扇形的周长为___cm. 15.已知函数f (x )=sin (3x -4π),x∈[2π,π],则函数f (x )的单调递增区间为__________.16.tan(2)3x π+≥..为_____________________________________四、解答题17.设函数()sin(),0,0,2f x A x x πωϕωϕ⎛⎫⎛⎫=+∈>∈ ⎪ ⎪⎝⎭⎝⎭R 的部分图象如图所示,求()f x 的表达式.18.求下列函数的定义域:(1)y =(2)lg(1)y x =.19.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,π<ϕ)的一段图象如图所示.(1)求函数()f x 的单调递增区间; (2)若3ππ,84x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.20.方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.21.已知函数()()2cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.(1)求()f x 的单调增区间和对称轴;(2)若,63x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的最大值和最小值.22.已知函数2()sin sin 1f x x a x =-++ (1)当1a =时,求函数()f x 的值域;(2)若当0a >时,函数()f x 的最大值是3,求实数a 的值;参考答案 1.D 【分析】利用诱导公式化简可直接求得结果. 【详解】 111coscos 4cos 3332ππππ⎛⎫=-== ⎪⎝⎭. 故选:D. 2.D 【详解】因为角α的终边经过点()3,4-,所以5r =,则43sin ,cos 55αα=-=,即113sin cos 15αα+=.故选D . 3.C【详解】2019=5360+2192019⨯∴,为第三象限角,则sin 20190,cos 20190<<,∴点()sin 2019,cos 2019A 在位于第三象限角,故选C.4.D 【分析】根据函数sin()y A x ωϕ=+的图象变换规律,可得结论. 【详解】解:sin(2)sin 2()612y x x ππ=-=-,故将函数sin 2y x =的图象向右平移12π个单位,可得sin(2)6y x π=-的图象, 故选:D . 5.A 【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 6.D 【分析】先利用诱导公式51cos 123πα⎛⎫+= ⎪⎝⎭化简得,1sin 123πα⎛⎫-= ⎪⎝⎭,然后利用同角三角函数的关系求cos 12πα⎛⎫- ⎪⎝⎭的值. 【详解】依题意551cos sin sin 12212123ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 由于2ππα-<<-,所以713121212πππα<-<,故cos 12πα⎛⎫-= ⎪⎝⎭故选:D. 【点睛】此题考查诱导公式和同角三角函数间的关系,属于基础题. 7.B 【详解】 因为tanθ=3,∴()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭=3cos 333.cos sin 1tan 132θθθθ---===--- 故选B . 8.D 【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可. 【详解】 sin35π=cos (2π﹣35π)=cos (﹣10π)=cos 10π,而函数y =cosx 在(0,π)上为减函数,则1>cos 10π>cos 25π>0,即0<b <a <1,tan 25π>tan 4π=1,即b <a <c , 故选D . 【点睛】本题主要考查了三角函数值的大小比较,利用三角函数的诱导公式,结合三角函数的单调性是解决本题的关键,属于基础题.9.ABC 【分析】利用正弦函数的周期性以及图像的对称性,求出函数的解析式,再根据函数()()sin f x x ωϕ=+的图像变化规律、正弦函数的图像的对称性,得出结论. 【详解】函数()()sin f x x ωϕ=+的最小正周期为2ππω=,2ω∴=,故()()sin 2f x x ϕ=+,将该函数的图象向左平移6π个单位后,得到()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭的图像, 根据得到的图象对应的函数为偶函数,可得32ππϕ+=,6πϕ∴=,故()sin 26f x x π⎛⎫+ ⎝=⎪⎭,对于A ,()10sin 62f π==,故A 正确;对于B ,当 6x π=时,则sin 1636f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对于C ,55sin 01266f πππ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,故C 正确;对于D ,sin sin 12663f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,故D 错误;故选:ABC 【点睛】本题考查了三角函数的平移变换以及三角函数的性质,解题的关键是求出函数的解析式,属于基础题. 10.AC 【分析】根据正切函数的周期性可得A 正确,根据奇偶性判断B 错误,根据单调性判断C 正确,结合函数图象即可判断D 错误. 【详解】()tan f x x =的周期为π,故A 正确;函数()tan f x x =为奇函数,故B 不正确;C 表明函数为增函数,而()tan f x x =为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故C 正确;由函数()tan f x x =的图像可知,函数在区间,02π⎛⎫- ⎪⎝⎭上有()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,在区间0,2π⎛⎫ ⎪⎝⎭上有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,故D 不正确.故选:AC 【点睛】此题考查正切函数图象性质的辨析,涉及单调性,奇偶性周期性,结合图象理解凹凸性. 11.AC 【分析】根据奇偶性的定义判断出()f x 为偶函数,A 正确;通过,2x ππ⎛⎫∈ ⎪⎝⎭时()f x 解析式,可知不满足单调递减定义,B 错误;通过分类讨论的方式去掉解析式的绝对值,得到分段函数的性质,可确定函数最小正周期,知C 正确;根据余弦函数值域可确定()f x 值域,知D 错误. 【详解】()()()()cos cos cos cos f x x x x x f x -=-+-=+=()f x ∴为偶函数,A 正确;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()cos cos 0f x x x =-=,不满足单调递减定义,B 错误;当2,222x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈时,()2cos f x x =;当32,222x k k ππππ⎡⎤∈++⎢⎥⎣⎦,k Z ∈时,()0f x = ()f x ∴是以2π为最小正周期的周期函数,C 正确;当2,222x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈时,()[]2,2f x ∈-,故()f x 值域为[]22-,,D 错误. 故选:AC 【点睛】本题考查与余弦型函数有关的函数的性质及值域的相关命题的辨析,涉及到函数奇偶性、单调性、周期性和值域的求解;关键是能够通过分类讨论的方式确定函数在不同区间内的解析式,进而研究函数性质. 12.ACD 【分析】首先根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】解:函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0)ϕπ<<的图象关于点5(,0)12M π成中心对称,且与点M 相邻的一个最低点为2(,3)3N π-,则2543124T πππ=-=, T π∴=,进一步解得22πωπ==,3A =,故A 正确.由于函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0)ϕπ<<的图象关于点5(,0)12M π成中心对称,52()12k k Z πϕπ∴⨯+=∈, 解得56k ϕπ=π-, 由于0ϕπ<<,∴当1k =时,6π=ϕ. ()3sin(2)6f x x π∴=+.对于B :当2x π=时,3()3sin262f ππ=-=-,故B 不正确; 对于C :由26x k ππ+=,k Z ∈,解得212k x ππ=-,k Z ∈, 当0k =时,对称中心为:,012π⎛⎫- ⎪⎝⎭,故C 正确;对于D :由于:351212xππ-, 则:0266x ππ+,∴函数()f x 的图象与1y =有6个交点.根据函数的交点设横坐标从左到右分别为1x 、2x 、3x 、4x 、5x 、6x ,由2262x k πππ+=+,k Z ∈,解得6x k ππ=+,k Z ∈,所以12263x x ππ+=⨯=,432263x x ππππ⎛⎫+=⨯+=+ ⎪⎝⎭,5622463ππx x ππ⎛⎫+=⨯+=+ ⎪⎝⎭,所以156423247333x x x x x x ππππππ+++++=++++=所以函数的图象的所有交点的横坐标之和为7π,故D 正确.∴正确的判断是ACD .故选:ACD . 13.1,12⎡⎤⎢⎥⎣⎦【分析】 由02xπ,可得663x πππ--,结合余弦函数的性质即可求解.【详解】 解:02xπ, ∴663x πππ--,∴1cos()126x π- 即112y ,即1,12y ⎡⎤∈⎢⎥⎣⎦, 故答案为:1,12⎡⎤⎢⎥⎣⎦.14.6π+40 【分析】根据角度制与弧度制的互化,可得圆心角310πα=,再由扇形的弧长公式,可得弧长l ,即可求解扇形的周长,得到答案. 【详解】由题意,根据角度制与弧度制的互化,可得圆心角35410πα==, ∴由扇形的弧长公式,可得弧长6l r απ=⋅=, ∴扇形的周长为(640)cm π+. 【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题. 15.711,1212ππ⎡⎤⎢⎥⎣⎦【分析】将π34x -代入三角函数的递增区间,求得的x 的范围,然后对k 进行赋值,从而求得在π,π2⎡⎤⎢⎥⎣⎦范围内的增区间. 【详解】 令232242k x k πππππ-+≤-≤+ ()Z k ∈,解得323244k x k ππππ-+≤≤+ ()Z k ∈, 故2212343k k x ππππ-+≤≤+ ()Z k ∈,令1k =,解得7111212x ππ≤≤, 故函数的单调递增区间为711,1212ππ⎡⎤⎢⎥⎣⎦.【点睛】本小题主要考查正弦型类型的三角函数的单调区间的求法,采用的是先求得所有的增区间,然后对k 进行赋值,来求得给定区间内的单调增区间. 16.{|,}2212k k x x k Z πππ≤<+∈ 【分析】 由题得2,332k x k k Z πππππ+≤+<+∈,解不等式得不等式的解集.【详解】 由题得2,332k x k k Z πππππ+≤+<+∈,所以2,,62212k k k x k x k Z ππππππ≤<+∴≤<+∈. 所以不等式的解集为{|,}2212k k x x k Z πππ≤<+∈. 故答案为{|,}2212k k x x k Z πππ≤<+∈ 【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.17.()sin 24f x x π⎛⎫=+ ⎪⎝⎭.【分析】通过图像最高点的纵坐标即可求得A ,然后根据图像求最小正周期,再根据最小正周期公式求ω,再通过代点并结合ϕ的范围即可求解. 【详解】由图象可得1A =,32=48844T ππππω=-=, ∴2ω=,从而()sin(2)f x x ϕ=+,又∵点,18π⎛⎫ ⎪⎝⎭在函数的图象上,∴sin 14πϕ⎛⎫+= ⎪⎝⎭,从而2,42k k ππϕπ+=+∈Z ,即2,4k k πϕπ=+∈Z ,∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴4πϕ=,故()f x 的表达式:()sin 24f x x π⎛⎫=+ ⎪⎝⎭.故答案为:()sin 24f x x π⎛⎫=+ ⎪⎝⎭.18.(1)22/,2cot ()33x k πππ⎡⎤∈++∈⎢⎥⎣⎦Z ; (2)3572,22,2()4444x k k k k ππππππππ⎛⎤⎡⎫∈++⋃++∈ ⎪⎥⎢⎝⎦⎣⎭Z .【分析】(1)由题可得2sin 0x ,即3sin 2x,在单位圆中作出满足该不等式的角的集合,即可得答案;(2)由题可得1010x x ⎧->⎪⎨+⎪⎩即cos x <,在单位圆中作出满足该不等式的角的集合,即可得答案.【详解】(1)∵2sin 0x ≥,∴3sin 2x,在单位圆中作出满足该不等式的角的集合,如图①所示,可得22,2()33x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z .①(2)∵1010x x ⎧>⎪⎨+⎪⎩∴cos x <,在单位圆中作出满足该不等式的角的集合,如图②所示,可得3572,22,2()4444x k k k k k ππππππππ⎛⎤⎡⎫∈++⋃++∈ ⎪⎥⎢⎝⎦⎣⎭Z .② 【点睛】本题考查借助三角函数线解三角不等式问题,属于基础题.19.(1)5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦()k ∈Z ;(2)2⎡⎤⎣⎦ 【分析】(1)易知2A =,由13ππ288T ⎛⎫=-- ⎪⎝⎭,及2πT ω=,可求出ω,进而将点π,28⎛⎫- ⎪⎝⎭代入()f x 中,可求出ϕ,即可得到函数()f x 的表达式,进而求出单调递增区间即可; (2)由x 的范围,可求出3π24x +的范围,再结合正弦函数的性质,可求出()f x 的值域. 【详解】(1)由题意可知2A =,因为13πππ2882T ⎛⎫=--= ⎪⎝⎭,所以πT =, 所以2π2Tω==,此时()()2sin 2f x x ϕ=+, 把点π,28⎛⎫- ⎪⎝⎭代入()f x 表达式,得πsin 14ϕ⎛⎫-+= ⎪⎝⎭,则ππ2π42k ϕ-+=+,即3π2π4k ϕ=+,又πϕ<,故3π4ϕ=,故()3π2sin 24f x x ⎛⎫=+ ⎪⎝⎭,令π3ππ2π22π242k x k -+≤+≤+()k ∈Z , 解得5ππππ88k x k -+≤≤-+()k ∈Z , ∴函数()f x 的单调增区间为5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦()k ∈Z .(2)∵3ππ,84x ⎡⎤∈-⎢⎥⎣⎦,∴3π5π20,44x ⎡⎤+∈⎢⎥⎣⎦,当3π5π244x +=即π4x =时,()f x 取得最小值,()min 5π2sin 4f x == 当3ππ242x +=即π8x =-时,()f x 取得最大值,()max π2sin 22f x ==.∴函数()f x 的值域为2⎡⎤⎣⎦. 【点睛】本题考查了利用三角函数的图象求函数的解析式,考查求三角函数的值域,考查学生的计算求解能力,属于基础题. 20.(]1,0- 【分析】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,结合图象交点的个数即可得到结果.【详解】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,如图所示.由图象,可知当11122a -≤<,即10a -<≤时, cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦的图象与12a y -=的图象有两个交点,即方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根, 故实数a 的取值范围为(]1,0-. 【点睛】本题主要考查了余弦函数在给定区间内的图象,将题意转化为两图象交点的个数是解题的关键,属于中档题.21.(1)()7,1212k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z ,()122k x k ππ=-+∈Z ;(2)()max 2f x =,()min f x =【分析】(1)利用函数的最小正周期求出()f x ,利用余弦函数的单调增区间和对称轴求出答案;(2)利用,63x ππ⎡⎤∈-⎢⎥⎣⎦,求出52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,可得()f x 的最大值和最小值.【详解】(1)由题意知2T ππω==,解得2ω=,所以()2cos 26f x x π⎛⎫=+ ⎪⎝⎭,令()2226k x k k ππππ-+≤+≤∈Z ,解得()71212k x k k ππππ-+≤≤-+∈Z , 故函数的单调递增区间为()7,1212k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z .令()26x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z ,所以()f x 的对称轴为()122k x k ππ=-+∈Z .(2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦,则52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,∴当206x π+=时,()max 2f x =.当5266x ππ+=时,()min f x =所以,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()max 2f x =,()min f x =【点睛】本题考查三角函数的性质,考查余弦函数的单调性和最值,考查对称中心的求法,属于中档题.22.(1)514⎡⎤-⎢⎥⎣⎦,(2)3【分析】(1)1a =时,可得到2()sin sin 1f x x x =-++,可令t =sin x ,并得到二次函数y =﹣t 2+t +1,配方即可求出该函数的最大、最小值,即得出f (x )的值域;(2)化简f (x )并配方得到22()sin 124a a f x x ⎛⎫=--++ ⎪⎝⎭,讨论:2a ≥,02a <<,分别求出对应的f (x )的最大值,根据f (x )的最大值为3,即可求出实数a 的值. 【详解】解:(1)当1a =时,2()sin sin 1f x x x =-++, 令t =sin x , 1-≤t ≤1;则2215124y t t t ⎛⎫=-++=--+ ⎪⎝⎭,当12t =时,函数()f x 的最大值是54, 当1t =-时,函数()f x 的最小值是1-, ∴函数()f x 的值域514⎡⎤-⎢⎥⎣⎦,,(2)当0a >时,222()sin sin 1sin 124a a f x x a x x ⎛⎫=-++=--++ ⎪⎝⎭当1,22aa ≥≥时,当且仅当sin 1x = 时,max ()f x a =,又函数()f x 的最大值是3,∴3a =;当当01,022a a <<<<时,当且仅当sin 2a x = 时,2max ()14a f x =+,又函数()f x 的最大值是3,∴2134a+=,∴a =02a <<,不适合题意; 综上:实数a 的值为3 【点睛】本题考查正弦型二次函数的最值与值域,考查换元法与分类讨论思想,属于中档题.。
北师大版高中数学必修2第一章立体几何初步单元测试(带答案)
∴EH∥BD.
16、【证明】
(1)连结 A1C1 ,设 A1C1 B1D1 O1 连结 AO1 , ABCD A1B1C1D1 是正方体 A1ACC1 是平行四边形 ∴A1C1∥AC A1C1 AC
又 O1, O 分别是 A1C1, AC 的中点,∴O1C1∥AO 且 O1C1 AO AOC1O1 是平行四边形 C1O AO1, AO1 面 AB1D1 , C1O 面 AB1D1 ∴C1O∥面 AB1D1 (2) CC1 面 A1B1C1D1 CC1 B1D! 又 A1C1 B1D1 , B1D1 面A1C1C
2、已知某几何体的俯视图是如右上图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰 三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( ) (A)48 (B)64 (C)96 (D)192
3、长方体的一个顶点上三条棱长分别是 3, 4,5 ,且它的 8 个顶点都在同一球面上,则球的表面积是( )
(A) 1 (B) 2 (C) 3 (D) 4
7、已知两个平面垂直,下列命题
①一个平面内的已知直线必垂直于另一个平面的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面的无数条直线;
③一个平面内的任一条直线必垂直于另一个平面;
④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.
其中正确的个数是( )
A、
V 2
B、
V 3
C、
V 4
Байду номын сангаас
D、
V 5
A'
C'
P
B'
高中数学北师大版必修2:第一章综合能力检测(含答案)
第一章综合能力检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若P 是平面α外一点,则下列命题正确的是( ) A .过P 只能作一条直线与平面α相交 B .过P 可作无数条直线与平面α垂直 C .过P 只能作一条直线与平面α平行 D .过P 可作无数条直线与平面α平行 [答案] D[解析] 过P 点平行于α的平面内任一直线都与平面α平行.2.不同直线m 、n 和不同平面α、β,给出下列命题,其中错误命题有( ) ①⎭⎪⎬⎪⎫α∥βm α⇒m ∥β; ② ⎭⎪⎬⎪⎫m ∥n m ∥β⇒n ∥β; ③⎭⎪⎬⎪⎫m αn β⇒m 、n 异面; ④⎭⎪⎬⎪⎫α⊥βm ∥α⇒m ⊥β. A .0个 B .1个 C .2个 D .3个[答案] D[解析] ①对,②、③、④错.3.(2014·四川文,4)某三棱锥的左视图、俯视图如图所示,则该三棱锥的体积是( ) (锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)A .3B .2C . 3D .1[答案] D[解析] 本题考查了三视图及体积计算公式等.由图知平面P AB ⊥平面ABC ,PD ⊥AB ,PD ⊥平面ABC ,底面是边长为2的正三角形,∴V =13Sh =13×3×3=1.由三视图找出垂直关系是关键.4.底面是菱形的直棱柱的两条体对角线长为8cm 和12cm ,侧棱长为4cm ,则它的底面边长为( )A .11cmB .22cmC .211cmD .222cm[答案] C[解析] 由题意,可求出两底面菱形的两对角线的长分别为82-42=43cm ,122-42=82cm ,则底面边长为12+32=211cm.5.(2014·陕西理,5)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .32π3B .4πC .2πD .4π3[答案] D[解析] 本题考查空间几何体的结构特征,球的体积计算. 如图,根据正四棱柱的特点,球心也是正四棱柱的中心O .∵AB =1,∴O 1A 1=22, ∵AA 1=2,∴OO 1=22, ∴r =OA 1=1,∴V 球=43π.6.如图,BCDE 是一个正方形,AB ⊥平面BCDE ,则图中(侧面,底面)互相垂直的平面共有( )A .4组B .5组C .6组D .7组[答案] B[解析] 与平面BCDE 垂直的平面有2个,与平面ABC 垂直的平面有2个,(含平面ABE ,不含平面BCDE ).与平面ABE 垂直的平面有2个(含平面ABC ,不含平面BCDE ),∴2+2+2-1=5.7. (浙江高考)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 3[答案] B[解析] 结合三视图可得几何体的直观图如图所示,其体积V =VABCD -A 1B 1C 1D 1-VD 1-A 1EF ,由三视图可得VABCD -A 1B 1C 1D 1=6×6×3=108cm 3,VD 1-A 1EF =13×12×4×4×3=8cm 3,所以V =100cm 3,选B.8. 体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积为( )A .54B .54πC .58D .58π[答案] A[解析] 设原圆锥的体积是x , 则x -52x=⎝⎛⎭⎫133, ∴x =54.9.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等[答案] D[解析] 本题主要考查线线垂直、线面平行、三棱锥的体积等知识,考查学生的推理论证能力.对于选项A ,由正方体ABCD -A 1B 1C 1D 1得B 1B ⊥面AC ,∴AC ⊥B 1B , 又∵AC ⊥BD ,∴AC ⊥面BDD 1B 1,BE 面BDD 1B 1, ∴AC ⊥BE .对于选项B ,由正方体ABCD -A 1B 1C 1D 1得B 1D 1∥BD , B 1D 1⃘面ABCD ,BD 面ABCD , ∴B 1D 1∥面ABCD ,∴EF ∥面ABCD . 对于选项C ,V A -BEF =13×22×12×1×12=224.∴三棱锥A -BEF 的体积为定值.对于选项D ,因线段B 1D 1上两个动点E ,F ,且EF =12,在E ,F 移动时,A 到EF 的距离与B 到EF 的距离不相等 ∴△AEF 的面积与△BEF 的面积不相等.10.一圆台上底半径为5cm ,下底半径为10cm ,母线AB 长为20cm ,其中A 在上底面上,B 在下底面上,从AB 中点M 拉一条绳子,绕圆台的侧面一周转到B 点,则这条绳子最短为( )A .30cmB .40cmC .50cmD .60cm[答案] C[解析] 如图所示,把圆台侧面展开,显然绳子的最短路线是由B 到M 的线段.其中展开图的圆环圆心角为θ=π2,上底周长为2πR 上=10πcm ,=14×2πOA ′, ∴OA ′=20cm.又A ′M =MB ′=202=10cm ,∴OM =30cm ,OB =40cm , ∴MB =OM 2+OB 2=50cm.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上) 11.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________. [答案]3π3[解析] 设圆锥的母线为l ,底面半径为r ,高为h ,由⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,得⎩⎪⎨⎪⎧l =2,r =1.所以h =l 2-r 2= 3.于是,圆锥的体积为V =13πr 2h =3π3.12.如图所示,正三棱柱ABC —A 1B 1C 1的底面边长为2,侧棱长为4,E ,F 分别是AB ,A 1C 1的中点,则EF 的长等于________.[答案]17[解析] 取A 1B 1的中点H ,连接EH ,FH ,则EH =4,FH =1. 由正三棱柱的性质知△EFH 为直角三角形. 所以EF =FH 2+EH 2=17.13.一个正方体的各顶点均在同一个球的球面上,若该球的体积为43π,则该正方体的表面积为________.[答案] 24[解析] 设正方体的棱长为a ,球的半径为r , 则2r =3a ,∴a =233r .∵43πr 3=43π,∴r =3,∴a =2. ∴正方体的表面积为6a 2=24.14.已知P A 垂直于平行四边形ABCD 所在的平面,若PC ⊥BD ,则平行四边形ABCD 一定是________.[答案] 菱形[解析] ∵P A ⊥平面ABCD , ∴P A ⊥BD .又∵PC ⊥BD ,∴BD ⊥平面P AC . ∴BD ⊥AC .∴四边形ABCD 为菱形.15.若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,则________(写出所有正确结论的编号).①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°; ④连接四面体ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长. [答案] ②④⑤[解析] 本题考查了空间几何体中点线面的位置关系.依题意,该四面体可看作是一个长方体截掉四个顶角后剩余部分,所以可以确定②④⑤正确.对于①,只有四面体ABCD 是正四面体时才成立.对于③,取特例正四面体知夹角和为60°+60°+60°=180°知③错.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)如图是一个几何体的主视图和俯视图.(1)试判断这个几何体是什么几何体; (2)请画出它的左视图,并求该左视图的面积.[解析] (1)由题图中的主视图和俯视图知该几何体是正六棱锥.(2)该几何体的左视图如图所示.其中两腰为斜高,底边长为3a ,三角形的高即为正六棱锥的高,且长为3a .所以该左视图的面积为123a ·3a =32a 2.17.(本小题满分12分)如图所示,正三棱柱ABC -A 1B 1C 1中,底面边长为a ,D 、E 分别是BB 1、CC 1上的点,且EC =2BD =a .求证:平面ADE ⊥平面ACC 1A 1.[解析] 取AE 的中点O ,AC 中点F ,连接OF 、BF 、OD , 则AD =52a . ∵四边形BDEC 为直角梯形,且EC =2BD =a , ∴DE =52a .则△DAE 为等腰三角形,故DO ⊥AE . 又∵OF ∥EC ,且OF =12EC =12a ,∴OF 綊BD ,OF ⊥BF . ∴四边形BDOF 是矩形, ∴DO ⊥OF .又OF ∩AE =O ,∴DO ⊥平面AA 1C 1C . 又DO 平面ADE , ∴平面ADE ⊥平面AA 1C 1C .18.(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点.(1)求证:平面AB1D1∥平面EFG;(2)求证:平面AA1C⊥平面EFG.[证明](1)连接BD,∵E、F分别为BC、CD的中点,∴EF∥BD.∵BD∥B1D1,∴EF∥B1D1.又EF⃘平面AB1D1,B1D1平面AB1D1∴EF∥平面AB1D1,同理EG∥平面AB1D1.∵EF∩EG=E,∴平面AB1D1∥平面EFG.(2)∵AA1⊥平面ABCD,EF平面ABCD,∴AA1⊥EF.又EF⊥AC,AA1∩AC=A,∴EF⊥平面A1AC,又EF平面EFG,∴平面AA1C⊥平面EFG.19.(本小题满分12分)(2014·安徽文,19)如图,四棱锥P-ABCD的底面边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB =2,求四边形GEFH 的面积.[解析] 思路分析:(1)依据线面平行性质求得BC ∥GH ,进而证明GH ∥EF .(2)由(1)知四边形GEFH 是梯形,则须求出上底、下底和高.EF =8易知.根据平面GEFH ⊥平面ABCD ,可作出高GK ,这里GK ⊥平面ABCD ,GK ⊥EF .通过三角形中比例关系求出K 为OB 中点,并求得GH 、GK .解:(1)∵BC ∥平面GEFH ,BC 平面PBC ,且平面PBC ∩平面GEFH =GH ,∴GH ∥BC .同理可证EF ∥BC ,∴GH ∥EF .(2)连接AC ,BD 交于一点O ,BD 交EF 于K ,连接OP 、GK . 因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可证PO ⊥BD ,又∵BD ∩AC =O ,且AC ,BD 都在底面内,∴PO ⊥平面ABCD , 又∵平面GEFH ⊥平面ABCD ,PO ⊄平面GEFH , ∴PO ∥平面GEFH .又∵平面GEFH ∩平面PBD =GK , ∴PO ∥GK ,且GK ⊥平面ABCD , ∴GK ⊥EF ,所以GK 是梯形GEFH 的高. ∵AB =8,EB =2,∴EB ∶AB =KB ∶DB =1∶4,∴KB =14DB =12OB ,即K 为OB 的中点,又∵PO ∥GK ,∴GK =12PO ,即G 是PB 的中点,且GH =12BC =4.又由已知得OB =42,PO =PB 2-OB 2=68-32=6. ∴GK =3.∴四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.20.(本小题满分13分)(北京高考)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD、PC的中点,求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.[解析](1)因为平面P AD⊥底面ABCD,且P A垂直于这两个平面的交线AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⃘平面P AD,AD平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD.所以P A⊥CD.所以CD⊥平面P AD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF,又因为CD⊥BE,BE∩EF=E,所以CD⊥平面BEF. 所以平面BEF⊥平面PCD.21.(本小题满分14分)正三棱锥高为1,底面边长为26,内有一球与四个面都相切.(1)求棱锥的全面积;(2)求球的半径及表面积.[解析] (1)设底面中心为O ,D 为AB 中点,则VD 为斜高,OD=36AB =2,在Rt △VOD 中,VO =1,VD =1+2= 3. ∴S 全=34(26)2+3×26×12×3=63+9 2. (2)解法一:设球的半径为R ,由△VO 1E ∽△VDO 有O 1E OD =VO 1VD ⇒R 2=1-R 3⇒R =6-2, 故S 球=4πR 2=4π(6-2)2=8(5-26)π.解法二:V V -ABC =13S △ABC ·h =13(S △ABC +S △VAB +S △VCB +S △VAC )R ,而S △ABC =34·(26)2=6 3.S △VAB +S △VCB +S △VAC =3S △VAB =3·12·26·3=9 2.故63·1=(63+92)R ⇒R =6-2, 故S 球=4πR 2=4π(6-2)2=8(5-26)π.。
高中数学 单元综合测试1(含解析)北师大版必修2-北师大版高一必修2数学试题
单元综合测试一(第一章综合测试)时间:120分钟分值:150分第Ⅰ卷(选择题,共50分)一、选择题(每小题5分,共50分)1.下列几何体是柱体的是(B)解析:A中的侧棱不平行,所以A不是柱体,C是圆锥,D是球体,B是棱柱.2.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为(C)A.120°B.150°C.180°D.240°解析:设圆锥底面半径为r,母线为l,则πrl+πr2=3πr2,得l=2r,所以展开图扇形半径为2r,弧长为2πr,所以展开图是半圆,所以扇形的圆心角为180°,故选C.3.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体(D) A.由一个圆台、两个圆锥构成B.由两个圆台、一个圆锥构成C.由一个圆柱、一个圆锥构成D.由一个圆柱、两个圆锥构成解析:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可确定所得的几何体.等腰梯形绕着不同的边所在直线旋转一周后,得到的几何体不同,要加以细致地分析.若绕着它的较短的底边所在的直线旋转一周,所得的几何体应是圆柱两端各挖去一个圆锥;而绕着较长底边所在直线旋转一周,得到的几何体是圆柱外加两个圆锥.4.若一个正四棱锥的左视图是一个边长为2的正三角形(如图),则该正四棱锥的体积是(C)A .1 B. 3 C.433D .2 3 解析:如图,据条件可得几何体为底面边长为2的正方形,侧面是等腰三角形,斜高为2,棱锥是高为22-12的正四棱锥,故其体积V =13×4×22-12=433.故选C.5.已知直线a 和平面α,β,α∩β=l ,a ⃘α,a ⃘β,且a 在α,β内的射影分别为直线b 和c ,则b 和c 的位置关系是( D )A .相交或平行B .相交或异面C .平行或异面D .相交、平行或异面解析:由题意,若a ∥l ,则利用线面平行的判定,可知a ∥α,a ∥β,从而a 在α,β内的射影直线b 和c 平行;若a ∩l =A ,则a 在α,β内的射影直线b 和c 相交于点A ;若a ∩α=A ,a ∩β=B ,且直线a 和l 垂直,则a 在α,β内的射影直线b 和c 相交,否则直线b 和c 异面.综上所述,b 和c 的位置关系是相交、平行或异面,故选D.6.在四面体ABCD 中,下列条件不能得出AB ⊥CD 的是( D ) A .AB ⊥BC 且AB ⊥BD B .AD ⊥BC 且AC ⊥BD C .AC =AD 且BC =BD D .AC ⊥BC 且AD ⊥BD解析:①∵AB ⊥BD ,AB ⊥BC ,BD ∩BC =B ,∴AB ⊥平面BCD ,∵CD 平面BCD ,∴AB ⊥CD ,②设A 在平面BCD 射影为O ,AO ⊥平面BCD ,∵AD⊥BC,AC⊥BD,∴O为△BCD的垂心.连接BO,则BO⊥CD,AO⊥CD,∴CD⊥平面ABO.∵AB平面ABO.∴AB⊥CD,③取CD中点G,连接BG,AG,∵AC=AD且BC=BD,∴CD⊥BG,CD⊥AG,∵BG∩AG=G,∴CD⊥平面ABG,∵AB平面ABG,∴AB⊥CD,综上选项A,B,C能够得出AB⊥CD,故选D.7.一几何体的三视图如图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为(B)A.4πB.3πC.2πD.π解析:由主视图和左视图是腰长为1的两个全等的等腰直角三角形,得到这是一个四棱锥,如图.底面是一个边长是1的正方形,一条侧棱AE与底面垂直,可将此四棱锥放到一个棱长为1的正方体内,可知,此正方体与所研究的四棱锥有共同的外接球,∴四棱锥的外接球即是边长为1的正方体的外接球,外接球的直径是AC,根据直角三角形的勾股定理知AC=1+1+1=3,∴外接球的表面积是4×π×(32)2=3π,故选B.8.如图,已知圆柱体底面圆的半径为2πcm ,高为2cm ,AB ,CD 分别是两底面的直径,AD ,BC 是母线.若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短路线的长度是( C )A.233 cm B .2 3 cmC .2 2 cmD .4 cm解析:如图,在圆柱侧面展开图中,线段AC 1的长度即为所求.在Rt △AB 1C 1中,AB 1=π·2π=2 cm ,B 1C 1=2 cm ,∴AC 1=22cm ,故选C.9.已知圆锥的底面圆周及顶点均在球面上,若圆锥的轴截面为正三角形,则圆锥的体积与球的体积之比为( D )A .2732B .38C .3316 D .932解析:设球的半径为R ,圆锥的高为h ,底面圆的半径为r ,则圆锥的母线长为2r ,结合图形(图略)可得2r =2R cos30°=3R ,所以,r =32R ,圆锥的高为h =(2r )2-r 2=3r =3×32R =32R ,所以,圆锥的体积为13πr 2h =13π×⎝⎛⎭⎫32R 2×32R =3πR 38,因此,圆锥的体积与球的体积之比为3πR 384πR 33=38×34=932. 10.如图,三棱锥S -ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,则以下结论中:①异面直线SB 与AC 所成的角为90°; ②直线SB ⊥平面ABC ; ③平面SBC ⊥平面SAC ; ④点C 到平面SAB 的距离是12a .其中正确的个数是( D ) A .1 B .2 C .3 D .4解析:由题意知AC ⊥平面SBC ,故AC ⊥SB ,故①正确;再根据SB ⊥AC 、SB ⊥AB ,可得SB ⊥平面ABC ,平面SBC ⊥平面SAC ,故②③正确; 取AB 的中点E ,连接CE ,可证得CE ⊥平面SAB ,故CE 的长度即为C 到平面SAB 的距离为12a ,④正确,故选D.第Ⅱ卷(非选择题,共100分) 二、填空题(每小题5分,共25分)11.若圆锥的侧面积为3π,底面积为π,则该圆锥的体积为223π.解析:根据题意,圆锥的底面积为π,则其底面半径是1,底面周长为2π,又12×2πl =3π,∴圆锥的母线为3,则圆锥的高32-12=22,所以圆锥的体积13π×12×22=223π.故答案为:223π.12.如图,正方形DABC 的边长为2,它是水平放置的一个平面图形的直观图,则原图形的面积为8 2.解析:根据题意,画出图形,如图所示:把该平面图形的直观图还原为原来的图形,如图所示:∴四边形A ′B ′C ′D ′是平行四边形,且A ′D ′=AD =2,B ′D ′=2BD =42,∴平行四边形A ′B ′C ′D ′的面积是A ′D ′·B ′D ′=2×42=8 2.13.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,则二面角A -CD -B 的余弦值为33. 解析:取AC 的中点E ,取CD 的中点F (图略),则EF =12,BE =22,BF =32,结合图形知二面角A -CD -B 的余弦值cos θ=EF BF =33.14.半径为R 的半球,一正方体的四个顶点在半球的底面上,其余四个顶点在半球的球面上,则该正方体的表面积为4R 2.解析:如图,作出半球沿正方体对角面的轴截面,设正方体的棱长为a , 则a 2+⎝⎛⎭⎫22a 2=R 2,所以a 2=23R 2,所以S =6×a 2=4R 2.15.如图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,则圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为32,32.解析:设球的半径为R ,则圆柱的底面半径为R ,高为2R ,所以V 圆柱=πR 2×2R =2πR 3, V 球=43πR 3,所以V 圆柱V 球=2πR 343πR 3=32,S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2,所以S 圆柱S 球=6πR 24πR 2=32. 三、解答题(本题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤)16.(本题满分12分)某几何体的三视图如图,其中俯视图的内外均为正方形,边长分别为2和4,几何体的高为3,求此几何体的表面积和体积.解:依题意得侧面的高 h ′=(2-1)2+32=10,S =S 上底+S 下底+S 侧面=22+42+4×12×(2+4)×10=20+1210,所以几何体的表面积为20+1210. 体积V =13(42+22+2×4)×3=28.17.(本题满分12分)在如图所示的几何体中,四边形ABED 是矩形,四边形ADGC 是梯形,AD ⊥平面DEFG ,EF ∥DG ,∠EDG =120°.AB =AC =FE =1,DG =2.(1)求证:AE ∥平面BFGC ; (2)求证:FG ⊥平面ADF .证明:(1)如图,连接CF,AE.∵AC∥DG,EF∥DG,∴AC∥EF,又AC=EF,∴四边形AEFC是平行四边形,∴AE∥FC,又A E⃘平面BFGC,FC平面BFGC,∴AE∥平面BFGC;(2)如图,连接DF,AF,作DG的中点为H,连接EH,∵EF∥DH,EF=DH=ED=1,∴四边形DEFH为菱形,∵EF∥HG,EF=HG,∴四边形EFGH为平行四边形,∴FG∥EH,∴FG⊥DF,∵AD⊥平面DEFG,∴AD⊥FG,∵FG⊥DF,AD∩DF=D,∴FG⊥平面ADF.18.(本题满分12分)一个圆台的母线长为12,两底面面积分别为4π,25π.(1)求这个圆台的高及截得此圆台的圆锥的母线长;(2)求这个圆台的侧面积与体积.解:(1)圆台的轴截面是等腰梯形ABCD (如图).由已知可得上底半径O 1A =2,下底半径OB =5.又∵腰长为12,∴高AM =122-(5-2)2=315,∴设截得此圆台的圆锥的母线长为x , 则由△SAO 1∽△SBO 可得 25=x -12x,解得x =20. 所以截得此圆台的圆锥的母线长为20;(2)大圆锥的底面周长为2×5π=10π,小圆锥的底面周长为2×2π=4π,这个圆台的侧面积=大圆锥侧面积-小圆锥的侧面积=12×10π×20-12×4π×(20-12)=84π.所求圆台的体积为13×(4π+4π×25π+25π)×315=3915π.19.(本题满分12分)某机器零件是如图所示的几何体(实心),零件下面是边长为10 cm 的正方体,上面是底面直径为4 cm ,高为10 cm 的圆柱.(1)求该零件的表面积;(2)若电镀这种零件需要用锌,已知每平方米用锌0.11 kg,问制造1 000个这样的零件,需要锌多少千克?(注:π取3.14)解:(1)零件的表面积S=6×10×10+4×3.14×10=725.6(cm2)=0.072 56m2.该零件的表面积为0.072 56m2.(2)电镀1 000个这种零件需要用的锌为0.072 56×0.11×1 000=7.981 6(kg).所以制造1 000个这样的零件,需要锌7.981 6千克.20.(本题满分13分)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC的体积.解:(1)证明:如图,因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AE ⊥BB 1.又E 是正三角形ABC 的边BC 的中点,所以AE ⊥BC .因此AE ⊥平面B 1BCC 1.而AE 平面AEF ,所以平面AEF ⊥平面B 1BCC 1.(2)如图,设AB 的中点为D ,连接A 1D ,CD .因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC -A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角.由题设,∠CA 1D =45°,所以A 1D =CD =32AB = 3. 在Rt △AA 1D 中,AA 1=A 1D 2-AD 2=3-1=2,所以FC =12AA 1=22. 故三棱锥F -AEC 的体积V =13S △AEC ·FC =13×32×22=612. 21.(本题满分14分)在四棱锥P -ABCD 中,底面ABCD 是矩形,AB =2,BC =a ,又侧棱P A ⊥底面ABCD .(1)当a 为何值时,BD ⊥平面P AC ?试证明你的结论;(2)当a =4时,求证:BC 边上存在一点M ,使得PM ⊥DM ;(3)若在BC 边上至少存在一点M ,使PM ⊥DM ,求a 的取值X 围.解:(1)当a =2时,ABCD 为正方形,则BD ⊥AC ,证明如下:又因为P A ⊥底面ABCD ,BD 平面ABCD ,所以BD ⊥P A ,又因为P A ∩AC =A ,所以BD ⊥平面P AC .故当a =2时,BD ⊥平面P AC .(2)证明:当a =4时,取BC 边的中点M ,AD 边的中点N ,连接AM ,DM ,MN ,如图所示.因为四边形ABMN和四边形DCMN都是正方形,所以∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM,又因为P A⊥底面ABCD,所以P A⊥DM,又AM∩P A=A,所以DM⊥平面P AM,得PM⊥DM,故当a=4时,BC边的中点M使得PM⊥DM.(3)假设BC边上存在点M,使得PM⊥DM,因为P A⊥底面ABCD,所以,M点应是以AD 为直径的圆和BC边的交点,则AD≥2AB,即a≥4为所求.。
2018-2019学年高中北师大版数学必修2:第1章单元测试三 含解析
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分 150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 50 分) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在下列各题的四个选项中,只有一个选项是符合 题目要求的. 1.过两直线 l1:x-3y+4=0 和 l2:2x+y+5=0 的交点和原点的直线的方程为( ) A.19x-9y=0 B.9x+19y=0 C.19x-3y=0 D.3x+19y=0 答案:D 19 x=- , 7 x-3y+4=0, 解析:解方程组 得 3 2x+y+5=0, y= . 7 3 ∴k=- .又过原点,∴直线方程为 3x+19y=0. 19 2.已知点 A(1,2 3+1),B(-1,1),直线 l 的倾斜角是直线 AB 倾斜角的一半,则直线 l 的斜率为( ) 3 A.1 B. 3 C. 3 D.不存在 答案:B 解析:KAB= 3,∴直线 AB 的倾斜角为 60°. 3 ∴l 的倾斜角为 30°,k=tan30°= . 3 3.已知点(a,2)(a>0)到直线 l:x-y+3=0 的距离为 1,则 a=( ) A. 2 B.2- 2 C. 2-1 D. 2+1 答案:C |a-2+3| 解析:由 =1 得 a= 2-1,a=- 2-1(舍去). 2 4.三条直线 l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0 构成一个三角形,则 k 的范围是( ) A.k∈R B.k∈R 且 k≠±1,k≠0 C.k∈R 且 k≠±5,k≠-10 D.k∈R 且 k≠±15,k≠1 答案:C 5.若点 P(3,4)和点 Q(a,b)关于直线 x-y-1=0 对称,则( ) A.a=1,b=-2 B.a=2,b=-1 C.a=4,b=3 D.a=5,b=2 答案:D b-4 =-1 a-3 a=5 解析:由题意,知 a+3 b+4 ,解得 ,故选 D. b=2 - -1=0 2 2 6.和直线 3x-4y+5=0 关于 x 轴对称的直线方程是( ) A.3x+4y-5=0 B.3x+4y+5=0 C.-3x+4y-5=0 D.3x-4y-5=0 答案:B 解析:设对称直线上任一点坐标为(x,y) 它关于 x 轴对称的点的坐标为(x,-y). (x,-y)在直线 3x-4y+5=0 上
2024-2025年北师大版数学必修第二册第一章单元检测卷(带答案)
第一章 单元检测卷时间:120分钟 满分:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各角中,与26°角终边相同的角为( )A .206°B .-334°C .116°D .-154°2.设a =sin 5π7 ,b =cos 2π7 ,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c3.定义运算a ⊗b ={a ,a≤b,b ,a >b , 例如,1⊗2=1,则函数f(x)=sin x ⊗cos x 的值域为( )A .⎣⎢⎡⎦⎥⎤22,1 B .⎣⎢⎡⎦⎥⎤-22,1 C .⎣⎢⎡⎦⎥⎤-1,22 D .⎣⎢⎡⎦⎥⎤-1,-224.已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( ) A . 3 B . 2 C .- 2 D .- 35.电流强度I(A )随时间t(s )变化的函数I = A sin (ωt +φ)⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2 的图象如图所示,则当t =1100 s 时,电流强度是( ) A .-5 A B .5 AC .5 3 AD .10 A6.如图,已知扇形的周长为6,当该扇形的面积取最大值时,弦长AB =( )A .3sin 1B .3sin 2C .3sin 1°D .3sin 2°7.已知ω∈R ,函数f (x )=(x -6)2·sin ωx ,存在常数a ∈R ,使得f (x +a )为偶函数,则ω的值可能为( )A.π2 B .π3 C .π4 D .π58.设函数f (x )=3 sin πx m,若存在x 0满足|f (x 0)|=3 且x 20 +[f (x 0)]2<m 2,则实数m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.下列函数中,以π2 为周期且在区间⎝ ⎛⎭⎪⎫π4,π2 上单调递减的是( ) A.f (x )=|cos 2x | B .f (x )=|sin 2x |C.f (x )=|tan 2x | D .f (x )=sin |x |10.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫π3x -π6 ,下列说法正确的是( )A.函数f (x )图象可由函数g (x )=2cos (π3 x +π6 )的图象向右平移π3 个单位得到B.函数f (x )图象可由函数g (x )=cos (π3 x -π6 )的图象上所有点的横坐标不变,纵坐标变为原来的2倍得到C.函数f (x )图象可由函数g (x )=2cos (πx -π6 )的图象上所有点的纵坐标不变,横坐标变为原来的3倍得到D.函数f (x )图象的对称轴为x =-1+3k ,k ∈Z 11.下列四个结论正确的有( )A.sin ⎝ ⎛⎭⎪⎫-π18 >sin ⎝ ⎛⎭⎪⎫-π10B.cos ⎝ ⎛⎭⎪⎫-25π4 >cos ⎝⎛⎭⎪⎫-17π4 C.tan 5π9 >tan 17π18D.tan π5 >sin π512.函数f (x )=A cos (ωx +φ)(ω>0)的部分图象如图所示,则下列结论正确的是( )A.f (x )的最小正周期为2B.f (x )图象的一条对称轴为直线x =-12C.f (x )在⎝⎛⎭⎪⎫2k -14,2k +34 ,k ∈Z 上是减函数 D.f (x )的最大值为A三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若点P (2m ,-3m )(m <0)在角α的终边上,则sin α=________. 14.使得lg (cos α·sin α)有意义的角α是第________象限角. 15.声音是由物体振动而产生的声波通过介质(空气、固体或液体)传播并能被人的听觉器官所感知的波动现象.在现实生活中经常需要把两个不同的声波进行合成,这种技术被广泛运用在乐器的调音和耳机的主动降噪技术方面.(1)若甲声波的数学模型为f 1(t )=sin 100πt ,乙声波的数学模型为f 2(t )=cos (100πt +φ)(φ>0),甲、乙声波合成后的数学模型为f (t )=f 1(t )+f 2(t ).要使f (t )=0恒成立,则φ的最小值为________.(2)技术人员获取某种声波,其数学模型记为H (t ),其部分图象如图所示,对该声波进行逆向分析,发现它是由S 1,S 2两种不同的声波合成得到的,S 1,S 2的数学模型分别记为f (t )和g (t ),满足H (t )=f (t )+g (t ).已知S 1,S 2两种声波的数学模型源自于下列四个函数中的两个.①y =sin π2t; ②y =sin πt ;③y =cos 3πt; ④y =2cos 3πt .则S 1,S 2两种声波的数学模型分别是________.(填写序号)16.已知函数f (x )=⎩⎨⎧π2+a |x |,x ≤-π2或x ≥π2,tan x ,-π2<x <π2, 若函数y =f [f (x )]-3π2有5个零点,则实数a 的取值范围是________. 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)(1)化简:sin (π+α)·cos (π-α)·tan ⎝ ⎛⎭⎪⎫-3π2-αtan ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫3π2+α ;(2)求值:tan 7π4-tan2π31+tan ⎝ ⎛⎭⎪⎫-4π3·tan ⎝ ⎛⎭⎪⎫-π4 .18.(本小题满分12分)已知函数f (x )=3sin (12 x -π4),x ∈R .(1)列表并画出函数f (x )在一个周期内的简图;(2)将函数y =sin x 的图象作怎样的变换可得到函数f (x )的图象?19.(本小题满分12分)已知函数y =A sin (ωx +φ)(A >0,ω>0,0<φ<π2 )的部分图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间⎣⎢⎡⎦⎥⎤-π2,-π12 上的最大值和最小值,并指出取得最值时的x 值.20.(本小题满分12分)已知函数f (x )=A sin (ωx +π6 )(A >0,ω>0)只能同时满足下列三个条件中的两个:①函数f (x )的最大值为2;②函数f (x )的图象可由y =2 sin ⎝⎛⎭⎪⎫x -π4 的图象平移得到;③函数f (x )图象的相邻两条对称轴之间的距离为π2 . (1)请写出这两个条件序号,并求出f (x )的解析式;(2)求方程f (x )+1=0在区间[-π,π]上所有解的和.21.(本小题满分12分)如图是半径为1 m 的水车截面图,在它的边缘圆周上有一动点P ,按逆时针方向以角速度π3 rad/s(每秒绕圆心转动π3 rad)做圆周运动,已知点P 的初始位置为P 0,且∠xOP 0=π6,设点P 的纵坐标y 是转动时间t (单位:s)的函数,记为y =f (t ).(1)写出函数y =f (t )的解析式,并求f (0),f ⎝ ⎛⎭⎪⎫32 的值; (2)选用恰当的方法作出函数f (t ),0≤t ≤6的简图;(3)试比较f ⎝ ⎛⎭⎪⎫13 ,f ⎝ ⎛⎭⎪⎫314 ,f ⎝ ⎛⎭⎪⎫315 的大小(直接给出大小关系,不用说明理由).22.(本小题满分12分)用“五点法”画函数f (x )=A sin (ωx +φ)(A >0,ω>0)在一个周期内的图象时,列表如下:(1)求x 1,x 2,x 3的值及函数f (x )的解析式;(2)已知函数g (x )=f ⎝ ⎛⎭⎪⎫ax 2+π6 (a >0),若函数g (x )在区间⎣⎢⎡⎦⎥⎤-2π3,π6 上是增函数,求实数a 的最大值.第一章 单元检测卷1.答案:B解析:与26°角终边相同的角为θ=360°·k +26°,k ∈Z , 对选项A :取θ=360°·k +26°=206°,不是整数解,排除; 对选项B :取θ=360°·k +26°=-334°,k =-1,正确; 对选项C :取θ=360°·k +26°=116°,不是整数解,排除;对选项D :取θ=360°·k +26°=-154°,不是整数解,排除.故选B. 2.答案:D解析:a =sin 5π7 =sin ⎝⎛⎭⎪⎫π-5π7 =sin 2π7 .因为π4 <2π7 <π2 ,所以cos 2π7 <sin 2π7 <1<tan 2π7 ,所以b <a <c .故选D.3.答案:C 解析:根据题设中的新定义得f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x , 作出函数f (x )在一个周期内的图象(实线部分),观察图象,可知函数f (x )的值域为⎣⎢⎡⎦⎥⎤-1,22 .故选C.4.答案:C解析:因为tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,所以tan α+1tan α =k ,tan α·1tan α =k 2-3=1.又3π<α<7π2 ,所以k >0,所以k =2,所以tan α=1,所以α=3π+π4 ,所以cos α=-22 ,sin α=-22,所以cos α+sinα=-2 .故选C.5.答案:A解析:由题图知A =10,T 2 =4300 -1300 =1100 ,所以T =150 ,所以ω=2πT=100π,所以I =10sin (100πt +φ).又⎝ ⎛⎭⎪⎫1300,10 在图象上,所以100π×1300 +φ=π2 +2k π,k ∈Z .又0<φ<π2 ,所以φ=π6 ,所以I =10sin ⎝⎛⎭⎪⎫100πt +π6 .当t =1100 s 时,I =-5 A .故选A.6.答案:A解析:设扇形的圆心角为α,半径为r ,弧长为l ,则l +2r =6,l =6-2r ,由⎩⎪⎨⎪⎧r >0,l =6-2r >0, 可得0<r <3, 所以,扇形的面积为S =12 lr =(3-r )r ≤⎝ ⎛⎭⎪⎫3-r +r 2 2 =94 ,当且仅当3-r =r ,即r =32时,扇形的面积S 最大,此时l =6-2r =3.因为l =αr ,则扇形的圆心角α=l r =332=2,取线段AB 的中点E ,由垂径定理可知OE ⊥AB ,因为OA =OB ,则∠AOE =12 ∠AOB =12×2=1,所以AB =2AE =2OA sin 1=3sin 1.故选A. 7.答案:C解析:解法一:依次代入选项的值,检验f (x +a )的奇偶性.故选C.解法二:f (x +a )=(x +a -6)2·sin [ω(x +a )],若f (x +a )为偶函数,则a =6且sin[ω(x +6)]也为偶函数(偶函数×偶函数=偶函数),所以6ω=π2+k π(k ∈Z ),当k =1时,ω=π4.故选C.8.答案:C解析:x 20 +[f (x 0)]2<m 2的几何意义是点(x 0,f (x 0))到原点的距离小于|m |.记函数f (x )的最小正周期为T ,则⎝ ⎛⎭⎪⎫T 4 2 +3<m 2,所以⎝ ⎛⎭⎪⎫2|m |4 2 +3<m 2,所以m 2>4,所以m <-2或m >2.故选C.9.答案:BC解析:当x ∈⎝ ⎛⎭⎪⎫π4,π2 时,2x ∈⎝ ⎛⎭⎪⎫π2,π ,由于f (x )=cos 2x 在x ∈⎝ ⎛⎭⎪⎫π4,π2 时单调递减,且cos 2x <0,故f (x )=|cos 2x |在区间⎝ ⎛⎭⎪⎫π4,π2 上单调递增.故A 不符合题意.而f (x )=|sin 2x |以π2 为周期,在区间⎝ ⎛⎭⎪⎫π4,π2 上单调递减;f (x )=|tan 2x |的周期为π2 且在区间⎝ ⎛⎭⎪⎫π4,π2 上单调递减,故B ,C 符合题意;f (x )=sin |x |不是周期函数.故选BC. 10.答案:BC解析:对于A ,函数g (x )=2cos ⎝ ⎛⎭⎪⎫π3x +π6 的图象向右平移π3 个单位得到函数y =2cos⎣⎢⎡⎦⎥⎤π3⎝ ⎛⎭⎪⎫x -π3+π6 =2cos ⎝ ⎛⎭⎪⎫π3x -π29+π6 的图象,A 错误;对于B ,函数g (x )=cos ⎝ ⎛⎭⎪⎫π3x -π6 的图象上所有点的横坐标不变,纵坐标变为原来的2倍得到函数y =2cos ⎝ ⎛⎭⎪⎫π3x -π6 的图象,B 正确;对于C ,函数g (x )=2cos ⎝⎛⎭⎪⎫πx -π6 的图象上所有点的纵坐标不变,横坐标变为原来的3倍得到函数y =2cos ⎝ ⎛⎭⎪⎫π3x -π6 的图象,C 正确;对于D ,由π3 x -π6 =k π,k ∈Z ,得x =12+3k ,k ∈Z ,即函数f (x )图象的对称轴为x =12+3k ,k ∈Z ,D 错误.故选BC. 11.答案:AD解析:函数y =sin x 是⎝ ⎛⎭⎪⎫-π2,0 上的增函数,0>-π18 >-π10 >-π2 ,所以sin ⎝ ⎛⎭⎪⎫-π18 >sin ⎝ ⎛⎭⎪⎫-π10 ,A 正确;cos ⎝ ⎛⎭⎪⎫-25π4 =cos ⎝ ⎛⎭⎪⎫-6π-π4 =cos π4 ,cos ⎝ ⎛⎭⎪⎫-174π =cos ⎝ ⎛⎭⎪⎫-4π-π4 =cos π4 ,所以cos ⎝ ⎛⎭⎪⎫-25π4 =cos ⎝ ⎛⎭⎪⎫-17π4 ,B 不正确;函数y =tan x 是⎝ ⎛⎭⎪⎫π2,π 上的增函数,π2 <5π9 <17π18 <π,所以tan 5π9 <tan 17π18 ,C 不正确;易知在⎝⎛⎭⎪⎫0,π2 上,tan x >x >sin x ,所以tan π5 >sin π5 ,D 正确.故选AD.12.答案:AC解析:由题图可知,函数f (x )的最小正周期T =2×⎝ ⎛⎭⎪⎫54-14 =2,故A 正确;因为函数f (x )的图象过点⎝ ⎛⎭⎪⎫14,0 和⎝ ⎛⎭⎪⎫54,0 ,所以函数f (x )图象的对称轴为直线x =12 ×⎝ ⎛⎭⎪⎫14+54 +kT 2 =34 +k (k ∈Z ),故直线x =-12 不是函数f (x )图象的对称轴,故B 不正确;由题图可知,当14 -T 4 +kT ≤x ≤14 +T 4 +kT (k ∈Z ),即2k -14 ≤x ≤2k +34(k ∈Z )时,f (x )是减函数,故C 正确;若A >0,则最大值是A ,若A <0,则最大值是-A ,故D 不正确.故选AC.13.答案:31313解析:如图,点P (2m ,-3m )(m <0)在第二象限,且r =-13 m ,故有sin α=-3m r =-3m -13m=31313 .14.答案:一或三解析:要使原式有意义,必须满足cos α·sin α>0,即需cos α与sin α同号,所以α是第一或第三象限角.15.答案:(1)π2(2)②④解析:要使f (t )=f 1(t )+f 2(t )=sin 100πt +cos (100πt +φ)=0恒成立, 即(1-sin φ)sin 100πt +cos φcos 100πt =0对t ∈R 恒成立, 故⎩⎪⎨⎪⎧1-sin φ=0cos φ=0 ⇒φ=π2 +2k π,又φ>0⇒φmin =π2 ;根据周期的计算公式,对于①②③④四个函数其周期分别为:4,2,23 ,23,由图象可知H (t )的最小正周期为2,故排除①,若③④组合,其周期为23不符合题意,故为②④组合.16.答案:(0,1]解析:设t =f (x ),则由y =f [f (x )]-3π2 =0得f (t )=3π2,若a ≤0,作出函数f (x )的图象如图,当x ≥π2 或x ≤-π2 时,f (x )=π2 +a |x |≤π2 ,此时f (t )=3π2 ,无解;当-π2 <x <π2 时,由f (t )=3π2 ,得t 只有一个解且0<t <π2,此时t =f (x ),最多有3个零点,不满足条件,故a ≤0,不成立;当a >0时,作出函数f (x )的图象如图,f (x )=⎩⎪⎨⎪⎧π2-ax ,x ≤-π2,π2+ax ,x ≥π2,tan x ,-π2<x <π2, 则f (x )=π2 +a |x |>π2,由f (t )=3π2 ,得方程有3个不同的根,t 1<t 2<t 3,其中t 1<-π2 ,0<t 2<π2 ,t 3>π2 ,当0<t 2<π2 时,f (x )=tan x =t 2,只有一个根,当t 1<-π2时,f (x )=tan x =t 1,只有一个根,要使函数y =f [f (x )]-3π2 有5个零点,则必有f (x )=t 3>π2,有3个零点,由π2 +ax =3π2 ,得x =πa ,即t 3=πa ,此时只要π2 +π2 a ≤πa 即可, 得a 2+a -2≤0,即(a +2)(a -1)≤0,得0<a ≤1, 则实数a 的取值范围是(0,1].17.解析:(1)原式=-sin α·(-cos α)·tan ⎝ ⎛⎭⎪⎫π2-α-1tan α·sin α=sin αcos α·1tan α-1tan α·sin α =-cos α. (2)原式=tan ⎝ ⎛⎭⎪⎫2π-π4-tan ⎝ ⎛⎭⎪⎫π-π31+tan ⎝⎛⎭⎪⎫π+π3tan π4 =tan ⎝ ⎛⎭⎪⎫-π4+tan π31+tan π3·tan π4=-1+31+3 =2-3 .18.解析:(1)函数f (x )的最小正周期T =2π12=4π. 列表如下:12 x -π4 0 π2 π 3π22π x π2 3π2 5π2 7π2 9π23sin ⎝ ⎛⎭⎪⎫12x -π4 0 3 0 -3 0 描出五个关键点并用光滑的曲线连接,得到一个周期内的简图如下.(2)先把函数y =sin x 的图象向右平移π4个单位长度,然后把所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所有点的纵坐标伸长到原来的3倍(横坐标不变),即可得到函数f (x )的图象.19.解析:(1)由题图知,函数的最大值为2,最小值为-2,∴A =2.又∵T 4 =π6 -⎝ ⎛⎭⎪⎫-π12 ,∴T =π,即2πω =π,∴ω=2. ∴函数的解析式为y =2sin (2x +φ).∵函数的图象经过点⎝ ⎛⎭⎪⎫π6,2 ,∴2sin ⎝ ⎛⎭⎪⎫π3+φ =2, ∴sin ⎝ ⎛⎭⎪⎫π3+φ =1.又∵0<φ<π2 ,∴φ=π6 . 故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +π6 ,其振幅是2,初相是π6 . (2)∵x ∈⎣⎢⎡⎦⎥⎤-π2,-π12 ,∴2x +π6 ∈⎣⎢⎡⎦⎥⎤-5π6,0 .于是,当2x +π6 =0,即x =-π12 时,函数取得最大值,y max =0; 当2x +π6 =-π2 ,即x =-π3时,函数取得最小值,y min =-2. 20.解析:(1)函数f (x )=A sin ⎝⎛⎭⎪⎫ωx +π6 满足的条件为①③. 理由如下:由题意可知条件①②互相矛盾,故③为函数f (x )=A sin ⎝⎛⎭⎪⎫ωx +π6 满足的条件之一, 由③可知,T =π,所以ω=2,故②不合题意.所以函数f (x )=A sin ⎝⎛⎭⎪⎫ωx +π6 满足的条件为①③. 由①可知A =2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6 . (2)因为f (x )+1=0,所以sin ⎝⎛⎭⎪⎫2x +π6 =-12 , 所以2x +π6 =-π6 +2k π,k ∈Z 或2x +π6 =7π6+2k π,k ∈Z , 即x =-π6 +k π,k ∈Z 或x =π2+k π,k ∈Z , 又x ∈[-π,π],所以x 的取值为-π6 ,5π6 ,-π2 ,π2,所以方程f (x )+1=0 在区间[-π,π]上所有解的和为-π6 +5π6 -π2 +π2 =2π3. 21.解析:(1)由题意知函数y =f (t )=sin ⎝ ⎛⎭⎪⎫π3t +π6 ,t ≥0,所以f (0)=sin π6 =12, f ⎝ ⎛⎭⎪⎫32 =sin ⎝ ⎛⎭⎪⎫32×π3+π6=cos π6 =32. (2)根据题意列表:t0 1 52 4 112 6 π3 t +π6 π6 π2 π 3π2 2π 13π6y 121 0 -1 0 12 描点、连线,作出函数f (t ),0≤t ≤6的简图,如图所示.(3)f ⎝ ⎛⎭⎪⎫13 >f ⎝ ⎛⎭⎪⎫314 >f ⎝ ⎛⎭⎪⎫315 . 22.解析:(1)由⎩⎪⎨⎪⎧π6ω+φ=0,2π3ω+φ=π, 可得⎩⎪⎨⎪⎧ω=2,φ=-π3, 由2x 1-π3 =π2 ,2x 2-π3 =3π2 ,2x 3-π3=2π, 可得x 1=5π12 ,x 2=11π12 ,x 3=7π6, 由题表知A =2,∴f (x )=2sin ⎝⎛⎭⎪⎫2x -π3 . (2)g (x )=f ⎝ ⎛⎭⎪⎫ax 2+π6 =2sin ax (a >0), 当x ∈⎣⎢⎡⎦⎥⎤-2π3,π6 时, ax ∈⎣⎢⎡⎦⎥⎤-2a π3,a π6 , ∵g (x )在⎣⎢⎡⎦⎥⎤-2π3,π6 上是增函数, ∴⎣⎢⎡⎦⎥⎤-2a π3,a π6 ⊆⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π (k ∈Z ), ∴⎩⎪⎨⎪⎧-2a π3≥-π2+2k π,a π6≤π2+2k π (k ∈Z ), ∴⎩⎪⎨⎪⎧a ≤34-3k ,a ≤3+12k(k ∈Z ). ∵a >0,∴-14 <k <14,又k ∈Z ,∴k =0, ∴0<a ≤34 ,∴实数a 的最大值为34.。
2020-2021学年高中北师大版数学必修2章末检测卷:第一章 立体几何初步
第一章章末检测卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2 D.3解析:①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.答案:B2.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D 正确.答案: D3.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )解析:先观察俯视图,由俯视图可知选项B 和D 中的一个正确,由正视图和侧视图可知选项D 正确,故选D.答案:D4.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π解析:由题意可知该几何体是底面半径r =1,母线l =1的圆柱,故S 侧=2πrl =2π×1×1=2π.故选C.答案:C5.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段C 1D ,BC 的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直解析:因为A 1B ∥D 1C ,D 1C ∩EF =E ,又E ,F ,A 1,B 四点都在平行四边形A 1BCD 1上,所以E ,F ,A 1,B 四点共面,所以EF 与A 1B 相交,故选A.答案:A 6.(2015·长沙高一检测)已知等边三角形的边长为1,那么它的平面直观图面积为( )A.34B.38C.68D.616解析:底边长为1,高为12×32×sin45°=68,∴S =616.答案:D7.一个锥形的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:若俯视图为选项C,侧视图的宽应为俯视图中三角形的高32,所以俯视图不可能是选项C.答案:C8.(2016·沈阳市教学质量监测(一))“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()解析:根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.答案:B9.已知α,β为两个不同的平面,m,n为两条不同的直线,下列结论正确的是()A.若m⊥α,m⊥n,则n∥αB.若m∥α,n∥α,则m∥nC.若mβ,且α⊥β,则m⊥αD.若m⊥β,且α∥β,则m⊥α解析:A中可能nα;B中m,n还可能相交或异面;C中m,α还可能平行或斜交;一条直线垂直于两平行平面中的一个,也垂直于另一个,所以D 正确.答案:D 10.(2015·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3解析:由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为 2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).答案:C 11.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3πC.2π3 D .2π 解析:如图,取BD 的中点为E ,BC 的中点为O ,连接AE ,OD ,EO ,AO .因为AB =AD ,所以AE ⊥BD .由于平面ABD ⊥平面BCD , 所以AE ⊥平面BCD .因为AB =AD =CD =1,BD =2,所以AE =22,EO =12.所以AO =32.在Rt △BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32.所以该球的体积V =43π⎝ ⎛⎭⎪⎫323=3π2. 答案:A12.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A.23B.33C.23D.63解析:画出图形(如图所示),BB 1与平面ACD 1所成的角等于DD 1与平面ACD 1所成的角.在三棱锥DACD 1中,由三条侧棱两两垂直得点D 在底面ACD 1内的射影为等边三角形ACD 1的垂心,即中心H ,连接D 1H ,DH ,则∠DD 1H 为DD 1与平面ACD 1所成的角.设正方体的棱长为a ,则cos ∠DD 1H =63a a =63.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32. 答案:3214.(2016·莱州高二期末)已知P A ,PB ,PC 两两垂直且P A =2,PB =3,PC =2,则过P ,A ,B ,C 四点的球的体积为________.解析:以PB ,P A ,PC 为长方体的长、宽、高作长方体,则长方体的对角线长为P A 2+PB 2+PC 2=3,即球半径为32,V 球=43πR 3=92π.答案:92π 15.(2016·天津卷)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m 3.解析:由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.答案:2 16.(2016·全国卷甲)α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β. ④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)解析:对于①,α,β可以平行,也可以相交但不垂直,故错误. 对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.答案:②③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知一个几何体的三视图如图,试求它的表面积和体积.(单位:cm)解析:图中的几何体可看成是一个底面为直角梯形且侧棱垂直于底面的棱柱,且棱柱的某个侧面在水平面上.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的体积V =S 梯形·h =12×(1+2)×1×1=32(cm 3).表面积S 表面=2S 底+S 侧=12×(1+2)×1×2+(1+1+2+2)×1=(7+2)(cm 2).18.(12分)已知一正三棱台的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积的和,求棱台的高.解析:如图,正三棱台ABC -A 1B 1C 1中,O ,O 1为两底面的中心,D ,D 1是BC ,B 1C 1的中点,则DD 1为棱台的斜高.由已知可得A 1B 1=20 cm ,AB =30 cm ,则OD =5 3 cm ,O 1D 1=1033 cm. 由其侧面积等于两底面面积的和可得 12(60+90)·DD 1=34(202+302), 解得DD 1=1333(cm). 在直角梯形O 1ODD 1中,O 1O =DD 21-(OD -O 1D 1)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332 =43(cm),即棱台的高为4 3 cm.19.(12分)(2016·常德高一检测)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:(1)直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .证明:(1)在△P AC 中,D ,E 分别为PC ,AC 的中点,则P A ∥DE ,P A ⊄平面DEF ,DE ⊂平面DEF ,因此P A ∥平面DEF .(2)在△DEF 中,DE =12P A =3,EF =12BC =4,DF =5, 所以DF 2=DE 2+EF 2,所以DE ⊥EF ,又P A ⊥AC ,所以DE ⊥AC .因为EF ∩AC =E , 所以DE ⊥平面ABC ,DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 20.(12分)如图,在直三棱柱ADF -BCE 中,AB =AD =DF =a ,AD ⊥DF ,M ,G 分别是AB ,DF 的中点.(1)求该直三棱柱的体积与表面积;(2)在棱AD 上确定一点P ,使得GP ∥平面FMC ,并给出证明.解析:(1)由题意,可知该直三棱柱的体积为12×a ×a ×a =12a 3,表面积为12a 2×2+2a 2+a 2+a 2=(3+2)a 2. (2)当点P 与点A 重合时,GP ∥平面FMC . 取FC 的中点H ,连接GH ,GA ,MH .∵G 是DF 的中点,∴GH 綊12CD . 又M 是AB 的中点,AB 綊CD ,∴AM 綊12CD .∴GH ∥AM 且GH =AM ,∴四边形GHMA 是平行四边形, ∴GA ∥MH .∵MH 平面FMC ,GA 平面FMC ,∴GA ∥平面FMC ,即当点P 与点A 重合时,GP ∥平面FMC . 21.(12分)(2016·贵州省适应性考试)已知长方形ABCD 中,AB =3,AD =4.现将长方形沿对角线BD 折起,使AC =a ,得到一个四面体A -BCD ,如图所示.(1)试问:在折叠的过程中,直线AB 与CD 能否垂直?若能,求出相应a 的值;若不能,请说明理由;(2)求四面体A -BCD 体积的最大值.解析:(1)直线AB 与CD 能够垂直.因为AB ⊥AD ,若AB ⊥CD ,AD ∩CD =D , 则有AB ⊥平面ACD , 从而AB ⊥AC .此时,a =BC 2-AB 2=16-9=7, 即当a =7时,有AB ⊥CD .(2)由于△BCD 面积为定值,所以当点A 到平面BCD 的距离最大,即当平面ABD ⊥平面BCD 时,该四面体的体积最大,此时,过点A 在平面ABD 内作AH ⊥BD ,垂足为H , 则有AH ⊥平面BCD ,AH 就是该四面体的高.在△ABD 中,AH =AB ·AD BD =125,S △BCD =12×3×4=6,此时V A -BCD =13S △BCD ·AH =245,即为该四面体体积的最大值. 22.(12分)(2016·济宁高一检测)四棱锥P -ABCD 的底面ABCD 是正方形,E ,F 分别为AC 和PB 上的点,它的直观图,正视图,侧视图.如图所示.(1)求EF 与平面ABCD 所成角的大小; (2)求二面角B -P A -C 的大小.解析:根据三视图可知:P A 垂直平面ABCD ,点E ,F 分别为AC 和PB 的中点.ABCD 是边长为4的正方形,且P A =4.(1)如图,取AB 中点G ,连接FG ,GE ,则FG ∥P A ,GE ∥BC ,所以FG ⊥平面ABCD ,∠FEG 为EF 与平面ABCD 所成的角,在Rt △FGE 中,FG =2,GE =2,所以∠FEG =45°.。
高中数学 第一章 立体几何初步章末综合测评(含解析)北师大版必修2-北师大版高一必修2数学试题
章末综合测评(一) 立体几何初步(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒lαB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .lα,A ∈l ⇒A ∉αD .A ∈l ,lα⇒A ∈αC [若直线l ∩α=A ,显然有l α,A ∈l ,但A ∈α,故C 错.]2.下列说法中,正确的是( )A .经过不同的三点有且只有一个平面B .分别在两个平面内的两条直线一定是异面直线C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行C [A 中,可能有无数个平面;B 中,两条直线还可能平行、相交;D 中,两个平面可能相交.]3.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 的面积是( )A. 3 B .2 2 C.32 D.34A [由题图可知,原△ABC 的高为AO =3, ∴S △ABC =12×BC ×OA =12×2×3=3,故选A.]4.下列四个命题判断正确的是( ) A .若a ∥b ,a ∥α,则b ∥α B .若a ∥α,bα,则a ∥bC .若a ∥α,则a 平行于α内所有的直线D .若a ∥α,a ∥b ,b α,则b ∥αD [A 中b 可能在α内;B 中a 与b 可能异面;C 中a 可能与α内的直线异面;D 正确.] 5.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120°,底面圆的半径为1,则该圆锥的体积为( )A.22π3 B.2π3 C.2π3D.3π A [因为扇形弧长为2π,所以圆锥母线长为3,高为22,所求体积V =13×π×12×22=22π3.] 6.如图所示,在正方体ABCD A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于()A .ACB .BDC .A 1D D .A 1D 1 B [CE平面ACC 1A 1,而BD ⊥AC ,BD ⊥AA 1,所以BD ⊥平面ACC 1A 1,所以BD ⊥CE .]7.正方体AC 1中,E ,F 分别是DD 1,BD 的中点,则直线AD 1与EF 所成角的余弦值是() A.12 B.32 C.63 D.62C [连接BD 1,则BD 1∥EF ,∠BD 1A 是异面直线AD 1与EF 所成的角.∵AB ⊥AD 1,∴cos∠BD 1A =AD 1BD 1=63.] 8.如图所示,则这个几何体的体积等于( )A .4B .6C .8D .12A [由三视图得几何体为四棱锥, 如图记作S ABCD ,其中SA ⊥平面ABCD ,SA =2,AB =2,AD =2,CD =4,且ABCD 为直角梯形, ∠DAB =90°,∴V =13SA ×12(AB +CD )×AD =13×2×12×(2+4)×2=4,故选A.]9.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β; ②若α∥β,lα,则l ∥β;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中正确的说法个数是( ) A .3B .2 C .1D .0B [垂直于同一平面的两个平面不一定平行,故①错误;由面面平行的性质知②正确;借助于三棱柱可知③正确.]10.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A.316 B.916 C.38 D.932A [如图所示,设球的半径为R ,由题意知OO ′=R2,OF =R ,∴r =32R .∴S 截面=πr 2=π⎝ ⎛⎭⎪⎫32R 2=3π4R 2.又S 球=4πR 2,∴S 截面S 球=3π4R24πR 2=316.] 11.如图,ABCD A 1B 1C 1D 1为正方体,下面结论错误的是( ) A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°D [由于BD ∥B 1D 1,易知BD ∥平面CB 1D 1;连接AC (图略),易证BD ⊥平面ACC 1,所以AC 1⊥BD ;同理可证AC 1⊥B 1C ,因为BD ∥B 1D 1,所以AC 1⊥B 1D 1,所以AC 1⊥平面CB 1D 1;对于选项D ,∵BC ∥AD ,∴∠B 1CB 即为AD 与CB 1所成的角,此角为45°,故D 错.]12.在四面体ABCD 中,下列条件不能得出AB ⊥CD 的是( ) A .AB ⊥BC 且AB ⊥BD B .AD ⊥BC 且AC ⊥BD C .AC =AD 且BC =BDD .AC ⊥BC 且AD ⊥BDD [A 项,∵AB ⊥BD ,AB ⊥BC ,BD ∩BC =B ,∴AB ⊥平面BCD , ∵CD平面BCD ,∴AB ⊥CD .B 项,设A 在平面BCD 内的射影为O ,则AO ⊥平面BCD ,∵AD ⊥BC ,AC ⊥BD , ∴O 为△BCD 的垂心, 连接BO ,则BO ⊥CD . 又AO ⊥CD ,AO ∩BO =O , ∴CD ⊥平面ABO , ∵AB平面ABO ,∴AB ⊥CD .C 项,取CD 中点G ,连接BG ,AG .∵AC =AD 且BC =BD , ∴CD ⊥BG ,CD ⊥AG ,∵BG ∩AG =G ,∴CD ⊥平面ABG , ∵AB平面ABG ,∴AB ⊥CD ,故选D.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.底面直径和高都是4 cm 的圆柱的侧面积为________ cm 2. 16π [圆柱的底面半径为r =12×4=2(cm),∴S 侧=2π×2×4=16π(cm 2).]14.如图,长方体ABCD A 1B 1C 1D 1中,MN 在平面BCC 1B 1内,MN ⊥BC 于M ,则MN 与AD 的位置关系是________.垂直 [由平面BCC 1B 1⊥平面ABCD , 知MN ⊥平面ABCD . ∴MN ⊥AD .]15.已知一个圆台的下底面半径为r ,高为h ,当圆台的上底面半径r ′变化时,圆台体积的变化X 围是________.⎝ ⎛⎭⎪⎫13πr 2h ,πr 2h [V 圆台=13π(r 2+rr ′+r ′2)h,0<r ′<r . 当上底面面积为0时,圆台变为圆锥,V 圆锥=13πr 2h ;当上、下底面面积相等时,圆台变为圆柱,V 圆柱=πr 2h .所以圆台体积的变化X 围是⎝ ⎛⎭⎪⎫13πr 2h ,πr 2h .]16.将正方形ABCD 沿对角线BD 折成直二面角A BD C ,则异面直线AB 与CD 所成的角等于________.60° [如图所示,分别取BC ,AC 的中点G 、F , 连接EG ,GF ,EF , 则EG ∥CD ,GF ∥AB ,∴∠EGF 就是AB 与CD 所成的角. 由题意EG =GF =EF =a2,∴△EFG 是等边三角形,∴∠EGF =60°.]三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如图所示,四棱锥V ABCD 的底面为边长等于2 cm 的正方形,顶点V 与底面正方形中心的连线为棱锥的高,侧棱长VC =4 cm ,求这个正四棱锥的体积.[解] 连接AC ,BD 相交于点O ,连接VO , ∵AB =BC =2 cm , 在正方形ABCD 中, 求得CO = 2 cm , 又在直角三角形VOC 中, 求得VO =14 cm ,∴V V ABCD =13S ABCD ·VO =13×4×14=4314(cm 3).故这个正四棱锥的体积为4314 cm 3.18.(本小题满分12分)如图所示,P 是▱ABCD 所在平面外一点,E ,F 分别在PA ,BD 上,且PE ∶EA =BF ∶FD .求证:EF ∥平面PBC .[证明] 连接AF 延长交BC 于G ,连接PG . 在▱ABCD 中, 易证△BFG ∽△DFA , ∴GF FA =BF FD =PE EA, ∴EF ∥PG . 而EF平面PBC ,PG平面PBC ,∴EF ∥平面PBC .19.(本小题满分12分)如图,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. [解] (1)交线围成的正方形EHGF ,如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 20.(本小题满分12分)如图所示,在长方体ABCD A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .[证明] 由长方体的性质可知A 1B 1⊥平面BCC 1B 1, 又BM平面BCC 1B 1,所以A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,所以C 1M =CM =1. 在Rt△B 1C 1M 中,B 1M =B 1C 21+MC 21=2, 同理BM =BC 2+CM 2=2,又B 1B =2, 所以B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M . 又A 1B 1∩B 1M =B 1,所以BM ⊥平面A 1B 1M , 因为BM平面ABM ,所以平面ABM ⊥平面A 1B 1M .21.(本小题满分12分)如图,在三棱锥P ABC 中,PA ⊥底面ABC ,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面PAC ;(2)是否存在点E 使得二面角A DE P 为直二面角?并说明理由. [解] (1)证明:∵PA ⊥底面ABC ,BC 底面ABC ,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩PA=A,AC,PA平面PAC,∴BC⊥平面PAC.(2)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE.∴∠AEP为二面角ADEP的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.∴在棱PC上存在一点E,使得AE⊥PC.这时∠AEP=90°,故存在点E,使得二面角ADEP为直二面角.22.(本小题满分12分)如图所示,在长方形ABCD中,AB=2,AD=1,E为CD的中点,以AE为折痕,把△DAE折起到△D′AE的位置,且平面D′AE⊥平面ABCE.(1)求证:AD′⊥BE;(2)求四棱锥D′ABCE的体积;(3)在棱ED′上是否存在一点P,使得D′B∥平面PAC,若存在,求出点P的位置,若不存在,请说明理由.[解] (1)证明:根据题意可知,在长方形ABCD中,△DAE和△CBE为等腰直角三角形,∴∠DEA=∠CEB=45°,∴∠AEB=90°,即BE⊥AE.∵平面D′AE⊥平面ABCE,且平面D′AE∩平面ABCE=AE,BE平面ABCE,∴BE⊥平面D′AE,∵AD′平面D′AE,∴AD′⊥BE.(2)取AE的中点F,连接D′F,则D′F⊥AE.∵平面D ′AE ⊥平面ABCE , 且平面D ′AE ∩平面ABCE =AE ,D ′F 平面D ′AE ,∴D ′F ⊥平面ABCE ,∴V D ′ABCE =13S 四边形ABCE ·D ′F =13×12×(1+2)×1×22=24.(3)如图所示,连接AC 交BE 于Q ,假设在D ′E 上存在点P ,使得D ′B ∥平面PAC ,连接PQ .∵D ′B平面D ′BE ,平面D ′BE ∩平面PAC =PQ ,∴D ′B ∥PQ , ∴在△EBD ′中,EP PD ′=EQQB. ∵在梯形ABCE 中,EQ QB =EC AB =12,∴EP PD ′=EQ QB =12,即EP =13ED ′, ∴在棱ED ′上存在一点P ,且EP =13ED ′时,使得D ′B ∥平面PAC .。
(常考题)北师大版高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(1)
一、选择题1.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( )A .2:1B .4:1C .8:1D .8:32.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =,6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A 96B 93C 96D 93 3.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3O 的表面积是( )A .28π3B .14π3C .56π3D .7π 34.已知正方体1111ABCD A B C D -,点,E F 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( )A 5B .35C .45D 25 5.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π26.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6πB .4πC .3πD .2π 7.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π 8.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .22B 255C .32D 2779.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交10.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE11.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C 322D .34二、填空题13.在如图棱长为2的正方体中,点M 、N 在棱AB 、BC 上,且1AM BN ==,P 在棱1AA 上,α为过M 、N 、P 三点的平面,则下列说法正确的是__________.①存在无数个点P ,使面α与正方体的截面为五边形;②当11A P =时,面α与正方体的截面面积为33;③只有一个点P ,使面α与正方体的截面为四边形;④当面α交棱1CC 于点H ,则PM 、HN 、1BB 三条直线交于一点.14.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.15.已知三棱锥A BCD -中,2AB CD ==3AC BC AD BD ====,则三棱锥A BCD -的体积是____________.16.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 17.在正三棱锥A BCD -中,5AB AC AD ===,6BC BD CD ===.点M 是线段BC 上的点,且2BM MC =.点P 是棱AC 上的动点,直线PM 与平面BCD 所成角为θ,则sin θ的最大值为______.18.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1A C 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值(2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥(4)存在某个位置,使//MB 平面1A DE19.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π;③AC ⊥平面PBC ;④三棱锥A PBC -的体积为3. 其中正确命题的序号为______.(写出所有正确结论的序号)20.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD三、解答题21.如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值.22.如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,2AB AD ==.(1)求证://GE 平面ACD ;(2)求证:平面ABD ⊥平面BCD .23.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.24.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为33PB =60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC⊥平面ABC;(2)求直线BF与平面PAC所成角的大小.25.如图,四边形ABCD为矩形,且4AD,22=AB=,PA⊥平面ABCD,PA=,E为BC的中点.2⊥;(1)求证:PC DE-的体积.(2)若M为PC的中点,求三棱锥M PAB-中,G是底面ABC的重心,D是线段PC上的点,且26.在三棱锥P ABC2PD DC=.(1)求证:DG//平面PAB;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案.【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--. 当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1.故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.A解析:A先确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,CE CC AA BC AB ''=====BE ==,所以45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 6S rl CC DC πππ'==⨯⨯=⨯⨯=,所以曲面面积为18⨯=. 故选:A.【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 3.A解析:A【分析】首先得到11AB A ∠是1AB 与底面111A B C 所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算.【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =.设111AA A B a ==,则111312ABC A B C V a a -=⨯==三棱柱 解得2a =.所以球O 的半径R ==,所以球O 的表面积2228π4π4π3S R ==⨯=. 故选:A .解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.4.B解析:B【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可.【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=,2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯, 异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 5.D解析:D【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.6.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC ,所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.8.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE A C , 1//EF BC ,且OE EF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OAOPA OP∴∠=,OA 为定值,∴当OP 最小时,正弦值最大,而OP所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒,AP ∴=, 又1212OA =⨯=,sin OAOPA OP∴∠===故选:D 【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.9.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.10.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D 作出判定. 【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH 的中点O ,连接ON ,BO ,易知ON 与BM 平行且相等,∴四边形ONMB 为平行四边形,∴MN ‖BO , ∵BO 与平面ABE (即平面ABFE )相交,故MN 与平面ABE 相交,故A 错误; ∵平面ADE ‖平面BCF ,MN ∩平面BCF =M ,∴MN 与平面ADE 相交,故B 错误; ∵BO ⊂平面BDHF ,即BO ‖平面BDH ,MN ‖BO ,MN ⊄平面BDHF ,∴MN ‖平面BDH ,故C 正确; 显然M ,N 在平面CDEF 的两侧,所以MN 与平面CDEF 相交,故D 错误. 故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .11.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积277π4π4π123S r ,故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.12.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = ∴其面积为1(21)22322S =+⨯= 故选:A 【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则2S S '=二、填空题13.①②④【分析】让从开始逐渐向运动变化观察所得的截面从而可得正确的选项【详解】由题设可得为所在棱的中点当时如图(1)直线分别交与连接并延长于连接交于则与正方体的截面为五边形故①正确当如图(2)此时与正解析:①②④ 【分析】让P 从A 开始逐渐向1A 运动变化,观察所得的截面,从而可得正确的选项. 【详解】由题设可得,M N 为所在棱的中点. 当203AP <<时,如图(1),直线MN 分别交,AD DC 与,T S ,连接TP 并延长1DD 于G , 连接GS 交1CC 于H ,则α与正方体的截面为五边形,故①正确.当11A P =,如图(2),此时α2, 其面积为2362=33B 正确.当,A P 重合或1,A P 重合时,如图(3),α与正方体的截面均为四边形,故③错误.如图(4),在平面α内,设PM HN S ⋂=,则S PM ∈,而PM ⊂平面11A B BA , 故S ∈平面11A B BA ,同理S ∈平面11C B BC ,故S ∈平面11A B BA ⋂平面111C B BC BB =即PM 、HN 、1BB 三条直线交于一点. 故答案为:①②④. 【点睛】思路点睛:平面的性质有3个公理及其推理,注意各个公理的作用,其中公理2可用来证明三点共线或三线共点,公理3及其推理可用来证明点共面或线共面,作截面图时用利用公理2来处理.14.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为24【分析】 设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积.【详解】 解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==. 故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15.【分析】取中点连接由条件可证明平面由此将三棱锥的体积表示为计算可得结果【详解】取中点连接如下图所示:因为所以平面平面所以平面又因为所以所以又因为故答案为:【点睛】关键点点睛:解答本题的关键是通过找的3【分析】取AB 中点O ,连接,CO DO ,由条件可证明AB ⊥平面CDO ,由此将三棱锥A BCD -的体积表示为13CDO AB S⨯⨯,计算可得结果.【详解】取AB 中点O ,连接,CO DO ,如下图所示:因为AC BC AD BD ===,所以,AB CO AB DO ⊥⊥,CO DO O =,CO ⊂平面CDO ,DO ⊂平面CDO ,所以AB ⊥平面CDO , 又因为3AC BC AD BD ====,2AB CD ==()2221032CO DO ⎛⎫==-= ⎪ ⎪⎝⎭, 所以22110221222CDO S ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又因为11221333A BCD CDO V AB S -=⨯⨯==, 故答案为:23. 【点睛】 关键点点睛:解答本题的关键是通过找AB 的中点,证明出线面垂直,从而将三棱锥的体积表示为13CDO AB S ⨯⨯,区别于常规的13⨯底面积⨯高的计算方法,本例实际可看成是两个三棱锥的体积之和.16.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何解析:26 【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.17.【分析】证明直线与平面所成角中当此为二面角的平面角时最大即可得【详解】先证一个命题:平面内所有直线与平面所成的角中当此角为二面角的平面角时最大如图平面于点于是上任一点则而则平面又平面∴是二面角的平面 13 【分析】证明直线PM 与平面BCD 所成角中当此为二面角的平面角时最大即可得.【详解】先证一个命题:平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大. 如图AO ⊥平面BCD 于点O ,OE BC ⊥于E ,Q 是BC 上任一点,则AO BC ⊥,而AO OE O =,则BC ⊥平面OAE ,又AE ⊂平面OAE ,∴AEO ∠是二面角A BC D --的平面角,而AQO 是直线AQ 与平面ABCD 所成的角,显然sin AO AEO AE∠=,sin AO AQO AQ ∠=,又AQ AE ≥,∴sin sin sin AQO AEO ∠≤∠,,AEO AQO ∠∠都是锐角,∴AQO AEO ∠≤∠,,Q E 重合时等号成立.由此可知平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大. 由已知363EO =⨯=,22534AE =-=,2213AO AE EO =-=, 13sin 4AEO ∠=, ∴直线PM 与平面BCD 所成角最大值等于AEO ∠, ∴sin θ的最大值为134. 故答案为:13. 【点睛】结论点睛:在二面角A BC D --(为锐二面角)中,AEO ∠是A BC D --二面角的平面角,Q 是棱BC 上任一点,则AQ 与平面BCD 所成角中最大值为二面角的平面角,AQ 与平面BCD 内过Q 点的直线(实际上是所有直线)所成角中最大值为直线AQ 与平面BCD 所成的角.18.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4)【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE A C ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3).【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠所以MB 是定值,故(1)正确; B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =, 则2DE CE ==若存在某个位置,使1DE A C ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1A CE ,所以1DE A E ⊥,与11DA A E ⊥矛盾,故(3)不正确.故答案为:(1)(2)(4)【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.19.①③【分析】①先求出再得到最后判断①正确;②先判断三棱锥的外接球就是以为顶点以棱的长方体的外接球再求半径最后求出球的表面积判断②错误;③先证明最后证明平面判断③正确;④直接求出三棱锥的体积判断④错误解析:①③.【分析】①先求出3BC =222AB BC AC =+,最后判断①正确;②先判断三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,再求半径r ,最后求出球的表面积,判断②错误;③先证明AC PC ⊥,AC BC ⊥,⋂=PC CB C ,最后证明AC ⊥平面PBC ,判断③正确;④直接求出三棱锥A PBC -的体积,判断④错误.【详解】解:①在ACB △,因为1AC =,2AB =,且60BAC ∠=︒,所以2222cos 3BC AB AC AB AC BAC =+-⋅⋅∠=,则BC =所以222AB BC AC =+,所以ACB △是直角三角形,故①正确;②由(1)可知AC BC ⊥,又因为PC ⊥底面ABC ,所以三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,则2r ==,则此球的表面积等于245S r ππ==,故②错误; ③因为PC ⊥底面ABC ,所以AC PC ⊥,由(1)可知AC BC ⊥,⋂=PC CB C , 所以AC ⊥平面PBC ,故③正确;④三棱锥A PBC -的体积11(11326V =⨯⨯⨯=,故④错误. 故答案为:①③.【点睛】本题考查判断三角形是直角三角形、求三棱锥的外接球的表面积、求三棱锥的体积、线面垂直的证明,是中档题. 20.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题.三、解答题21.(1)证明见解析;(2)24 【分析】 (1)取PB 边的中点E ,即可证明四边形AEFD 为平行四边形,再根据线面平行的判定定理即可证明;(2)取BC 边的中点G ,由//DG AB ,即可得到直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,再由等体积法求得22G PCD d -=,即可求得直线AB 与平面PDC 所成角的正弦值.【详解】解:(1)如图所示:取PB 边的中点E ,连,AE FE ,则三角形中位线可知://EF BC 且12EF BC =, 由题可知://AD BC 且12AD BC =, //AD EF ∴且AD EF =,即四边形AEFD 为平行四边形,//DF AE ∴ 又DF ⊄平面,PAB AE ⊂平面PAB ,故//DF 平面PAB ;(2)取BC 边的中点G ,则//DG AB ,且2DG AB ==,直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,又1CDG S =,且易得DC PD =,所以11223622CDP S PC DF =⋅=⨯=由等体积法,1113633P CDG G PCD G PCD V V d ---==⨯⨯=⨯⨯,得22G PCD d -=, DG ∴与平面PDC 所成角的正弦值为22224=, 故直线AB 与平面PDC 所成角的正弦值为2. 【点睛】关键点点睛:本题解题的关键是利用等体积法求出G 点到平面PCD 的距离.22.(1)证明见解析;(2)证明见解析.【分析】(1)先依题意得到G 为ABD △的重心,即得到21BG BE GM EC ==,证得//GE MC ,再利用线面平行的判定定理即证结论;(2)先在ABD △中,证得AO BD ⊥,求得1AO =,在BCD △中,求得3OC =,结合勾股定理证得AO OC ⊥,再利用线面垂直的判定定理证明AO ⊥平面BCD ,即证平面ABD ⊥平面BCD .【详解】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =,∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BE GM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD ,∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,2AB AD ==∴AO BD ⊥∴221AO AB BO =-=,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则3OC =又2CA =,∴222OA OC CA +=,∴AO OC ⊥由AO OC ⊥,AO BD ⊥,OCBD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD ,又AO⊂平面ABD,∴平面ABD⊥平面BCD.【点睛】思路点睛:证明线面平行时运用线面平行的判定定理证得,或者利用面面平行的性质证得;证明线面垂直时,运用其判定定理需要证明一条直线与相交的两条直线垂直,当题目条件中给出长度时可以采用勾股定理逆定理证得线线垂直,或者运用面面垂直的性质定理证得线面垂直.23.(1)证明见解析;(2)6 .【分析】(1)证明AC⊥BC和PA⊥BC,BC⊥面PAC即得证;(2)先证明∠BPC为PB与平面PAC所成的角,再通过解三角形求出,BC PC即得解.【详解】证明:(1)AB为圆O直径∴∠ACB=90°即AC⊥BCPA⊥面ABC,∴PA⊥BCAC PA=A∴BC⊥面PAC.(2)BC⊥面PAC,∴∠BPC为PB与平面PAC所成的角,在直角三角形ABC中,22213BC=-在直角三角形PAC中,22112PC=+=,在直角三角形PBC中,tan∠BPC 36 2=.故直线PB与平面PAC6【点睛】方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形).24.(1)证明见解析;(2)45.。
高中数学 单元测试二 北师大版必修2-北师大版高中必修2数学试题
单元测试二本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.A、B为空间两点,l为一条直线,则过A、B且垂直于l的平面( )A.不存在 B.至多一个C.有且只有一个 D.有无数个答案:B解析:当l⊥AB时,存在唯一一个这样的平面,当l不垂直AB时,这样的平面不存在.2.下列四个命题中,正确的为( )①若两个平面有三个不共线的公共点,则这两个平面重合;②两条直线可以确定一个平面;③若M∈α,M∈β,a∩β=l,则M∈l;④空间中相交于同一点的三条直线必在同一个平面内.A.①② B.①③C.②③ D.③④答案:B解析:根据空间图形的公理容易判断①③是正确的.故选B.3.若直线a与平面α内无数条直线平行,则直线a与平面α的位置关系是( ) A.a∥α B.aαC.a∥α或aα D.a⃘α答案:C解析:直线a没有指明位置,有可能在平面α内,也有可能平行于平面α.4.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若mβ,α⊥β,则m⊥αB.若α∥β,mα,nβ,则m∥nC.若α⊥γ,α⊥β,则β⊥γD.若m⊥β,m∥α,则α⊥β答案:D解析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,这两个平面内的直线不一定平行,所以B不正确;垂直于同一个平面的两个平面不一定垂直,也可能平行,所以C不正确;根据面面垂直的判定定理,知D正确.5.已知α1,α2,α3是三个相互平行的平面.平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3,那么“P1P2=P2P3”是“d1=d2”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:C6.如图1是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的主视图为( )1ABCD答案:B解析:根据三视图的画法可知选B.7.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )BCD答案:B解析:由正视图可把A、C排除,再由左视图把D排除,故选B.8.如图,已知在四面体C-ABD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF ⊥AB,则异面直线EF与CD所成的角为( )A.90° B.45°C.60° D.30°答案:D解析:取AD的中点G,连接FG,EG,因为E,F分别为AC,BD的中点,所以FG∥AB,且FG=1,EG∥CD,且EG=2,所以EF与CD所成的角即为EF与EG所成的角,即∠FEG.又EF⊥AB,即∠EFG=90°,所以∠FEG=30°.9.已知矩形ABCD,AB=1,BC= 2.将△沿矩形的对角线BD所在的直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直答案:C解析:最简单的方法是取一长方形动手按照其要求进行翻折,观察翻折过程,即可知选项C是正确的.10.如图,已知等边三角形ABC的中线AF与中位线DE相交于点G,将△ADE绕DE旋转得到△A′DE,则下列命题中错误的是( )A.动点A′在平面ABC上的射影在线段AF上B.恒有平面A′GF⊥平面BCEDC.三棱锥A′-EFD的体积有最大值D.异面直线A′E与BD不可能垂直答案:D解析:由于A′G⊥DE,FG⊥DE,所以DE⊥平面A′FG,平面A′FG⊥平面BCED,过点A′作平面ABC的垂线,则垂足在线段AF上,所以命题A,B正确;当平面A′DE⊥平面BCED 时,三棱锥A′-EFD的体积最大,所以命题C正确;因为BD∥EF,设AC=2a,所以EF=A′E=a,A′G=GF=32a,当A′F=2a时,2a<A′G+GF,A′E2+EF2=A′F2,所以异面直线A′E与BD可能垂直,所以命题D不正确.故选D.第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.11.一个边长为a的正方形卷成圆柱侧面,则此圆柱的轴截面的面积为________.答案:a2π解析:设圆柱底面半径为r,则2π·r=a,r=a2π,故轴截面长为a,宽为aπ,面积为a2π.12.一个几何体的三视图如图所示,则该几何体的体积为__________.答案:12+π13.正方体AC1中,M、N分别为棱AA1和AB上的点,若∠B1MN为直角,则∠C1MN=________.答案:90°解析:∵B1C1⊥平面ABB1A1,MN⊆平面ABB1A1,∴MN⊥B1C1,B1C1∩B1M=B1,∴MN⊥平面MB1C1.∴MN⊥MC1,∴∠C1MN=90°.14.下列关于四棱柱的四个命题中,正确的命题序号为________.①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱答案:②④对于命题①,斜棱柱中的两个相对的侧面可以同时垂直于底面,故①错误.对于命题②,若两个过相对侧棱的截面都垂直于底面,则它们的交线一定垂直于底面,又这一交线是两对角面的平行四边形的中位线,所以四条侧棱都垂直于底面,棱柱为直四棱柱,即②正确.对于命题③,如图所示的斜四棱柱,它的所有棱长都相等,且∠AA1B1=∠AA1D1=60°,这时它的四个侧面两两全等,故③错误.对于命题④,由四棱柱的四条对角线两两相等得到两对角面是矩形,从而四棱柱是直四棱柱,故④正确.15.设m、n是异面直线,则下列四个命题中,正确命题的序号为______________.(1)一定存在平面α,使m⊂α且n∥α;(2)一定存在平面α,使m⊂α且n⊥α;(3)一定存在平面γ,使m、n到γ的距离相等;(4)一定存在无数对平面α、β,使m⊂α,n⊂β且α⊥β.答案:(1)(3)(4)解析:(1)正确,在直线m上任取一点作n的平行线n′,则直线m和n′相交,确定的平面为所求的α;(2)错误,当异面直线m、n不垂直的时候,就不存在平面α,使m⊂α且n⊥α;(3)正确,在异面直线m、n上各任意取一点A、B,过线段AB的中点作一个平面γ,使平面γ与异面直线都平行,则平面γ为所求;(4)正确,过直线m任作一个平面α,则过直线n的平面β绕着直线n旋转时,一定有一个位置,使得平面β与平面α垂直.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.16.(13分)下图是4个三视图和4个实物图,请将三视图和实物图正确配对.(1)(2)(3)(4)A B C D解:利用作三视图的方法判别.(1)的实物图形是C;(3)和(4)的俯视图可以看出,(3)(4)分别对应B,A,于是(2)对应D.17.(13分)如图,已知四棱锥P-ABCD的底面ABCD为平行四边形,M,N分别是棱AB,PC的中点,平面CMN与平面PAD交于PE.(1)求证:MN∥平面PAD;(2)求证:MN∥PE.证明:(1)如图,取DC的中点Q,连接MQ,NQ.∵N,Q分别是PC,DC的中点,∴NQ∥PD.∵N Q⃘平面PAD,PD平面PAD,∴NQ∥平面PAD.∵M是AB的中点,四边形ABCD是平行四边形,∴MQ∥AD.又∵M Q⃘平面PAD,AD平面PAD,∴MQ∥平面PAD.∵MQ∩NQ=Q,∴平面MNQ∥平面PAD.∵MN平面MNQ,∴MN∥平面PAD.(2)∵平面MNQ∥平面PAD,且平面PEC∩平面MNQ=MN,平面PEC∩平面PAD=PE,∴MN ∥PE .18.(13分)已知在三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,AC =12AB ,N 为AB 上一点,AB =4AN ,M ,D ,S 分别为PB ,AB ,BC 的中点.(1)求证:PA ∥平面CDM ; (2)求证:SN ⊥平面CDM .证明:(1)因为在三棱锥P -ABC 中,M ,D 分别为PB ,AB 的中点,所以MD ∥PA , 因为MD 平面CDM ,P A ⃘平面CDM , 所以PA ∥平面CDM .(2)由(1),知MD ∥PA .又PA ⊥平面ABC ,所以MD ⊥平面ABC . 又SN 平面ABC ,所以MD ⊥SN .在△ABC 中,连接DS ,因为D ,S 分别为AB ,BC 的中点,所以DS ∥AC ,且DS =12AC .又AB ⊥AC ,所以AD ⊥DS .因为AC =12AB ,所以AC =AD ,所以∠ADC =45°,∠CDS =45°.又AB =4AN ,所以DN =12AD =12AC ,即DN =DS ,所以∠SND =45°,故SN ⊥CD . 又MD ∩CD =D , 所以SN ⊥平面CDM .19.(13分)如图,几何体E -ABCD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 解:(1)设BD 中点为O ,连接OC ,OE ,则由BC =CD 知,CO ⊥BD , 又已知CE ⊥BD ,所以BD ⊥平面OCE .所以BD ⊥OE ,即OE 是BD 的垂直平分线, 所以BE =DE .(2)取AB 中点N ,连接MN ,DN , ∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN ⊥AB . 由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC ⊥AB , 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .20.(14分)四棱锥P -ABCD 的底面与四个侧面的形状和大小如图所示.(1)写出四棱锥P -(2)在四棱锥P -ABCD 中,若E 为PA 的中点,求证:BE ∥平面PCD .解:(1)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⊥平面PAB ,BC ⊥平面PAB ,AB ⊥平面PAD .(2)证法一:取PD 的中点F EF ,CF∵E ,F 分别是PA ,PD 的中点,∴EF ∥AD ,EF =12AD ,在直角梯形ABCD 中,BC ∥AD ,且BC =12AD ,∴EF ∥BC ,且EF =BC ,∴四边形BEFC 是平行四边形, ∵BE ∥CF .又∵CF ⊂平面PCD ,B E ⃘平面∴BE ∥平面PCD .证法二:取AD 的中点N ,连接EN ,BN ∵E ,N 分别是PA ,AD 的中点, ∴EN ∥PD ,又∵E N ⃘平面PCD , ∴EN ∥平面PCD在直角梯形ABCD 中,BC ∥AD ,且BC =12AD =DN ,∴四边形BCDN 是平行四边形,BN ∥CD 又∵B N ⃘平面PCD , ∴BN ∥平面PCD∵BN∩EN=N,∴平面BEN∥平面PCD.又BE⊂平面BEN,∴BE∥平面PCD.21.(14分)如图,直三棱柱ABC-A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,D是A1B1的中点.(1)求证:C1D⊥平面A1B1BA.(2)当点F在BB1上的什么位置时,AB1⊥平面C1DF?并证明你的结论.解:(1)∵AC=BC,∴A1C1=B1C1,∴△A1B1C1为等腰三角形.又A1D=DB1,∴C1D⊥A1B1.又AA1⊥底面A1B1C1,∴C1D⊥AA1.又AA1∩A1B1=A1,∴C1D⊥平面A1B1BA.(2)由(1)可得C1D⊥AB1.若AB1⊥平面C1DF,则DF⊥AB1.∵∠ACB=∠A1C1B1=90°,且AA1=AC=BC=a,∴A1B1=2a.由分析,知△DEB1∽△AA1B1∽△DB1F,∴DB1AA1=B1FA1B1,∴B1F=a.故当点F与点B重合时,AB1⊥平面C1DF.。
最新北师大版高中数学必修二第一章《立体几何初步》测试题(含答案解析)
一、选择题1.已知正方体1111ABCD A BC D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .902.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(3B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,43.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( ) A .18πB .36πC .40πD .72π4.已知正方体1111ABCD A BC D -,点,E F 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( ) A 5B .35C .45D 255.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°6.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .[3225B .522C .[3246D .6,227.如图为某几何体的三视图,正视图、左视图和俯视图均为等腰直角三角形,则该几何体的表面积是( )A .23+B .223+C .63+D .68.在长方体1111ABCD A BC D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( ) A .3-B .3-C .3 D .3 9.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A .43B .23C .83D .4310.在三棱锥S ABC -中,SA ⊥底面ABC ,且22AB AC ==,30C ∠=,2SA =,则该三棱锥外接球的表面积为( ) A .20π B .12πC .8πD .4π11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.若一个底面边长为62,侧棱长为6的正六棱柱的所有定点都在一个球的面上,则此球的体积是___________.14.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为3,则这个球的表面积为______. 17.一个三棱锥的三视图如图所示,该三棱锥中最长棱的长度为_______.18.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.19.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.20.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.三、解答题21.如图,在四棱锥M ABCD -中,四边形ABCD 为梯形,90ABC BAD ∠=∠=,//BC AD ,22AD AB BC ==(1)若E 为MA 中点,证明:BE //面MCD(2)若点M 在面ABCD 上投影在线段AC 上,1AB =,证明:CD ⊥面MAC . 22.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.23.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.24.将棱长为2的正方体1111ABCD A BC D -沿平面11A BCD 截去一半(如图1所示)得到如图2所示的几何体,点E ,F 分别是BC ,DC 的中点.(Ⅰ)证明:EF ⊥平面1A AC ; (Ⅱ)求三棱锥1A D EF -的体积.25.如图,三棱锥V —ABC 中, VA=VB =AC=BC=2,AB =23VC=1.(1)证明: AB ⊥VC ; (2)求三棱锥V —ABC 的体积.26.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC ==30ACB ∠=,13AA =,11BC AC ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1AC ⊥平面1C EB .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A BC D -的棱长为1,则11112AD AB B D ==, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A BC D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.2.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE中,利用三边关系求解即可. 【详解】由题意得BC x =,则212x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-21x AD +=在ADE 中,由三边关系得:22111124x x +>-,22111124x x +<-,③0x >;由①②③可得03x << 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.3.D解析:D 【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可. 【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==4AN =,故()224232R =+2441872S R πππ==⨯=.故选:D. 【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法.4.B解析:B 【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可. 【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯,异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.A解析:A 【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论, 【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒, ∵1BC AC ,AB AC ⊥,1BC ABB ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30, 故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.6.A解析:A【分析】分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案.【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1,∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1,∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ;连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB ,可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF .又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上.在Rt △AA 1M 中,AM 222211215AA A M =+=+=同理,在Rt △AA 1N 中,求得AN 5=△AMN 为等腰三角形.当P 在MN 的中点时,AP 222322()2+ 当P 与M 或N 重合时,AP 5 ∴线段AP 长度的取值范围是3252⎡⎢⎣. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题. 7.A解析:A【分析】由三视图可知原几何体是三棱锥,平面ACD ⊥平面ABC ,ACD ACB ≅底面是等腰直角三角形,底为2AC =,高为1BE =,ABD BCD ≅是边长为2的等边三角形,计算四个三角形面积之和即可求解.【详解】由三视图可知原几何体是三棱锥:底面ACB △是等腰直角三角形,底2AC =,高1BE =,平面ACD ⊥平面ABC ,ACD ACB ≅,由三视图知ACB △中,2AC =,ACB △是等腰直角三角形,所以2AB BC == ACD △是等腰直角三角形,2AD CD ==2AC =,222BD BE DE =+=所以等腰直角三角形ACB △的面积为12112⨯⨯=, 等腰直角三角形ACD △的面积为12112⨯⨯=,等边ABD △的面积为()2332⨯=, 等边BCD △的面积为()233242⨯=, 所以该几何体的表面积是331123+++=+, 故选:A. 8.C解析:C【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D , 在长方体1111ABCD A BC D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FG EF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角, 因为12AB AA ==,所以14FA G π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FG EGF EG ∠==23236=. 所以二面角11B A B E --的余弦值为33. 故选:C【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.9.D解析:D【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得3BCD S ≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅ 因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立,1116sin120223BCD S BC BD =⋅≤⨯= 因为二面角A BC D --的大小为60, 所以点A 到平面BCD 的最大距离为2sin 603h ==所以114333A BCD BCD V S h -=⋅≤=, 所以四面体ABCD 体积的最大值是43, 故选:D【点睛】 关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值. 10.A解析:A【分析】利用正弦定理求出ABC 的外接圆直径2r ,利用公式2R =棱锥S ABC -的外接球直径,然后利用球体的表面积公式可求得结果.【详解】如下图所示,设圆柱的底面半径为r ,母线长为h ,圆柱的外接球半径为R ,取圆柱的轴截面,则该圆柱的轴截面矩形的对角线的中点O 到圆柱底面圆上每个点的距离都等于R ,则O 为圆柱的外接球球心,由勾股定理可得()()22222r h R +=.本题中,SA ⊥平面ABC ,设ABC 的外接圆为圆1O ,可将三棱锥S ABC -内接于圆柱12O O ,如下图所示:设ABC 的外接圆直径为2r ,2SA h ==, 由正弦定理可得24sin AB r C==∠,,该三棱锥的外接球直径为2R ,则()222225R r h =+=.因此,三棱锥S ABC -的外接球的表面积为()224220R R πππ=⨯=.故选:A.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 11.D解析:D【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误.【详解】对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n , m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂,而m α⊄,则//m α或m 与α相交,故D 错误.故选:D .【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.A解析:A【分析】作出原平面图形,然后求出面积即可.【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形, ∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=,在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB =, ∴其面积为1(21)22322S =+⨯=. 故选:A【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则2S S '=. 二、填空题13.【分析】计算出正六棱柱的外接圆直径进而可求得外接球的半径利用球体体积公式即可计算出正六棱柱的外接球的体积【详解】如下图所示:圆柱的底面圆直径为母线长为则的中点到圆柱底面圆上每点的距离都相等则为圆柱外 解析:43π【分析】计算出正六棱柱的外接圆直径,进而可求得外接球的半径,利用球体体积公式即可计算出正六棱柱的外接球的体积.【详解】如下图所示:圆柱12O O 的底面圆直径为2r ,母线长为h ,则12O O 的中点O 到圆柱底面圆上每点的距离都相等,则O 为圆柱12O O 外接球的球心,设球O 的半径为R ,则()2222R r h =+可作出正六棱柱111111ABCDEF A BC D E F -的外接圆,可将正六棱柱111111ABCDEF A BC D E F -放在圆柱12O O 中,如下图所示:连接11O A 、11O B ,则11160AO B ∠=,且1111O A O B =,则111O A B △为等边三角形, 则圆1O 的半径为11116r O A A B === 正六棱柱111111ABCDEF A BC D E F -的侧棱长为6h =设正六棱柱111111ABCDEF A BC D E F -的外接球的半径为R ,则()222223R r h =+= 所以,3R 33443=4333V R πππ==⨯.故答案为:43π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法: ①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 14.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解.【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD ,由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形,同理可知,PBD △是以BPD ∠为直角的等腰直角三角形, E 为AC 的中点,122PE AC ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a = 232PE a ==,由直角三角形的性质可得1122PE AC BD ==, 即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=.故答案为:36π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 解析:224【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和2,进而可得小球的体积. 【详解】 解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==. 故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π 【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果.【详解】根据题意知,ABC 是一个等边三角形,其面积为()221333 3322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为1312sin 60r =⨯=,记ABC 的外接圆圆心为Q ,则1AQ r ==; 由于底面积ABC S 不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⋅=,2DQ ∴=, 设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭. 故答案为:254π. 【点睛】思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解. 17.【分析】由三视图还原几何体得到三棱锥P-ABC 分别计算其棱长可得答案【详解】由三视图还原几何体得到三棱锥P-ABC 可将此三棱锥放入棱长为2的正方体内如下图所示所以:BC=所以该三棱锥最长棱的长度为故解析:23【分析】由三视图还原几何体得到三棱锥P -ABC ,分别计算其棱长,可得答案.【详解】由三视图还原几何体得到三棱锥P -ABC ,可将此三棱锥放入棱长为2的正方体内,如下图所示, 所以:2AB =,BC =2,22,23BP AC PC AP ====.所以该三棱锥最长棱的长度为23. 故答案为:23.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.18.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:33【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论.【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AE DE E =,∴BC ⊥平面AED ,M E ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==112ME BC ==,又1133233EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos 3EO MEO ME ∠==. 故答案为:33.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤. 19.【分析】将正三棱柱的侧面沿棱展开成平面连接与的交点即为满足最小时的点可知点为棱的中点即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比【详解】将正三棱柱沿棱展开成平面连接与的交点即为满足最小时 解析:1:1【分析】将正三棱柱111ABC A B C -的侧面沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M ,可知点M 为棱1BB 的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱111ABC A B C -沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M .由于2AB =,13AA =,再结合棱柱的性质,可得,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径, M ∴为1BB 的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:1111:1:1C AMB A A CBMC V V --=.故答案为:1:1.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.20.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:483【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积.【详解】设球的半径为r ,由2416r π=π,得2r ,则球的半径为2,正三棱柱的高为24r =, 正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是436, 正三棱柱的体积为136432⨯⨯= 故答案为:483【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)取MD 中点为F ,连接EF ,CF ,四边形BCFE 为平行四边形,所以//BE CF ,利用线面平行的性质定理即可证明;(2)利用勾股定理证明AC CD ⊥,设点M 在面ABCD 上投影在线段AC 上设为点H ,再利用已知条件证明MH CD ⊥,利用线面垂直的判断定理即可证明.【详解】(1)取MD 中点为F ,连接EF ,CF ,则EF 为△MAD 中位线,∴ 1//2EF AD 且1=2EF AD , 又四边形ABCD 是直角梯形,22AD AB BC ==1//2BC AD ∴,1=2BC AD //BC EF ∴且=BC EF ,∴四边形BCFE 为平行四边形,所以//BE CF ,因为BE ⊄面MCD ,CF ⊂面 MCD ,所以//BE 面MCD .(2)在四棱锥M ABCD -中,四边形ABCD 是直角梯形,222AD AB BC ===,90ABC BAD ∠=∠=,22112AC CD ∴==+=222AC CD AD ∴+=,AC CD ∴⊥,设点M 在面ABCD 上投影在线段AC 上,设为点H ,MH ∴⊥面ABCD ,CD ⊂面ABCD ,MH CD ∴⊥,又AC CD ⊥,AC MH H ⋂=, CD 面MAC .【点睛】方法点睛:证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明; 22.(1)4;(2)60︒;(3)3. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1BC 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角3tan 2,cos 2BC BFC BFC FC ∠===∠=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章章末测试
班级____ 姓名____ 考号____ 分数____
本试卷满分100分,考试时间90分钟.
一、选择题:本大题共10小题,每小题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.
1.若a⊂α,b⊂β,α∩β=c,a∩b=M,则( )
A.M∈c B.M∉c C.M⊂c D.M⊄c
答案:A
解析:注意点、线、面关系的符号表示,结合平面的公理3可知,M∈c.
2.从长方体的一个顶点引出的三条棱的长度分别是2,3,3,则长方体的外接球的表面积为( )
A.20πB.22πC.24πD.26π
答案:B
解析:设球的半径为r,则4r2=22+32+32=22,球的表面积为4πr2=22π.
3.一个几何体的三视图中的正(主)视图、侧(左)视图、俯视图均是大小形状完全相同的图形,那么这个几何体可能是( )
A.圆柱B.圆锥C.圆台D.球
答案:D
解析:因为球的三视图都是半径相等的圆,则其他的三个均不可能满足条件.
4.圆锥的高伸长为原来的2倍,底面半径缩小为原来的1
2
,则它的体积是
原来体积的( )
A.12
B.23
C.34
D.65
答案:A
解析:设原圆锥高为h ,底面面积为S ,则V =13
hS ,新圆锥的高为2h ,底面面积为S 4,∴V ′=13×2h ×S 4=12V.
5.如图,已知正方体ABCD -A 1B 1C 1D 1,E 是DD 1的中点,F 是BB 1的中点,设过点C 1,E ,F 三点的平面为α,则正方体被平面α所截的截面的形状为
( )
A .菱形
B .矩形
C .梯形
D .五边形
答案:A
解析:设正方体棱长为a ,连接AE ,C 1F 易发现AE ∥C 1F ,所以平面α经过点A ,所以截面是四边形AEC 1F ,根据勾股定理易求得AE =EC 1=C 1F =AF =5
2a ,所以截面为菱形.
6.平面α与平面β平行的条件可以是( )
A .α内有无数条直线都与平面β平行
B.α内的任何直线都与平面β平行
C.直线a⊂α,直线b⊂β且a∥β,b∥α
D.直线a∥α,a∥β
答案:B
7.底面是正三角形,侧棱垂直底面水平放置的三棱柱的所有棱长均为2,当其正(主)视图有最大面积时,其侧(左)视图的面积为( )
A.2 B. 3 C.2 3 D.6 3
答案:C
解析:S=3×2=2 3.
8.设α、β是两个不同的平面,a、b是两条不同的直线,给出下列四个命题,其中正确的命题是( )
A.若a∥α,b∥α,则a∥b
B.若a∥α,b∥β,a∥b,则α∥β
C.若a⊥α,b⊥β,a⊥b,则α⊥β
D.若a、b在平面α内的射影互相垂直,则a⊥b
答案:C
解析:与同一平面平行的两条直线不一定平行,所以A错误;与两条平行直线分别平行的两个平面未必平行,所以B错误;如图所示,直线a,b在平面α内的射影分别为m、n,显然m⊥n,但a、b不垂直,所以D错误,故选C.。