2017-2018学年新课标最新四川省七年级下学期期末数学试卷及解析-精品试卷
精品解析:四川省泸县2017-2018学年七年级下学期期末考试数学试题 (解析版)
2017-2018学年四川省泸州市泸县七年级(下)期末数学试卷一、选择题(本大题共12个题,小题3分,共36分)1.下面四个实数中,无理数是()A. B. 1 C. 0 D. ﹣2【答案】A【解析】【分析】无理数是指无限不循环小数,根据无理数定义即可解题.是无理数,1,0,﹣2是有理数.故选:A.【点睛】本题考查了无理数的判断,属于简单题,熟悉无理数的定义是解题关键.等于()A. B. ﹣2 C. 2 D.【答案】C【解析】【分析】利用算术平方根定义即可求解.【详解】解:∵22=4,=2,故选:C.【点睛】本题考查了算术平方根的计算,属于简单题,熟悉算术平方根的定义是解题关键.3.如图,AB与CD相交于点O,如果∠D=∠C=40°,∠A=80°,那么∠B的度数是()A. 40°B. 80°C. 60°D. 无法确定【答案】B【解析】【分析】先利用内错角相等,两直线平行证明AD∥BC,再利用两直线平行内错角相等证明∠B=∠A即可解题. 【详解】解:∵∠D=∠C=40°,∴AD∥BC,∴∠B=∠A=80°,故选:B.【点睛】本题考查了平行线的性质与判定,属于简单题,熟悉平行线的判定方法和性质是解题关键.4.﹣3x2y+12x2y的结果为()A. ﹣52x4y2 B.52x4y2 C. ﹣52x2y D.52x2y【答案】C【解析】【分析】合并同类项要求,同类项的系数相加减,字母部分不发生改变,据此即可解题.【详解】解:﹣3x2y+12x2y=﹣52x2y,故选:C.【点睛】本题考查了合并同类项,属于简答题,熟悉同类项的概念,熟练掌握合并同类项的方法是解题关键.5.平移如图所示的小船可以得到的图案是()A. B. C. D.【答案】D【解析】【分析】平移前后两个图形是全等的,据此将四个选项进行平移,观察各选项中能够和已知条件中的小船重合的即可解题.【详解】解:∵平移前后两个图形是全等的,∴平移如图所示的小船可以得到的图案是,故选:D.【点睛】本题考查了图形的平移,属于简单题,熟悉平移的性质是解题关键.6.如果点A(a,2)在第二象限,则点B(1,a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据各象限点的特征,判断出A点中的横坐标a<0,进而即可得到B的位置.【详解】解:∵点A(a,2)在第二象限,∴a<0,则点B(1,a)在第四象限.故选:D.【点睛】本题考查了各象限点特征,属于简单题,熟悉平面直角坐标系的定义,象限点的定义是解题关键.7.下面调查中,最适宜全面调查的是()A. 企业招聘,对应聘人员进行面试B. 调查春节联欢晚会的收视率C. 某批次汽车的抗撞击能力D. 调查一批灯泡的使用寿命【答案】A【解析】【分析】全面调查是指对需要调查的对象进行逐个调查,抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据此对全部调查研究对象作出估计和推断的一种调查方法,根据定义不难发现全面调查需要在总体很少的情况下进行,由此即可解题.【详解】解:A 、企业招聘,对应聘人员进行面试适合全面调查;B 、调查春节联欢晚会的收视率适合抽样调查;C 、调查某批次汽车的抗撞击能力适合抽样调查;D 、调查一批灯泡的使用寿命适合抽样调查;故选:A .【点睛】本题考查了全面调查与抽样调查的定义以及应用条件,属于简单题,了解全面调查与抽样调查的定义是解题关键.8.不等式组3010x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是( )A.B.C.D. 【答案】A【解析】分析:分别解不等式,在数轴上表示出来即可.详解:3010,x x -<⎧⎨+≥⎩①② 解不等式①,得 3x ;< 解不等式②,得1x ≥-; 把不等式①和②的解集在数轴上表示出来;原不等式组的解集为12x .-≤< 故选A.点睛:考查解不等式组,分别解不等式,找出解集的公共部分即可.9.设a>b,则下列不等式中不成立的是()A. a+2>b+2B. a﹣1>b﹣1C. ﹣3a>﹣3bD. 12a>12b【答案】C【解析】【分析】不等式性质1:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.不等式性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.根据不等式的基本性质即可解题.【详解】解:∵a>b,∴A,a+2>b+2,(性质1)B,a﹣1>b﹣1,(性质1)C,﹣3a<﹣3b,(性质3)D,12a>12b.(性质2)故选:C.【点睛】本题考查了不等式的基本性质,属于简单题,熟悉不等式的基本性质是解题关键.10.四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.B. C. D.【答案】B【解析】【分析】根据算数平方根的性质,估算出根式的值即可解题.是负数,在原点的左侧,不符合题意;2<3,符合题意;>3,在墨迹覆盖处的右边,不符合题意;>4,在墨迹覆盖处的右边,不符合题意;故选:B.【点睛】本题考查了根式的估算,属于简单题,熟悉根式估算的方法是解题关键.11.已知点O(0,0),A(2,4),点B在x轴上,且S△OAB=8,则点B的坐标是()A. (4,0)B. (﹣4.0)C. (4,0)或(﹣4,0)D. (0,8)或(0,﹣8)【答案】C【解析】【分析】先设出B点坐标,再利用S△OAB=8,根据图形表示出面积即可解题.【详解】解:设点B的坐标为(m,0),则OB=|m|.∵S△OAB=12OB•|y A|=12×|m|×4=8,∴|m|=4,∴m=±4.∴点B的坐标为(4,0)或(﹣4,0).故选:C.【点睛】本题考查了点的坐标在直角坐标系中与面积的实际应用,属于简单题,设出B点坐标,表示出△OAB 的面积是解题关键.12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…循环爬行,其中A点的坐标为(2,﹣2),B点的坐标为(﹣2,﹣2),C点的坐标为(﹣2,6),D点的坐标为(2,6),当蚂蚁爬了2018个单位时,蚂蚁所处位置的坐标为()A. (﹣2,0)B. (4,﹣2)C. (﹣2,4)D. (0,﹣2)【答案】D【解析】【分析】 根据蚂蚁的爬行规律找到蚂蚁爬行一循环的长度是24,∵2018=84×24+2,∴当蚂蚁爬了2018个单位时,它所处位置在点A 左边2个单位长度处,即可解题.【详解】解:∵A 点坐标为(2,﹣2),B 点坐标为(﹣2,﹣2),C 点坐标为(﹣2,6),∴AB =2﹣(﹣2)=4,BC =6﹣(﹣2)=8,∴从A →B →C →D →A 一圈的长度为2(AB+BC )=24.∵2018=84×24+2, ∴当蚂蚁爬了2018个单位时,它所处位置在点A 左边2个单位长度处,即(0,﹣2).故选:D .【点睛】本题考查了点的运动规律问题,属于简单题,确定蚂蚁爬行的循环规律是解题关键.二、填空题(本大题共4个题,每小题3分,共12分)13.8的立方根是_____.【答案】2【解析】【分析】利用立方根的定义计算即可得到结果.【详解】∵23=8, ∴8的立方根为2,故答案为:2.【点睛】考查了立方根,熟练掌握立方根的定义是解本题的关键.14.已知21xy=⎧⎨=-⎩是关于x,y的二元一次方程2x+my=﹣3的一个解,则m_____.【答案】m=7 【解析】【分析】将21xy=⎧⎨=-⎩代入二元一次方程2x+my=﹣3即可求解.【详解】解:把21xy=⎧⎨=-⎩代入方程得:4﹣m=﹣3,解得:m=7,故答案为:m=7.【点睛】本题考查了二元一次方程求参问题,属于简单题,理解题意,确定代入法是解题关键.15.如图,把一块含有60°角的直角三角板的两个顶点分别放在直尺的对边上,并测得∠2=35°,则∠1=_____度.【答案】25.【解析】【分析】利用直角三角板自身的角度,确定∠2与∠3的和是60°,再利用刻度尺的平行性质,利用两直线平行内错角相等证明∠3=∠1,即可解题.【详解】解:∵直尺的两边互相平行,∴∠3=∠1,∵∠3=60°﹣∠2=60°﹣35°=25°,∴∠1=25°.故答案为:25.【点睛】本题考查了特殊的直角三角形的角度和平行线的性质,属于简单题,熟悉平行线的性质是解题关键.16.若关于x的不等式ax﹣6<0的解集为x>﹣2,则关于y的方程ay+6=0的解为_____.【答案】y=2.【解析】【分析】先根据x>﹣2是不等式的解集,求出a的值,代入ay+6=0中即可解题.【详解】解:∵不等式ax﹣6<0,即ax﹣6<0的解集为x>﹣2,∴62a=-,解得a=﹣3,代入方程得:﹣3y+6=0,解得:y=2.故答案为:y=2.【点睛】本题考查了一次不等式和一次方程的求解问题,属于简单题,根据不等式的解求出参数a的值是解题关键.三、解答题(本大题共3个题,每小题6分,共18分)17.计算:(﹣1)2+||【答案】5【解析】【分析】根据实数的运算法则,算术平方根的计算方法即可解题.【详解】解:原式=1+4=5.【点睛】本题考查了实数的运算,属于简单题,熟悉根式的计算方法和绝对值的化简方法是解题关键.18.解不等式:2533x-+≤.【答案】x≥﹣2.【解析】【分析】按照去分母,移项,合并同类项,系数化为一的解题步骤即可求解. 【详解】解:不等式两边同时乘以3得:﹣2x+5≤9,移项得:﹣2x≤9﹣5,合并同类项得:﹣2x≤4,系数化为1得:x≥﹣2,即不等式的解集为x≥﹣2.【点睛】本题考查了一元一次不等式的求解,属于简单题,熟悉一元一次不等式的求解步骤是解题关键.19.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,求∠FAG的度数.【答案】145°.【解析】【分析】先利用两直线平行,内错角相等得到∠BAC=∠ECF=70°,进而求出∠FAB=110°,再利用角平分线的性质得到∠BAG=12∠BAC=35°,即可求解.【详解】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=12∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.【点睛】本题考查了角平分线的性质,平行线的性质,属于简单题,熟悉平行线的性质,找到内错角是解题关键.四、解答题(本大题共2个题,每小题7分,共14分)20.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).(1)若点D与点A关于y轴对称则点D的坐标为.(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为.(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.【答案】(1)(2,2);(2)(2,0);(3)13【解析】【分析】(1)和(2)问利用直角坐标系中的平移变换即可找到相应点的坐标,(3)找到AB与x轴的交点H,求出H 的坐标,利用四边形ABCD的面积为=S梯形ADCH+S△BHC即可进行求解.【详解】解:(1)如图所示:D(2,2);故答案为:(2,2);(2)如图所示:C(2,0);故答案为:(2,0);(3)如图所示:设线段AB与x轴的交点为H,根据图像不难发现H为线段AB的中点,∴H(-52,0)则四边形ABCD的面积为=S梯形ADCH+S△BHC=()22BHC yAD HC CD⨯+⨯+=(4 4.5)2 4.521322+⨯⨯+=【点睛】本题考查了平面直角坐标系中,点的位置变换和面积的求法,中等难度,会作辅助线,将不规则四边形进行分割化成可求面积的四边形是解题关键.21.为了解某校“阳光体育”活动的开展情况,从该校1000名学生中随机抽取部分学生进行问卷调查(每名学生只能填写一项自己最喜欢的体育项目),并将调查结果绘制成如图所示的两幅不完整的统计图,根据图中信息,解答下列问题:(1)被调查的学生共有多少人?(2)扇形统计图中m的值和a的度数分别是多少?(3)根据部分学生最喜欢体育项目的调查情况,请估计全校学生中最喜欢篮球的人数大约有多少?【答案】(1)50;(2)40,57.6°;(3)400人.【解析】【分析】(1)根据乒乓球的占比为24%和抽取的人数,利用部分量÷部分量占比=总量即可解题,(2)先求出喜欢篮球的人数,进而即可求出m的值和a的度数,(3)用喜欢篮球的百分比乘以总人数即可解题.【详解】解:(1)被调查的学生共有12÷24%=50(人);(2)根据题意,喜欢篮球的人数为50﹣(4+12+6+8)=20,∴m%=2050×100%=40%,即m=40,扇形图中a度数为360°×850=57.6°;(3)估计全校学生中最喜欢篮球的人数大约有1000×40%=400(人).【点睛】本题考查了条形统计图和扇形统计图的应用,中等难度,从统计图中找到有用信息,会用部分量求出总量是解题关键.五、解答题(共20分)22.某市环保局决定购买A 、B 两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A 型扫地车和2辆B 型扫地车每周可以处理地面垃圾100吨,2辆A 型扫地车和1辆B 型扫地车每周可以处理垃圾110吨.(1)求A 、B 两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A 型扫地车每辆价格为25万元,B 型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?【答案】(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.【解析】【分析】(1)根据题意列出二元一次方程组即可解题,(2)设购买A 型扫地车m 辆,B 型扫地车(40﹣m )辆,所需资金为y 元,根据题意建立一元一次不等式组求出所有满足条件的方案,再表示出总资金y=5m+800,根据一次函数的单调性即可确定所选方案,求最少资金..【详解】解:(1)设A 、B 两种型号的扫地车每辆每周分别可以处理垃圾a 吨、b 吨,21002110a b a b +=⎧⎨+=⎩, 解得:4030a b =⎧⎨=⎩, 答:(1)求A 、B 两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;(2)设购买A 型扫地车m 辆,B 型扫地车(40﹣m )辆,所需资金为y 元,2520(40)9104030(40)1400m m m m +-≤⎧⎨+-≥⎩,解得,20≤m ≤22, ∵m 为整数,∴m =20,21,22,∴共有三种购买方案,方案一:购买A 型扫地车20辆,B 型扫地车20辆;方案二:购买A 型扫地车21辆,B 型扫地车19辆;方案三:购买A 型扫地车22辆,B 型扫地车18辆;∵y =25m+20(40﹣m )=5m+800,k=5>0,∴y 随着x 的增大而增大,∴当m =20时,y 取得最小值,此时y =900,答:方案一:购买A 型扫地车20辆,B 型扫地车20辆所需资金最少,最少资金是900万元.【点睛】本题考查了二元一次方程组的实际应用和一次不等式在方案选择中的实际应用,一次函数的性质,难度较大,利用不等式和一次函数的性质进行方案选择是解题关键.23.阅读与运用观察发现:解方程组4(1)2()10(2)x y x y y -=⎧⎨-+=⎩,将(1)整体代入(2),得2×4+y =10,解得y =2,把y =2代入(1),得x =6,所以62x y =⎧⎨=⎩;这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此方法解答.已知关于a 、b 的方程组:3(3)2(1)64(3)3(1)25a b a b +--=⎧⎨++-=⎩. (1)求a+b 的值;(2)若关于x 的不等式组343x a b x m >+⎧⎨<-⎩恰好有1个整数解,求m 的取值范围. 【答案】(1)5;(2)2164m <…. 【解析】【分析】(1)根据题意运用整体代入法求出3413a b +=⎧⎨-=⎩,两式相加即可求出a+b 的值,(2)根据不等式组只有一个整数解,表示出43634373m m -⎧>⎪⎪⎨-⎪≤⎪⎩,进而即可求出m 的取值范围.【详解】解:(1)运用“整体代入法”解方程组:3(3)2(1)64(3)3(1)25a ba b+--=⎧⎨++-=⎩,得:3413 ab+=⎧⎨-=⎩,∴a+3+b﹣1=7,∴a+b=5.(2)∵a+b=5,∴关于x的不等式组为5 343xx m>⎧⎨<-⎩,若不等式组恰好有1个整数解,则m应满足不等式组43634373mm-⎧>⎪⎪⎨-⎪≤⎪⎩,解得:214<m≤6.【点睛】本题考查了用整体代入法求解二元一次方程组和求解含参不等式,中等难度,(1)中的关键是熟悉整体代入法的应用环境,(2)中根据不等式中只有一个整数解,表示出433m-的取值范围是解题关键.。
2017-2018学年四川省成都市成华区七年级(下)期末数学试卷(解析版)
2017-2018学年四川省成都市成华区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,∠1和∠2是一对()A. 对顶角B. 同位角C. 内错角D. 同旁内角2.计算a3•a2正确的是()A. aB. a5C. a6D. a93.下列各图中,∠1与∠2互为余角的是()A. B. C. D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A. 7.6×10−9B. 7.6×10−8C. 7.6×109D. 7.6×1085.下列计算正确的是()A. 3a+4b=7abB. (ab3)3=ab6C. (a+2)2=a2+4D. x12÷x6=x66.下面各语句中,正确的是()A. 同角或等角的余角相等B. 过一点有且只有一条直线与已知直线平行C. 互补的两个角不可能相等D. 相等的角是对顶角7.在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下表关系:x(kg)01234…y(cm)1010.51111.512…下列说法不正确的是()A. y随x的增大而增大B. 所挂物体质量每增加1kg弹簧长度增加0.5cmC. 所挂物体为7kg时,弹簧长度为13.5cmD. 不挂重物时弹簧的长度为0cm8.如图,下列判断中错误的是()A. 由∠A+∠ADC=180∘得到AB//CDB. 由AB//CD得到∠ABC+∠C=180∘C. 由∠1=∠2得到AD//BCD. 由AD//BC得到∠3=∠49.如图,点E在线段BA的延长线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A. 50∘B. 40∘C. 30∘D. 20∘10. 星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A. B.C.D.二、填空题(本大题共9小题,共36.0分)11. 某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中______是自变量,______是因变量. 12. 如果一个角的补角是150°,那么这个角的余角的度数是______度. 13. 如果二次三项式x 2+mx +25是一个完全平方式,则m =______. 14. 园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S (平方米)与工作时间t (小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为______平方米. 15. 计算:42016×(-0.25)2017=______.16. 如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC =40°,则∠BCD的度数是______.17. 若3m =6,9n =2,则32m -4n +1=______.18. 已知(x -y )2=259,x +y =76,则xy 的值为______.19. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序);)2017展开式中含x2015项的系数是______.请依据上述规律,写出(x−2x三、计算题(本大题共3小题,共24.0分)20.计算下列各题)−2(1)32÷(-2)3+(2017-π)0+|-32+1|−(12(2)4xy2(2x-xy)÷(-2xy)2(3)(x-1)(x-1)(x2-1)21.计算下列各题:(1)20172-2018×2016(2)(3x-y+2)(3x+y-2)22.先画简,再求值:(x+y)2-(x+y)(x-y)+y(x-2y),其中x,y满足(x-1)2+|1-y|=0四、解答题(本大题共6小题,共60.0分)23.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.24.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.25.小明在暑假社会实践活动中,以每千克1.2元的价格从批发市场购进若干千克西瓜市场上去销售,在销售了40千克之后,余下的打5折全部售完.销售金额y(元)售出西瓜的千克数x(千克)之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系;(2)小明这次社会实践活动赚了多少钱?(3)若要使这次活动赚44元钱,问余下的西瓜应打几折销售完?26.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:______.方法2:______.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m-n)2=5,请利用(2)中的等式,求mn的值.27.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.28.阅读理解并完成下面问题:我们知道,任意一个正整数c都可以进行这样的因式分解:c=p×q(p,q是正整数),在c的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是c的最佳分解.并规定:F (c )=pq (其中p ≤q ).例如:12可以分解成1×12,2×6或3×4,因为|1-12|>|2-6|>|3-4|,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数,若m 是一个完全平方数,求F (m )的值;(2)如果一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,那么我们称这个两位正整数t 为“吉祥数”,求符合条件的所有“吉祥数”;(3)在(2)中的所有“吉祥数”中,求F (t )的最小值.答案和解析1.【答案】C【解析】解:∠1与∠2是内错角,故选:C.∠1与∠2符合内错角定义.本题考查了内错角的判别,熟练掌握内错角的定义是关键.2.【答案】B【解析】解:a3•a2=a3+2=a5.故选:B.根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.【答案】B【解析】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选B.如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.本题考查了余角的定义,掌握定义并且准确识图是解题的关键.4.【答案】A【解析】解:0.0000000076用科学记数法表示为7.6×10-9.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】D【解析】解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.6.【答案】A【解析】解:A、同角或等角的余角相等,正确;B、过直线外一点有且只有一条直线与已知直线平行,错误;C、互补的两个角可能相等,错误;D、相等的角不一定是对顶角,错误;故选:A.A、根据余角的性质进行判断;B.根据平行公理进行判断;C.根据补角的定义进行判断;D.根据对顶角的定义进行判断.本题考查了对顶角的定义,平行公理,余角的性质,是基础知识,比较简单.7.【答案】D【解析】解:A、y随x的增大而增大,正确;B、所挂物体质量每增加1kg弹簧长度增加0.5cm,正确;C、所挂物体为7kg时,弹簧长度为13.5cm,正确;D、不挂重物时,弹簧的长度为10cm,错误;故选:D.由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度进行解答即可.本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.8.【答案】D【解析】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选:D.根据平行线的性质与判定,逐一判定.此题考查了平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角.9.【答案】C【解析】解:∵AD∥BC,∴∠B=∠EAD=30°.∵AD平分∠EAC,∴∠DAC=∠EAD=30°.∵AD∥BC,∴∠C=∠DAC=30°.故选:C.首先根据平行线的性质可得∠EAD=∠B,∠DAC=∠C,再根据AD是∠EAC的平分线,可得∠EAD=∠CAD.利用等量代换可得∠B=∠C=30°.此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.【答案】B【解析】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.11.【答案】销售量;销售收入【解析】解:根据题意知,公司的销售收入随销售量的变化而变化,所以销售量是自变量,收入数为因变量.故答案为:销售量,销售收入.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量,会变动的数为自变量.本题考查的是对函数定义中自变量和因变量的判定和对定义的理解.12.【答案】60【解析】解:180°-150°=30°,90°-30°=60°.故答案为:60°.首先求得这个角的度数,然后再求这个角的余角.本题主要考查的是补角和余角的定义,掌握补角和余角的定义是解题的关键.13.【答案】±10【解析】解:∵x2+mx+25=x2+mx+52,∴mx=±2×5×x,解得m=±10.故答案为:±10.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.【答案】50【解析】解:休息后2小时内绿化面积为160-60=100平方米.∴休息后园林队每小时绿化面积为.故答案为:50根据休息后2小时的绿化面积100平方米,即可判断;本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.15.【答案】-0.25【解析】解:42016×(-0.25)2017=[4×(-0.25)]2016×(-0.25)=-0.25.故答案为:-0.25根据幂的乘方和积的乘方法则解答即可.此题考查幂的乘方和积的乘方,关键是根据法则计算.16.【答案】130°【解析】解:如图,过C作HK∥AB.∴∠BCK=∠ABC=40°.∵CD⊥EF,∴∠CDF=90°.∵HK∥AB∥EF.∴∠KCD=90°.∴∠BCD=∠BCK+∠KCD=130°.故选答案为:130°.过C作HK∥AB.利用平行线的性质得出∠B=∠BCK,∠KCD=90°,进而得出答案.此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.17.【答案】27【解析】解:原式=32m÷34n×3=3m×3m÷92n×3=6×6÷4×3=27故填27.根据题意进行同底数幂的运算,注意同底数幂相乘底数不变指数相加,根据此可得出答案.本题考查代数式的求值,关键在于掌握同底数幂相乘底数不变指数相加.18.【答案】-1748【解析】解:∵x+y=.∴(x+y)2=x2+y2+2xy=,(x-y)2==x2+y2-2xy.∴xy===-.故答案为:-.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.19.【答案】-4034【解析】解:(x-)2017展开式中含x2015项的系数,由(x-)2017=x2017-2017•x2016•()+…可知,展开式中第二项为-2017•x2016•()=-4034x2015,∴(x-)2017展开式中含x2015项的系数是-4034,故答案为:-4034.首先确定x2015是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.20.【答案】解:(1)原式=32÷(-8)+1+9-1-4=-4+1+9-1+4=9;(2)原式=(8x2y2-4x2y2)÷4x2y2=2-y;(3)原式=(x2-2x+1)(x2-1)=x4-x2-2x3+2x+x2-1=x4-2x3+2x-1.【解析】(1)根据实数混合运算顺序和运算法则计算可得;(2)先计算乘法,再计算除法可得;(3)根据多项式乘多项式依次计算可得.本题主要考查实数与整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则.21.【答案】(1)解:原式=20172-(2017+1)(2017-1)=20172-(20172-1)=1;(2)解:原式=[3x-(y-2)][3x+(4-2)]=9x2-(y-2)2=9x2-y2+4y-4.【解析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式利用平方差公式,完全平方公式计算即可求出值.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22.【答案】解:原式=x2+2xy+y2-(x2-y2)+xy-2y2=x2+2xy+y2-x2+y2+xy-2y2=3xy.∵(x-1)2+|1-y|=0.∴x=1,y=1.把x=1,y=1代入原式=3×1×1=3.【解析】根据平方差公式和完全平方公式进行计算,再根据非负数性质得出x,y的值,代入计算即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简与非负数性质是解此题的关键.23.【答案】解:∵AB∥CD(已知).∴∠A+∠ACD=180°(同旁内角已互补,两直线平行).∵∠A =105°.∴∠ACD =75°.∵∠DCE =∠ACD -∠ACE ,∠ACE =51°.∴∠DCE =24°.∵CD ∥EF (已知).∴∠E =∠DCE (两直线平行、内错角相等).∴∠E =24°.【解析】直接利用平行线的性质得出∠ACD=75°,进而得出∠DCE=24°,再得出∠E=∠DCE 即可得出答案.此题主要考查了平行线的性质,正确得出∠DCE 的度数是解题关键. 24.【答案】解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12∠ABC ,∠ECB =12∠ACB ,∵∠ABC =∠ACB ,∴∠DBF =∠ECB ,∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF .【解析】 此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F .根据BD 平分∠ABC ,CE 平分∠ACB ,得出∠DBF=∠ABC ,∠ECB=∠ACB ,∠DBF=∠ECB ,再根据∠DBF=∠F ,得出∠ECB=∠F ,即可证出EC ∥DF .25.【答案】解:(1)设y =kx .∵y =kx 过点(40,80).∴y =2x .(2)由y =2x 可得,x ≤40时售价为2元.∵当x >40时,售价为2×0.5=1元. (110-80)÷1=30, ∴这批西瓜的总重量-30+40=70千克.,∴40×2+(70-40)×1-70×1.2=26元. (3)设余下的西瓜打a 折.40×2+30×2×a -70×1.2=44.80×60a -84=44. ∴a =0.8.∴当余下的西瓜打8折销售,这次活动可赚44元.【解析】(1)设y=kx.将(40,80)代入求解即可;(2)先求得降价后的单价,然后可求得降价后出售的重量,从可求得这批西瓜的总总量,然后可求得这次社会实践活动赚了多少钱;(3)设余下的西瓜打a折,根据这次活动赚44元钱列方程求解即可.本题主要考查的是一次函数的应用,求得这批西瓜的总重量是解题的关键.26.【答案】(1)4ab;(a+b)2-(a-b)2.(2)(a+b)2-(a-b)2=4ab,成立.证明:∵(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)=4ab.∴(a+b)2-(a-b)2=4ab.(3)由(2)得:(2m+n)2-(2m-n)2=8mn.∵(2m+n)2=13,(2m-n)2=5,∴8mn=13-5=8.∴mn=1.【解析】解:(1)阴影部分的面积为:4ab或(a+b)2-(a-b)2,故答案为:4ab;(a+b)2-(a-b)2.(2)见答案;(3)见答案.(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据(2)的结论代入即可解答.本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等,列等式是解题的关键.27.【答案】解:(1)如图1,过点P作PE∥MN.∵PB平分∠DBA.∠DBA=40°.∴∠BPE=12∴∠BPE=∠DBP=40°(两直线平行,内错角相等).∠DCA=25°.同理可证.∠CPE=∠PCA=12∴∠BPC=40°+25°=65°.(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°-80°=100°.∵BP平分∠DBA.∠DBA=50°.∴∠DBP=12∵MN∥PE,∴∠BPE=180°-∠DBP=130°(两直线平行,同旁内角互补).∵PC平分∠DCA.∠DCA=25°(两直线平行,内错角相等).∴∠PCA=∠CPE=12∴∠BPC=130°+25°=155°.(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=40°=∠BPE(两直线平行等,内错角相等).∴CP平分∠DCA.∠DCA=180°-∠DCG=130°.∠DCA=65°.∴∠PCA=12∴∠CPE=180°-∠PCA=150°(两直线平行,同旁内角互补).∴∠BPC=40°+115°=155°.【解析】(1)过点P作PE∥MN,根据平行线的性质和角平分线的性质得:.,相加可得结论;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=180°-80°=100°.由角平分线和平行线的性质得∠BPE=130°.,相加可得结论;(3)如图3,作平行线,同理可得结论.本题考查了角平分线和平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.28.【答案】解:(1)∵m 是完全平方数∴m =p ×q 且p =q ∴F (m )=p q =1;(2)设正整数为:10x +y ,则t ′=10y +x ,∵10y +x -(10x +y )=18,则9y -9x =18,故(y -x )=2.∴t 可取13,24,35,46,57,68,79;(3)由(2)得.∴F (13)=113,F (24)=46=23,F (35)=57,F (46)=223,F (57)=319,F (68)=417,F (79)=179. ∵57>23>417>319>223>113>179.∴F (t )的最小值为179.【解析】(1)直接利用完全平方数的概念分析得出答案;(2)利用一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,得出等式求出答案;(3)利用(2)中所求,分别计算得出答案.此题主要考查了完全平方数,正确利用新定义得出符合条件的数字是解题关键.。
2017-2018学年度第二学期期末考试初一数学试题及答案
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
七年级下学期数学期末试卷(含答案)
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2017-2018学年新课标最新四川省七年级下期末数学试卷(有答案)-精品试卷
2017-2018学年四川省七年级(下)期末数学试卷一、选择题(每题3分)1.在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.42.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()A.0 B.2 C.5 D.83.如果a<b<0,下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1 D.a﹣b<04.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.6.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()A.B. C. D.7.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.38.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.1110.下列几种组合中,恰不能密铺的是()A.同样大小的任意四边形B.边长相同的正三角形、正方形、正十二边形C.边长相同的正十边形和正五角形D.边长相同的正八边形和正三角形二、填空题(每题3分)11.方程y+=的解为.12.由3x﹣y=5,若用含有x的代数式表示y,则.13.已知是方程的解,则m= .14.一个多边形的内角和等于2340°,它的边数是.15.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.16.三元一次方程组的解是.17.已知是方程组的解,则a= ,b= .18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C落在△ABC内,如图,若∠1=50°,则∠2= .20.我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即一般地,任何一个无限循环小数都可以写成分数形式.现以0.为例进行讨论:设0. =x,由0.=0.777…,得10x=7.777…,由于7.777…=7+0.777…因此10x=7+x,解方程得x=.于是得0. =.仿照上述方法把无限循环小数0.化成分数得.三、解答题21.解方程(组):x﹣=2﹣.22.解方程组.23.解不等式﹣≥﹣1(把解集在数轴上表示出来)24.解不等式组.25.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.26.如图,已知∠A=20°,∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.28.若关于x的不等式组的整数解恰有5个,求a的范围.29.某协会组织会员旅游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15个座位.(1)求参加旅游的人数;(2)若采用混租两种客车,使每辆车都不空位,有几种租车方案.30.如图,一副直角三角板△ABC和△DEF,已知BC=DF,EF=2DE.(1)直接写出∠B,∠C,∠E,∠F的度数的度数;(2)将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点A在DE上,△ABC 固定不动,将△DEF绕点D逆时针旋转至EF∥CB(如图2),求△DEF旋转的度数;并通过计算判断点A是否在EF上;(3)在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?若存在直接写出旋转的角度和平行关系,若不存在,请说明理由.参考答案与试题解析一、选择题(每题3分)1.在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【考点】一元一次方程的定义.【分析】根据一元一次方程的定义,即可解答.【解答】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.2.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()A.0 B.2 C.5 D.8【考点】代数式求值.【分析】将a﹣3b=﹣3整体代入即可求出所求的结果.【解答】解:∵a﹣3b=﹣3,代入5﹣a+3b,得5﹣a+3b=5﹣(a﹣3b)=5+3=8.故选:D.3.如果a<b<0,下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1 D.a﹣b<0【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.4.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.【解答】解:∵5+7=12cm,7﹣5=2cm,∴2cm<第三边<12cm,∵14cm、13cm、8cm、2cm中只有8cm在此范围内,∴能作为第三边的是8cm.故选C.5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】不等式移项,再两边同时除以2,即可求解.【解答】解:不等式得:x≥﹣2,其数轴上表示为:故选B6.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()A.B. C. D.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质列出方程组,求出方程组的解即可.【解答】解:∵|2x﹣y﹣3|+(2x+y+11)2=0,∴,①+②得:4x=﹣8,即x=﹣2,②﹣①得:2y=﹣14,即y=﹣7,则方程组的解为,故选D.7.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.3【考点】三角形的外角性质.【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有1个钝角,所以在三角形的三个外角中,锐角最多只有1个.故选:B.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.故选B.10.下列几种组合中,恰不能密铺的是()A.同样大小的任意四边形B.边长相同的正三角形、正方形、正十二边形C.边长相同的正十边形和正五角形D.边长相同的正八边形和正三角形【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,结合选项即可作出判断.【解答】A、同样大小的任意四边形可以密铺的,故本选项错误;B、边长相同的正三角形、正方形、正十二边形可以密铺,故本选项错误;C、边长相同的正十边形和正五角形可以密铺,故本选项错误;D、边长相同的正八边形和正三角形不可以密铺,故本选项正确.故选D.二、填空题(每题3分)11.方程y+=的解为y=.【考点】一元一次方程的解.【分析】根据解一元一次方程的方法可以求得方程y+=的解,本题得以解决.【解答】解:y+=去分母,得6y+3=4﹣2y移项及合并同类项,得8y=1系数化为1,得y=,故答案为:.12.由3x﹣y=5,若用含有x的代数式表示y,则y=3x﹣5 .【考点】列代数式.【分析】因为3x﹣y=5,移项即可求出用x表示y的代数式.【解答】解:∵3x﹣y=5,移项可得:y=3x﹣5.13.已知是方程的解,则m= .【考点】一元一次方程的解.【分析】把x=代入方程即可得到一个关于m的方程,即可求得m的值.【解答】解:把x=代入方程,得:3(m﹣)+1=5m,解得:m=﹣.故答案是:﹣.14.一个多边形的内角和等于2340°,它的边数是15 .【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则2340°=(n﹣2)•180°,解得n=15.故答案为:15.15.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.16.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:17.已知是方程组的解,则a= 1 ,b= 1 .【考点】二元一次方程组的解.【分析】根据方程组的解的定义,只需把解代入方程组得到关于a,b的方程组,即可求解.【解答】解:把代入方程组,得,解得.故答案为1,1.18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7 cm.【考点】翻折变换(折叠问题).【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C落在△ABC内,如图,若∠1=50°,则∠2= 30°.【考点】翻折变换(折叠问题).【分析】先由折叠性质得:∠C=∠C′=40°,根据三角形内角和求出∠CEC′+∠CFC′=280°,由平角定义可知:∠1+∠2+∠CFC′+∠CEC′=360°,从而得出∠2=30°.【解答】解:∵∠A=63°,∠B=77°,∴∠C=180°﹣∠A﹣∠B=180°﹣63°﹣77°=40°,由折叠得:∠C=∠C′=40°,∠CEF=∠C′EF,∠CFE=∠C′FE,∴∠CEC′+∠CFC′=180°+180°﹣40°﹣40°=280°,∵∠1+∠CFC′=180°,∠2+∠CEC′=180°,∴∠1+∠2+∠CFC′+∠CEC′=360°,∴∠1+∠2=360°﹣280°=80°,∵∠1=50°,∴∠2=30°,故答案为:30°.20.我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即一般地,任何一个无限循环小数都可以写成分数形式.现以0.为例进行讨论:设0. =x,由0.=0.777…,得10x=7.777…,由于7.777…=7+0.777…因此10x=7+x,解方程得x=.于是得0. =.仿照上述方法把无限循环小数0.化成分数得.【考点】解一元一次方程.【分析】设0. =x,找出规律,列出方程100x﹣x=37,解方程即可.【解答】解:设0. =x,由0.=0.373737…,得100x=37.3737….可知,100x﹣x=37.3737…﹣0.373737…=37,即 100x﹣x=37,解得:x=,故答案为:.三、解答题21.解方程(组):x﹣=2﹣.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:6x﹣3x+3=12﹣2x﹣4,移项合并得:5x=5,解得:x=1.22.解方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:2a=﹣6,即a=﹣3,把a=﹣3代入①得:b=6,则方程组的解为.23.解不等式﹣≥﹣1(把解集在数轴上表示出来)【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】通过解一元一次不等式,得出不等式的解决,再将解集在数轴上表示出来即可.【解答】解:﹣≥﹣1,去分母,得:6x﹣3﹣4x﹣8≥﹣12,移项、合并同类项,得:2x≥﹣1,不等式两边同时÷2,得:x≥﹣.把解集在数轴上表示出来,如图所示.24.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>﹣4,由②得,x>﹣1,故不等式组的解集为:x>﹣1.25.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.【考点】作图-轴对称变换;轴对称-最短路线问题;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3)连接C1C2交直线m于点P,则点P即为所求点.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)连接连接C1C2交直线m于点P,则点P即为所求点.26.如图,已知∠A=20°,∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】利用三角形外角性质,得∠1=∠A+∠APE,只需求∠APE,由AC⊥DE,得∠APE=90°;由三角形内角和定理得出∠D的度数.【解答】解:∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=37°,∴∠D=180°﹣110°﹣37°=33°.27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.【考点】等腰三角形的判定;平行线的性质.【分析】根据平行线的性质和“等角对等边”推知AE=AF,易得△AEF是等腰三角形.【解答】解:△AEF是等腰三角形.理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵EG∥AD,∴∠E=∠CAD,∠EFA=∠BAD,∴∠E=∠EFA,∴AE=AF,∴△AEF是等腰三角形.28.若关于x的不等式组的整数解恰有5个,求a的范围.【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,根据不等式组的解集可求得整数解恰有5个,逆推a的取值范围即可.【解答】解:由①得x≥a,由②得x<2,∵关于x的不等式组的整数解恰有5个,∴a≤x<2,其整数解为﹣3,﹣2,﹣1,0,1∴a的取范围是﹣4<a≤﹣3.29.某协会组织会员旅游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15个座位.(1)求参加旅游的人数;(2)若采用混租两种客车,使每辆车都不空位,有几种租车方案.【考点】二元一次方程的应用;一元一次方程的应用.【分析】(1)设参加旅游的人数为x人,根据旅游总人数不变,分别表示出不同车辆乘坐人数,进而列出方程;(2)首先列出二元一次方程,根据题意得到正整数的解即可.【解答】解:(1)设参加旅游的人数为x人,根据题意,得﹣2=,解得x=405人,答:参加旅游的人数为405人.(2)设租45座a辆,60座b辆,则有45a+60b=405,根据题意有正整数解为,,即方案1,租45座1辆,60座6辆;方案2,租45座5辆,60座3辆.30.如图,一副直角三角板△ABC和△DEF,已知BC=DF,EF=2DE.(1)直接写出∠B,∠C,∠E,∠F的度数的度数;(2)将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点A在DE上,△ABC 固定不动,将△DEF绕点D逆时针旋转至EF∥CB(如图2),求△DEF旋转的度数;并通过计算判断点A是否在EF上;(3)在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?若存在直接写出旋转的角度和平行关系,若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据直角三角板的直接可求得答案;(2)由EF∥BC,可求得∠FDC的角度,可求得旋转角;过D作DG⊥EF于点G,可求得DG=DF,AD=BC,可得到DG=AD,可得出结论;(3)分DF∥AB、DE∥AC和EF∥AB三种情况,可分别求得相应的旋转角.【解答】解:(1)∵△ABC为等腰直角三角形,∴∠B=∠C=45°,由题可知△DEF为含30°角的三角板,∵EF=2DE,∴∠E=60°,∠F=30°;(2)旋转的角度为30°,理由如下:如图1,△ABC中,AB=AC,AD⊥BC,∴AD=BC,在△DEF中,过D作DG⊥EF,垂足为G,在Rt△DFG中,∠F=30°,∴DG=DF,∵BC=DF,∴DG=AD,∴当EF∥BC时,点A在EF上;(3)存在.如图2,当DF∥AB时,则∠FDC=∠B=45°,∵∠EDF=90°,∴∠EDB=45°=∠C,∴此时DE∥AC;如图3,当EF∥AB时,则∠AHD=∠E=60°,∴∠EDB=∠AHD﹣∠B=60°﹣45°=15°,∵∠EDF=90°,∴∠FDC=75°,综上可知当旋转角为45°时有DE∥AC和DF∥AB,当旋转角为75°时,有EF∥AB.2017年2月17日。
2017-2018学年新课标最新四川省七年级数学下学期期末模拟试题一及答案解析-精品试卷
2017-2018学年四川省七年级(下)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.4的平方根是()A.±2 B.2 C.﹣2 D.±2.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.>C.3a+1>3b+1 D.﹣2a>﹣2b3.下列各数:3.414,﹣,,π,4.,0.1010010001…,其中无理数有()A.1个B.2个C.3个D.4个4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15° B.25° C.30° D.35°6.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图7.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直8.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6二、填空题(本题有6个小题,每小题3分,共计18分)9.点A的坐标(﹣3,4),它到y轴的距离为.10.式子的值是负数,则x的取值范围是.11.已知a,b为两个连续整数,且a<<b,则a+b= .12.如图,点O是直线AB上一点,OC⊥OD,∠AOC:∠BOD=5:1,那么∠AOC的度数是.13.对于有理数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣4)的值是.14.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.三、解答题(本题有5个小题,每小题5分,共计25分)15.计算:﹣+.16.解方程组.17.解不等式﹣≥,并把解集在数轴上表示出来.18.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD∴∠5+∠CAB=180°∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD∴∠2=∠EGA∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB .19.如图,∠BAF=40°,∠ACE=130°,CE⊥CD.问CD∥AB吗?为什么?四、解答题(本题有3个小题,每小题6分,共计18分)20.一种口服液有大、小两种包装.3大盒,4小盒共108瓶,2大盒,3小盒共装76瓶,大盒与小盒各装多少瓶?21.已知:如图把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A'B'C'.(1)画出图中△A'B'C';(2)连接A'、A、C'、C,求四边形A'AC'C的面积.22.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为A、B、C、D四个等级),根据调查的数据绘制成如图的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b= ;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP+S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.4的平方根是()A.±2 B.2 C.﹣2 D.±【考点】平方根.【分析】依据平方根的定义即可得出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.>C.3a+1>3b+1 D.﹣2a>﹣2b【考点】不等式的性质.【分析】根据不等式的性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a<b,则a﹣2<b﹣2,故此选项错误;B、若a<b,则<,故此选项错误;C、若a<b,则3a+1<3b+1,故此选项错误;D、若a<b,则﹣2a>﹣2b,故此选项正确;故选:D.3.下列各数:3.414,﹣,,π,4.,0.1010010001…,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式解答即可.【解答】解:∵=2,∴无理数有,π,0.1010010001…,共三个,故选C4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15° B.25° C.30° D.35°【考点】平行线的性质.【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【解答】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.6.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图【考点】统计图的选择;折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:∵折线统计图表示的是事物的变化情况,∴要反映自贡市一周内每天的最高气温的变化情况,宜采用折线统计图.故选(B)7.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.8.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<6.故选C.二、填空题(本题有6个小题,每小题3分,共计18分)9.点A的坐标(﹣3,4),它到y轴的距离为 3 .【考点】点的坐标.【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:点A的坐标(﹣3,4),它到y轴的距离为|﹣3|=3,故答案为:3.10.式子的值是负数,则x的取值范围是x>.【考点】解一元一次不等式.【分析】的值是负数,则必有3x﹣2>0,解得x的取值范围.【解答】解:∵的值为负数,而﹣5<0,∴3x﹣2>0,∴x>.故答案为x>.11.已知a,b为两个连续整数,且a<<b,则a+b= 7 .【考点】估算无理数的大小.【分析】根据被开方数越大对应的算术平方根越大求得a、b的值,然后利用加法法则计算即可.【解答】解:∵9<11<16,∴3<<4.∴a=3,b=4.∴a+b=3+4=7.故答案为:7.12.如图,点O是直线AB上一点,OC⊥OD,∠AOC:∠BOD=5:1,那么∠AOC的度数是75°.【考点】垂线.【分析】首先根据垂线的定义可知:∠COD=90°,从而可得到∠AOC+∠BOD=90°,然后根据设∠BOD为x,则∠AOC为5x,最后列方程求解即可.【解答】解:∵OC⊥OD,∴∠COD=90°.∴∠AOC+∠BOD=90°设∠BOD为x,则∠AOC为5x.根据题意得:x+5x=90°.解得:x=15°.∴∠AOC=5x=75°.故答案为:75°.13.对于有理数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣4)的值是﹣6 .【考点】有理数的混合运算.【分析】已知等式利用已知的新定义化简,求出a与b的值,原式再利用新定义化简后,将a 与b的值代入计算即可求出值.【解答】解:根据题中的新定义化简1*2=1,(﹣3)*3=6得:,解得:,则2*(﹣4)=2×(﹣1)﹣4×1=﹣2﹣4=﹣6.故答案为:﹣614.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣2).【考点】规律型:点的坐标.【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201…5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).三、解答题(本题有5个小题,每小题5分,共计25分)15.计算:﹣+.【考点】实数的运算.【分析】原式利用平方根、立方根性质,以及二次根式性质化简即可得到结果.【解答】解:原式=﹣2﹣1+5=2.16.解方程组.【考点】解二元一次方程组.【分析】利用加减消元法解方程组.【解答】解:,①+②得4a=12,解得a=3,把a=3代入①得3+2b=1,解得b=﹣1,所以方程组的解为.17.解不等式﹣≥,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:去分母得,3(3x+1)﹣2(2x﹣5)≥8,去括号得,9x+3﹣4x+10≥8,移项得,9x﹣4x≥8﹣10﹣3,合并同类项得,5x≥﹣5,x的系数化为1得,x≥﹣1.在数轴上表示为:.18.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD 内错角相等,两直线平行∴∠5+∠CAB=180°两直线平行,同旁内角互补∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD 同旁内角互补,两直线平行∴∠2=∠EGA 两直线平行,同位角相等∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB 同位角相等,两直线平行.【考点】平行线的判定.【分析】根据平行线的判定定理的证明步骤,补充完整题中确实的推理依据即可.【解答】证明:∵∠3=∠4(已知),∴CF∥BD(内错角相等,两直线平行),∴∠5+∠CAB=180°(两直线平行,同旁内角互补).∵∠5=∠6(已知),∴∠6+∠CAB=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行),∴∠2=∠EGA(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1=∠EGA(等量代换),∴ED∥FB(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;两直线平行,同位角相等;同位角相等,两直线平行.19.如图,∠BAF=40°,∠ACE=130°,CE⊥CD.问CD∥AB吗?为什么?【考点】平行线的判定.【分析】由CE⊥CD可得出∠DCE=90°,分解周角通过角的计算得出∠ACD=140°,再根据∠BAC+∠BAF=180°可得出∠BAC=140°,由此可得出∠BAC=∠ACD,依据“内错角相等,两直线平行”即可得出CD∥AB.【解答】解:CD∥AB,理由如下:∵CE⊥CD,∴∠DCE=90°,∵∠ACD+∠DCE+∠ACE=360°,∠ACE=130°,∴∠ACD=360°﹣130°﹣90°=140°.∵∠BAC+∠BAF=180°,∠BAF=40°,∴∠BAC=140°=∠ACD,∴CD∥AB.四、解答题(本题有3个小题,每小题6分,共计18分)20.一种口服液有大、小两种包装.3大盒,4小盒共108瓶,2大盒,3小盒共装76瓶,大盒与小盒各装多少瓶?【考点】二元一次方程组的应用.【分析】设大盒装x瓶,小盒装y瓶,根据题意可得等量关系是:3×大盒瓶数+4×小盒瓶数=108;2×大盒瓶数+3×小盒瓶数=76,依据两个等量关系可列方程组求解.【解答】解:设大盒装x瓶,小盒装y瓶,则,解得,答:大盒装20瓶,小盒装12瓶.21.已知:如图把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A'B'C'.(1)画出图中△A'B'C';(2)连接A'、A、C'、C,求四边形A'AC'C的面积.【考点】作图﹣平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)利用S四边形A'AC'C=S△A′CC′+S△A′CA即可得出结论.【解答】解:(1)如图所示;(2)S四边形A'AC'C=S△A′CC′+S△A′CA=×7×3+×7×3=+=21.22.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为A、B、C、D四个等级),根据调查的数据绘制成如图的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80 名同学的体育测试成绩,扇形统计图中B级所占的百分比b= 40% ;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由等级A的人数除以所占的百分比求出调查的总学生;进一步求出B占的百分比;(2)求出C级的学生数,补全条形统计图即可;(3)求出A,B,C的百分比之和,乘以300即可得到结果.【解答】解:(1)根据题意得:4÷5%=80(人),B占的百分比b=×100%=40%;故答案为:80,40%;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:300×=285(人),答:估计该校九年级同学体育测试达标的人数约为285人.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP+S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.【考点】坐标与图形性质;三角形的面积.【分析】(1)根据点的平移规律易得点C,D的坐标;(2)先计算出S平行四边形ABOC=8,设M坐标为(0,m),根据三角形面积公式得×4×|m|=8,解得m=±4,于是可得M点的坐标为(0,4)或(0,﹣4);(3)①先计算出S梯形OCDB=7,再讨论:当点P运动到点B时,S△BOC的最小值=3,则可判断S△CDP+S△BOP<4,当点P运动到点D时,S△BOC的最大值=4,于是可判断S△CDP+S△BOP>3,所以3<S△CDP+S△BOP <4;②分类讨论:当点P在BD上,如图1,作PE∥CD,根据平行线的性质得CD∥PE∥AB,则∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;当点P在线段BD的延长线上时,如图2,同样有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO﹣∠EPC=∠BOP﹣∠DCP,于是∠BOP﹣∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO.【解答】解:(1)由平移可知:C(0,2),D(4,2);(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);(3)①S梯形OCDB=×(3+4)×2=7,当点P运动到点B时,S△BOC最小,S△BOC的最小值=×3×2=3,S△CDP+S△BOP<4,当点P运动到点D时,S△BOC最大,S△BOC的最大值=×4×2=4,S△CDP+S△BOP>3,所以3<S△CDP+S△BOP<4;②当点P在BD上,如图1,作PE∥CD,∵CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;当点P在线段BD的延长线上时,如图2,作PE∥CD,∵CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠EPO﹣∠EPC=∠BOP﹣∠DCP,∴∠BOP﹣∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO.2017年3月12日。
2017-2018学年四川省成都市青羊区七年级(下)期末数学试卷(解析版)
2017-2018学年四川省成都市青羊区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. a2⋅a3=a6B. 3a−a=3C. (b3)2=b9D. x6÷x2=x42.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,2C. 1,2,3D. 1,2,43.低炭环保的理念深入人心,共享单车已成为人们出行的重要工具.下列共享单车图标(不考虑颜色)中,是轴对称图形的有()个.A. 1B. 2C. 3D. 44.下列事件为必然事件的是()A. 任意买一张机票,座位靠窗B. 打开电视机,正在播放新闻联播C. 13个同学中少有两个同学的生日在同一个月D. 某彩票中奖机率1%,小东买100张此彩票会中奖5.如图,在下列条件中,能判断AB∥CD的是()A. ∠DAC=∠ACBB. ∠DCB+∠ADC=180∘C. ∠ABD=∠BDCD. ∠BAC=∠ADC6.已知(x-2)•(x+3)=x2+mx-6,则m的值是()A. −1B. 1C. 5D. −57.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A. (a−b)2=a2−2ab+b2B. a(a+b)=a2+abC. (a+b)2=a2+2ab+b2D. (a−b)(a+b)=a2−b28.a x=2,a y=3,则a x+y=()A. 5B. 6C. 3D. 29.如图,△ABC中AC的垂直平分线交AB于点D,交AC于点E,若AC比AD的2倍少4,△ADC的周长是16,则DC=()A. 4B. 5C. 6D. 4.510.小亮从家出发步行到公交站台后,等公交车去学校,如图,折线表示这个过程中行程s(千米)与所花时间t(分)标之间的关系.下列说法错误的是()A. 他家到公交车站台需行1千米B. 他等公交车的时间为4分钟C. 公交车的速度是500米/分D. 他步行与乘公交车行驶的平均速度是300米/分二、填空题(本大题共9小题,共36.0分)11.(-3a3b)2=______.12.化简:-1x2(6x2-2x+1)=______.313.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作DE⊥BD交AC的延长线于点E,垂足为点D,测得ED=3,CD=4,则A、B两点间的距离等于______.14.如图,AD是△ABC中BC边上的高,AE是∠BAC的平分线,若∠B=44°,∠C=76°,则∠DAE=______.15.如果9x2-mx+4是完全平方式,则m=______.16.已知2a÷4b=16,则代数式2b-a+1的值是______.17.新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2-ab+b-1,例如:3◎5=32-3×5+5-1=-2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x-3)◎(3+x)的值为非负数的概率是______.18.图1为五边形纸片ABCDE;如图2,将∠A以BE为折痕往下折,A点恰好落在CD上;如图3再分别以AB,AE为折痕,将∠C与∠D往上折,使得A、B、C、D、E 五点均在同一平面上,若图3中∠CAD=54°,则图1中∠A的度数为______.19.如图,△ABC与△ADE中,DE=BC,EA=CA,CB的延长线交DE于点G,∠CAE=∠EGC,过A作AF⊥DE于点F,连接AG,若AF=8,DF:FG:GE=2:3:5,BC=15,则四边形DGBA的面积是______.三、计算题(本大题共1小题,共12.0分)20.(1)计算:(-1)2018÷2-3-(π-3.14)0(2)先化简,再求值:[(x-5y)(x+5y)-(x-2y)2+y2]÷2y,其中x=-1,y=1.2四、解答题(本大题共8小题,共72.0分)21.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG∥AB(______)22.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=______.23.为了了解某种车的耗油量,实验人员对这种车进行了试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(单位:0123……小时)油箱中剩余油量Q(单50443832……位:升)(1)根据上表的数据,试验前油箱中共有油______升,当汽车行驶5小时后,油箱中的剩余油量是______升;(2)剩余油量Q(单位:升)与汽车行驶时间t(单位:小时)的关系式是______;(3)当剩余油量为4升时汽车将自动报警提醒加油,请问该试验行驶几小时汽车将会报警?24.水果种植大户小芳组织了“草莓采摘游”活动,为了吸引更多的顾客,每一位来采摘草莓的顾客都有一次抽奖机会.现有一只不透明的盒子,盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄).(1)抽奖活动1:若顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券,请问顾客获得50元的优惠券的概率;(2)抽奖活动2:若顾客从盒子中任意摸一个球后放回盒子,摇匀后再摸一个,两次摸到的球都是草莓就可获得一张100元的优惠券,请列出顾客摸到球的所有可能情况,并求出获得100元的优惠券的概率是多少?25.已知点C为直线AB上一点,D为AB外一点,分别以CA、CB为边在AB的同侧作△ACD和△CEB,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与直线BD交于点F.(1)如图1,若α=90°,且点E在CD上,求证AE=DB,并求∠AFB的度数:(2)如图2,若α>90°,求∠AFB的度数(用含α的式子表示).26.(1)若代数式(m-2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2-2x-5=0,求2x3-8x2-2x+2018的值.27.为加强公民的节水意识,某城市制定了新的“阶梯”水费收费标准,如图所示,y1与y2分别表示该城市居民的生活用水水费(单位:元)、商业用水水费(单位:元)与一年的用水量x(单位:m3)之间的关系.如某家庭一年的生活用水量是300m3,所交的居民生活用水水费=第一阶梯水量200m3的水费+第二阶梯水量100m3(即超过200的部分)的水费=1000元.(1)李东结合如图将该城市居民的两种用水标准制成了表格,如表,请帮助李东完善表格,并写出当居民生活用水量超过200m3且不超过300m3时,y1与x的关系式______;(2)若李东家某年所缴纳的居民生活用水水费平均每m3的费用为3.2元,求李东家该年的居民生活用水量;(3)当居民的生活用水和商业用水量分别为500m3时,请比较此时生活用水与商业用水的水费哪种更少,少多少?类别类型收费标准(元/m3)居民生活用水第一阶梯水量:不超过200m33第二阶梯水量:超过200不超过300m3的部分______ 第三阶梯水量:超过300m3的部分 6.5商业用水除居民生活用水、特种行业用水以水外的其他用水______28.如图:在△ABC中,∠BAC=110°,AC=AB,射线AD、AE的夹角为55°,过点B作BF⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,若射线AD、AE都在∠BAC的内部,且点B与点B′关于AD对称,求证:CG=B'G;(2)如图2,若射线AD在∠BAC的内部,射线AE在∠BAC的外部,其他条件不变,求证:CG=BG-2GF;(3)如图3,若射线AD、AE都在∠BAC的外部,其他条件不变,若CG=145GF,AF=3,S△ABG=7.5,求BF的长.答案和解析1.【答案】D【解析】解:A、a2•a3=a5,故此选项错误;B、3a-a=2a,故此选项错误;C、(b3)2=b6,故此选项错误;D、x6÷x2=x4,正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和合并同类项法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.【答案】A【解析】解:第一个是轴对称图形.故选项正确;第二个不是轴对称图形.故选项错误;第三个不是轴对称图形.故选项错误;第四个不是轴对称图形.故选项错误.故选:A.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.4.【答案】C【解析】解:A、任意买一张机票,座位靠窗可能靠窗户,也可能不靠窗户,故A错误;B、打开电视机,正在播放新闻联播是随机事件,故B错误;C、13个同学中少有两个同学的生日在同一个月是必然事件,故C正确;D、某彩票中奖机率1%,小东买100张此彩票会中奖是随机事件,故D错误;故选:C.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【答案】C【解析】解:A、∵∠DAC=∠ACB,∴AD∥BC,故本选项错误;B、∵∠DCB+∠ADC=180°,∴AD∥BC,故本选项错误;C、∵∠ABD=∠BDC,∴AB∥CD,故本选项正确;D、∠BAC=∠ADC不能判定任何一组直线平行,故本选项错误.故选:C.根据平行线的判定定理对各选项进行逐一判断即可本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.【答案】B【解析】解:(x-2)•(x+3)=x2+3x-2x-6=x2+x-6,∵(x-2)•(x+3)=x2+mx-6,∴m=1,故选:B.先根据多项式乘以多项式法则展开,合并后即可得出答案.本题考查了多项式乘以多项式,能够灵活运用法则进行计算是解此题的关键.7.【答案】D【解析】解:由题意这两个图形的面积相等,∴a2-b2=(a+b)(a-b),故选:D.根据面积相等,列出关系式即可.本题主要考查对平方差公式的知识点的理解和掌握,能根据根据在边长为a的大正方形中剪去一个边长为b的小正方形是解此题的关键.8.【答案】B【解析】解:a x+y=a x•a y,∵a x=2,a y=3,∴a x+y=a x•a y=2×3=6,故选:B.根据同底数幂的乘法法则计算,先把a x+y写成a x•a y的形式,再求解就容易了.本题考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数),解题时牢记定义是关键.9.【答案】B【解析】解:∵AC比AD的2倍少4,∴AC=2AD-4,∵△ABC中AC的垂直平分线交AB于点D,交AC于点E,∴AD=DC,∵△ADC的周长是16,∴AD+DC+AC=16,∴AD+AD+2AD-4=16,∴AD=5,∴DC=AD=5,故选:B.根据线段垂直平分线性质得出AD=DC,求出AD+DC+AC=16,AC=2AD-4,代入求出即可.本题考查了线段垂直平分线性质,能根据线段垂直平分线性质求出AD=DC 是解此题的关键.10.【答案】D【解析】解:由函数图象可知他家到公交车站台需行1千米,他等公交车的时间=14-10=4分钟,故A、B正确,与要求不符;公交车的速度=(5-1)×1000÷(22-14)=4000÷8=500米/分,故C正确,与要求不符;他步行与乘公交车行驶的平均速度=5×1000÷(22-4)=米/分,故D错误,与要求相符.故选:D.观察函数图象可对A、B直接作出判断,依据函数图象确定出乘公交车的时间和路程可求得公交车的速度,故此可对C作出判断,依据函数图象确定出步行和乘公交车的总时间,然后依据速度=路程÷时间可求得他步行与乘公交车行驶的平均速度.本题主要考查的是一次函数的应用,能够从函数图象中获取有效信息是解题的关键.11.【答案】9a6b2【解析】解:(-3a 3b )2=9a 6b 2.故答案为9a 6b 2.利用积的乘方运算法则计算即可.本题考查了积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.即(ab )n =a n b n (n 是正整数).12.【答案】-2x 4+23x 3-13x 2【解析】 解:原式=-2x 4+x 3-x 2,故答案为:-2x 4+x 3-x 2.根据单项式乘多项式法则计算可得.本题主要考查单项式乘多项式,解题的关键是掌握单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】3【解析】解:在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ),∴AB=DE=3.故答案为:3.利用“角边角”证明△ABC 和△EDC 全等,根据全等三角形对应边相等可得AB=DE .本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.14.【答案】16°【解析】解:∵∠B=44°,∠C=76°,∴∠BA=180°-∠B-∠C=60°, ∵AE 平分∠BAC ,∴∠CAE=BAC=30°,∵AD是BC边上的高,∴∠ADC=90°,∵∠C=76°,∴∠CAD=180°-∠ADC-∠C=14°,∴∠DAE=∠CAE-∠CAD=30°-14°=16°,故答案为:16°.根据三角形内角和定理求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案.本题考了三角形内角和定理、三角形的高、三角形的角平分线定义等知识点,能求出∠CAE和∠CAD的度数是解此题的关键.15.【答案】±12【解析】解:∵9x2-mx+4是完全平方式,∴9x2-mx+4=(3x±2)2=9x2±12x+4,∴m=±12,故答案为:±12.这里首末两项是3x和2这两个数的平方,那么中间一项为加上或减去3x和2积的2倍.此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.【答案】-3【解析】解:∵2a÷4b=16,∴2a÷22b=24,2a-2b=24,∴a-2b=4,则2b-a+1=-(a-2b)+1=-4+1=-3,故答案为:-3.由2a÷4b=16得2a-2b=24,即a-2b=4,代入计算可得.本题主要考查同底数幂的除法,解题的关键是掌握同底数幂的除法与幂的乘方的运算法则及代数式的求值.17.【答案】23【解析】解:∵对于任意有理数a、b,都有a◎b=a2-ab+b-1,∴(x-3)◎(3+x)=(x-3)2-(x-3)(3+x)+3+x-1=-5x+20,当x=1时,-5x+20=15;当x=2时,-5x+20=10;当x=3时,-5x+20=5;当x=4时,-5x+20=0;当x=5时,-5x+20=-5;当x=6时,-5x+20=-10;∴代数式(x-3)◎(3+x)的值为非负数的概率==,故答案为:.对于任意有理数a、b,都有a◎b=a2-ab+b-1,即可得到(x-3)◎(3+x)=(x-3)2-(x-3)(3+x)+3+x-1=-5x+20,进而得出代数式(x-3)◎(3+x)的值为非负数的概率.本题主要考查了概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.【答案】117°【解析】解:根据折叠可知:∠MAB=∠CAB,∠NAE=∠DAE,∵∠MAB+∠CAB+∠CAD+∠NAE+∠DAE=180°,∠CAD=54°,∴2∠CAB+2∠DAE=180°-54°=126°,∴∠CAB+∠DAE=63°,∴原来的∠A的度数是54°+63°=117°,故答案为:117°.根据折叠得出∠MAB=∠CAB,∠NAE=∠DAE,根据∠MAB+∠CAB+∠CAD+∠NAE+∠DAE=180°和∠CAD=54°求出∠CAB+∠DAE=63°,即可求出答案.本题考查了多边形的内角、折叠的性质、平角的定义等知识点,能正确求出∠BAC+∠DAE的度数是解此题的关键.19.【答案】36【解析】解:如图,过点A作AH⊥BC于H,∵∠CAE=∠CGE,∴∠C=∠E,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ABC=∠D,DE=BC=15,AB=AD,设DF=2x,FG=3x,GE=5x,∴DE=2x+3x+5x=15,∴x=,∴DF=3,FG=,∴DG=DF+FG=,∵△ABC≌△ADE,∴AH=AF=8,∵AF⊥DE,∴∠AFD=90°=∠AHB,在△ADF和△ABH中,,∴△ADF≌△ABH(AAS),∴BH=DF=3,在Rt△AHG和Rt△AFG中,,∴Rt△AHG≌Rt△AFG(HL),∴HG=FG=,∴BG=GH-BH=,∴S四边形ADGB=S△ADG+S△ABG=DG×AF+BG×AH=××8+××8=36,故答案为:36.先判断出△ABC≌△ADE,进而得出∠ABC=∠D,DE=BC=15,AB=AD,进而求出DF=3,FG=,DG=,再判断出△ADF≌△ABH,得出BH=DF=3,再判断出Rt△AHG≌Rt△AFG,得出HG=FG=,进而BG=GH-BH=,最后用面积的和即可得出结论.此题主要考查了全等三角形的判定和性质,三角形的面积公式,作出辅助线求出BG是解本题的关键.20.【答案】解:(1)原式=1×8-1=8-1=7;(2)原式=(x2-25y2-x2+4xy-4y2+y2)÷2y=(-28y2+4xy)÷2y=-14y+2x,当x=-1,y=1时,原式=-7-2=-9.2【解析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】已知AD同位角相等,两直线平行∠3 两直线平行,同位角相等∠2=∠3 等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG∥AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.22.【答案】5【解析】解:(1)四边形AB′CD′如图所示;(2)S四边形ABCD=×6×3=9.(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.(1)根据要求画出图形即可;(2)对角线垂直的四边形的面积=对角线乘积的一半;(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.本题考查作图-轴对称变换、勾股定理、轴对称-最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.【答案】50 20 Q=50-6t【解析】解:(1)根据上表的数据,试验前油箱中共有油50升,当汽车行驶5小时后,油箱中的剩余油量是:50-5×6=20(升);故答案为:50,20;(2)剩余油量Q(单位:升)与汽车行驶时间t(单位:小时)的关系式是:Q=50-6t;故答案为:Q=50-6t;(3)当Q=5时,则50-6t=4,解得:t=,则该试验行驶小时汽车将会报警.(1)利用表格中数据变化规律可得出答案;(2)利用数据变化规律得出每小时的耗油量进而得出答案;(3)利用Q=4代入进而得出答案.此题主要考查了函数关系式,正确得出每小时的耗油量是解题关键.24.【答案】解:(1)∵盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄),∴顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券的概率=1;3(2)所有可能出现的结果列表如下:(A,A)(A,B)(A,C)(B,A)(B,B)(B,C)(C,A)(C,B)(C,C)由列表可知所有可能的结果共9种,其中两次摸到的球都是草莓的情况数是1种,∴求出获得100元的优惠券的概率=19.【解析】(1)直接利用概率公式计算即可;(2)首先列表,再根据列表求得的两张卡片是草莓的可能性,再求比值即可求得.此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】解:(1)在△ACE和△DCB中,{CA=CD∠ACD=∠BCE CE=CB,∴△ACE≌△DCB(SAS),∴AE=DB,∠AEC=∠DBC∵∠AEC+∠EAC=90°,∴∠DBC+∠EAC=90°,∴∠AFB=90°.(2)∵∠ACD=∠BCE,∴∠ACE=∠BCD,∵AC=CD,CE=CB,∴△ACE≌△DCB(SAS),∴∠AEC=∠B,∵∠AEC+∠FEC=180°,∴∠B+∠FEC=180°,∴∠F+∠BCE=180°,∴∠AFB=180°-α.【解析】(1)只要证明△ACE≌△DCB(SAS),即可解决问题;(2)只要证明△ACE≌△DCB(SAS),即可解决问题;本题考查全等三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.26.【答案】解:(1)(m-2y+1)(n+3y)+ny2=mn+3my-2ny-6y2+n+3y+ny2=mn+n+(3m-2n+3)y+(n-6)y2∵代数式的值与y无关,n−6=0∴{3m−2n+3=0n=6∴{m=3①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2-2x-5=0∴x2=2x+5∴2x3-8x2-2x+2018=2x(2x+5)-8x2-2x+2018=4x2+10x-8x2-2x+2018=-4x2+8x+2018=-4(2x+5)+8x+2018=-8x-20+8x+2018=1998【解析】根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.本题主要考查了利用因式分解简化计算问题.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.27.【答案】y=4x-200(200<x≤300) 4 5.7【解析】解:(1)如表,当用水量超过200不超过300m3的部分用水水费是1000-600=400(元)则用水收费标准为:=4(元/m3).如表,商业用水用水收费标准为:=5.7(元/m3).设y1与x的关系式为y=kx+b(k≠0),把(200,600)、(300,1000)分别代入,得解得,所以y1与x的关系式为y=4x-200(200<x≤300).故答案是:4;5.7;y=4x-200(200<x≤300).(2)∵当年用水量为300m3时,平均水量为:元/m3).3<3.2∴设李东家该年的居民生活用水量为am3,由此可得:4a-200=3.2a解得:a=250.∴李东家该年的居民生活用水量为250m3;(3)当x=500时,y1=1000+6.5×(500-300)=2300y2=5.7×500=2850∵2300<2850∴y2>y1,即当居民的生活用水和商业用水量分别为500m3时,生活用水的水费少,少550元.(1)结合用水水费与用水量间的关系填空;利用待定系数法求函数关系式;(2)与当年用水量为300m3时水的单价进行比较,确定李东家用水单价属于哪一阶段,然后确定用水量;(3)利用函数关系式解答.本题考查了一次函的应用,首先读懂题意,然后根据题意列出函数关系式,再利用函数解析式即可解决实际问题.28.【答案】(1)证明:如图1,连接AB',∵B,B'关于AD对称,∴BB'被AD垂直平分,∴AB'=AB,∵AC=AB,∴AC=AB',∵AF⊥BG,∴∠BAF=∠B'AF,∵∠GAF=55°,∴∠B'AF+GAB'=55°,∵∠CAB=110°,∴∠CAG+∠FAB=55°,∴∠B'AF+∠GAB'=∠CAG+∠FAB,∵∠BAF=∠B'AF,∴∠GAB'=∠CAG,∵AG=AG,∴△CGA≌△B'GA,∴CG=B'G,(2)证明:如图2,在FB上截取FG'=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'-∠CAG'=∠CAB-∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵FG'=GF,∴CG'=2GF,∵GB=GG'+G'B,∴GB=2GF+CG,∴CG=GB-2GF,(3)解:延长BF至点G',使G'F=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'-∠CAG'=∠CAB-∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵CG=14GF,5∴设GF=5k,CG=14k,∴G'F=5k,BG'=14k,∴BG=4k,∵S△ABG=7.5,AF=3,∴1BG•AF=7.5,2∴1×4k×3=7.5,2∴k=5,4∴BF=9k=45.4【解析】(1)先判断出AC=AB',再用等式的性质判断出∠BAF=∠B'AF,进而判断出△CGA≌△B'GA,即可得出结论;(2)先判断出∠GAF=∠G'AF,再判断出∠GAC=∠G'AB,进而得出△GAC≌△G'AB,即CG=G'B,即可得出结论;(3)同(2)的方法判断出CG=G'B,最后用面积建立方程求出k的值,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,对称的性质,垂直平分线的性质,判断出CG=GB'是解本题的关键.。
2017-2018年四川省成都市青羊区七年级(下)期末数学试卷(解析版)
(1)抽奖活动 1:若顾客从盒子中任意摸一个球,摸到草莓就获得一张 50 元的优惠券,请 问顾客获得 50 元的优惠券的概率; (2)抽奖活动 2:若顾客从盒子中任意摸一个球后放回盒子,摇匀后再摸一个,两次摸到 的球都是草莓就可获得一张 100 元的优惠券,请列出顾客摸到球的所有可能情况,并求 出获得 100 元的优惠券的概率是多少? 20. (10 分)已知点 C 为直线 AB 上一点,D 为 AB 外一点,分别以 CA、CB 为边在 AB 的 同侧作△ACD 和△CEB,且 CA=CD,CB=CE,∠ACD=∠BCE=α,直线 AE 与直线 BD 交于点 F. (1)如图 1,若 α=90°,且点 E 在 CD 上,求证 AE=DB,并求∠AFB 的度数: (2)如图 2,若 α>90°,求∠AFB 的度数(用含 α 的式子表示) .
(2)剩余油量 Q(单位:升)与汽车行驶时间 t(单位:小时)的关系式是
(3) 当剩余油量为 4 升时汽车将自动报警提醒加油, 请问该试验行驶几小时汽车将会报警? 五、 (19 题 8 分,20 题 10 分,共 18 分. ) 19. (8 分)水果种植大户小芳组织了“草莓采摘游”活动,为了吸引更多的顾客,每一位 来采摘草莓的顾客都有一次抽奖机会.现有一只不透明的盒子,盒子里有三个外形与质 地完全相同的球,分别印有 A(草莓) ,B(枇杷) ,C(葡萄) .
﹣3
பைடு நூலகம்0 2
(2)先化简,再求值:[(x﹣5y) (x+5y)﹣(x﹣2y) +y ]÷2y,其中 x=﹣1,y= . 16. (8 分)如图,已知△ABC 中,AD⊥BC 于点 D,E 为 AB 边上任意一点,EF⊥BC 于点 F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整. 证明:∵AD⊥BC,EF⊥BC( ) ,
2017-2018年四川省内江市七年级(下)期末数学试卷(解析版)
2017-2018学年四川省内江市七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.)1.(4分)下列方程中是一元一次方程的是()A.B.x2=1C.2x+y=1D.2.(4分)小狗皮皮看到镜子里的自己,觉得很奇怪,此时他所看到的全身像是()A.B.C.D.3.(4分)若2x+1=8,则4x+1的值为()A.15B.16C.17D.194.(4分)已知和是方程ax﹣by=1的解,则a,b的值为()A.a=﹣1,b=﹣1B.a=﹣1,b=1C.a=0,b=﹣1D.a=﹣1,b=0 5.(4分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形6.(4分)如图,将周长为6的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.7C.8D.97.(4分)如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2B.x=2,y=3C.x=0,y=5D.x=5,y=0 8.(4分)一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8C.4D.4或69.(4分)如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45°B.60°C.120°D.135°10.(4分)下列不等式的变形中,正确的结论有()①若a>b,则a﹣3>b﹣3②若a>b,则﹣3a>﹣3b③若a>b,则(m2+1)a>(m2+1)b④若a>b且m≠0,则﹣ma<﹣mbA.1个B.2个C.3个D.4个11.(4分)如图,∠A+∠B+∠C+∠D+∠E+∠F为()A.180°B.360°C.540°D.720°12.(4分)关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣B.﹣5≤a<﹣C.﹣5<a≤﹣D.﹣5<a<﹣二、填空题(本大题共4小题,每小题4分,共16分.)13.(4分)已知x=2是关于x的方程3﹣mx=x+m的解,m的值为.14.(4分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.15.(4分)如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是.16.(4分)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明或演算步骤.)17.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.18.(8分)如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.19.(8分)已知△ABC和点O在边长为1的正方形网格中.(1)将△ABC向右平移10格,再绕点O按顺时针方向旋转90°,画出变换之后的△A1B1C1;(2)计算图中△ABC的面积.20.(8分)已知方程组中x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解集为x<1.21.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.22.(12分)如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=;②如图2,若∠B=90°,则∠E=;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.2017-2018学年四川省内江市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.)1.(4分)下列方程中是一元一次方程的是()A.B.x2=1C.2x+y=1D.【解答】解:A、分母子中含有未知数,不是一元一次方程,故A选项不符合题意;B、未知数的最高次项是2,故不是一元一次方程.故B选项不符合题意;C、含有两个未知数,故不是一元一次方程,故C选项不符合题意;D、符合一元一次方程的定义,故D选项正确.故选:D.2.(4分)小狗皮皮看到镜子里的自己,觉得很奇怪,此时他所看到的全身像是()A.B.C.D.【解答】解:根据图中所示,镜面对称后,应该为第一个图象.故选:A.3.(4分)若2x+1=8,则4x+1的值为()A.15B.16C.17D.19【解答】解:方程2x+1=8得:x=,把x的值代入4x+1得:15;故选:A.4.(4分)已知和是方程ax﹣by=1的解,则a,b的值为()A.a=﹣1,b=﹣1B.a=﹣1,b=1C.a=0,b=﹣1D.a=﹣1,b=0【解答】解:把和代入方程ax﹣by=1,得,解得.故选:A.5.(4分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正八边形.故选:D.6.(4分)如图,将周长为6的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.7C.8D.9【解答】解:∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:C.7.(4分)如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2B.x=2,y=3C.x=0,y=5D.x=5,y=0【解答】解:(x+y﹣5)2与|3x﹣2y+10|互为相反数,(x+y﹣5)2+|3x﹣2y+10|=0,解得.故选:C.8.(4分)一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8C.4D.4或6【解答】解:设第三边为x,则7﹣3<x<7+3,即4<x<10,∵第三边长为偶数,∴第三边长是6或8.故选:B.9.(4分)如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45°B.60°C.120°D.135°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选:A.10.(4分)下列不等式的变形中,正确的结论有()①若a>b,则a﹣3>b﹣3②若a>b,则﹣3a>﹣3b③若a>b,则(m2+1)a>(m2+1)b④若a>b且m≠0,则﹣ma<﹣mbA.1个B.2个C.3个D.4个【解答】解:①若a>b,则a﹣3>b﹣3,正确;②若a>b,则﹣3a>﹣3b,错误;③若a>b,则(m2+1)a>(m2+1)b,正确;④若a>b且m≠0,则﹣ma<﹣mb错误.故选:B.11.(4分)如图,∠A+∠B+∠C+∠D+∠E+∠F为()A.180°B.360°C.540°D.720°【解答】解:因为∠D+∠E=∠EGC,∠EGC+∠C=∠BIG,所以∠D+∠E+∠C=∠BIG.故∠A+∠B+∠C+∠D+∠E+∠F=(∠A+∠B+∠F)+(∠D+∠E+∠C)=∠A+∠B+∠F+∠BIG=360°.故选:B.12.(4分)关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣B.﹣5≤a<﹣C.﹣5<a≤﹣D.﹣5<a<﹣【解答】解:不等式组的解集是2﹣3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2﹣3a<17,解得﹣5<a≤﹣.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.)13.(4分)已知x=2是关于x的方程3﹣mx=x+m的解,m的值为.【解答】解:根据题意将x=2代入方程3﹣mx=x+m,得:3﹣2m=2+m,解得:m=,故答案为:.14.(4分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价6元出售该商品.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.15.(4分)如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是2.【解答】解:∵D、E分别是BC,AD的中点,∴S△AEC=S△ACD,S△ACD=S△ABC,∴S△AEC=S△ABC=×8=2.故答案为:2.16.(4分)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为72.【解答】解:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).当n=8时,8(8+1)=72个,故答案为:72.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明或演算步骤.)17.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.【解答】解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.18.(8分)如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.19.(8分)已知△ABC和点O在边长为1的正方形网格中.(1)将△ABC向右平移10格,再绕点O按顺时针方向旋转90°,画出变换之后的△A1B1C1;(2)计算图中△ABC的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)△ABC的面积为:4×5﹣×3×3﹣×1×5﹣×2×4=9.20.(8分)已知方程组中x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解集为x<1.【解答】解:(1)解方程组得:,∵方程组中x为非正数,y为负数,∴,解得:﹣2<a≤3,即a的取值范围是﹣2<a≤3;(2)2ax+x>2a+1,(2a+1)x>2a+1,∵要使不等式2ax+x>2a+1的解集为x<1,必须2a+1<0,解得:a<﹣0.5,∵﹣2<a≤3,a为整数,∴a=﹣1,所以当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.21.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得,解得,,答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(20﹣m)个,依题意,得50m+30(20﹣m)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.22.(12分)如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=30°;②如图2,若∠B=90°,则∠E=45°;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.【解答】解:(1)①∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠F AC=∠DAC,∠ACE=∠ACB,∴∠E=∠F AC﹣∠ACE=∠B=30°;②∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠F AC=∠DAC,∠ACE=∠ACB,∴∠E=∠F AC﹣∠ACE=∠B=45°;(2)∠DAC﹣∠ACB=∠B=α,∵EA平分∠DAC,EC平分∠ACB,∴∠F AC=∠DAC,∠ACE=∠ACB,∴∠E=∠F AC﹣∠ACE=∠B=α;(3)∵AG,CG分别是∠EAB与∠ECB的角平分线,∴∠G=∠HAC﹣∠ACG=∠F AC﹣∠ACE=(∠F AC﹣∠ACE)=×∠B=α.。
四川省2017-2018学年度七年级数学下学期期末考试模拟卷
四川省2017-2018学年度七年级数学下学期期末考试模拟卷(考试时间:120分钟 试卷满分:150分)、选择题(本大题共 10小题,每小题3分,共30分•在每小题给岀的四个选项中,只有一个 选项是符合题目要求的)1.下列各组图形中,是全等图形的是3.已知x<y ,下列不等式不成立的是4.下列变形属于移项的是6.—个三角形的两边长分别是4和6,其第三边边长可能是2.下列图形中,是中心对称图形但不是轴对称图形的是A . x- 3<y- 3B . 5x<5yC .D . -x<-yA .由 2x=2,得 x=1x B .由一=-1,得 x=- 22C .由 3x- 7 =0,得 73x=2D .由-2x- 2=0,得 x=-15.已知二元一次方程组fm+4n=2。
①,如果用加减法消去n ,则下列方法可行的是 4m - 5n = 8②B .①X5+②MC .①X 5②>4A • C.A •D• B •C. 10D. 117.已知方程组gX —2y=2m 的解%、科互为相反数,则m 的值为:2x +5y =3m +25A . -1B . 0C . 5D . -58不等式组 3X 3 0 的解集表示在数轴上正确的是〔X -5 兰1 - 2xA . 1080 °B . 1440 °C . 1260 10•有一批画册,若3人合看一本,那么多2本,若2人合看一本,则9人没书看,若设人数为x ,那么可以列出方程为X c X 9 A .2 二3 2C X 2 =X _9 '3 2 二、填空题(本大题共 4小题,每小题4分,共16分) 12 .如图,将周长为15 cm 的厶ABC 沿射线BC 方向平移2 cm 后得到△ DEF ,则四边形ABFD的周长为 cm .A DZZ2B Ec r13 .关于x 的不等式x - 1<2 2的非负整数解是14 .如图,△ AOB 和厶 COD 中,/ AOB= / COD =90 ° / B=40 ° / C=60 °点 D 在 0A 上.将X c X —9 B 2 二'3 2 x x-9 D . 2 =3 2 11 •如图,直线 D . 1080 -1 2 - 19•若一个多边形的每一个外角都是 40°则这个多边形的内角的度数是m// n ,/ A=50°△ COD 绕点O 顺时针旋转一周,在旋转过程中,当旋转角是 _____________ °时,CD // AB .三、解答题(本大题共 6小题,共54分•解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)(1)解方程:2x-13x-1=1;6 8(2)解方程组:6x-3y —3‘5x _9y =4上表示出来.-5 -4 -3 -2 - 1 0 1 2 3 4 516.(本小题满分6分)解不等式2(x - 3) :: 4x ①竽,即②,并把它的解集在如下的数轴17. (本小题满分8分)如图,在△ ABC中,AD是BC边上的高,BE平分.ABC交AD于点E, . C =60 , . BED =70,求.ABC 和.BAC 的度数.18. (本小题满分8分)如图,在4>3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)设计一个图形,使它既是轴对称图形又是中心对称图形,请把你所设计的图案在图(1)中表示出来;(2)设计一个图形,使它是轴对称图形但不是中心对称图形,请把你所设计的图案在图(2)中表示出来;(3)设计一个图形,使它是中心对称图形但不是轴对称图形,请把你所设计的图案在图(3)中表示出来.19. (本小题满分10分)如图,在△ ABC中,AD丄BC, AE平分/ BAC .(1)若/ B=72° / C=30°①求/ BAE的度数;②求/ DAE的度数;(2)探究:如果只知道/ B= / C+42°也能求出/ DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.20. (本小题满分10分)某乡村在开展“美丽乡村”建设时,决定购买A, B两种树苗对村里的主干道进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要380元;购买A种树苗5棵,B种树苗2棵,需要400元.(1)求购买A, B两种树苗每棵各需多少元?(2)现需购买这两种树苗共100棵,要求购买A种树苗不少于60棵,且用于购买这两种树苗的资金不超过5620元•则有哪几种购买方案?B卷一、填空题(本大题共5小题,每小题4分,共20 分)21 •不等式2x+5<3的解集是____________ .x y = 222.已知:y • z =3,则x y z= ___________________ •Ix z = 723•用正三角形和正方形能够铺满地面,每个顶点周围有__________ 个正三角形和__________ 个正方形.24. _________________________________________________________________ 已知关于x的方程2x+ m=x+2的解是负数,贝U m的取值范围是_____________________________ .25. 如图,在平面直角坐标系xOy中,△ DEF可以看作是△ ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△ DEF的过程: ____________ .田1 ;| 1D二L V1—』一r1 J____1 if i「■厂 F "Il Al lJ 11 1h- = —1 亠一1--亠L--U _ (* i i 10 - j 亠■ 隔n3二、解答题(本大题共3小题,共30分•解答应写出文字说明、证明过程或演算步骤)x k 乞5 - 2x26. (本小题满分8分)已知关于x, y 的不等式组3•[4(x-:)2x-1(1)若该不等式组的解为2乞x空3,求k的值;3(2)若该不等式组的解中整数只有1和2,求k的取值范围.27. (本小题满分10分)运输360吨化肥,恰好需要6辆大卡车和3辆小汽车;运输440 吨化肥,恰好需要8辆大卡车和2辆小汽车.(1)每辆大卡车与每辆小汽车各装多少吨化肥?(2)现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?28. (本小题满分12分)如图①,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图①的图形称之为“ 8字形” •如图②,/ CAB和/ BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N •试解答下列问题:(1) ______________________________ 仔细观察,在图②中有个以线段AC为边的“ 8字形”;(2)在图②中,若/ B=96° / C=100°,求/ P的度数;(3)在图②中,若/ CAP= 3 / BAC ,Z CDP=3 / BDC,试问/ P与/ D、/ B之间存在着怎样的数量关系,并说明理由;。
2017-2018学年四川省内江市七年级(下)期末数学试卷(解析版)
2017-2018学年四川省内江市七年级(下)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列方程中是一元一次方程的是()A. B. C. D.2.小狗皮皮看到镜子里的自己,觉得很奇怪,此时他所看到的全身像是()A. B. C. D.3.若2x+1=8,则4x+1的值为()A. 15B. 16C. 17D. 194.已知和是方程ax-by=1的解,则a,b的值为()A. ,B. ,C. ,D. ,5.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A. 正三角形B. 正四边形C. 正六边形D. 正八边形6.如图,将周长为6的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 7C. 8D. 97.如果(x+y-5)2与|3x-2y+10|互为相反数,则x,y的值为()A. ,B. ,C. ,D. ,8.一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A. 6B. 6或8C. 4D. 4或69.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. B. C. D.10.下列不等式的变形中,正确的结论有()①若a>b,则a-3>b-3②若a>b,则-3a>-3b③若a>b,则(m2+1)a>(m2+1)b④若a>b且m≠0,则-ma<-mbA. 1个B. 2个C. 3个D. 4个11.如图,∠A+∠B+∠C+∠D+∠E+∠F为()A.B.C.D.12.关于x的不等式组><只有4个整数解,则a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共16.0分)13.已知x=2是关于x的方程3-mx=x+m的解,m的值为______.14.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.15.如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是______.16.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为______.三、解答题(本大题共6小题,共56.0分)17.(1)解方程:=2-(2)解不等式组:<,并把解集在数轴上表示出来.18.如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.19.已知△ABC和点O在边长为1的正方形网格中.(1)将△ABC向右平移10格,再绕点O按顺时针方向旋转90°,画出变换之后的△A1B1C1;(2)计算图中△ABC的面积.20.已知方程组中x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解集为x<1.21.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.22.如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=______;②如图2,若∠B=90°,则∠E=______;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.答案和解析1.【答案】D【解析】解:A、分母子中含有未知数,不是一元一次方程,故A选项不符合题意;B、未知数的最高次项是2,故不是一元一次方程.故B选项不符合题意;C、含有两个未知数,故不是一元一次方程,故C选项不符合题意;D、符合一元一次方程的定义,故D选项正确.故选:D.根据一元一次方程的定义分别判断即可得解.本题主要考查了一元一次方程的定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程.通常形式是ax+b=0(a、b为常数,且a≠0).2.【答案】A【解析】解:根据图中所示,镜面对称后,应该为第一个图象.故选:A.直接利用镜面对称的特点分析得出答案.此题考查了镜面反射对称的特点,注意与实际生活结合.3.【答案】A【解析】解:方程2x+1=8得:x=,把x的值代入4x+1得:15;故选:A.已知关于x的方程2x+1=8,实际就可以求出x的值,把解得的x的值代入所要求的式子就可以求出代数式的值.代数式的值是由字母的取值来确定的,因而正确求出x的值是解决本题的基本思路.4.【答案】A【解析】解:把和代入方程ax-by=1,得,解得.故选:A.根据方程的解的定义,可以把方程的解代入方程,得到一个含有未知数a,b 的二元一次方程,从而可以求出a,b的值.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.5.【答案】D【解析】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正八边形.故选:D.平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.6.【答案】C【解析】解:∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:C.先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.7.【答案】C【解析】解:(x+y-5)2与|3x-2y+10|互为相反数,(x+y-5)2+|3x-2y+10|=0,解得.故选:C.根据互为相反数的两个数的和为0,可得二元一次方程组,根据解二元一次方程组,可得答案.本题考查了解二元一次方程组,先得出一个二元一次方程组,再解二元一次方程组.8.【答案】B【解析】【分析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长.此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:设第三边为x,则7-3<x<7+3,即4<x<10,∵第三边长为偶数,∴第三边长是6或8.故选:B.9.【答案】A【解析】解:设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选:A.首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.10.【答案】B【解析】【分析】此题主要考查了不等式的性质,正确把握不等式基本性质是解题关键.直接利用不等式的基本性质分别分析得出答案.【解答】解:①若a>b,则a-3>b-3,正确;②若a>b,则-3a<-3b,错误;③若a>b,则(m2+1)a>(m2+1)b,正确;④若a>b且m≠0,若m<0,则-ma>-mb,错误.故选B.11.【答案】B【解析】解:因为∠D+∠E=∠EGC,∠EGC+∠C=∠BIG,所以∠D+∠E+∠C=∠BIG.故∠A+∠B+∠C+∠D+∠E+∠F=(∠A+∠B+∠F)+(∠D+∠E+∠C)=∠A+∠B+∠F+∠BIG=360°.故选:B.根据四边形内外角和三角形内外角关系,将各角转化为四边形的内角和求解.灵活运用四边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.12.【答案】C【解析】解:不等式组的解集是2-3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2-3a<17,解得-5<a≤-.故选:C.首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.正确解出不等式组的解集,正确确定2-3a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【答案】【解析】解:根据题意将x=2代入方程3-mx=x+m,得:3-2m=2+m,解得:m=,故答案为:.把x=2代入方程得到关于m的方程,再根据一元一次方程的解法求解即可.本题考查了一元一次方程的解的概念,根据方程的解就是使方程的左右两边都相等的未知数的值,代入得到关于m的方程是解题的关键.14.【答案】6【解析】解:设降价x元出售该商品,则22.5-x-15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.先设最多降价x元出售该商品,则降价出售获得的利润是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.【答案】2【解析】解:∵D、E分别是BC,AD的中点,∴S△AEC=S△ACD,S△ACD=S△ABC,∴S△AEC=S△ABC=×8=2.故答案为:2.根据中线将三角形面积分为相等的两部分可知:△ADC是阴影部分的面积的2倍,△ABC的面积是△ADC的面积的2倍,依此即可求解.本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为面积相等的两部分.16.【答案】72【解析】解:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).当n=8时,8(8+1)=72个,故答案为:72.①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形“扩展”而来的多边形的边数为n(n+1).本题考查了图形的变化类问题,首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).17.【答案】解:(1)去分母得:5(1-x)=20-2(x+2),5-5x=20-2x-4,-5x+2x=20-4-5,-3x=11,x=-;(2)<①②∵解不等式①得:x>-2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.【解析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、解一元一次方程等知识点,能正确根据等式的性质进行变形是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.18.【答案】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.【解析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.本题考查了平行线的性质,用到的知识点是两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.19.【答案】解:(1)如图所示:△A1B1C1,即为所求;(2)△ABC的面积为:4×5-×3×3-×1×5-×2×4=9.【解析】(1)直接利用平移的性质结合旋转的性质得出对应点位置进而得出答案;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.20.【答案】解:(1)解方程组得:,∵方程组中x为非正数,y为负数,∴ ,解得:-2<a≤3,即a的取值范围是-2<a≤3;(2)2ax+x>2a+1,(2a+1)x>2a+1,∵要使不等式2ax+x>2a+1的解集为x<1,必须2a+1<0,解得:a<-0.5,∵-2<a≤3,a为整数,∴a=-1,所以当a为-1时,不等式2ax+x>2a+1的解集为x<1.【解析】(1)先求出方程组的解,即可得出不等式组,求出不等式组的解集即可;(2)根据不等式的解集求出a的范围,即可得出答案.本题考查了解二元一次方程组,解一元一次不等式或解一元一次不等式组等知识点,能求出a的取值范围是解此题的关键.21.【答案】解:(1)设篮球每个x元,排球每个y元,依题意,得,解得,,答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(20-m)个,依题意,得50m+30(20-m)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【解析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.22.【答案】30°;45°【解析】解:(1)①∠DAC-∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC-∠ACE=∠B=30°;②∠DAC-∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC-∠ACE=∠B=45°;(2)∠DAC-∠ACB=∠B=α,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC-∠ACE=∠B=α;(3)∵AG,CG分别是∠EAB与∠ECB的角平分线,∴∠G=∠HAC-∠ACG=∠FAC-∠ACE=(∠FAC-∠ACE)=×∠B=α.(1)①根据三角形的外角性质可得∠DAC-∠ACB=∠B=60°,再根据角平分线的定义可得∠FAC-∠ACE=30°,可求∠E的度数;②根据三角形的外角性质可得∠DAC-∠ACB=∠B=90°,再根据角平分线的定义可得∠FAC-∠ACE=45°,可求∠E的度数;(2)根据三角形的外角性质可得∠DAC-∠ACB=∠B=α,再根据角平分线的定义可得∠FAC-∠ACE=α,可求∠E的度数;(3)根据角平分线的定和义可得三角形的外角性质可得∠G=∠HAC-∠ACG=∠FAC-∠ACE=(∠FAC-∠ACE),可求∠G的度数.本题考查了三角形外角的性质、角平分线的定义,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。
四川省2017-2018学年七年级数学下学期期末考试模拟卷
四川省2017-2018学年七年级数学下学期期末考试模拟卷(考试时间:120分钟 试卷满分:150分)A 卷一、选择题(本大题共 10小题,每小题3分,共30分•在每小题给岀的四个选项中,只有一个 选项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形的是3.方程x m2-y n '=9是关于x , y 的二元一次方程,贝Vm 、n 的值分别为A . -1, 2B . 1 , 1C .-1, 1D . -3, 24.不等式5+2x< 1 的解集在数轴上表示正确的是B . 1 r - rA. _2Q 7 0一 1D .C.34x —3y = k5.方程组]2x+3y=5的解中X 与y 的值相等,则k 等于A . 2B . 1C . 3D . 46 .如果一个正多边形的内角和等于720 °那么该正多边形的一个外角等于 A . 457.如图,把△ ABC 绕点C 逆时针旋转90。
得到△ DCE ,若/ A=35 °则/ ADE 为2 x=55B . x=C . x=2D . x=1B . 60 °C . 72 °D . 90 °A . 35 °D . 125(1)x+2y =0 3x 4y = 6(2)x _2(x_1)乞 1、填空题(本大题共 4小题,每小题4分,共16分)11. 若x=- 3是方程k (x+4) -2k-x=5的解,贝U k 的值是 ___________ .12. 如图,一块含有 30。
角(/ BAC=30 °的直角三角板 ABC ,绕着它的一个锐角顶点 A 旋转后它的直角顶点落到原斜边上,那么旋转角是 ______________ .14 .已知不等式组 $十1 <2a 的解集是2<x<3,则关于x 的方程ax+b=0的解为 __________________.X —b A 1三、解答题(本大题共 6小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15 .(本小题满分12分)解方程组或不等式组:8如果不等式组% 2的解集是x>n ,那么n 的取值范围是|x a nC . n W2D . n<29.如图,△ ABC 内有一点D ,且 DA 二 DB 二 DC ,若 DAB =20,. DAC = 30,则.BDC 的大小是A5cA . 100B . 80C . 70D . 5010.学校机房今年和去年共购置了 100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是A . 25 台B . 50 台C . 75 台D . 100 台13.如图,共有 个三角形.16. (本小题满分 6分)如图,在△ ABC 中,AD 是BC 边上的高,AE 是/ BAC 的平分线,/ B=40° , / DAE=15°,求/ C 的度数.17. (本小题满分 8分)如图,在一个 10 XI0的正方形网格中有一个厶 ABC .(1) 在网格中画出△ ABC 绕点P 逆时针方向旋转 90°得到的△ "BQ i ;(2)在网格中画出△ A 1B 1C 1向下平移三个单位得到的△A 2B 2C 2.■ ■ ■ ■ ■■■■■■4・・・・・!H j ic ip i i i i !..i/.B B B B I BB ■ B B j—i …■ ■■■■! ■ ■ ■ ■ ■ B i i i i 1 ■ ■ ■ ■ ■ 1i i V\ ■ ■ ■ ■ ■1 I I I I I ■■■■■1 1屮汽■ ■ ■ ■ 1BBBBB I ■ ■ ■ ■ ■ ■ ■ ■ ■■l1i …・i …・d A \■ ■■■■! ■ ■ ■ ■ ■ ■ iiil- ■ ■ ■ ■ ■ 1;■ ■ ■ ■ i Bill! ■fi ■ fi fi 1・・・・・!1;; ; ■1■■ ■ ■ ■ 1B B B B B ■■■■■!18.(本小题满分8分)小丽在水果店用36元买了苹果和梨共6 千克,已知苹果每千克元,梨每10千克 4 元.(1)小丽买了苹果和梨各多少千克?(2)若苹果进价是每千克8 元,梨每千克3元,问这次购买中水果店赚了多少钱?19.(本小题满分10分)(1)在厶ABC中,AB=3, AC=4,那么BC边的长度应满足什么条件?(2)如果一个三角形的两边长分别为5, 7,第三边的长为X,且x是一个奇数,求三角形的周长;(3)如果三角形的三边为连续整数,且周长为24 cm,求它的最短边长.20.(本小题满分10 分)在创建“全国文明城市”和“省级文明城区”过程中,某区污水处理厂决定先购买A、B 两种型号污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B 型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080 吨.(1)求A、B两种型号污水处理设备每周分别可以处理污水多少吨?(2)要想使污水处理厂购买设备的资金不超过230 万元,但每周处理污水的量又不低于4500 吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?B卷一、填空题(本大题共5小题,每小题4分,共20分)2Y -121 •方程竺工=1的解是322. 如图,△ ABDACE,且点E 在BD 上,CE 与AB 交于点F,/ CAB =40 ° 贝DEC = ________ .2x 3y = 5 _23. 已知_______________________ ,贝U 3x+3y的值为.2x + y = -324. 一个多边形的内角和比它的外角和大_______ 900 °则这个多边形的边数是.工a(a b)25. 定义一种法则“:”如下:a - b ,例如:5 _ 3=5 , -1 :2=2,若(-2m-7)b(a Wb):3=3,贝U m的取值范围是__________ .二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)x +2 2x + m26. (本小题满分8分)小婷解不等式>+1,在去分母时,不等式右边的12 3没有乘6,由此得出不等式的解为xW7,试求出m的值,并求出不等式正确的解.27. (本小题满分10分)如图,将一张长方形纸片分别沿着EP, FP对折,使B落在B处,C落在C处.(1)若点P, B;C在同一直线上(图1),求两条折痕的夹角/ EPF的度数;(2)若点P, B ;C不在同一直线上(图2),且/ B'PC' =1Q°求/ EPF的度数.28. (本小题满分12分)图中的两个图形是五角星和它的变形.(1)如图1是一个五角星,求证:/ A+ / B+Z C+ / D+ / E=180°;(2)图1中的点A向下移到BE上时(如图2),五个角的和(即Z CAD+ Z B+ Z C+。
2017-2018年四川省遂宁市七年级(下)期末数学试卷(解析版)
2017-2018学年四川省遂宁市七年级(下)期末数学试卷一、选择题(每小题都有A、B、C、D四个选项,其中只有一个选项是正确的.每小题3分,共54分.)1.(3分)下列方程中,是一元一次方程的是()A.2x﹣5=y B.2(x﹣1)+4=3(x﹣1)C.x2﹣2x+1=0D.x+=22.(3分)已知关于x的方程ax+3x+6=0的解是x=2,则a的值是()A.﹣6B.2C.﹣2D.63.(3分)下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=104.(3分)若|x+1|=2,则x的值是()A.1B.﹣3C.1或﹣3D.1或35.(3分)方程2x+y=9的正整数解有()组.A.1B.2C.3D.46.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.87.(3分)方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,48.(3分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1B.m<2C.m>3D.m>59.(3分)不等式的解集在数轴上表示正确的是()A.B.C.D.10.(3分)若关于x的不等式(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m≠1B.m>1C.m<1D.m为任何实数11.(3分)已知如下命题:①三角形的中线、角平分线、高都是线段;②三角形的三条高必交于一点;③三角形的三条角平分线必交于一点;④三角形的三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④12.(3分)下列图形中,既是中心对称,又是轴对称图形的是()A.B.C.D.13.(3分)如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A.45B.60C.72D.14414.(3分)能铺满地面的正多边形的组合是()A.正五边形和正方形B.正六边形和正方形C.正八边形和正方形D.正十边形和正方形15.(3分)如图所示,△ABC≌△AEF,AB=AE,有以下结论:①AC=AE;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC,其中正确的个数是()A.1B.2C.3D.416.(3分)如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′=()A.60°B.105°C.120°D.13517.(3分)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺.”如果设木条长为x尺,绳子长为y尺,根据题意列方程组正确的是()A.B.C.D.18.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m≤3B.m<3C.m>3D.m=3二、填空题(每小题3分,共24分)19.(3分)如果方程组的解满足x+y=5,则k的值是.20.(3分)关于x的方程4x﹣m+1=3x﹣2的解是负数,则m的取值范围是.21.(3分)已知三角形的三边长分别为2,x﹣1,3,则三角形周长y的取值范围是.22.(3分)如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.23.(3分)如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=.24.(3分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F=.25.(3分)三元一次方程组的解是.26.(3分)某书店销售某种中考复习资料,每本的售价是20元.若每本打九折,全部卖完可获利1000元;若每本打八折,全部卖完可获利800元,则这批书共购进了本.三、解答题(共72分)27.(12分)解下列方程(组):(1)=5(2)(3)28.(8分)解不等式(组):(1)2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.(2)29.(7分)若方程组和方程组有相同的解,求a,b的值.30.(7分)利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A'B'C';(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A'B'C'的面积为;(5)在图中能使S△P AC=S△ABC的格点P的个数有个(点P异于点B).31.(8分)如图,在△ABC中,AD是BC边上的高线,BE是∠B的角平分线,AD,BE相交于点P,已知∠EPD=125°,求∠BAD的度数.32.(8分)已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.33.(10分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?34.(12分)解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC 与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)2017-2018学年四川省遂宁市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题都有A、B、C、D四个选项,其中只有一个选项是正确的.每小题3分,共54分.)1.(3分)下列方程中,是一元一次方程的是()A.2x﹣5=y B.2(x﹣1)+4=3(x﹣1)C.x2﹣2x+1=0D.x+=2【解答】解:A、含有两个未知数,不是一元二次方程,选项错误;B、正确;C、最高次数是二次,故不是一元一次方程,选项错误;D、不是整式方程,故不是一元一次方程,选项错误.故选:B.2.(3分)已知关于x的方程ax+3x+6=0的解是x=2,则a的值是()A.﹣6B.2C.﹣2D.6【解答】解:把x=2代入方程ax+3x+6=0得:2a+6+6=0,解得:a=﹣6,故选:A.3.(3分)下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=10【解答】解:A、﹣=1化为x=﹣3,故此选项错误;B、1﹣[x﹣(2﹣x)]=x化为3x=﹣3,故此选项错误;C、﹣=1化为3x﹣2x+2=6,故此选项错误;D、﹣=1化为2(x﹣3)﹣5(x+4)=10,此选项正确.故选:D.4.(3分)若|x+1|=2,则x的值是()A.1B.﹣3C.1或﹣3D.1或3【解答】解:∵|x+1|=2,∴x+1=±2,解得:x=1或﹣3.故选:C.5.(3分)方程2x+y=9的正整数解有()组.A.1B.2C.3D.4【解答】解:方程2x+y=9,解得:y=﹣2x+9,当x=1时,y=7;当x=2时,y=5;当x=3时,y=3;当x=4时,y=1,则方程的正整数解有4组.故选:D.6.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.8【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.7.(3分)方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:B.8.(3分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1B.m<2C.m>3D.m>5【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣>3,去分母得:2m﹣3﹣1>6,解得:m>5.故选:D.9.(3分)不等式的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式3x﹣1≤2,得:x≤1,解不等式x+2>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故选:A.10.(3分)若关于x的不等式(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m≠1B.m>1C.m<1D.m为任何实数【解答】解:∵将不等式(m﹣1)x>m﹣1两边都除以(m﹣1),得x<1,∴m﹣1<0,解得:m<1,故选:C.11.(3分)已知如下命题:①三角形的中线、角平分线、高都是线段;②三角形的三条高必交于一点;③三角形的三条角平分线必交于一点;④三角形的三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④【解答】解:①三角形的中线、角平分线、高都是线段,说法正确;②三角形的三条高所在的直线交于一点,三条高不一定相交,故三条高必交于一点的说法错误;③三条角平分线必交于一点,说法正确;④锐角三角形的三条高在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故三条高必在三角形内的说法错误;故选:B.12.(3分)下列图形中,既是中心对称,又是轴对称图形的是()A.B.C.D.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:A.13.(3分)如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A.45B.60C.72D.144【解答】解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.14.(3分)能铺满地面的正多边形的组合是()A.正五边形和正方形B.正六边形和正方形C.正八边形和正方形D.正十边形和正方形【解答】解:正五边形每个内角是180°﹣360°÷5=108°,正方形的每个内角是90°,108m+90n=360,n=4﹣m,显然m取任何正整数时,n不能得正整数,故不能铺满;正方形的每个内角是90°,正六边形的每个内角是120度.90m+120n=360°,m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正八边形的每个内角为:180°﹣360°÷8=135°,∵90°+2×135°=360°∴正八边形和正方形能铺满.故选:C.15.(3分)如图所示,△ABC≌△AEF,AB=AE,有以下结论:①AC=AE;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC,其中正确的个数是()A.1B.2C.3D.4【解答】解:∵△ABC≌△AEF,∴BC=EF,∠BAC=∠EAF,故③正确;∴∠EAB+∠BAF=∠F AC+∠BAF,即∠EAB=∠F AC,故④正确;AC与AE不是对应边,不能求出二者相等,也不能求出∠F AB=∠EAB,故①、②错误;故选:B.16.(3分)如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′=()A.60°B.105°C.120°D.135【解答】解:在等腰直角△ABC中,∠BAC=45°,∵旋转角为60°,∴∠CAC′=60°,∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.故选:B.17.(3分)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺.”如果设木条长为x尺,绳子长为y尺,根据题意列方程组正确的是()A.B.C.D.【解答】解:设木条长为x尺,绳子长为y尺,根据题意可得,,故选:A.18.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m≤3B.m<3C.m>3D.m=3【解答】解:由x+8<4x﹣1得,x﹣4x<﹣1﹣8,﹣x<﹣9,x>3,∵不等式组的解集是x>3,∴m≤3.故选:A.二、填空题(每小题3分,共24分)19.(3分)如果方程组的解满足x+y=5,则k的值是6.【解答】解:,①+②得:3(x+y)=3k﹣3,解得:x+y=k﹣1,代入x+y=5中得:k﹣1=5,解得:k=6,故答案为:620.(3分)关于x的方程4x﹣m+1=3x﹣2的解是负数,则m的取值范围是m<3.【解答】解:解方程得:x=m﹣3,∵方程的解为负数,∴m﹣3<0,解得:m<3.故答案为:m<321.(3分)已知三角形的三边长分别为2,x﹣1,3,则三角形周长y的取值范围是6<y <10.【解答】解:由于在三角形中任意两边之和大于第三边,任意两边之差小于第三边,∴3﹣2<x﹣1<3+2,即1<x﹣1<5,∴1+5<y<5+5,即:6<y<10,故答案为:6<y<10.22.(3分)如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是9≤m<12.【解答】解:解不等式3x﹣m≤0得到:x≤,∵正整数解为1,2,3,∴3≤<4,解得9≤m<12.故答案为:9≤m<12.23.(3分)如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=20°.【解答】解:∵△ABC≌△EDC,∴∠DCE=∠BCA,∵∠E=30°,∠D=50°,∴∠DCE=100°,∴∠BCA=100°,∴∠BCE=100°+100°﹣180°=20°,故答案为:20°.24.(3分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠F AD+∠EDA,∴∠E+∠F=∠F AD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.25.(3分)三元一次方程组的解是.【解答】解:,①+②+③得:2(x+y+z)=6,即x+y+z=3④,把①代入④得:z=2,把②代入④得:x=1,把③代入④得:y=0,则方程组的解为,故答案为:26.(3分)某书店销售某种中考复习资料,每本的售价是20元.若每本打九折,全部卖完可获利1000元;若每本打八折,全部卖完可获利800元,则这批书共购进了100本.【解答】解:∵每本的售价是20元.若每本打九折,全部卖完可获利1000元;若每本打八折,全部卖完可获利800元,∴九折时售价为:18元,八折时售价为:16元,则从九折到八折每本少赚2元,∵总利润减少:1000﹣800=200(元),∴设这批书共购进了x本,根据题意可得:2x=200,解得:x=100.故答案为:100.三、解答题(共72分)27.(12分)解下列方程(组):(1)=5(2)(3)【解答】解:(1)去分母,得:2x﹣3(30﹣x)=60,去括号,得:2x﹣90+3x=60,移项,得:2x+3x=60+90,合并同类项,得:5x=150,系数化为1,得:x=30;(2),②×2﹣①,得:5x=10,解得:x=2,将x=2代入②,得:6+y=8,解得:y=2,∴方程组的解为;(3),由①,得:3x﹣y=③,将③代入②,得:(3x+4y)=6,整理,得:3x+4y=4,则,解得:.28.(8分)解不等式(组):(1)2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.(2)【解答】解:(1)2x﹣11<4(x﹣5)+3,2x﹣11<4x﹣20+3,2x﹣4x<﹣20+3+11,﹣2x<﹣6,x>3,在数轴上表示为:;(2)∵解不等式①得:x≥2,解不等式②得:x<4,∴不等式组的解集是2≤x<4.29.(7分)若方程组和方程组有相同的解,求a,b的值.【解答】解:由题意知,解得:,将代入ax+y=b和x+by=a得:,解得:.30.(7分)利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A'B'C';(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A'B'C'的面积为8;(5)在图中能使S△P AC=S△ABC的格点P的个数有7个(点P异于点B).【解答】解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:中线CD即为所求;(3)如图所示:高线AE即为所求;(4)△A'B'C'的面积为:×4×4=8;故答案为:8;(5)如图所示:在图中能使S△P AC=S△ABC的格点P的个数有7个.故答案为:7.31.(8分)如图,在△ABC中,AD是BC边上的高线,BE是∠B的角平分线,AD,BE相交于点P,已知∠EPD=125°,求∠BAD的度数.【解答】解:∵∠APE+∠EPD=180°,∠EPD=125°,∴∠APE=55°.∵∠BAP+∠ABP=55°,∠BAD+∠ABD=90°,∠ABD=2∠ABP,∴∠ABP=35°,∠ABD=70°,∴∠BAD=90°﹣70°=20°,32.(8分)已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.【解答】解:(1)∵∴由于该方程组的解都是正数,∴∴a>1(2)∵a+b=4,∴a=4﹣b,∴解得:0<b<3,∴z=2(a+b)﹣5b=8﹣5b∴﹣7<8﹣5b<8,∴﹣7<z<833.(10分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.34.(12分)解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC 与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=90°﹣α﹣β.(用α,β的代数式表示)(作图2分,写出结果)【解答】解:(1)如图1中,结论:2∠P=∠A.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①如图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于F.∵∠F=180°﹣∠F AD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知:∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β故答案为90°﹣α﹣β.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年四川省七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.下列各式计算结果正确的是()A.a+a=a2B.a•a=a2 C.(a3)2=a5D.a2÷a=22.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.3.下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形4.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.下列算式能用平方差公式计算的是()A.(x﹣2)(x+1)B.(2x+y)(2y﹣x) C.(﹣2x+y)(2x﹣y)D.(﹣x﹣1)(x ﹣1)6.王明的讲义夹里放了大小相同的试卷共50张,其中语文15张、数学25张、英语10张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.7.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形8.如图,垂直平分AB,交AC于点D,交AB于点E,连接BD,若AC=6cm,BC=4cm,则△BCD 的周长为()A.6cm B.8cm C.10cm D.12cm9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.前2分钟,乙的平均速度比甲快B.5分钟时两人都跑了500米C.甲跑完800米的平均速度为100米/分D.甲乙两人8分钟各跑了800米10.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是()A. B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(﹣2ab2)3= .12.如图,D在AB上,E在AC上,且∠B=∠C,请添加一个条件,使△ABE≌△ACD,你添加的条件是.13.某人购进一批苹果,到市场零售,已知销售额y(元)与卖出的苹果数量x(千克)的关系如表所示,则y与x之间的关系式为1CD,则∠A1DB= 度.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:32﹣|﹣8|+(π﹣2016)0﹣(﹣)﹣1(2)化简求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.16.(6分)“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得童话书的概率是多少?17.(8分)我们知道,可以利用直观的几何图形形象地表示有些代数恒等式.例如:(2a+b)(a+b)=2a2+3ab+b2,可以用图1的面积关系来表示.还有许多代数恒等式也可以用几何图形面积来表示其正确性.(1)根据图2写出一个代数恒等式;(2)已知等式:(a+2b)2=a2+4ab+4b2,请你在图3的方框内画出一个相应的几何图形,利用这个图形的面积关系来表示等式的正确性.18.(8分)如图,等边△ABC中,D是AB边上的一动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.19.(10分)某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K 大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩色页300元/张,黑白页50元/张;印刷费与印数的关系见表.(2)若印制6千册,那么共需多少费用?(3)如印制x(1≤x<10)千册,所需费用为y元,请写出y与x之间的关系式.20.(10分)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.四、填空题(本大题共5个小题,每小题4分,共20分)21.已知a m=5,a n=2,则a2m﹣3n= .22.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,现保持盒中原来的白色和黑色弹珠数量不变,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率是.23.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费元.24.如图,△ABC中,AB=BC=a(a为常数),∠B=90°,D是AC的中点,E是BC延长线上一点,F是BC边上一点,DE⊥DF,过点C作CG⊥BE交DE于点G,则四边形DFCG的面积为(用含a的代数式表示)25.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有(将所有正确答案的序号填写在横线上).五、解答题(本大题共3个小题,共30分)26.(8分)已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m、n的值;(2)化简求值:(m+2n+1)(m+2n﹣1)+(2m2n﹣4mn2+m3)÷(﹣m)27.(10分)2015年5月中旬,中国和俄罗斯海军在地中海海域举行了代号为“海上联合﹣2015(1)”的联合军事演习,这是中国第一次地中海举行军事演习,也是这个海军距本土最远的一次军演,某天,“临沂舰”、“潍坊舰”两舰同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束,已知B刚位于A港、C港之间,且A、B、C在一条直线上,如图所示,l临、l潍分别表示“临沂舰”、“潍坊舰”离B 港的距离行驶时间x(h)变化的图象.(1)A港与C岛之间的距离为;(2)分别求出“临沂舰”、“潍坊舰”的航速即相遇时行驶的时间;(3)若“临沂舰”、“潍坊舰”之间的距离不超过2km时就属于最佳通讯距离,求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.28.(12分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.下列各式计算结果正确的是()A.a+a=a2B.a•a=a2 C.(a3)2=a5D.a2÷a=2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】结合同底数幂的乘除法、幂的乘方与积的乘方的概念和运算法则进行判断求解即可.【解答】解:A、a+a=2a≠a2,本选项错误;B、a•a=a2,本选项正确;C、(a3)2=a6≠a5,本选项错误;D、a2÷a=a≠2,本选项错误.故选B.【点评】本题考查了同底数幂的乘除法、幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的概念和运算法则.2.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选D.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意买一张电影票,座位号是偶数是随机事件;打开电视机,正在播放动画片是随机事件;两角及一边对应相等的两个三角形全等是必然事件;三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件,故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列算式能用平方差公式计算的是()A.(x﹣2)(x+1)B.(2x+y)(2y﹣x) C.(﹣2x+y)(2x﹣y)D.(﹣x﹣1)(x ﹣1)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(﹣x﹣1)(x﹣1)=(﹣1)2﹣x2=1﹣x2,故选D【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.王明的讲义夹里放了大小相同的试卷共50张,其中语文15张、数学25张、英语10张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵王明的讲义夹里放了大小相同的试卷共50张,其中数学25张,∴他随机地从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为=;故选A.【点评】本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.8.如图,垂直平分AB,交AC于点D,交AB于点E,连接BD,若AC=6cm,BC=4cm,则△BCD 的周长为()A.6cm B.8cm C.10cm D.12cm【考点】线段垂直平分线的性质.【分析】由DE垂直平分AB,根据线段垂直平分线的性质,可得AD=BD,继而可求得△BDC的周长.【解答】解:∵DE垂直平分AB,∴AD=BD,∵AC=6cm,BC=4cm,∴△BDC的周长为:BC+CD+BD=BC+CD+AD=BC+AC=6+4=10(cm).故选:C.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.前2分钟,乙的平均速度比甲快B.5分钟时两人都跑了500米C.甲跑完800米的平均速度为100米/分D.甲乙两人8分钟各跑了800米【考点】函数的图象.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项A正确;由图可知,5分钟时两人都跑了500米,故选项B正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项C正确;由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项D错误;故选D.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是()A. B.C.D.【考点】剪纸问题.【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案.【解答】解:如图所示:故选A.【点评】本题考查了学生动手操作能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力.二、填空题(本大题共4个小题,每小题4分,共16分)11.(﹣2ab2)3= ﹣8a3b6.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.【解答】解:(﹣2ab2)3,=(﹣2)3a3(b2)3,=﹣8a3b6.【点评】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.12.如图,D在AB上,E在AC上,且∠B=∠C,请添加一个条件,使△ABE≌△ACD,你添加的条件是AC=AB .【考点】全等三角形的判定.【分析】添加的条件是AC=AB,由∠A=∠A,根据有两角和夹边对应相等的两三角形全等即可得到答案.【解答】解:添加的条件是AC=AB,∵∠A=∠A,∠B=∠C,AC=AB,∴△ABE≌△ACD.故答案为:AC=AB.【点评】本题主要考查对全等三角形的判定定理的理解和掌握,解此题的关键是添加正确的条件.13.某人购进一批苹果,到市场零售,已知销售额y(元)与卖出的苹果数量x(千克)的关系如表所示,则y与x之间的关系式为y=3.6x【分析】观察表格可得到苹果的单价,然后依据总价=单价×数量可得到y与x的函数关系式.【解答】解:根据表格可知苹果的单价为3.6元/千克,则y=3.6x.故答案为:y=3.6x.【点评】本题主要考查的是列函数关系式,求得苹果的单价是解题的关键.14.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB= 10 度.【考点】三角形的外角性质;翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.故答案为:10.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,以及翻折变换的性质,熟记各性质并准确识图是解题的关键.三、解答题(本大题共6个小题,共54分)15.(12分)(2016春•武侯区期末)(1)计算:32﹣|﹣8|+(π﹣2016)0﹣(﹣)﹣1(2)化简求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)先求出每一部分的值,再算加减即可;(2)先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)原式=9﹣8+1﹣(﹣2)=4;(2)[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y)=[4x2﹣y2﹣4x2+12xy﹣9y2]÷(﹣2y)=(12xy﹣10y2)÷(﹣2y)=﹣6x+5y,当x=1,y=﹣2时,原式=﹣6×1+5×(﹣2)=﹣16.【点评】本题考查了整式的混合运算和求值,零指数幂,负整数指数幂的应用,能正确根据知识点进行计算和化简是解此题的关键.16.“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得童话书的概率是多少?【考点】几何概率.【分析】(1)看有颜色部分的面积占总面积的多少即为所求的概率.(2)看黄色部分的面积占总面积的多少即为所求的概率.【解答】解:(1)∵转盘被平均分成16份,其中有颜色部分占6份,∴小明获得奖品的概率==.(2)∵转盘被平均分成16份,其中黄色部分占2份,∴小明获得童话书的概率==.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.17.我们知道,可以利用直观的几何图形形象地表示有些代数恒等式.例如:(2a+b)(a+b)=2a2+3ab+b2,可以用图1的面积关系来表示.还有许多代数恒等式也可以用几何图形面积来表示其正确性.(1)根据图2写出一个代数恒等式;(2)已知等式:(a+2b)2=a2+4ab+4b2,请你在图3的方框内画出一个相应的几何图形,利用这个图形的面积关系来表示等式的正确性.【考点】完全平方公式的几何背景;多项式乘多项式.【分析】(1)找出图形的长和宽,即可得出等式;(2)画一个边长为a+2b的正方形,再分割即可得出答案.【解答】解:(1)(2a+b)(a+2b)=2a2+5ab+2b2;(2)如图所示:.【点评】本题考查了完全平方公式和多项式乘以多项式的应用,能够数形结合是解此题的关键.18.如图,等边△ABC中,D是AB边上的一动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的边相等和角为60°得:BC=AC,DC=CE,∠ACB=∠DCE=60°,所以∠BCD=∠ACE,根据SAS可证明△ACE≌△BCD;(2)证明∠CAE=∠ACB,得AE∥BC.【解答】证明:(1)∵△ABC和△DCE都是等边三角形,∴BC=AC,DC=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCA=∠DCE﹣∠DCA,即∠BCD=∠ACE,在△ACE和△BCD中,∵,∴△ACE≌△BCD(SAS);(2)AE∥BC,理由是:∵△ACE≌△BCD,∴∠CAE=∠ABC,∵△ABC是等边三角形,∴∠ABC=∠ACB,∴∠CAE=∠ACB,∴AE∥BC.【点评】本题考查了三角形全等的性质和判定、等边三角形的性质;熟练掌握全等三角形的判定方法:SAS、AAS、ASA、SSS,对于两边的位置关系:平行或垂直.19.(10分)(2016春•武侯区期末)某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩色页300元/张,黑白页50元/张;印刷费与印数的关系见表.(2)若印制6千册,那么共需多少费用?(3)如印制x(1≤x<10)千册,所需费用为y元,请写出y与x之间的关系式.【考点】一次函数的应用.【分析】(1)根据制版费=彩页制版费+黑白制版费,代入数据即可求出数值;(2)根据总费用=制版费+印刷费,代入数据即可求出数值;(3)分1≤x<5和5≤x<10两种情况找出y关于x的函数关系式,合并在一起即可得出结论.【解答】解:(1)印制这批纪念册的制版费为:300×4+50×6=1500(元),∴印制这批纪念册的制版费为1500元.(2)印制6千册时,需要的费用为:1500+(2×4+0.6×6)×6000=71100(元),∴若印制6千册,那么共需71100元的费用.(3)由已知得:当1≤x<5时,y=1500+(2.2×4+0.7×6)×1000x=13000x+1500;当5≤x<10时,y=1500+(2×4+0.6×6)×1000x=11600x+1500.综上可知:y与x之间的关系式为y=.【点评】本题考查了一次函数的应用,解题的关键是:(1)(2)根据数量关系列式计算;(3)根据数量关系找出y关于x的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列式计算(或找出函数关系式)是关键.20.(10分)(2016春•武侯区期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110 度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.【考点】平行线的性质.【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【解答】(1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P在BD延长线上时,∠CPA=∠α﹣∠β;如图所示,当P在DB延长线上时,∠CPA=∠β﹣∠α.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.四、填空题(本大题共5个小题,每小题4分,共20分)21.已知a m=5,a n=2,则a2m﹣3n= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,可得幂的乘方,根据幂的成方,可得答案.【解答】解:a2m﹣3n=a2m÷a3n=(a m)2÷(a n)3=52÷23=,故答案为:.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.22.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,现保持盒中原来的白色和黑色弹珠数量不变,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率是.【考点】列表法与树状图法.【分析】根据概率公式得到得=,解得x=6,然后再利用概率公式计算再往盒中放进18颗同样的白色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率.【解答】解:根据题意得=,解得x=6,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.解决本题的关键是理解概率公式.23.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费38.8 元.【考点】函数的图象.【分析】根据图形可以写出两段解析式,即可求得自来水公司的收费数.【解答】解:将(10,18)代入y=ax得:10a=18,解得:a=1.8,故y=1.8x(x≤10)将(10,18),(15,31)代入y=kx+b得:,解得:,故解析式为:y=2.6x﹣8(x>10)把x=18代入y=2.6x﹣8=38.8,故答案为:38.8【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质.24.如图,△ABC中,AB=BC=a(a为常数),∠B=90°,D是AC的中点,E是BC延长线上一点,F是BC边上一点,DE⊥DF,过点C作CG⊥BE交DE于点G,则四边形DFCG的面积为a2(用含a的代数式表示)【考点】全等三角形的判定与性质;等腰直角三角形.【分析】连结BD,根据等腰直角三角形的性质得到BD=CD,∠FBD=∠GCD=45°,根据等角的余角相等可得∠BDF=∠CDG,根据ASA证明△BDF≌△CDG,再根据三角形面积公式即可求解.【解答】解:连结BD,∵△ABC中,AB=BC=a(a为常数),∠B=90°,D是AC的中点,∴BD=CD,∠FBD=∠FCD=45°,∵CG⊥BE,∴∠FBD=∠GCD=45°,∵DE⊥DF,∴∠BDF=∠CDG,在△BDF与△CDG中,,∴△BDF≌△CDG,∴四边形DFCG的面积=三角形CDF的面积+三角形CDG的面积=三角形CDF的面积+三角形BDF的面积═三角形BCD的面积=×三角形ABC的面积=a2.故答案为: a2.【点评】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,关键是根据ASA证明△BDF≌△CDG.25.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有①④(将所有正确答案的序号填写在横线上).【考点】全等三角形的判定与性质;三角形的外角性质.【分析】①根据角平分线的定义得到∠EBC=∠ABC,∠DCE=ACD,根据外角的性质即可得到结论;②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;③由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论;④由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论.【解答】解:①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故④正确;④BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,同理CH=HE,∴BG﹣CH=GE﹣EH=GH,故③错误.故答案为:①④.【点评】本题考查了平行线的性质,角平分线的定义,角平分线的性质与判定,等腰三角形的判定,三角形内角和定理、三角形外角性质等多个知识点,难度中等.判断出AE是∠BAC外角平分线是关键,事实上,点E就是△ABC的旁心.。