[初二数学]勾股定理综合难题。
八下数学勾股定理与全等三角形综合大题
八下数学| 勾股定理与全等三角形综合大题【一】已知,如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,过D作DE∥AC交AB于E.(1)求证:AE=DE;【解答】证明:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠BAC,∴∠CAD=∠EAD.∴∠EAD=∠ADE.∴AE=DE;(2)如果AC=3,,求AE的长.【解答】解:过点D作DF⊥AB于F.∵∠C=90°,AC=3,AC=2√3,在Rt△ACD中,由勾股定理得AC2+DC2=AD2.∴=√3.∵AD平分∠BAC,∴DF=DC=√3.又∵AD=AD,∠C=∠AFD=90°,∴Rt△DAC≌Rt△DAF(HL).∴AF=AC=3,∴Rt△DEF中,由勾股定理得EF2+DF2=DE2.设AE=x,则DE=x,EF=3﹣x,∴(3-x)²+(√3)²=x²,∴x=2.∴AE=2.【二】如图,在Rt△ACB中,∠ACB=90°,AB=10,AC=6.AD平分∠CAB交BC于点D.(1)求BC的长;【解答】解:在Rt△ACB中,∠ACB=90°,由勾股定理得:=∠AB²-BC²∠10²-6²=.(2)求CD的长.【解答】解:过点D作DE⊥AB于点E,如图.∴∠DEA=90°=∠C(垂直定义).∵AD平分∠CAB(已知),∴∠1=∠2(角平分线定义).在△AED和△ACD中,∠DEA=∠C,∠2=∠1,AD=AD△AED≌△ACD(AAS).∴AE=AC=6,DE=DC(全等三角形的对应边相等).∴BE=AB﹣AE=4.设CD=x,则DE=x,DB=8﹣x.在Rt△DEB中,∠DEB=90°,由勾股定理,得(8﹣x)2=x2+42.解得x=3.即CD=3.【三】如图,在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.【解答】解:∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2-BC2=√102-62=8;(2)求斜边AB上的高.【解答】解:设边AB上的高为h则S△ABC=1/2×BC=1/2AB•h,∴1/2×6×8=1/2×10×h,∴h=24/5,答:斜边AB上的高为24/5;(3)①当点P在BC上时,PC的长为16﹣2t .(用含t的代数式表示)【解答】解:当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②若点P在∠BAC的角平分线上,则t的值为20/3 .【解答】解:当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,AP=AP,PD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20/3.(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC =8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=24/5,在Rt△BCH中,由勾股定理得:BH=√BC2-CH2=√62-(24/5)2=18/5=3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=1/2×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=1/2×AC=1/2×8=4,在Rt△BPQ中,由勾股定理得:BP=√BQ2+PQ2=√32-42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。
勾股定理题目初二难题
勾股定理题目初二难题
勾股定理是解决直角三角形问题的重要定理,它的应用广泛且具有实用性。
下面我向大家提出一道初二难度的勾股定理题目,希望能够展示一下大家的数学能力。
题目:
小明正在建造一个长方形花坛,他想要确定花坛两侧边的长度,以确保它是一个正方形。
他已经测量了花坛两条对角线的长度,分别为12米和16米。
请问,花坛两侧边的长度各是多少米?
解题思路:
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
在这个问题中,我们可以将花坛的两条对角线看作是直角三角形的两条直角边,而花坛两侧边则是斜边。
设花坛两侧边的长度分别为x米和y米。
根据勾股定理,我们可以得到以下两个方程:
x + y = 12 (方程1)
x + y = 16 (方程2)
我们可以使用这两个方程来求解x和y的值。
首先,我们可以将方程1和方程2相减,得到:
16 - 12 = x + y - (x + y)
简化后得到:
256 - 144 = 0
这个方程显然是错误的,说明我们的假设存在问题。
实际上,无法通过已知的对角线长度来确定花坛两侧边的具体长度,因为对角线长度并不能唯一地确定一个长方形。
所以,这个问题的答案是无解。
当我们只知道一个长方形的对角线长度时,无法准确地确定其两侧边的长度。
总结:
这道题目通过勾股定理展示了对角线长度不足以唯一确定长方形的两侧边长度。
勾股定理的应用需要考虑到问题的具体条件,避免出现错误的假设。
在实际问题中,我们经常会遇到需要使用勾股定理来解决的情况,因此加深对勾股定理的理解和运用是非常重要的。
勾股定理难题50道
勾股定理难题50道1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对3.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留)π4.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表:若a b c m +-=,则观察上表我们可以猜想出Sl= (用含m 的代数式表示) 6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 . (2)错误的原因是 . (3)本题正确的结论是 .8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积AE=;则正方形EFGH的面积=.16=,19.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.10.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为2cm.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC∆中BC边上的高是.∆,则ABC13.如图,在ABC∠=︒,分别以BC、AB、AC为边向外作正方形,面积分∆中,90ABC别记为1S 、2S 、3S ,若24S =,36S =,则1S = .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 米.16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 .17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于 .18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD = .19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是cm .(结果保留根号)20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =,6DE =,则EB = .21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为m.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为尺.23.如图是一个长8m、宽6m、高5m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎、点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为m.24.如图,Rt ABC∆的斜边AC为一直角边,另一直角∆的两直角边分别为1,2,以Rt ABC边为1画第二个ACD∆;在以ACD∆的斜边AD为一直角边,另一直角边长为1画第三个∆;⋯,依此类推,第n个直角三角形的斜边长是.ADE25.如图所示的长方体是某种饮料的纸质包装盒,规格为5610cm,在上盖中⨯⨯(单位:)开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:2 1.4≈.≈,3 1.7≈,5 2.2)26.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).评卷人得分三.解答题(共24小题)27.已知ABC∆中,AB AC=.(1)如图1,在ADE∆中,若AD AE=,且DAE BAC∠=∠,求证:CD BE=;(2)如图2,在ADE∆中,若60DAE BAC∠=∠=︒,且CD垂直平分AE,3AD=,4CD=,求BD的长;(3)如图3,在ADE∆中,当BD垂直平分AE于H,且2BAC ADB∠=∠时,试探究2CD,2BD,2AH之间的数量关系,并证明.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是11(91),(91)22-+;勾是五时,股和弦的算式分别是11(251),(251)22-+.根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含(n n为奇数,且3)n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m为偶数,且4)m>的代数式来表示股和弦.29.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为1h 、2h .(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线,动点D 在直线AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连接BE . (1)填空:ACB ∠= 度;(2)当点D 在线段AM 上(点D 不运动到点)A 时,试求出ADBE的值; (3)若8AB =,以点C 为圆心,以5为半径作C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.31.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题, 请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长 . (1) 如图 1 ,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;(2) 如图 2 ,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处;(3) 如图 3 ,圆锥的母线长为4cm ,圆锥的侧面展开图如图 4 所示, 且1120AOA ∠=︒,一只蚂蚁欲从圆锥的底面上的点A 出发, 沿圆锥侧面爬行一周回到点A .32.在学习勾股定理时,我们学会运用图()I 验证它的正确性;图中大正方形的面积可表示为:2()a b +,也可表示为:214()2c ab +,即221()4()2a b c ab +=+由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图()(2002II 年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用()III 提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++; (3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++.33.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,如图①,在盒子的内部我们先取棱1BB 的中点E ,再连接AE 、1EC .虫乙如果沿路径1A E C --爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)34.在ABC ∆中,BC a =,AC b =,AB c =,设c 为最长边,当222a b c +=时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(2)猜想,当22a b + 2c 时,ABC ∆为锐角三角形;当22a b + 2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围. 35.一、阅读理解:在ABC ∆中,BC a =,CA b =,AB c =; (1)若C ∠为直角,则222a b c +=;(2)若C ∠为锐角,则22a b +与2c 的关系为:222a b c +> 证明:如图过A 作AD BC ⊥于D ,则BD BC CD a CD =-=- 在ABD ∆中:222AD AB BD =- 在ACD ∆中:222AD AC CD =- 2222AB BD AC CD -=-2222()c a CD b CD --=- 2222a b c a CD ∴+-= 0a >,0CD >2220a b c ∴+->,所以:222a b c +>(3)若C ∠为钝角,试推导22a b +与2c 的关系.二、探究问题:在ABC ∆中,3BC a ==,4CA b ==,AB c =;若ABC ∆是钝角三角形,求第三边c 的取值范围.36.已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,试判断ABC ∆的形状.阅读下面解题过程:解:由422422a b c b a c +=+得: 442222a b a c b c -=-①2222222()()()a b a b c a b +-=-② 即222a b c +=③ABC ∴∆为Rt △. ④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号) 错误原因是 本题的结论应为 .37.如图a ,90EBF ∠=︒,请按下列要求准确画图:1:在射线BE 、BF 上分别取点A 、C ,使2BC AB BC <<,连接AC 得直角ABC ∆; 2:在AB 边上取一点M ,使AM BC =,在射线CB 边上取一点N ,使CN BM =,直线AN 、CM 相交于点P .(1)请用量角器度量APM ∠的度数为 ;(精确到1)︒ (2)请用说理的方法求出APM ∠的度数;(3)若将①中的条件“2BC AB BC <<”改为“2AB BC >”,其他条件不变,你能自己在图b 中画出图形,求出APM ∠的度数吗?38.如图,D 、E 分别是ABC ∆的边BC 和AB 上的点,ABD ∆与ACD ∆的周长相等,CAE ∆与CBE ∆的周长相等.设BC a =,AC b =,AB c =. (1)求AE 和BD 的长;(2)若90BAC ∠=︒,ABC ∆的面积为S ,求证:S AE BD =.39.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小强计算这块菜地的面积.(结果保留根号)40.ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.41.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 ⋯ a221-231-241-251-⋯ b46 810 ⋯ c221+ 231+241+251+⋯(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数(1)n n >的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.42.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算1(91)2-、1(91)2+与1(251)2-、1(251)2+,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用(n n 为奇数且3)n 的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m 为偶数且4)m >的代数式来表示他们的股和弦.43.如图,梯子AB 斜靠在墙上,90ACB ∠=︒,5AB =米,4BC =米,当点B 下滑到点B '时,点A 向左平移到点A '.设BB x '=米(04)x <<,AA y '=米. (1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?(3)请你对x 再取几个值,计算出对应的y 值,并比较对应的y 值与x 值的大小(y 值可以用精确到0.01的近似数表示,也可用无理数表示).(4)根据第(1)~(3)题的计算,还可以结合画图、观察,推测y 与x 的大小关系及对应的x 的取值范围.44.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量90A ∠=︒,3AB m =,12BC m =,13CD m =,4DA m =,若每平方米草皮需要200元,问要多少投入?45.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,在图①画出一条路径,使昆虫乙从顶点A 沿这条路径爬行,可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲静止不动,昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(3)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1)s 19 4.4≈21 4.6.46.在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD 长20米,在楼梯水平长度()BC 不发生改变的前提下,楼梯的倾斜角由30︒增大到45︒,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732)≈47.如图,小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30︒,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角60ACE ∠=︒.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.48.在ABC ∆中,AC BC =,90ACB ∠=︒,D 、E 是直线AB 上两点.45DCE ∠=︒ (1)当CE AB ⊥时,点D 与点A 重合,显然222DE AD BE =+(不必证明); (2)如图,当点D 不与点A 重合时,求证:222DE AD BE =+;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.49.如图,四边形ABCD 中,AB BC ⊥,AD AB ⊥,1AB =,2BC CD ==.求四边形ABCD 的周长和面积.50.定义: 三边长和面积都是整数的三角形称为“整数三角形” .数学学习小组的同学从 32 根等长的火柴棒 (每 根长度记为 1 个单位) 中取出若干根, 首尾依次相接组成三角形, 进行探究活动 . 小亮用 12 根火柴棒, 摆成如图所示的“整数三角形”; 小颖分别用 24 根和 30 根火柴棒摆出直角“整数三角形”;小辉受到小亮、 小颖的启发, 分别摆出三个不同的等腰“整数三角形” . (1) 请你画出小颖和小辉摆出的“整数三角形”的示意图;(2) 你能否也从中取出若干根, 按下列要求摆出“整数三角形”, 如果能, 请画出示意图;如果不能, 请说明理由 . ①摆出等边“整数三角形”;②摆出一个非特殊 (既 非直角三角形, 也非等腰三角形) “整数三角形” .勾股定理难题50道参考答案与试题解析一.选择题(共2小题)1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形【解答】解:依题意可知,1133BP BF DH==,2233CQ CG DH==,又////PB CQ DH,APB AQC AHD∴∆∆∆∽∽,A∴、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选:B.2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对【解答】解:在直角三角形ABD中,根据勾股定理,得15BD=;在直角三角形ACD中,根据勾股定理,得6CD=.当AD在三角形的内部时,15621BC=+=;当AD在三角形的外部时,1569BC=-=.则BC的长是21或9.故选:D .二.填空题(共24小题)3.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 231π+ cm .(结果保留)π【解答】解:如图所示,无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.523AB cm ππ=⨯=,3BC cm =,由勾股定理得:22229931AC AB BC cm ππ=+=+=+. 故答案为:231π+.4.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 10 cm .【解答】解:将长方体展开,连接A 、B ',13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=. 故答案为:10.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、ca b c +- l S /S l345 2 12 6 1/26810 4 24 24 1 51213 4 30 30 1 81517 6 40 60 3/2121620848962⋯ ⋯ ⋯ ⋯ ⋯若a b c m +-=,则观察上表我们可以猜想出S l =4m(用含m 的代数式表示) 【解答】解:3452m a b c =+-=+-=时,1224S l ==; 6810512134m a b c =+-=+-=+-=时,414S l ==; 815176m a b c =+-=+-=时,3624S l ==; 1216208m a b c =+-=+-=时,824S l ==; ⋯∴我们可以猜想出4S ml =. 故答案为4m.6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 7或25 秒.【解答】解:如图,作AD BC ⊥,交BC 于点D , 8BC cm =,142BD CD BC cm ∴===, 223AD AB BD ∴=-=,分两种情况:当点P 运动t 秒后有PA AC ⊥时,22222AP PD AD PC AC =+=-,2222PD AD PC AC ∴+=-,22223(4)5 2.25PD PD PD ∴+=+-∴=, 4 2.25 1.750.25BP t ∴=-==, 7t ∴=秒,当点P 运动t 秒后有PA AB ⊥时,同理可证得 2.25PD =, 4 2.25 6.250.25BP t ∴=+==, 25t ∴=秒,∴点P 运动的时间为7秒或25秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 ③ . (2)错误的原因是 . (3)本题正确的结论是 .【解答】解:2222222()()()c a b a b a b -=-+∴应有2222222()()()0c a b a b a b ---+=得到22222()[()]0a b c a b --+=,22()0a b ∴-=或222[()]0c a b -+=,即a b =或222a b c +=,∴根据等腰三角形得定义和勾股定理的逆定理,三角形为等腰三角形或直角三角形.故填③,不能确定22a b -是否为0,等腰三角形或直角三角形.8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积16=,1AE =;则正方形EFGH 的面积= 10 .【解答】解:四边形EFGH 是正方形,EH FE ∴=,90FEH ∠=︒,90AEF AFE ∠+∠=︒,90AEF DEH ∠+∠=︒,AFE DEH ∴∠=∠,在AEF ∆和DHE ∆中, A D AFE DEH EF HE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF DHE ∴∆≅∆, AF DE ∴=,正方形ABCD 的面积为16, 4AB BC CD DE ∴====, 413AF DE AD AE ∴==-=-=,在Rt AEF ∆中,2210EF AE AF + 故正方形EFGH 的面积101010=.故答案为:10.9.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树 4 米才是安全的. 【解答】解:如图,BC 即为大树折断处4m 减去小孩的高1m ,则413BC m =-=,945AB m =-=,在Rt ABC ∆中,2222534AC AB BC =-=-=米. 即小孩至少离开这棵树4米才是安全的. 故答案为:4.10.如图,长方体的底面是边长为1cm 的正方形,高为3cm .如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要73 cm .【解答】解:如图所示,从点A 开始经过4个侧面缠绕2圈到达点B ,∴展开后188AC cm cm =⨯=,3BC cm =,由勾股定理得:2273AB AC BC cm =+.故答案为:73.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm ,则A 、B 、C 、D 四个小正方形的面积之和为 144 2cm .【解答】解:如右图所示, 根据勾股定理可知,231S S S +=正方形正方形正方形, 2C D S S S +=正方形正方形正方形, 3A B S S S +=正方形正方形正方形,2112144C D A B S S S S S ∴+++===正方形正方形正方形正方形正方形.故答案是144.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ∆,则ABC ∆中BC 边上的高是322.【解答】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,ABC AEB BFC CDA AEFD S S S S S ∆∆∆∆=---正方形 11122121112222=⨯-⨯⨯-⨯⨯-⨯⨯,32=. 22112BC =+=.ABC ∴∆中BC 边上的高是3322222⨯÷=. 故答案为:322.13.如图,在ABC ∆中,90ABC ∠=︒,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S = 2 .【解答】解:ABC ∆中,90ABC ∠=︒, 222AB BC AC ∴+=, 222BC AC AB ∴=-,21BC S =、224AB S ==,236AC S ==, 132642S S S ∴=-=-=.故答案为:2.14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=, 所以21043S x y =+=, 故答案为:103. 15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 5 米.【解答】解:将圆柱表面切开展开呈长方形, 则有螺旋线长为三个长方形并排后的长方形的对角线长 圆柱高4米,底面周长1米222(13)491625x =⨯+=+= 所以,花圈长至少是5m .16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 4或25或10 .【解答】解:①以A 为直角顶点,向外作等腰直角三角形DAC ,90DAC ∠=︒,且AD AC =,224BD BA AD ∴=+=+=;②以C 为直角顶点,向外作等腰直角三角形ACD ,连接BD ,过点D 作DE BC ⊥,交BC 的延长线于E . ABC ∆是等腰直角三角形,90ACD ∠=︒, 45DCE ∴∠=︒,又DE CE ⊥,90DEC ∴∠=︒, 45CDE ∴∠=︒,222CE DE ∴=== 在Rt BAC ∆中,222222BC +=,2222(222)(2)25BD BE DE ∴=+=++=; ③以AC 为斜边,向外作等腰直角三角形ADC ,90ADC ∠=︒,AD DC =,且2AC =,2sin 45222AD DC AC ∴==︒=⨯=, 又ABC ∆、ADC ∆是等腰直角三角形, 45ACB ACD ∴∠=∠=︒, 90BCD ∴∠=︒,又在Rt ABC ∆中,222222BC =+=,2222(22)(2)10BD BC CD ∴=+=+=. 故BD 的长等于4或25或10.17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于27133+ .【解答】解: 延长BA 交QR 于点M ,连接AR ,AP .AC GC =,BC FC =,ACB GCF ∠=∠, ABC GFC ∴∆≅∆,30CGF BAC ∴∠=∠=︒,60HGQ ∴∠=︒,90HAC BAD ∠=∠=︒, 180BAC DAH ∴∠+∠=︒, 又//AD QR ,180RHA DAH ∴∠+∠=︒, 30RHA BAC ∴∠=∠=︒,60QHG ∴∠=︒,60Q QHG QGH ∴∠=∠=∠=︒, QHG ∴∆是等边三角形 .3cos304232AC AB =︒=⨯=. 则23QH HA HG AC ====.在直角HMA ∆中,3sin 602332HM AH =︒=⨯=.cos 603AM HA =︒=. 在直角AMR ∆中,4MR AD AB ===.2334723QR ∴=++=+. 21443QP QR ∴==+. 3736PR QR==+.PQR ∴∆的周长等于27133RP QP QR ++=+.故答案为:27133+.18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD =75.【解答】解:设AC x =,CD y =,由勾股定理得: 2222(5)6425x y x y ⎧++=⎨+=⎩, 消去x ,得:22(5)39y y +-=, 整理,得: 1014y =,即75y =, 故CD 的长为75. 19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是 42cm .(结果保留根号)【解答】解:将圆柱体展开,连接A 、B ,根据两点之间线段最短,224442AB cm =+=.20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =6DE =,则EB =334 .【解答】解:在Rt ABC ∆中,42AB =,45A ∠=︒,24242BC ∴=⨯= 在Rt EDC ∆中,60EDC ∠=︒,6DE =,3sin 6332CE DE EDC ∴=∠=⨯= 334BE CE BC ∴=-=-.故填空答案:334-.21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20489+或40165+或4085+ m .【解答】解:(1)当20是等腰三角形的底边时,根据面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线,即底边的一半10BD =, 根据勾股定理即可求得其腰长22100256289AB AD BD =++,此时三角形的周长是20489+;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况. 根据面积求得腰上的高是16;①当高在三角形的外部时,在RT ADC ∆中,2212AD AC CD =-=,从而可得32BD =,进一步根据勾股定理求得其底边是22221632165BC CD BD =+=+=,此时三角形的周长是40165+;②当高在三角形的内部时,根据勾股定理求得2212AD AC CD =-=,8BD AB AD =-=, 在RT CDB ∆中,22BC CD BD =+2216885+=,此时三角形的周长是4085+; 故本题答案为:20489+或40165+或4085+.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun 一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为 10.1 尺.【解答】解:设单门的宽度是x 米,根据勾股定理,得221(0.1)x x =+-, 5.05x =,则210.1x =尺.23.如图是一个长8m 、宽6m 、高5m 的仓库,在其内壁的点A (长的四等分点)处有一只壁虎、点B (宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为 85 .。
初二数学勾股定理试题及参考答案
一.选择题(共18小题)1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.2.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12 B.14 C.16 D.183.如图,直线l1∥l2,等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=()A.31°B.45°C.30°D.59°4.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B.C.D.25.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.646.2的算术平方根是()A.B.C.D.27.9的平方根为()A.3 B.﹣3 C.±3 D.8.81的平方根是()A.﹣9 B.9 C.±9 D.±39.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或110.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根11.5的平方根是()A.±2.5 B.﹣C.D.±12.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)15.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)16.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)17.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)18.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)二.填空题(共12小题)19.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.20.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.21.若线段a、b、c满足b2=a2﹣c2,则以a、b、c为边的三角形是三角形.22.在△ABC中,AB=2k,AC=2k+1,BC=3,当整数k=时,∠B=90°.23.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OA n的长度为.24.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若BC=10,AD=12,则AC=.。
八年级数学上第一章勾股定理综合难题
八年级数学上第一章勾股定理综合难题1一、用面积证明勾股定理(写出每种证明方法)方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
二、勾股定理的应用,A组:1.如下图1,圆柱的高为10 cm,底面半径为2 cm.,在下底面的A点处有一只蚂蚁,它想吃到上底面上与A点相对的B点处,需要爬行的最短路程是 ?2、如下展开图2,长方体的高为3 cm,底面是边长为2 cm的正方形. 现有一小虫从顶点A出发,沿长方体侧面到达顶点C处,小虫走的路程最短为厘米?3.如上图3,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).此时EC有?4.如上图4,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则EB的长为。
5.已知:如下图1,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.则AC的长为.6、如下图2,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使其落在斜边AB上,且与AE重合,则CD的长为。
7、如上图3,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕EF 的长为 。
8.如下图1,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB∶CE=_________.9、如下图2,AD 是△ABC 的中线,∠ADC=45o ,把△ADC 沿AD 对折,点C 落在C´的位置,若BC =2,则BC´=_________.10.如上图3,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,自己做出图形,能否使CE =2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.11、如图所示,在Rt ABC ∆中,90,,45BAC AC AB DAE ∠=︒=∠=︒,且3BD =,4CE =,求DE 的长.EFBC ′BACD AC D12、如图,在△ABC 中,AB=AC=6,P 为BC 上任意一点,请用学过的知识试求PC ·PB+PA 2的值。
部编数学八年级下册专题10勾股定理的综合探究题型(解析版)含答案
专题10 勾股定理的综合探究题型(解析版)题型一 探究直角三角形的边和高之间的关系典例1(湖州模拟)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h ,有下列四种说法:①a •b =c •h ;②a +b <c +h ;③以a +b 、h 、c +h 为边的三角形,是直角三角形;④1a 2+1b 2=1ℎ2.其中正确的有( )A .1个B .2个C .3个D .4个思路引领:①根据三角形面积公式即可求解;②证明(a +b )2<(c +h )2;③直角三角形,证明(a +h )2+h 2=(c +h )2;④只需证明h 2(1a 2+1b 2)=1,从左边推导到右边.解:①∵Rt △ABC 的面积为:12ab 或12ch ,∴ab =ch ,故①正确;②∵c 2<c 2+h 2,a 2+b 2=c 2,∴a 2+b 2<c 2+h 2,∵ab =ch ,∴a 2+b 2+2ab <c 2+h 2+2ch ,∴(a +b )2<(c +h )2,∴a +b <c +h ,故②正确;③∵(c +h )2=c 2+2ch +h 2,h 2+(a +b )2=h 2+a 2+2ab +b 2,∵a 2+b 2=c 2,(勾股定理)ab =ch (面积公式推导)∴c 2+2ch +h 2=h 2+a 2+2ab +b 2,∴(c +h )2=h 2+(a +b )2,∴根据勾股定理的逆定理知道以h,c+h,a+b为边构成的三角形是直角三角形,③正确;④∵ab=ch,∴(ab)2=(ch)2,即a2b2=c2h2,∵a2+b2=c2,∴a2b2=(a2+b2)h2,∴a2b2a2b2=h2,∴a2b2a2b2=1ℎ2,∴a2a2b2+b2a2b2=1ℎ2,∴1a2+1b2=1ℎ2,故④正确.故选:D.总结提升:此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,此题有一定的拔高难度,属于难题,在证明过程中,注意面积关系式ab=ch的应用.题型二“手拉手”全等或旋转构造手拉手全等模型典例2(2022•卧龙区校级开学)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,下列结论:①△AED≌△AEF;②BF=CD;③BE+DC>DE;④BE2+DC2=DE2.其中正确的有( )A.1个B.2个C.3个D.4个思路引领:根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;可证△ABF≌△ACD,于是BF=CD,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE2+BF2=EF2,等量代换后判定④正确.解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF﹣∠DAE=45°.在△AED与△AEF中,AD=AF∠DAE=∠FAE=45°,AE=AE∴△AED≌△AEF(SAS),①正确;②∵∠BAC=∠DAF=90°,∴∠FAB=∠CAD,在△ABF与△ACD中,AF=AD∠FAB=∠CAD,AB=AC∴△ABF≌△ACD(SAS),∴BF=CD,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC﹣∠BAD=∠DAF﹣∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,AC=AB∠CAD=∠BAF,AD=AF∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,∵BF=DC,EF=DE,∴BE2+DC2=DE2,④正确.所以正确的结论有①②③④.故选:D.总结提升:本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,熟练运用这些知识点是解题的关键.典例3 (2020•滨州模拟)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB 绕着点B逆时针旋转后得到△CQB,则∠APB的度数 .思路引领:首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC 中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.解:连接PQ,由题意可知△ABP≌△CBQ则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠APB =∠BQC =150°总结提升:本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.针对练习1.(洪山区期中)如图,∠AOB =30°,P 点在∠AOB 内部,M 点在射线OA 上,将线段PM 绕P 点逆时针旋转90°,M 点恰好落在OB 上的N 点(OM >ON ),若PM ON =8,则OM = .思路引领:连接MN ,作NH ⊥OA 于H ,如图,根据旋转的性质得∠MPN =90°,PN =PM判断△PMN 为等腰直角三角形,则MN ==Rt △OHN 中,根据含30度的直角三角形三边的关系得NH =12ON =4,OH ==Rt △MNH 中根据勾股定理计算出MH =2,由此得到OM =OH +HM =+2.解:连接MN ,作NH ⊥OA 于H ,如图,∵线段PM 绕P 点逆时针旋转90°,M 点恰好落在OB 上的N 点,∴∠MPN =90°,PN =PM =∴△PMN 为等腰直角三角形,∴MN ==在Rt △OHN 中,∵∠NOH =30°,ON =8,∴NH =12ON =4,OH=在Rt△MNH中,∵NH=4,MN=∴MH=2,∴OM=OH+HM=+2.故答案为2.总结提升:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和含30度的直角三角形三边的关系.2.(2020秋•永嘉县校级期末)如图,在△AOB与△COD中,∠AOB=∠COD=90°,AO=BO,CO=DO,连接CA,BD.(1)求证:△AOC≌△BOD;(2)连接BC,若OC=1,AC BC=3①判断△CDB的形状.②求∠ACO的度数.思路引领:(1)由题意可得∠AOC=∠BOD,且AO=BO,CO=DO,即可证△AOC≌△BOD;(2)①由全等三角形的性质和勾股定理的逆定理可得∠BDC=90°,即可得△CDB是直角三角形;②由全等三角形的性质可求∠ACO的度数.证明:(1)∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,且AO=BO,CO=DO,∴△AOC≌△BOD(SAS)(2)①如图,∵△AOC≌△BOD∴∠ACO=∠BDO,AC=BD=∵CO=DO=1,∠COD=90°∴CD ODC=∠OCD=45°∵CD2+BD2=9=BC2,∴∠CDB=90°∴△BCD是直角三角形②∵∠BDO=∠ODC+∠CDB∴∠BDO=135°∴∠ACO=∠BDO=135°总结提升:本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理的逆定理,熟练运用全等三角形的性质是本题的关键.题型三倍长中线构造全等三角形典例4(2022•苏州模拟)如图1,在△ABC中,∠ACB=90°,点D为AB中点,DE,DF分别交AC于点E,交BC于点F,且DE⊥DF.(1)如果CA=CB,连接CD.①求证:DE=DF;②求证:AE2+BF2=EF2;(2)如图2,如果CA<CB,探索AE,BF和EF之间的数量关系,并加以证明.思路引领:(1)①根据等腰直角三角形的性质可知,∠DCE=∠DBF=45°,∠CDB=90°,CD=BD.由DE⊥DF,可证明∠CDE=∠BDF.即可利用“ASA”证明△DCE≌△DBF,即得出DE=DF;②由全等三角形的性质可知BF=CE,结合题意可求出AE=CF.在Rt△ECF中,再由勾股定理,得CF2+CE2=EF2,即得出AE2+BF2=EF2;(2)延长FD至点M,使DM=DF,连接AM,EM.易证△ADM≌△BDF(SAS),得出AM=BF,∠MAD=∠B,从而判断AM∥BC,即证明∠MAE=∠ACB=90°.再根据线段垂直平分线的判定和性质可知EF=EM.最后在Rt△AEM中,由勾股定理,得AE2+AM2=EM2,即得出AE2+BF2=EF2.(1)①证明:∵CA=CB,∠ACB=90°,∴△ABC是等腰直角三角形.∵点D是AB的中点,∴∠DCE=∠DBF=45°,∠CDB=90°,CD=BD.又∵DE⊥DF,∴∠EDF=∠CDB=90°,∵∠CDE=∠EDF﹣∠CDF,∠BDF=∠CDB﹣∠CDF,∴∠CDE=∠BDF.在△DCE与△DBF中,∠DCE=∠DBFCD=BD,∠CDE=∠BDF∴△DCE≌△DBF(ASA),∴DE=DF;②证明:由①可知△DCE≌△DBF,∴BF=CE,∵CA=CB,∴CA﹣CE=CB﹣BF,即AE=CF.在Rt△ECF中,由勾股定理,得CF2+CE2=EF2,∴AE2+BF2=EF2;(2)解:结论:AE2+BF2=EF2.理由如下:如图,延长FD至点M,使DM=DF,连接AM,EM.∵点D为AB中点,∴AD=BD,∵∠ADM=∠BDF,DM=DF,∴△ADM≌△BDF(SAS),∴AM=BF,∠MAD=∠B,∴AM∥BC,∴∠MAE=∠ACB=90°.又∵DE⊥DF,DM=DF,∴DE是FM的垂直平分线,∴EF=EM,在Rt△AEM中,由勾股定理,得AE2+AM2=EM2,∴AE2+BF2=EF2.总结提升:本题考查等腰直角三角形的性质,三角形全等的判定和性质,勾股定理,线段垂直平分线的性质以及平行线的性质等知识.掌握三角形全等的判定条件和正确的作出辅助线构造全等三角形是解题关键.题型四以两个直角三角形的公共边或等边为桥梁运用双勾股典例5 [阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD=,求线段CD′的长.思路引领:(1)i)利用勾股定理得出AB2﹣BD2=AC2﹣CD2,进而建立方程求BD,即可得出结论;ii)先利用勾股定理求出BC=5,CD=9,再分两种情况.即可得出结论;(2)先利用勾股定理求出BD,CD,再利用面积求出DN,进而求出DD',再用勾股定理得出D'H2=D'D2﹣HD2=D'B2﹣HB2,进而建立方程求出HB,即可得出结论.解:(1)i)设BD=x,则CD=14﹣x,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∵AB=13,AC=15,∴132﹣x2=152﹣(14﹣x)2,∴x=5,∴BD=5,∴AD===12;ii)在Rt△ABD中,BD===5,在Rt△ACD中,CD===9,当∠ABC为锐角时,如图1﹣1,BC=BD+CD=5+9=14,当∠ABC为钝角时,如图1﹣2,BC=BD﹣CD=9﹣5=4;(2)如图2,连接DD'交AB于点N,则DD'⊥AB,过点D'作D'H⊥BD于H,在Rt△ABD中,BD===;在Rt△ACD中,CD===5,∵AB垂直平分DD',∴D'B=DB=,D'D=2DN,=AD•BD=,∵S△ABD∴=•DN,∴DN=,∴D'D=2DN=5,设HB=m,则HD=HB+BD=m+,∵D'H2=D'D2﹣HD2=D'B2﹣HB2,∴(5)2﹣(m+)2=()2﹣m2,∴m=,∴HB=,∴HC=HB+BD+CD=++4=15,D'H===5,∴D'C===5.总结提升:此题是三角形综合题,主要考查了勾股定理,直角三角形的构造,利用方程的思想解决问题是解本题的关键.针对训练1.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D.若AC=3,AB=5,则CD的长为( )A.B.C.D.思路引领:如图,作DH⊥AB于H.首先证明AC=AH,DC=DH,AC=AH=3,设DC=DH=x,在Rt△BDH中,利用勾股定理构建方程即可解决问题.解:如图,作DH⊥AB于H.∵AD平分∠CAB,DC⊥AC,DH⊥AB,∴∠CAD=∠HAD,∠C=∠AHD=90°,∵AD=AD,∴△ADC≌△ADH(AAS),∴AC=AH=3,CD=DH,设CD=DH=x,∵AB=5,∴BH=AB=AH=5﹣3=2,在Rt△ACB中,∵∠C=90°,AC=3,AB=5,∴BC==4,在Rt△HBD中,则有(4﹣x)2=x2+22,∴x=,∴CD=,故选:A.总结提升:本题考查勾股定理,角平分线的性质定理,全等三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.AC=17,AD=15,BC=28,则AE的长等于 .思路引领:利用勾股定理可得DC和AB的长,由角平分线定理可得EG=ED,证明Rt△BDE≌Rt△BGE (HL),可得BG=BD,设AE=x,则ED=15﹣x,根据勾股定理列方程可得结论.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=15,AC=17,∴DC=,∵BC=28,∴BD=28﹣8=20,由勾股定理得:AB=,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=20,∴AG=25﹣20=5,设AE=x,则ED=15﹣x,∴EG=15﹣x,Rt△AGE中,x2=52+(15﹣x)2,x=,∴AE=.故答案为:.总结提升:本题考查了角平分线性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握勾股定理是解题的关键.题型五勾股定理解决折叠问题典例6(2022•东莞市校级二模)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,则EF=( )A.3B.4C D思路引领:作FH⊥AD,结合折叠性质:EF⊥AM,证∠POF=∠AOH=∠AMD=∠FEH,再证△ADM ≌△FHE得EF=AM,根据勾股定理即可求出结果.解:由折叠的性质得EF⊥AM,过点F作FH⊥AD于H,交AM于O,则∠ADM=∠FHE=90°,∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,∴∠POF=∠AOH=∠AMD,又∵EF⊥AM,∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,∴∠POF=∠FEH,∴∠FEH =∠AMD ,∵四边形ABCD 是正方形,∴AD =CD =FH =5,在△ADM 和△FHE 中,∠ADM =∠FHE ∠AMD =∠FEH AD =FH,∴△ADM ≌△FHE (AAS ),∴EF =AM ==故选:D .总结提升:本题主要考查正方形的性质和全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.针对训练1.如图,将一张长方形纸片沿着AE 折叠后,点D 恰好与BC 边上的点F 重合,已知AB =6 cm ,BC =10cm ,求EC 的长度.解:由题意可知△ADE ≌△AFE ,所以AF =AD =10 cm ,EF =DE .在Rt △AFB 中,根据勾股定理得BF 8(cm),所以FC =BC -BF =2(cm).设EC =x cm ,DE =DC -EC =(6-x )cm ,即EF =(6-x )cm ,在Rt △EFC 中,根据勾股定理有EF 2=FC 2+EC 2,即(6-x )2=22+x 2,解得x =83,所以EC =83cm .题型六 勾股定理在平面直角坐标系背景下的应用典例7(2017春•武昌区校级月考)如图,A (0,m ),B (n ,0)+n 2﹣10n +25=0(1)求点A ,点B 的坐标;(2)点P是第二象限内一点,过点A作AC⊥射线BP,连接CO,试探究BC,AC,CO之间的数量关系并证明.(3)在(2)的条件下,∠POC=∠APC,PA=PB的长.思路引领:(1)利用非负数的性质求得m、n的值,易得点A、B的坐标;(2)如图1,作OD⊥OC交PB于D,证△OAC≌△OBD(ASA)(提示AO,BC八字形),得证等腰Rt△OCD,故BC﹣AC=CD=;(3)作OM⊥OP交AC延长线于M,作AN⊥OP于N,连接PM.易证△OPB≌△OMA(ASA),故PB =MA,且得证等腰Rt△OPM,又∠APO=∠APC+∠OPC=∠POC+∠OPC=∠OCB=45°,所以∠APM=45°+45°=90°,易求出OP=PN+ON=4+3=7,(Rt△ANO,等腰Rt△APN),Rt△APM中,MA解:(1+n2﹣10n+25=0,∴|m﹣5|+(n﹣5)2=0∴m﹣5=0且n﹣5=0,则m=5,n=5,故A(0,5)B(5,0);(2)如图1,作OD⊥OC交PB于D,∵AO⊥BO,∴∠AOC=∠BOD(同角的余角相等).又AC⊥PB,∠1=∠2,∴∠OAC=∠OBD(等角的余角相等).在△OAC与△OBD中,∠AOC=∠BODOA=OB,∠OAC=∠OBD∴△OAC≌△OBD(ASA),∴OC=OD,∴CD,∴BC﹣AC=CD=;(3)作OM⊥OP交AC延长线于M,作AN⊥OP于N,连接PM.易证△OPB≌△OMA(ASA),∴PB=MA,且得证等腰Rt△OPM,又∠APO=∠APC+∠OPC=∠POC+∠OPC=∠OCB=45°,∴∠APM=45°+45°=90°,易求出OP=PN+ON=4+3=7.在Rt△APM中,由勾股定理得到:MA===即PB总结提升:考查了三角形综合题,涉及到了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,非负数的性质和配方法的应用,难度较大,难点是作出辅助线,构建全等三角形.针对训练1.(2022秋•莲湖区校级期中)在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),A(1 ).(1)求线段AB的长;(2)若在x轴上有一点P,使得△PAB为等腰三角形,请你求出点P的坐标.思路引领:(1)利用两点间得距离公式可求AB;(2)分当AP=AB时,当BP=AB时,当BP=PA时,结合等腰三角形的性质和两点间的距离公式即可求解.解:(1)∵点A,点B的坐标为(3,0),A(1,∴AB=(2)如图所示:当AP=AB时,根据对称性,3﹣1=2,1﹣2=﹣1,∴P1(﹣1,0),同理当BP=AB时,P2(3―0),P3(3+0),当BP=PA时,设P4(x,0),则(x―1)2+(0―2=(3―x)2,解得:x=5 4,∴P4(54,0),综上所述:点P坐标为(﹣1,0),(3―0),(3+0),(54,0).总结提升:本题考查了点的坐标的求法,综合运用了等腰三角形的定义,两点间的距离公式.。
初二数学勾股难题专题训练
初二数学勾股难题专题训练在初二的数学世界里,勾股定理是一块难啃的骨头。
不知道你们有没有这种感觉,每当看到这类问题,总觉得自己像掉进了无底洞。
不过,别怕,今天我们就来细细剖析,看看如何能从容应对这些难题!1. 勾股定理基础知识1.1 定理介绍勾股定理,简单来说,就是说在一个直角三角形里,两个直角边的平方和等于斜边的平方。
用公式表达就是:( a^2 + b^2 = c^2 )。
看起来是不是很简单?但当问题变得复杂时,这个定理就成了难题的钥匙。
1.2 应用场景勾股定理可不止是在课本上有用。
生活中很多地方都能用上,比如说你要挂一幅画,画的中心到墙角的距离就可以用勾股定理来计算。
或者你在健身房里测量器械的距离,也能用到哦。
2. 解题技巧2.1 分析题目解题前,最重要的是搞清楚题目的要求。
通常,题目会给你三角形的某些边长,或者让你求某一边的长度。
千万不要被题目弄晕了,要冷静分析,看看哪些数据是你能用的,哪些又是多余的。
2.2 设立方程搞清楚题意之后,就要设立方程。
记住,勾股定理的核心就是要用到平方和的关系。
如果题目给的是实际长度,就把这些长度代入公式中,解出所需的边长。
如果方程比较复杂,可以尝试分步解答,确保每一步都准确无误。
3. 实战练习3.1 简单题目比如说,给你一个直角三角形,两边长分别是3厘米和4厘米,让你求斜边的长度。
这种问题可以直接用公式:( 3^2 + 4^2 = c^2 ),算出来就是 ( 9 + 16 = 25 ),所以 ( c= sqrt{25} = 5 ) 厘米。
很简单吧?3.2 复杂题目再看看稍微复杂点的题目,比如说,给你两个直角三角形,它们的一个直角边是一样长的,但其他边不同。
你可能需要用勾股定理分别求出两个三角形的斜边,再比较它们的差异。
这时候,分步骤来计算会更清晰,比如先求出两个直角三角形的斜边长度,然后再进行比较。
4. 常见错误4.1 忽视单位有时候我们在计算时会忽略单位的问题,比如长度单位不统一,这样很容易出错。
初二数学人教版(下册)勾股定理综合测试题(附答案)
第十八章勾股定理综合测试题一、选择题1.下列各数组中,不能作为直角三角形三边长的是( )A. 9,12,15B. 7,24,25C. 6,8,10D. 3,5,72.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A. 可能是锐角三角形B. 不可能是直角三角形C. 仍然是直角三角形D. 可能是钝角三角形3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m)( )A.20mB.25mC.30mD.35m4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( )A. 12cmB.C.D.二、填空题5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ .6.直角三角形两条直角边的长分别为5、12,则斜边上的高为.7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距.8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为.9.以直角三角形的三边为边向形外作正方形P、Q、K,若S P=4,S Q=9,则S k=.三、解答题10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?11.P为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP =a.求:以PE为边长的正方形的面积.12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高.13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积之间的关系是_____ _____ ,用关系式表示________ _______ .参考答案:一、选择题:1-4:DCBA二、填空题:5.336;6.;7.5;8.34;9.5或13三、解答题:10.10Km;11.2a2;12.6;13.等于,其证明方案即为勾股定理的证明,最后的结论就是勾股定理。
初二数学 勾股定理试题
初二数学勾股定理试题1.已知:如图所示,AC=4,BC=3,AD=13,DB=12,∠C=90°.求证:AB⊥BD.【答案】见解析【解析】证明:在△ABC中,∠C=90°,BC=3,AC=4,∴.在△ADB中,AD=13,DB=12,AB=5,∴AB2+DB2=52+122=169=132,而AD2=132,∴AB2+DB2=AD2,∴△ABD是以AD为斜边的直角三角形.∴AB⊥DB.2.如图所示,在边长为1的正方形网格纸中有一三角形,则该三角形中最长边的长为( )A.3B.4C.5D.6【答案】C【解析】利用勾股定理得斜边的平方=32+42=25,∴斜边长为5.3.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A.3、4、5B.6、8、10C.、2、D.5、12、13【答案】C【解析】将选项逐一验证,,因此不能构成直角三角形的是C.4.一个圆柱形桶,底面直径为24cm,高为32cm,则桶内所能容下的最长木棒长为(不计桶的厚度)( )A.20cmB.50cmC.40cmD.45cm【答案】C【解析】由勾股定理得(cm),故选C.5.下列条件:①△ABC的一个外角与其相邻内角相等;②;③;④AC=n2-1,BC=2n,AB=n2+1(n>1).能判定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【答案】D【解析】①可以求得一个内角为90°,能判定为直角三角形;②设∠A=x,∠B=2x,∠C=3x,可求得∠C=90°,能判定为直角三角形;③设AC=a,,AB=2a(a>0),则AC2+BC2=4a2=AB2,可以判定为直角三角形;④AC2+BC2=(n2-1)2+(2n)2=n4+2n2+1=(n2+1)2=AB2,可以判定为直角三角形,故选D.6.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长的直角边长为b,那么(a+b)2的值为( )A.169B.25C.19D.13【答案】B【解析】∵大正方形的面积是13,小正方形的面积是1,∴四个直角三角形的面积和是13-1=12,即,即2ab=12,又a2+b2=13,∴(a+b)2=13+12=25.故选B.7.如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为( )A.5cmB.cmC.cmD.cm【答案】B【解析】如图,过点F作FH⊥BC,垂足为H,设AF=xcm,由折叠知DF=FG=(8-x)cm,AG=DC=AB.在Rt△AFG中,AG2+GF2=AF2,即42+(8-x)2=x2,解得x=5.同理可得BE=3cm.易知BH=AF,所以HE=BH-BE=2cm.在Rt△EHF中,由勾股定理得(cm).8. (2014甘肃白银)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是________cm.【答案】8【解析】如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得(cm).9.(2013福建莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2,则最大的正方形E的面积是________.【答案】10【解析】设中间两个正方形的边长分别为x,y,最大正方形E的边长为z,则由勾股定理得x2=2+5=7,y2=2+1=3,z2=x2+y2=10,即最大的正方形E的面积为10.10. (2014湖南湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工,为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB 的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD=135°,BD=800米,求应从直线l上距离D点多远的C处开挖.(,精确到1米)【答案】566m【解析】∵CD⊥AC,∴∠ACD=90°.∵∠ABD=135°.∴∠DBC=45°.∴∠D=45°.∴CB=CD,在Rt△DCB中,CD2+BC2=BD2,即2CD2=8002,∴(米),答:应从直线l上距离D点566米的C处开挖.。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)-
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C .﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在第1页(共38页)杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km 到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?第2页(共38页)(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC 三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF 三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ 之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC 三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC 的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC 三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.第3页(共38页)类比创新:(3)若△ABC 三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所第4页(共38页)画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO 方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.第5页(共38页)31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…第6页(共38页)用你的发现解决下列问题:(1)填空:112= +;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()第7页(共38页)A. B .C .D .3.如图,数轴上的点A所表示的数为x,则x的值为()A.B .﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()第8页(共38页)A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选 C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,第9页(共38页)根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C .﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O 的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.第10页(共38页)【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm .第11页(共38页)【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC 2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,第12页(共38页)则Rt△ABC 的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.第13页(共38页)【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;第14页(共38页)(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC =1,S△DAC=1而S四边形ABCD =S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.第15页(共38页)【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC 中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC 的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:第16页(共38页)在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,第17页(共38页)。
初二数学勾股定理练习题
初二数学勾股定理练习题(正文部分)在初二数学学习中,勾股定理是一个重要的概念。
它是指在一个直角三角形中,直角边的平方等于另外两条边平方之和的关系。
为了帮助同学们更好地理解和掌握勾股定理,下面将为大家提供一些初二数学勾股定理的练习题。
1. 问题一:已知一个直角三角形的直角边长为3cm和4cm,请计算斜边的长度。
解答:根据勾股定理,斜边的平方等于直角边的平方和。
则斜边的长度为√(3^2 + 4^2) = √(9 + 16) = √25 = 5cm。
2. 问题二:在一个直角三角形中,已知直角边的长度分别为5cm和12cm,请计算斜边的长度。
解答:根据勾股定理,斜边的平方等于直角边的平方和。
则斜边的长度为√(5^2 + 12^2) = √(25 + 144) = √169 = 13cm。
3. 问题三:在一个直角三角形中,已知斜边的长度为10cm,直角边的长度为6cm,请计算另外一个直角边的长度。
解答:根据勾股定理,斜边的平方等于直角边的平方和。
令另一个直角边的长度为x,则有x^2 + 6^2 = 10^2。
化简得x^2 + 36 = 100,然后x^2= 100 - 36,即x^2 = 64。
开平方得x = √64 = 8。
因此,另一个直角边的长度为8cm。
4. 问题四:在一个直角三角形中,直角边的长度为9cm和15cm,请计算斜边的长度,然后计算另外一个直角边的长度。
解答:根据勾股定理,斜边的平方等于直角边的平方和。
首先计算斜边的长度,√(9^2 + 15^2) = √(81 + 225) = √306 = 17.5cm(保留一位小数)。
然后,根据直角边和斜边的关系,再次运用勾股定理来计算另外一个直角边的长度。
令另一个直角边的长度为y,则有9^2 + y^2 = 17.5^2。
化简得y^2 = 306 - 81,即y^2 = 225。
开平方得y = √225 = 15cm。
因此,斜边的长度为17.5cm,另一个直角边的长度为15cm。
初二数学勾股定理试题
初二数学勾股定理试题1.在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为( )A.26B.18C.20D.21【答案】C【解析】由勾股定理得.2.如图,已知△ABC中,AB=AC=10,BD⊥AC于D,CD=2,则BD长是( )A.4B.5C.6D.8【答案】C【解析】AD=8,AB=10,所以BD=6.3.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B 与点A重合,折痕为DE,则BE的长为 ( )A.4 cm B.5 cm C.6 cm D.10 cm【答案】B【解析】由勾股定理得AB=10,所以BE=5.4.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21B.15C.6D.以上答案都不对【答案】D【解析】高线AD可能在三角形的内部也可能在三角形的外部,本题应分两种情况进行讨论.分别依据勾股定理即可求解.5.如图,直角三角形ABC的两直角边BC=12,AC=16,则△ABC的斜边AB上的高CD的长是()A.20B.10C.9.6D.8【答案】C【解析】先根据勾股定理求出AB的长度,然后根据三角形的面积公式求出CD的长度即可.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AC=8,BC=6,则CD=()A.6.4B.5C.4.8D.3【答案】C【解析】首先利用勾股定理计算出AB的长,然后再利用三角形的面积可得CD的长.7.等腰三角形的一边为10cm,周长为36cm,则它的面积是()A.60B.48C.60或48D.都不对【答案】C【解析】由三角形的周长和一边长可以求出另外的边长或腰长,利用勾股定理进而求出高,再由三角形的面积公式即可求解.8.在直角三角形ABC中,∠C=90°,BC=12,AC=9,则AB=_______.【答案】15【解析】根据勾股定理得;AB2=AC2+BC2,然后代入数计算即可.9.若直角三角形的两直角边之和为7,面积为6,则斜边长为_________.【答案】5【解析】可设直角三角形一直角边为x,则另一直角边为7-x,由面积为6作为相等关系列方程求得x的值,进而求得斜边的长.10.如图,四边形ABCD中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,BC=12.(1)求CD的长;(2)求四边形ABCD的面积.【答案】解:(1)因为∠BAD=90°,AD=3,AB=4,所以在Rt△ADB中,BD=.同理,在Rt△BDC中,CD=13.(2)四边形ABCD的面积所以S=×AD×AB+×BD×CD=36.【解析】(1)因为∠BAD=90°,易求BD=5,又因为∠DBC=90°,易求CD=13;(2)四边形的面积就是两个直角三角形的面积和.。
人教版八年级下册数学第17章《勾股定理》章末综合测试题(含答案)
人教版八年级下册数学第17章《勾股定理》章末综合测试题一.选择题(共10小题,满分30分)1.判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,2.已知三角形的三边分别为6,8,10,则最长边上的高等于()A.10B.14C.4.8D.2.43.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.94.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是9、16、1、9,则最大正方形E的边长是()A.35B.C.70D.无法确定5.下面的三角形中:①△ABC中,∠C=∠A﹣∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=5:12:13;④△ABC中,三边长分别为,其中,直角三角形的个数有()A.1个B.2个C.3个D.4个6.如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为()A.B.1+C.+2D.3.27.如图,在Rt△ABC中,∠ACB=90°,AE为△ABC的角平分线,且ED⊥AB,若AC=6,BC=8,则BD的长()A.2B.3C.4D.58.小明准备测量一段河水的深度,他把一根竹竿直插到离岸边6米远的水底,竹竿高出水面2米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.7m B.8m C.9m D.10m9.已知直角三角形纸片的两条直角边长分别为m和3(m<3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+6m+9=0B.m2﹣6m+9=0C.m2+6m﹣9=0D.m2﹣6m﹣9=0 10.如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4二.填空题(共6小题,满分18分)11.若一个直角三角形的两直角边长分别是1、2,则第三边长为.12.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为.13.如图,在平面直角坐标系中,A(8,0),B(0,6),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C的坐标为.14.如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A、点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长为.15.如图,斜靠在一面墙上的一根竹竿,它的顶端A距离地面的距离AO为4m,底端B远离墙的距离BO为3m,当它的顶端A下滑2m时,底端B在地面上水平滑行的距离是m.16.如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB=a,则图中阴影部分面积为(用含a的代数式表示)三.解答题(共8小题,满分52分)17.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A、∠B、∠C的对边.(1)如图1,已知:a=7,c=25,求b;(2)如图2,已知:c=25,a:b=4:3,求a、b.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=12,BC=5,求BD的长.19.如图,在4×4的正方形网格中,每个小正方形的边长都为1.(1)△ABC的周长为;(2)∠ABC=度;(3)△ABC的面积为.20.某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行20nmile,“海天”号每小时航行15nmile,它们离开港口两个小时后,“远航”号到达A处,“海天”号到达B处,A,B相距50nmile,且知道“远航”号沿东北方向航行,那么“海天”号沿什么方向航行?21.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.22.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?23.在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.(1)如图1,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿CB匀速运动.两点同时出发,在B点处首次相遇.设点P的速度为xcm/s.则点Q的速度可以表示为cm/s(用含x的代数式表示);(2)在(1)的条件下,两点在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持原速度不变,沿B→A→C的路径匀速运动,如图2.两点在AC边上点D处再次相遇后停止运动.又知AD=1cm.求点P原来的速度x的值.24.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在∠ABC的角平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP为等腰三角形(直接写出结果)?参考答案一.选择题(共10小题)1.【解答】解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.2.【解答】解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.故选:C.3.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=DC=BC=6,在Rt△ABD中,AD===8,故选:C.4.【解答】解:正方形A、B、C、D的面积分别是9、16、1、9,由勾股定理得,正方形G的面积为:9+16=25,正方形H的面积为:1+9=10,则正方形E的面积为:25+10=35,最大正方形E的边长=,故选:B.5.【解答】解:①△ABC中,∠C=∠A﹣∠B,即∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故①正确;②△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故②正确;③∵△ABC中,a:b:c=5:12:13,∴a2+b2=c2,即△ABC是直角三角形,故③正确;④∵△ABC中,三边长分别为,∴()2+()2≠()2,即△ABC不是直角三角形,故④错误;即正确的个数是3个,故选:C.6.【解答】解:∵Rt△OBC中,OC=2,OB=1,∴BC==,∵以点B为圆心,线段BC的长为半径画弧,交数轴于点A,∴BA=BC=,∴OA=1+,∴点A所表示的数为1+,故选:B.7.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB=,∵AE为△ABC的角平分线,ED⊥AB,∴AD=AC=6,∴BD=10﹣6=4,故选:C.8.【解答】解:在直角△ABC中,AC=6m.AB﹣BC=2m.设河深BC=xm,则AB=2+x(m).根据勾股定理得出:∵AC2+BC2=AB2∴62+x2=(x+2)2解得:x=8.即河水的深度为8m,故选:B.9.【解答】解:如图,m2+m2=(3﹣m)2,2m2=32﹣6m+m2,m2+6m﹣9=0.故选:C.10.【解答】解:∵∠C=90°,AB=13cm,AC=5cm,∴BC=12cm.①当BP=BA=13时,∴t=s.②当AB=AP时,BP=2BC=24cm,∴t=12s.③当PB=P A时,PB=P A=t cm,CP=(12﹣t)cm,AC=5 cm,在Rt△ACP中,AP2=AC2+CP2,∴(t)2=52+(12﹣t)2,解得t=s.综上,当△ABP为等腰三角形时,t=s或12s或s,故选:C.二.填空题(共6小题)11.【解答】解:∵直角三角形的两直角边长分别是1和2,∴斜边==,故答案为.12.【解答】解:在Rt△BAC中,∠BAC=90°,AB=3,BC=5,由勾股定理得:AC==4,所以阴影部分的面积S=×π×()2+×π×()2+×3×4﹣×π×()2=6.故答案为:6.13.【解答】解:由题意得,OB=6,OA=8,∴AB==10,则AC=10,∴OC=AC﹣OA=2,∴点C坐标为(﹣2,0),故答案为:(﹣2,0).14.【解答】解:∵AB=5,AC=4,BC=3,∴AB2=AC2+BC2,∴∠ACB=90°,由作图可知:MN是AB的垂直平分线,∴O是AB的中点,∴CO=AB=,故答案为:.15.【解答】解:∵∠C=90°,AO=4m,BO=5m,∴AB==5m;∵梯子的顶端A下滑2m,∴OA′=4﹣2=2m,∴OB′===(m),∴BB′=B′C﹣BC=﹣3(m).∴底端B在地面上水平滑行的距离是(﹣3)m.16.【解答】解:如图,设AC=x,则BC=AD=a+x,∵∠ADC=30°,∴AD=AC,∴a+x=x,∴x=,∴AC=,∴图中阴影部分面积=4×AC2=4××()2=(2+)a2.故答案为:(2+)a2.三.解答题(共8小题)17.【解答】解:(1)b=,(2)设a=4x,b=3x,可得:c==5x=25,解得:x=5,所以a=20,b=15.18.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB==13,∵AB•CD=AC•BC∴CD==,∴BD==.19.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5;(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.(3)△ABC的面积为2×÷2=5.故答案为:3+5;90;5.20.【解答】解:如图所示:由题意得:P A=2×20=40(nmile),PB=2×15=30(nmile),AB=50nmile,∵402+302=502,∴P A2+PB2=AB2,∴△P AB是直角三角形,∴∠APB=90°,∵“远航”号沿东北方向航行,∴“海天”号沿西北方向或东南方向航行.21.【解答】解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米22.【解答】解:(1)连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD=•AC•BC﹣AD•CD,=×10×24﹣×8×6=96(m2).(2)需费用96×200=19200(元).23.【解答】解解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;(2)AC==5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),经检验x=是原方程的根,答:点P原来的速度为cm/s.24.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=5cm,BC=4cm,∴AC=cm,故答案为:3;(2)如图,过P作PD⊥AB于D,∵BP平分∠ABC,∠C=90°,∴PD=PC,BC=BD=4,∴AD=5﹣4=1,设PD=PC=y,则AP=3﹣y,在Rt△ADP中,AD2+PD2=AP2,∴12+y2=(3﹣y)2,解得y=,∴CP=,∴t=;当点P与点B重合时,点P也在∠ABC的角平分线上,此时,t=;综上所述,点P恰好在∠ABC的角平分线上,t的值为或;(3)分四种情况:①如图,当P在AB上且AP=CP时,∠A=∠ACP,而∠A+∠B=90°,∠ACP+∠BCP=90°,∴∠B=∠BCP,∴CP=BP,∴P是AB的中点,即AP=AB=,∴t=;②如图,当P在AB上且AP=CA=3时,t=;③如图,当P在AB上且AC=PC时,过C作CD⊥AB于D,则CD=,∴Rt△ACD中,AD=,∴AP=2AD=,∴t=;④如图,当P在BC上且AC=PC=3时,BP=4﹣3=1,∴t==3.综上所述,当t=或或或3s时,△ACP为等腰三角形.。
勾股定理综合性难题(习题)
勾股定理复习1、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d (C )2d (D )d2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
3.△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则222c b a =+,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22b a +与2c 的关系,并证明你的结论.4.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A 市受这次台风影响,那么受台风影响的时间有多长?课堂练习:1、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm2 如图,已知:,,于P. 求证:.3 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
4.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.5、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)
初二數學勾股定理提高練習與常考難題和培優題壓軸題(含解析)一.選擇題(共8小題)1.直角三角形兩直角邊長度為5,12,則斜邊上的高()A.6 B.8 C .D .2.下列說法中正確的是()A.已知a,b,c是三角形的三邊,則a2+b2=c2B.在直角三角形中兩邊和的平方等于第三邊的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如圖,是臺階的示意圖.已知每個臺階的寬度都是30cm,每個臺階的高度都是15cm,連接AB,則AB等于()A.195cm B.200cm C.205cm D.210cm4.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦的長度是()GAGGAGAGGAFFFFAFAFA.10尺B.11尺C.12尺D.13尺5.如圖所示,在數軸上點A所表示的數為a,則a的值為()A.﹣1﹣B.1﹣C .﹣ D.﹣1+6.一架2.5米長的梯子底部距離墻腳0.7米,若梯子的頂端下滑0.4米,那么梯子的底部在水平方向滑動了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長為()GAGGAGAGGAFFFFAFAFA.2 B.2.6 C.3 D.48.如圖,是2002年北京第24屆國際數學家大會會徽,由4個全等的直角三角形拼合而成,如果大正方形的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長直角邊為b,那么(a+b)2的值為()A.13 B.19 C.25 D.169二.填空題(共5小題)9.將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度為hcm,則h的取值范圍是.GAGGAGAGGAFFFFAFAF10.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米的點C處折斷,樹尖B恰好碰到地面,經測量AB=2米,則樹高為米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt △ABC的面積等于.12.觀察下列勾股數第一組:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二組:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三組:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四組:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1GAGGAGAGGAFFFFAFAF…觀察以上各組勾股數組成特點,第7組勾股數是(只填數,不填等式)13.觀察下列一組數:列舉:3、4、5,猜想:32=4+5;列舉:5、12、13,猜想:52=12+13;列舉:7、24、25,猜想:72=24+25;…列舉:13、b、c,猜想:132=b+c;請你分析上述數據的規律,結合相關知識求得b= ,c= .三.解答題(共27小題)14.a,b,c為三角形ABC的三邊,且滿足a2+b2+c2+338=10a+24b+26c,試判別這個三角形的形狀.15.如圖:四邊形ABCD中,AB=CB=,CD=,DA=1,且AB ⊥CB于B.試求:(1)∠BAD的度數;(2)四邊形ABCD的面積.GAGGAGAGGAFFFFAFAF16.如圖,小華準備在邊長為1的正方形網格中,作一個三邊長分別為4,5,的三角形,請你幫助小華作出來.17.如圖所示,在一次夏令營活動中,小明坐車從營地A點出發,沿北偏東60°方向走了100km到達B點,然后再沿北偏西30°方向走了100km到達目的地C點,求出A、C兩點之間的距離.18.如圖,在氣象站臺A的正西方向320km的B處有一臺風中心,該臺風中心以每小時20km的速度沿北偏東60°的BDGAGGAGAGGAFFFFAFAF方向移動,在距離臺風中心200km內的地方都要受到其影響.(1)臺風中心在移動過程中,與氣象臺A的最短距離是多少?(2)臺風中心在移動過程中,氣象臺將受臺風的影響,求臺風影響氣象臺的時間會持續多長?19.如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿A?B方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發;設出發的時間為t秒.(1)出發2秒后,求PQ的長;(2)從出發幾秒鐘后,△PQB能形成等腰三角形?(3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.GAGGAGAGGAFFFFAFAF20.在△ABC中,AB、BC、AC 三邊的長分別為、、,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.這種方法叫做構圖法.(1)△ABC的面積為:.(2)若△DEF三邊的長分別為、、,請在圖2的正方形網格中畫出相應的△DEF,并利用構圖法求出它的面積為.(3)如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數量關系,并證明你的結論.(4)如圖4,一個六邊形的花壇被分割成7個部分,其中正GAGGAGAGGAFFFFAFAF方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則的面積是m2.六邊形花壇ABCDEF如圖1,某同學在解答這道題時,先建立一個每個小正方形的邊長都是1的網格,再在網格中畫出邊長符合要求的格點三角形ABC(即△ABC三個頂點都在小正方形的頂點處),這樣不需要求△ABC的高,而借用網格就能就算出它的面積.請你將△ABC的面積直接填寫在橫線上.思維拓展:(2)已知△ABC三邊的長分別為a(a>0),求這個三角形的面積.我們把上述求△ABC面積的方法叫做構圖法.如圖2,網格GAGGAGAGGAFFFFAFAF中每個小正方形的邊長都是a,請在網格中畫出相應的△ABC,并求出它的面積.類比創新:(3)若△ABC 三邊的長分別為(m >0,n>0,且m≠n),求出這個三角形的面積.如圖3,網格中每個小長方形長、寬都是m,n,請在網格中畫出相應的△ABC,用網格計算這個三角形的面積.22.有一只喜鵲在一棵3m高的小樹上覓食,它的巢筑在距離該樹24m的一棵大樹上,大樹高14m,且巢離樹頂部1m.當它聽到巢中幼鳥的叫聲,立即趕過去,如果它飛行的速度為5m/s,那它至少需要多少時間才能趕回巢中?23.(拓展創新)在教材中,我們通過數格子的方法發現了GAGGAGAGGAFFFFAFAF直角三角形的三邊關系,利用完全相同的四個直角三角形采用拼圖的方式驗證了勾股定理的正確性.問題1:以直角三角形的三邊為邊向形外作等邊三角形,探究S′+S″與S的關系(如圖1).問題2:以直角三角形的三邊為斜邊向形外作等腰直角三角形,探究S′+S″與S的關系(如圖2).問題3:以直角三角形的三邊為直徑向形外作半圓,探究S′+S″與S的關系(如圖3).24.如圖,在平面坐標系中,點A、點B分別在x軸、y軸的正半軸上,且OA=OB,另有兩點C(a,b)和D(b,﹣a)(a、b均大于0);(1)連接OD、CD,求證:∠ODC=45°;(2)連接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度數;GAGGAGAGGAFFFFAFAF(3)若a=b,在線段OA上有一點E,且AE=3,CE=5,AC=7,求△OCA的面積.25.11世紀的一位阿拉伯數學家曾提出一個“鳥兒捉魚”的問題“小溪邊長著兩棵棕櫚樹,恰好隔岸相望.一棵樹高是30肘尺(肘尺是古代的長度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見棕櫚樹間的水面上游出一條魚,它們立刻飛去抓魚,并且同時到達目標.問這條魚出現的地方離開比較高的棕櫚樹的樹根有多遠?26.(1)先化簡,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代數式(x+1)2﹣4(x+1)+4的值.(3)如圖,正方形網格中的每個小正方形邊長都是1,每個GAGGAGAGGAFFFFAFAF小格的頂點叫格點,請在給定的網格中按要求畫圖:①從點A出發在圖中畫一條線段AB,使得AB=;②畫出一個以(1)中的AB為斜邊的等腰直角三角形,使三角形的三個頂點都在格點上,并根據所畫圖形求出等腰直角三角形的腰長.27.[問題情境]勾股定理是一條古老的數學定理,它有很多種證明方法.我國漢代數學家趙爽根據弦圖,利用面積法進行證明,著名數學家華羅庚曾提出把“數學關系”(勾股定理)帶到其它星球,作為地球人與其他星球“人”進行第一次“談話”的語言;[定理表述]請你根據圖1中的直角三角形敘述勾股定理;[嘗試證明]以圖1中的直角三角形為基礎,將兩個直角邊長為a,b,斜邊長為c的三角形按如圖所示的方式放置,連接GAGGAGAGGAFFFFAFAF兩個之間三角形的另外一對銳角的頂點(如圖2),請你利用圖2,驗證勾股定理;[知識擴展]利用圖2中的直角梯形,我們可以證明<,其證明步驟如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小關系),即∴.28.觀察、思考與驗證(1)如圖1是一個重要公式的幾何解釋,請你寫出這個公式;(2)如圖2所示,∠B=∠D=90°,且B,C,D在同一直線上.試說明:∠ACE=90°;(3)伽菲爾德(1881年任美國第20屆總統)利用(1)中的公式和圖2證明了勾股定理(發表在1876年4月1日的《新英格蘭教育日志》上),請你寫出驗證過程.GAGGAGAGGAFFFFAFAF29.超速行駛容易引發交通事故.如圖,某觀測點設在到公路l的距離為100米的點P處,一輛汽車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,是判斷此車是否超過了每小時80千米的限制速度?(參考數據:=1.41,=1.73)30.中日釣魚島爭端持續,我海監船加大釣魚島海域的巡航維權力度.如圖,OA⊥OB,OA=45海里,OB=15海里,釣魚島位于O點,我國海監船在點B處發現有一不明國籍的漁船,自A點出發沿著AO方向勻速駛向釣魚島所在地點O,我國海監船立即從B處出發以相同的速度沿某直線去攔截這艘漁船,結果在點C處截住了漁船.GAGGAGAGGAFFFFAFAF(1)請用直尺和圓規作出C處的位置;(2)求我國海監船行駛的航程BC的長.31.在一次“構造勾股數”的探究性學習中,老師給出了下表:m 2 3 3 4…n 1 1 2 3…a22+1232+12 32+2242+32…b 4 6 1224 …c22﹣1232﹣1232﹣22 42﹣32…其中m、n為正整數,且m>n.(1)觀察表格,當m=2,n=1時,此時對應的a、b、c的值能否為直角三角形三邊的長?說明你的理由.(2)探究a,b,c與m、n之間的關系并用含m、n的代數式表示:a= ,b= ,c= .(3)以a,b,c為邊長的三角形是否一定為直角三角形?如果是,請說明理由;如果不是,請舉出反例.GAGGAGAGGAFFFFAFAF32.如圖1,在4×8的網格紙中,每個小正方形的邊長都為1,動點P、Q分別從點D、A同時出發向右移動,點P的運動速度為每秒1個單位,點Q的運動速度為每秒0.5個單位,當點P運動到點C時,兩個點都停止運動,設運動時間為t (0<t<8).(1)請在4×8的網格紙圖2中畫出t為6秒時的線段PQ.并求其長度;(2)當t為多少時.△PQB是以BP為底的等腰三角形.33.閱讀下面的情景對話,然后解答問題:(1)理解:GAGGAGAGGAFFFFAFAF①根據“奇異三角形”的定義,請你判斷:“等邊三角形一定是奇異三角形”嗎?(填是或不是)②若某三角形的三邊長分別為1、、2,則該三角形(是或不是)奇異三角形.(2)探究:若Rt△ABC是奇異三角形,且其兩邊長分別為2、2,則第三邊的長為,且這個直角三角形的三邊之比為(從小到大排列,不得含有分母).(3)設問:請提出一個和奇異三角形有關的問題.(不用解答)34.觀察下列各式,你有什么發現?32=4+5,52=12+13,72=24+25,92=40+41,…用你的發現解決下列問題:(1)填空:112= + ;(2)請用含字母n(n為正整數)的關系式表示出你發現的規律:;(3)結合勾股定理有關知識,說明你的結論的正確性.35.小明爸爸給小明出了一道題:如圖,修公路AB遇到一GAGGAGAGGAFFFFAFAF座山,于是要修一條隧道BC.已知A,B,C在同一條直線上,為了在小山的兩側B,C同時施工.過點B作一直線m(在山的旁邊經過),過點C作一直線l與m相交于D點,經測量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工隊每天挖100米,求施工隊幾天能挖完?36.如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內,三個頂點A,B,C分別落在凹槽內壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.37.如圖,四邊形ABCD的三邊(AB、BC、CD)和BD的長度都為5厘米,動點P從A出發(A→B→D)到D,速度為2厘GAGGAGAGGAFFFFAFAF米/秒,動點Q從點D出發(D→C→B→A)到A,速度為2.8厘米/秒.5秒后P、Q相距3厘米,試確定5秒時△APQ的形狀.38.一艘輪船以20海里/時的速度由西向東航行,在途中接到臺風警報,臺風中心正以40海里/時的速度由南向北移動,距臺風中心20海里的圓形區域(包括邊界)都屬于臺風區域,當輪船到A處時測得臺風中心移到位于點A正南方的B 處,且AB=100海里.若這艘輪船自A處按原速度繼續航行,在途中是否會遇到臺風?若會,則求出輪船最初遇到臺風的時間;若不會,請說明理由.GAGGAGAGGAFFFFAFAF39.明朝數學家程大位在他的著作《算法統宗》中寫了一首計算秋千繩索長度的詞《西江月》:“平地秋千未起,踏板一尺離地°送行二步恰竿齊,五尺板高離地…”翻譯成現代文為:如圖,秋千OA靜止的時候,踏板離地高一尺(AC=1尺),將它往前推進兩步(EB=10尺),此時踏板升高離地五尺(BD=5尺),求秋千繩索(OA或OB)的長度.40.如圖,∠AOB=90°,OA=45cm,OB=15cm,一機器人在點B處看見一個小球從點A出發沿著AO方向勻速滾向點O,機器人立即從點B出發,沿直線勻速前進攔截小球,恰好在點GAGGAGAGGAFFFFAFAFC處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?1.已知直角三角形兩邊的長為3和4,則此三角形的周長為()A.12 B.7+ C.12或7+D.以上都不對2.圖中字母所代表的正方形的面積為144的選項為()A .B . C .D .3.如圖,數軸上的點A所表示的數為x,則x的值為()A .B .﹣ C.2 D.﹣2GAGGAGAGGAFFFFAFAF4.如圖,帶陰影的正方形面積是.5.如圖,在Rt△ABC中,∠BCA=90°,點D是BC上一點,AD=BD,若AB=8,BD=5,則CD= .6.正方形網格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點,以格點為頂點,(1)在圖①中,畫一個面積為10的正方形;(2)在圖②、圖③中,分別畫兩個不全等的直角三角形,使它們的三邊長都是無理數.GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF初二數學勾股定理提高練習與常考難題和培優題壓軸題(含解析)參考答案與試題解析一.選擇題(共8小題)1.(2016秋?吳江區期中)直角三角形兩直角邊長度為5,12,則斜邊上的高()A.6 B.8 C .D .【分析】首先根據勾股定理,得:斜邊==13.再根據直角三角形的面積公式,求出斜邊上的高.【解答】解:由題意得,斜邊為=13.所以斜邊上的高=12×5÷13=.故選D.【點評】運用了勾股定理.注意:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.2.(2016春?撫順縣期中)下列說法中正確的是()A.已知a,b,c是三角形的三邊,則a2+b2=c2GAGGAGAGGAFFFFAFAFB.在直角三角形中兩邊和的平方等于第三邊的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜邊的平方等于其他兩邊的平方的和,且斜邊對角為直角,根據此就可以直接判斷A、B、C、D選項.【解答】解:在直角三角形中只有斜邊的平方等于其他兩邊的平方的和,且斜邊對角為直角.A、不確定c是斜邊,故本命題錯誤,即A選項錯誤;B、不確定第三邊是否是斜邊,故本命題錯誤,即B選項錯誤;C、∠C=90°,所以其對邊為斜邊,故本命題正確,即C選項正確;D、∠B=90°,所以斜邊為b,所以a2+c2=b2,故本命題錯誤,即D選項錯誤;故選 C.【點評】本題考查了勾股定理的正確運用,只有斜邊的平方才等于其他兩邊的平方和.GAGGAGAGGAFFFFAFAF3.(2016春?臨沭縣期中)如圖,是臺階的示意圖.已知每個臺階的寬度都是30cm,每個臺階的高度都是15cm,連接AB,則AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分別求得直角三角形的兩直角邊的長后即可利用勾股定理求得斜邊AB的長.【解答】解:如圖,由題意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故選A.【點評】本題考查了勾股定理的應用,解題的關鍵是從實際問題中抽象出直角三角形,難度不大.4.(2015春?青山區期中)如圖,在水池的正中央有一根蘆GAGGAGAGGAFFFFAFAF葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦的長度是()A.10尺B.11尺C.12尺D.13尺【分析】找到題中的直角三角形,設水深為x尺,根據勾股定理解答.【解答】解:設水深為x尺,則蘆葦長為(x+1)尺,根據勾股定理得:x2+()2=(x+1)2,解得:x=12,蘆葦的長度=x+1=12+1=13(尺),故選D.【點評】本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數學的關鍵.5.(2016春?南陵縣期中)如圖所示,在數軸上點A所表示GAGGAGAGGAFFFFAFAF的數為a,則a的值為()A.﹣1﹣B.1﹣C .﹣ D.﹣1+【分析】點A在以O為圓心,OB長為半徑的圓上,所以在直角△BOC中,根據勾股定理求得圓O的半徑OA=OB=,然后由實數與數軸的關系可以求得a的值.【解答】解:如圖,點A在以O為圓心,OB長為半徑的圓上.∵在直角△BOC中,OC=2,BC=1,則根據勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故選A.【點評】本題考查了勾股定理、實數與數軸.找出OA=OB是解題的關鍵.GAGGAGAGGAFFFFAFAF6.(2015春?薊縣期中)一架2.5米長的梯子底部距離墻腳0.7米,若梯子的頂端下滑0.4米,那么梯子的底部在水平方向滑動了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根據梯子的頂端下滑了0.4米求出A′C 的長,再根據勾股定理求出B′C 的長,進而可得出結論.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的頂端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故選C.GAGGAGAGGAFFFFAFAF【點評】此題主要考查了勾股定理的應用,關鍵是掌握勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.7.(2015春?羅田縣期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長為()A.2 B.2.6 C.3 D.4【分析】根據勾股定理求出AB的長即可解答.【解答】解:在Rt△ABC中,根據勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.GAGGAGAGGAFFFFAFAF故選D.【點評】本題綜合考查了勾股定理的應用,找到關系MN=AM+BN﹣AB是關鍵.8.(2016春?重慶校級期中)如圖,是2002年北京第24屆國際數學家大會會徽,由4個全等的直角三角形拼合而成,如果大正方形的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長直角邊為b,那么(a+b)2的值為()A.13 B.19 C.25 D.169【分析】根據勾股定理,知兩條直角邊的平方等于斜邊的平方,此題中斜邊的平方即為大正方形的面積13,2ab即四個直角三角形的面積和,從而不難求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2abGAGGAGAGGAFFFFAFAF=大正方形的面積+四個直角三角形的面積和=13+(13﹣1)=25.故選C.【點評】考查了勾股定理的證明,注意完全平方公式的展開:(a+b)2=a2+b2+2ab,還要注意圖形的面積和a,b之間的關系.二.填空題(共5小題)9.(2016春?固始縣期中)將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度為hcm,則h的取值范圍是7cm≤h≤16cm .【分析】如圖,當筷子的底端在A點時,筷子露在杯子外面的長度最短;當筷子的底端在D點時,筷子露在杯子外面的GAGGAGAGGAFFFFAFAF長度最長.然后分別利用已知條件根據勾股定理即可求出h 的取值范圍.【解答】解:如圖,當筷子的底端在D點時,筷子露在杯子外面的長度最長,∴h=24﹣8=16cm;當筷子的底端在A點時,筷子露在杯子外面的長度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此時h=24﹣17=7cm,所以h的取值范圍是7cm≤h≤16cm.故答案為:7cm≤h≤16cm.【點評】本題考查了勾股定理的應用,求出h的值最大值與最小值是解題關鍵.10.(2015春?汕頭校級期中)如圖,一場暴雨過后,垂直于GAGGAGAGGAFFFFAFAF地面的一棵樹在距地面1米的點C處折斷,樹尖B恰好碰到米,則樹高為(1+)米.地面,經測量AB=2【解答】解:由題意得:在直角△ABC中,AC2+AB2=BC2,則12+22=BC2,∴BC=,∴則樹高為:(1+)m.故答案為:(1+).【點評】此題主要考查了勾股定理的應用,熟練利用勾股定理得出BC的長是解題關鍵.11.(2016春?高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于24cm2.【分析】利用勾股定理列出關系式,再利用完全平方公式變GAGGAGAGGAFFFFAFAF形,將a+b與c的值代入求出ab的值,即可確定出直角三角形的面積.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,則Rt△ABC 的面積為ab=24(cm2).故答案為:24cm2.【點評】此題考查了勾股定理,熟練掌握勾股定理是解本題的關鍵.12.(2016春?嘉祥縣期中)觀察下列勾股數第一組:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二組:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三組:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四組:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1GAGGAGAGGAFFFFAFAF…觀察以上各組勾股數組成特點,第7組勾股數是15,112,113 (只填數,不填等式)【分析】通過觀察,得出規律:這類勾股數分別為2n+1,2n (n+1),2n(n+1)+1,由此可寫出第7組勾股數.【解答】解:∵第1組:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2組:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3組:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4組:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7組勾股數是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案為:15,112,113.【點評】此題考查的知識點是勾股數,屬于規律性題目,關鍵是通過觀察找出規律求解.13.(2009春?武昌區期中)觀察下列一組數:GAGGAGAGGAFFFFAFAF列舉:3、4、5,猜想:32=4+5;列舉:5、12、13,猜想:52=12+13;列舉:7、24、25,猜想:72=24+25;…列舉:13、b、c,猜想:132=b+c;請你分析上述數據的規律,結合相關知識求得b= 84 ,c= 85 .【分析】認真觀察三個數之間的關系:首先發現每一組的三個數為勾股數,第一個數為從3開始連續的奇數,第二、三個數為連續的自然數;進一步發現第一個數的平方是第二、三個數的和;最后得出第n組數為(2n+1),(),(),由此規律解決問題.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…則在13、b、c中,b==84,c==85.【點評】認真觀察各式的特點,總結規律是解題的關鍵.GAGGAGAGGAFFFFAFAF三.解答題(共27小題)14.(2016春?黃岡期中)a,b,c為三角形ABC的三邊,且滿足a2+b2+c2+338=10a+24b+26c,試判別這個三角形的形狀.【分析】現對已知的式子變形,出現三個非負數的平方和等于0的形式,求出a、b、c,再驗證兩小邊的平方和是否等于最長邊的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非負數的性質可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC為直角三角形.【點評】本題考查勾股定理的逆定理的應用、完全平方公式、非負數的性質.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.GAGGAGAGGAFFFFAFAF15.(2016秋?永登縣期中)如圖:四邊形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.試求:(1)∠BAD的度數;(2)四邊形ABCD的面積.【分析】連接AC,則在直角△ABC中,已知AB,BC可以求AC,根據AC,AD,CD的長可以判定△ACD為直角三角形,(1)根據∠BAD=∠CAD+∠BAC,可以求解;(2)根據四邊形ABCD的面積為△ABC和△ACD的面積之和可以解題.【解答】解:(1)連接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,GAGGAGAGGAFFFFAFAF又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC =,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四邊形ABCD=S△ABC+S△DAC,∴S四邊形ABCD=2.【點評】本題考查了勾股定理在直角三角形中的運用,考查GAGGAGAGGAFFFFAFAF了根據勾股定理逆定理判定直角三角形,考查了直角三角形面積的計算,本題中求證△ACD是直角三角形是解題的關鍵.16.(2016春?鄒城市校級期中)如圖,小華準備在邊長為1的正方形網格中,作一個三邊長分別為4,5,的三角形,請你幫助小華作出來.【分析】直接利用網格結合勾股定理求出答案.【解答】解:如圖所示:△ABC即為所求.【點評】此題主要考查了勾股定理,正確借助網格求出是解題關鍵.17.(2015春?平南縣期中)如圖所示,在一次夏令營活動中,GAGGAGAGGAFFFFAFAF小明坐車從營地A點出發,沿北偏東60°方向走了100km 到達B點,然后再沿北偏西30°方向走了100km到達目的地C點,求出A、C兩點之間的距離.【分析】根據所走的方向可判斷出△ABC是直角三角形,根據勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC 中,∴==200,∴A、C兩點之間的距離為200km.【點評】本題考查勾股定理的應用,先確定是直角三角形后,根據各邊長,用勾股定理可求出AC的長,且求出∠DAC的度GAGGAGAGGAFFFFAFAF數,進而可求出點C在點A的什么方向上.18.(2015秋?新泰市期中)如圖,在氣象站臺A的正西方向320km的B處有一臺風中心,該臺風中心以每小時20km的速度沿北偏東60°的BD方向移動,在距離臺風中心200km內的地方都要受到其影響.(1)臺風中心在移動過程中,與氣象臺A的最短距離是多少?(2)臺風中心在移動過程中,氣象臺將受臺風的影響,求臺風影響氣象臺的時間會持續多長?【分析】(1)過A作AE⊥BD于E,線段AE的長即為臺風中心與氣象臺A的最短距離,由含30°角的直角三角形的性質即可得出結果;(2)根據題意得出線段CD就是氣象臺A受到臺風影響的路GAGGAGAGGAFFFFAFAF程,求出CD的長,即可得出結果.【解答】解:(1)過A作AE⊥BD于E,如圖1所示:∵臺風中心在BD上移動,∴AE的長即為氣象臺距離臺風中心的最短距離,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即臺風中心在移動過程中,與氣象臺A的最短距離是160km.(2)∵臺風中心以每小時20km的速度沿北偏東60°的BD 方向移動,在距離臺風中心200km內的地方都要受到其影響,∴線段CD就是氣象臺A受到臺風影響的路程,連接AC,如圖2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴臺風影響氣象臺的時間會持續240÷20=12(小時).GAGGAGAGGAFFFFAFAF【點評】本題考查了勾股定理在實際生活中的應用、垂徑定理、含30°角的直角三角形的性質等知識;熟練掌握垂徑定理和勾股定理,求出CD是解決問題(2)的關鍵.19.(2015春?陽東縣期中)如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿A?B方向運動,且速度為每秒1cm,點Q從點B 開始B→C方向運動,且速度為每秒2cm,它們同時出發;設出發的時間為t秒.GAGGAGAGGAFFFFAFAF(1)出發2秒后,求PQ的長;(2)從出發幾秒鐘后,△PQB能形成等腰三角形?(3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.【分析】(1)我們求出BP、BQ的長,用勾股定理解決即可.(2)△PQB形成等腰三角形,即BP=BQ,我們可設時間為t,列出方程2t=8﹣1×t,解方程即得結果.(3)直線PQ把原三角形周長分成相等的兩部分,根據勾股定理可知AC=10cm,即三角形的周長為24cm,則有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出發2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)設時間為t,列方程得GAGGAGAGGAFFFFAFAF。
勾股定理重难点题型汇总
初二数学勾股定理重难点题型教学负责人签字处本次课课堂教学内容【考点1 赵爽弦图求值】【例1】(2020春•大悟县期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,小正方形的面积为9,则大正方形的边长为()A.9B.6C.5D.4【变式1-1】(2020春•湛江期末)如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10【变式1-2】(2019春•番禺区期中)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE 是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2B.4C.6D.8【变式1-3】(2020春•和县期末)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么a+b的值为.【考点2 勾股定理的验证】【例2】(2020春•南岗区校级月考)下面各图中,不能证明勾股定理正确性的是()A.B.C.D.【变式2-1】(2019春•临海市期末)“赵爽弦图”巧妙地利用“出入相补”的方法证明了勾股定理.小明受此启发,探究后发现,若将4个直角边长分别为a、b,斜边长为c的直角三角形拼成如图所示的五边形,用等积法也可以证明勾股定理,则小明用两种方法表示五边形的面积分别是(用含有a、b、c的式子表示),.【变式2-2】(2019秋•鼓楼区期中)如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)【变式2-3】(2020春•无锡期中)(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×12ab+(a﹣b)2,所以4×12ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.【考点3 勾股定理的应用(求面积)】【例3】(2020春•柳州期末)如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=()A.9B.5C.53D.45【变式3-1】(2020春•西华县期末)如图,所有的四边形是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13cm,则图中所有的正方形的面积之和为()A.169cm2B.196cm2C.338cm2D.507cm2【变式3-2】(2019秋•南海区期末)有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1B.2018C.2019D.2020【变式3-3】(2020春•无为县期末)勾股定理是人类最伟大的科学发现之一,在我国古算术《周髀算经》中早有记载.以直角三角形纸片的各边分别向外作正方形纸片,再把较小的两张正方形纸片按如图的方式放置在最大正方形纸片内.若已知图中阴影部分的面积,则可知()A .直角三角形纸片的面积B .最大正方形纸片的面积C .最大正方形与直角三角形的纸片面积和D .较小两个正方形纸片重叠部分的面积【考点4 勾股定理的应用(面积法求斜边高)】【例4】(2020春•安陆市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD⊥AB 于D ,则CD 的长是( )A .5B .7C .125D .245【变式4-1】(2020春•开原市校级月考)如图所示,在△ABC 中,点D 是BC 上的一点,已知AC =CD =5,AD =6,BD =52,则△ABC 的面积是( )A .18B .36C .72D .125【变式4-2】(2019秋•南海区期末)如图,三角形ABC 中,∠ACB =90°,AC =3,BC =4,P 为直线AB 上一动点,连接PC ,则线段PC 的最小值是 .【变式4-3】(2020春•大冶市期末)在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84B.24C.24或84D.42或84【考点5 勾股定理的应用(方程思想)】【例5】(2019秋•通州区期末)如图,在Rt△ABC中,∠B=90°.点D为BC边上一点,线段AD将Rt△ABC分为两个周长相等的三角形.若CD=2,BD=6,求△ABC的面积.【变式5-1】(2019秋•宜宾期末)如图所示,在△ABC中,AB=AC=5,BC=8,CD是AB 边上的高.求线段AD的长.【变式5-2】(2020春•林州市期末)已知在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣AE2=AC2.(1)求∠A的度数;(2)若DE=3,BD=4,求AE的长.【变式5-3】(2019秋•大丰区期中)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.【考点6 勾股定理的逆定理(判断直角三角形)】【例6】(2020春•官渡区期末)下列条件中,不能判定△ABC为直角三角形的是()A.a:b:c=5:12:13B.∠A+∠B=∠CC.∠A:∠B:∠C=2:3:5D.a=6,b=12,c=10【变式6-1】(2019秋•晋江市期末)在△ABC中,BC=a,AB=c,AC=b,则不能作为判定△ABC是直角三角形的条件的是()A.∠A=∠B﹣∠C B.∠A:∠B:∠C=1:4:3C.a:b:c=7:24:25D.a:b:c=4:5:6【变式6-2】(2020春•下陆区校级期中)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形D.如果a2=b2﹣c2,那么△ABC是直角三角形且∠A=90°【变式6-3】(2020春•碑林区校级期末)在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是直角三角形,则这样的格点C的个数是()A.4B.6C.8D.10【考点7 勾股定理的逆定理(求面积)】【例7】(2020春•嘉陵区期末)如图,四边形ABCD的四边,AB=13,BC=12,CD=4,AD=3,对角线AC⊥BC.求四边形ABCD的面积.【变式7-1】(2020春•南丹县期末)如图,在△ABC中,AD=15,AC=12,DC=9,点B 是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.【变式7-2】(2020春•阜平县期末)如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB =4cm,CD=12cm,BC=13cm,求四边形ABCD的面积.【变式7-3】(2020秋•黔西县期中)如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求:(1)∠A+∠C的度数;(2)四边形ABCD的面积.【考点8 勾股数相关问题】【例8】(2020春•平江县期末)下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,9【变式8-1】(2020春•沙坪坝区校级期末)在学习“勾股数”的知识时,爱动脑的小明发现了一组有规律的勾股数,并将它们记录在如下的表格中:a68101214…b815243548…c1017263750…则当a=20时,b+c的值为()A.162B.200C.242D.288【变式8-2】(2019秋•昌平区期末)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.98【变式8-3】(2020春•当涂县期末)三个正整数a,b,c,如果满足a2+b2=c2,那么我们称这三个数a,b,c叫做一组勾股数.如32+42=52,则3,4,5就是一组勾股数.请写出与3,4,5不同的一组勾股数.【考点9 勾股定理的实际应用(梯子问题)】【例9】(2020春•盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5米,则小巷的宽为()A.2.5米B.2.6米C.2.7米D.2.8米【变式9-1】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO =8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【变式9-2】(2020春•濉溪县期末)如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?【变式9-3】(2020•龙泉驿区期中)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.【考点10 勾股定理的实际应用(九章算术)】【例10】(2020春•官渡区期末)《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10尺,BC=4尺,求AC的长.AC的长为()A.3尺B.4.2尺C.5尺D.4尺【变式10-1】(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【变式10-2】(2020春•涪陵区期末)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地四尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽,问绳索长是多少?根据题意求出绳索长为尺.【变式10-3】(2020•吉州区一模)《九章算术》第九章勾股篇中记载:“今有开门去阃(kun)一尺,不合二寸,问门广几何?”其大意是:今推开双门,门框到门槛的距离(称为“去阃”)DF为一尺,双门之间的缝隙(称为“不合”)EF即为2寸(注:一尺为10寸),则门宽AB为尺.【考点11 勾股定理的实际应用(范围影响)】【例11】(2020春•新乡期末)如图,公路MN和公路PQ在点P处交会,公路PQ上点A 处有学校,点A到公路MN的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?【变式11-1】(2019秋•开江县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B 的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.【变式11-2】(2019秋•法库县期末)某条道路限速70km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?【变式11-3】(2019秋•遂宁期末)为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离为600米,假使宣讲车P 周围1000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN 方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【考点12 勾股定理的实际应用(最短路径)】【例12】(2020春•碑林区校级期末)如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是 .【变式12-1】(2019秋•郑州期末)如图,这是一个供滑板爱好者使用的U 型池的示意图,该U 型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为40πm 的半圆,其边缘AB =CD =20m ,点E 在CD 上,CE =5m ,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离约为 m .(边缘部分的厚度忽略不计)【变式12-2】(2020春•河北期末)如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm【变式12-3】(2019春•颍泉区校级期中)如图,长方体的长为20cm,宽为10cm,高为15cm,点B与点C之间的距离为5cm.一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,那么需要爬行的最短距离是多少?。
初二勾股定理试题及答案
初二勾股定理试题及答案一、选择题(每题2分,共10分)1. 直角三角形中,斜边的长度为13,一条直角边的长度为12,另一条直角边的长度为多少?A. 5B. 8C. 9D. 102. 在直角三角形ABC中,∠A是直角,AB=3,AC=4,那么BC的长度是多少?A. 5B. 6C. 7D. 83. 勾股定理的数学表达式是什么?A. a² + b² = c²B. a² - b² = c²C. a² * b² = c²D. a² / b² = c²4. 如果一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 非直角三角形5. 已知直角三角形的两条直角边分别为6和8,那么斜边的长度是多少?A. 10B. 12C. 14D. 16二、填空题(每题2分,共10分)6. 直角三角形的两条直角边长分别为3和4,斜边的长度为______。
7. 如果一个三角形的三边长满足a² + b² = c²,那么这个三角形是______三角形。
8. 在直角三角形中,如果斜边的长度为c,两条直角边的长度分别为a和b,那么它们之间的关系可以用______来表示。
9. 勾股定理适用于______三角形。
10. 已知直角三角形的两条直角边分别为5和12,斜边的长度是______。
三、解答题(每题5分,共20分)11. 在直角三角形DEF中,∠D是直角,DE=9,DF=12,求EF的长度。
12. 如果一个三角形的三边长分别为6,8和10,判断这个三角形是否为直角三角形,并说明理由。
13. 已知直角三角形的两条直角边分别为7和24,求斜边的长度。
14. 一个直角三角形的斜边长度为17,一条直角边的长度为8,求另一条直角边的长度。
四、应用题(每题10分,共20分)15. 某建筑工地需要搭建一个三角形的支撑架,已知支撑架的一条直角边长度为5米,斜边长度为13米,求另一条直角边的长度。
勾股定理难题
勾股定理难题作为中学数学中常见的工具定理之一,勾股定理在几何分析和数学证明中都发挥了重要的作用。
然而,虽然该定理简单易懂,但也存在一些难题需要深入思考和探究。
难题一:勾股定理证明勾股定理是一个重要的几何定理,其基本内容在高中数学教学中被广泛的传授,它表达的是一个直角三角形斜边的平方等于两个直角边的平方之和。
但是,在实际应用问题中,我们对勾股定理的理解往往仅仅满足于表面层次,而对于定理的证明,我们往往感到十分困难。
在数学中,证明是一项非常重要的任务。
如果可以证明某个定理,那么可以证明这个定理是真实有效的。
在勾股定理的证明中,我们需要运用的基本知识有数学分析,三角函数,纯数学运算等,其中还包括几何知识和直观图像等。
难题二:勾股定理的正确应用除了勾股定理本身的证明难题,正确应用勾股定理也是一个难题。
由于勾股定理的广泛应用,我们应该了解何时应该使用它,以及如何正确应用该定理。
在实际问题中,如果错误地应用勾股定理,将会导致问题解决的错误结果。
以一个典型例子来说,如果我们需要求一个飞机飞行的航迹,经常会遇到需要求解三角形的三个角度以及长度的问题,此时勾股定理就能够发挥作用,但是,如果我们将三角形直接代入公式计算,而没有首先检查它是否确实是一个具有直角的三角形,就会发生计算错误。
这就需要我们在应用时要仔细思考,避免使用不恰当的的定理和方法。
难题三:勾股定理的综合运用勾股定理的应用不仅仅局限于计算直角三角形的三个边长和三个角度等问题,还可以应用到平面分析、建筑设计和机械制造等范畴中。
在实际的工作中,我们需要将勾股定理与其他的工程和技术原理相结合使用,以便更好地解决问题。
例如,在建筑设计中,我们需要计算一个建筑物的倾斜角度,就需要有一定的勾股定理知识,以便能够应用该定理进行计算。
此外,还有汽车设计与制造、航空工程、电子科技等领域均需要使用勾股定理。
勾股定理虽然看似简单,但在实际运用中却有着诸多的难题。
我们希望大家能够在学习中注重探究定理的原理,深刻理解其本质;在实际应用中,注重思考,确保定理的正确应用,以达到最优的解决问题的效果。
初二数学勾股难题专题训练
初二数学勾股难题专题训练大家好!今天我们来聊聊初二数学中一个非常有趣而且实用的主题——勾股定理。
别看它名字有点“拗口”,其实这可是解决许多实际问题的“神器”呢。
咱们一步步来,看看勾股定理到底有多神奇吧!1. 勾股定理的基本概念1.1 勾股定理的定义勾股定理是个数学小魔法,它告诉我们在一个直角三角形里,两个直角边的平方和等于斜边的平方。
简单说,就是如果你有一个直角三角形,直角两边的长度分别是 ( a ) 和 ( b ),那么斜边的长度 ( c ) 就是满足 ( a^2 + b^2 = c^2 ) 的。
哎呀,听起来是不是有点复杂?其实只要掌握了这个公式,很多难题都能迎刃而解!1.2 直角三角形的特点直角三角形顾名思义,就是有一个角是直角(90度)的三角形。
勾股定理专门用来解决这种三角形中的问题。
记住,直角就是三角形最“厉害”的角,其他两个角加起来一定是90度。
2. 勾股定理的应用2.1 生活中的应用勾股定理不仅仅是在书本上才会看到,它在生活中也超级有用呢!比如说,你要测量一条从楼下到楼上的直线距离(假如你在建一个滑梯),可以用勾股定理来计算。
只需要知道两个直角边的长度,就能算出滑梯的长度了。
2.2 解决问题的小技巧做勾股定理题目时,有一些小窍门能让你事半功倍哦。
比如,遇到直角三角形的边长是整十数时,直接用公式代入计算会比较方便。
如果边长比较复杂,可以先把它们变成分数或小数,再代入公式计算。
别忘了,有时候要用到平方根来求解最终结果。
3. 勾股定理的变种3.1 勾股数的概念勾股数是指一组三个正整数,它们可以作为直角三角形的边长,满足 ( a^2 + b^2 = c^2 ) 的关系。
最经典的勾股数就是3、4、5。
这个三角形是最简单的直角三角形之一,计算起来超级简单。
3.2 常见勾股数除了3、4、5,还有其他一些常见的勾股数,比如5、12、13,7、24、25等。
记住,这些都是整数解,它们帮助我们解决问题时,计算起来会特别方便。
勾股定理练习题初二数学
勾股定理练习题初二数学勾股定理是一条数学定理,用来求解直角三角形的边长关系。
在初二数学中,学生需要掌握和熟练应用勾股定理。
为了帮助同学们进行练习和巩固知识,下面将提供一些勾股定理的练习题,供大家参考。
练习题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
设斜边的长度为x,则可得方程3^2 + 4^2 = x^2。
计算得25 = x^2,解方程可得x = 5。
所以,斜边的长度为5cm。
练习题二:某直角三角形的斜边为10cm,一条直角边为6cm,求另一条直角边的长度。
解答:同样地,根据勾股定理可得方程6^2 + x^2 = 10^2。
计算得36 + x^2 = 100,解方程可得x^2 = 64,再开方得x = 8。
所以,另一条直角边的长度为8cm。
练习题三:已知直角三角形的斜边为13cm,一条直角边未知,另一条直角边为5cm,求未知直角边的长度。
解答:同样地,根据勾股定理可得方程5^2 + x^2 = 13^2。
计算得25 + x^2 = 169,解方程可得x^2 = 144,再开方得x = 12。
所以,未知直角边的长度为12cm。
通过以上的练习题,我们可以看到勾股定理在求解直角三角形边长的过程中起到了重要的作用。
掌握勾股定理和灵活运用它,可以帮助我们解决实际问题,提高数学应用能力。
除了上述的练习题,同学们还可以自己创造更多的练习题,进行多样化的训练。
通过不断的实践和练习,我们可以更好地理解和应用勾股定理,为解决实际问题提供有效的数学工具。
希望同学们通过这些练习题的实践和思考,能够真正掌握勾股定理的原理和应用,提高解题的准确性和速度。
数学是一门需要勤加练习和思考的学科,相信通过大家的努力,一定能够取得更好的成绩。
祝愿大家学业进步,取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1如图:圆柱的高为10 cm,底面半径为 2 cm.在下底面的A点处有一只蚂蚁,它想吃到上底面上与A点相对的B点处,需要爬行的最短路程是多少?
2如图:长方体的高为 3 cm,底面是边长为 2 cm的正方形.现有一小虫从顶点A出发,沿长方体侧面到达顶点C处,小虫走的路程最短为多少厘米?
3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D点,那么它所行的最短路线的长是
_____________。
4、如图:小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为
8cm,长BC为10cm,当小红折叠时,顶点D落在BC边上的点F处,折
痕为AE
,想一想,此时EC有多长?
5、如图:将一个边长分别为4、8的长方形纸片ABCD折叠,使点C与A点重合,则EB的长是()
A。
3 B。
4
C。
√5 D。
5
6、已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,求AC的长。
7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使其落在斜边AB上,且与AE重合,则CD的长为。
8、如图,在矩形ABCD中,AB=6,将矩形ABCD折叠,使点B与点D重合,C落在C’处,若AE:BE=1:2,则折痕EF的长为。
9、如图,已知,点E是正方形ABCD的BC边上的点,现将△DCE沿折痕DE 向上翻折,使DC落在对角线DB 上,则 EB:CE是多少?
10、如图,AD 是△ ABC 的中线,角ADC=45o,把△ ADC 沿 AD 对折,点
C 落在 C’的位置,若 BC=2,则 BC’=_________。
′。