医学细胞生物学PPT:细胞信号转导
合集下载
细胞的信号转导1_PPT幻灯片
抑制型途径: 抑制型配体+Ri+Gi→AC抑制→cAMP↓
N递质
配体 肽类激素
生长因子 (第一信使)
受体
①
配体产 生并与 靶C靠近
②配体与受体 结合激活AC
Mg2+、ATP存在
AC
激活的AC催化ATP
③
cAMP↑ (第二信使)
④在PKA(蛋白 激酶)存在下
特异性活化专业 蛋白质
专业化蛋白合成或 糖原分解等效应蛋 白,引起细胞生物 学效应。
② 抑制型信号途径:Ri-Gi-AC途径 cAMP↓
抑制型信号与细胞表面抑制型受体Ri结合,受体 活化、构象改变、结合并活化抑制型G蛋白(Gi),Gi 激活以后的过程与刺激型过程正好相反,AC被抑 制,ATP分解被抑制, cAMP浓度下降,其生物学效应即 受到抑制.
结论:
刺激型途径:刺激型配体+Rs+Gs→AC激活→cAMP↑
● 细胞信号转导
受体(膜受体) 配体
靶细胞
受体(胞内受体)
在多细胞动物中,众多细胞形成精密 信号传递网络;
一、cAMP信使体系
1、环磷酸腺苷( cAMP )是最重要的胞内信使。
2、 cAMP是细胞膜的腺苷酸环化酶(AC)在G蛋白 激活下,催化ATP脱去一个焦磷酸后的产物。
3、AC的主要功能是催化ATP或cAMP,这一过程不 仅需要经G蛋白激活,还需Mg2+、Mn2+的存在。
5、 cGMP在脊椎动物视杆细胞中对光信号的转导起 重要作用:cGMP可直接作用于Na+通道,在光信 号存在下,使Na+通道关闭,引起细胞超极化,神 经递质释放减少,产生视觉反应。
分离态
④Gsa与AC结合并激活AC 配体与受体分离
N递质
配体 肽类激素
生长因子 (第一信使)
受体
①
配体产 生并与 靶C靠近
②配体与受体 结合激活AC
Mg2+、ATP存在
AC
激活的AC催化ATP
③
cAMP↑ (第二信使)
④在PKA(蛋白 激酶)存在下
特异性活化专业 蛋白质
专业化蛋白合成或 糖原分解等效应蛋 白,引起细胞生物 学效应。
② 抑制型信号途径:Ri-Gi-AC途径 cAMP↓
抑制型信号与细胞表面抑制型受体Ri结合,受体 活化、构象改变、结合并活化抑制型G蛋白(Gi),Gi 激活以后的过程与刺激型过程正好相反,AC被抑 制,ATP分解被抑制, cAMP浓度下降,其生物学效应即 受到抑制.
结论:
刺激型途径:刺激型配体+Rs+Gs→AC激活→cAMP↑
● 细胞信号转导
受体(膜受体) 配体
靶细胞
受体(胞内受体)
在多细胞动物中,众多细胞形成精密 信号传递网络;
一、cAMP信使体系
1、环磷酸腺苷( cAMP )是最重要的胞内信使。
2、 cAMP是细胞膜的腺苷酸环化酶(AC)在G蛋白 激活下,催化ATP脱去一个焦磷酸后的产物。
3、AC的主要功能是催化ATP或cAMP,这一过程不 仅需要经G蛋白激活,还需Mg2+、Mn2+的存在。
5、 cGMP在脊椎动物视杆细胞中对光信号的转导起 重要作用:cGMP可直接作用于Na+通道,在光信 号存在下,使Na+通道关闭,引起细胞超极化,神 经递质释放减少,产生视觉反应。
分离态
④Gsa与AC结合并激活AC 配体与受体分离
细胞的信号转导完美版PPT
一、信号转导概述
信号转导——细胞外刺激信号作用于细胞的特殊结构,通过 一系列反应实现对细胞功能活动的调控。
(一)细胞外刺激信号 体内的信号物质一般为生物活性物质,如神经递质、激素、 细胞因子等,其中多数为水溶性物质。
(二)受体及其特征
1.受体的概念及其分类 受体(receptor)——位于细胞膜或细胞内能与某些信号
3.以神经-肌接头处兴奋传递为例,简述通道耦联的受体介导 的信号转导过程。
G蛋白作用模式
cAMP作为第二信使的发现
➢ 第二信使学说是E.W.萨瑟兰于1965年首先提出。他认为 人体内各种含氮激素(蛋白质、多肽和氨基酸衍生物)都 是通过细胞内的环磷酸腺苷(cAMP)而发挥作用的。首次 把cAMP叫做第二信使,激素等为第一信使。已知的第二 信使种类很少,但却能转递多种细胞外的不同信息,调节 大量不同的生理生化过程,这说明细胞内的信号通路具有 明显的通用性。
(3)G蛋白效应器(G protein effector)
(4)第二信使(second messenger) (5)蛋白激酶(protein kinase, PK)
G蛋白耦联受体介导的信号转导的基本过程
配体 受体
受体-配体
G蛋白
激活型G蛋白
G蛋白效应器
激活的 G蛋白效应器
[第二信使] 或
依赖于第二信使的酶或通道激活或抑制
某些蛋白质磷酸化
生物效应
2. G蛋白受体介导的信号转导的主要途径
(2)受体-G蛋白-DG/PKC途径: 配体与膜受体结合 膜中的G蛋白(Gq) 激活磷脂酶C(PLC) 膜脂质中的二磷酸磷脂酰肌醇(PIP2)迅速水解为 IP3(三磷酸肌醇)和DG(二酰甘油) DG激活蛋白激酶C(PKC) 进一步作用于下游的信号蛋白或功能蛋白 诱发细胞功能改变。
细胞生物学PPT第八章_细胞信号转导PPT课件
转录激活功能域
配体结合功能域
DNA-结合功能域
抑制性蛋 白
无活性的细胞核受体
辅激发蛋白
配体
受体结合序列
起始靶基因转录
精选PPT课件 激活的细胞核受体
20
胞内受体介导 的信号传递过 程
精选PPT课件
21
甾类激素可以诱导原初反应和次级反应;即:
A:直接诱导少数特殊基因转录的原初反应阶段;
B:基因产物再活化其他基因,产生一种延迟的次级 反应。这种反应对激素原初作用起放大效应。
a亚基上GTP水解,使该亚基本
身失活,造成和靶蛋白解离
精选PPT课件
29
失活的a-亚基与bg -复合体结合
无活性G-蛋白 无活性靶蛋白
精选PPT课件
30
激活G-蛋白的功能
1) 离子通道
2) 酶
精选PPT课件
31
二、G-蛋白耦联受体介导的细胞信号通路 (一)以cAMP为第二信使的信号通路
1)腺苷酸 环化酶
第八章 细胞信号转导
细胞外信号分子 受体蛋白分子
细胞内信号分子
靶位蛋白
代谢类酶 基因调节蛋白 细胞骨架蛋白
代谢改变 基因表达 细胞形状
改变 精选或PP运T课动件改变
1
第一节 概述
一、细胞通讯
概念(P218):生物体内C与C之间的联
络、识别以及信息传递,是指一个细胞发出的 信息通过介质传递到另一个细胞并与靶细胞相 应的受体相互作用,然后通过信号转导产生胞 内一系列生理生化反应,最终表现为细胞整体 的生物学效应的过程。
精选PPT课件
32
2)环化 AMP 磷酸二酯酶
精选PPT课件
33
3)蛋白激酶A
《细胞信号转导》课件
03 肿瘤细胞信号转导与血管生成
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
第九章-细胞信号转导PPT课件
一.离子通道偶联蛋白(配体门离子通道)
包括:结合位点+离子通道 二.G蛋白偶联受体(最大家族)
普遍存在真核细胞表面
.
10
三.酶联受体: 一类具有酶活性; 另一类受体胞内段与酶联系。
至少两个功能域:结合配体、产生效应
受体被激活-信号转导-引发两种主要反应:
改变预存蛋白活性
影响特殊蛋白的表达量
•
.
11
.
3
细胞通讯3种方式:
一、分泌化学信号
分泌化学信号作用方式4种: • 内分泌 • 旁分泌 • 自分泌 • 化学突出传递神经信号
.
4
二、细胞间接触性依赖通讯:
①细胞-细胞黏着 ②细胞-基质黏着
.
5
三、间隙连接或胞间连丝:
• 动物细胞间的间隙连接或植物细胞间的胞 间连丝同属于通讯连接。
• 通讯连接:详见第十七章
.
18
③.表面受体被激活后,在临近质膜上形成肌 醇磷脂分子,从而募集具有PH结构域的信号 蛋白,形成复合物,参与下游事件。
.
19
(三)信号转导系统的4个主要特性:
• 特异性 • 放大效应 • 网络化与反馈 • 整合作用
.
20
第二节 细胞内受体介导的信号传递
细胞内受体超家族本质是依赖激素激活的基因调控 蛋白,在细胞内,受体与抑制剂(如Hsp90)结 合为复合物,当信号分子与受体结合后,抑制剂 脱落,使得受体暴露其DNA结合位点而被激活。
.
15
• 研究蛋白互作的模式结构域——SH2结构域
确定蛋白家族成员: 酶、癌蛋白、锚定蛋白接头蛋白、调节蛋 白、转录因子
.
16
(二)信号蛋白复合物的装配3种策略:
第12章 细胞信号转导(共63张PPT)
coupled receptor,GPCR)。
一条肽链糖蛋白 信息传递步骤: 激素与受体结合
受体蛋白的构象改变调节G 蛋白的活性
促进蛋白激酶活性,产生生 物学效应(细胞代谢、基因 转录的调控)
胞质内第二 信使浓度增 加
细胞膜上的酶活
化(AC 等)
❖ G蛋白偶联受体(G-protein coupled receptors, GPCR )作为人类 基因组编码的最大类别膜蛋白超家族,有800多个家族成员,与 人体生理代谢几乎各个方面都密切关联。它们的构象高度灵活, 调控非常复杂,天然丰度很低。
成纤维细胞生长因子(FGF)
血管内皮生长因子(VEGF)
功能:
配体受体结合
受体蛋白质 构象改变
使底物磷酸化,与细胞的增殖、 分化、癌变有关。
(存在自身磷酸化位点,调节酪 氨酸激酶活性)
(二)细胞内受体结构特征
❖ 胞内受体通常为由400~1000个氨基酸组成的单体蛋白,包括四个区域:
❖ ①高度可变区:位于N末端的氨基酸序列高度可变,长度不一,具有转录激活功能。 ❖ ②DNA结合区:其DNA结合区域由66~68个氨基酸残基组成,富含半胱氨酸残基
❖ ③PKA对基因表达的调节作用
表12-2PKA对底物蛋白的磷酸化作用
底物蛋白 核中酸性蛋白质 核糖体蛋白 细胞膜蛋白
微管蛋白 心肌肌原蛋白 心肌肌质网膜蛋白 肾上腺素受体蛋白β
磷酸化的后果
生理意义
加速转录
促进蛋白质合成
加速翻译
促进蛋白质合成
膜蛋白构象及功能改变 构象及功能改变
改变膜对水及离子的通 透性
,具两个锌指结构,由此可与DNA结合。 ❖ ③铰链区:为一短序列,可能有与转录因子相互作用和触发受体向核内移动的
一条肽链糖蛋白 信息传递步骤: 激素与受体结合
受体蛋白的构象改变调节G 蛋白的活性
促进蛋白激酶活性,产生生 物学效应(细胞代谢、基因 转录的调控)
胞质内第二 信使浓度增 加
细胞膜上的酶活
化(AC 等)
❖ G蛋白偶联受体(G-protein coupled receptors, GPCR )作为人类 基因组编码的最大类别膜蛋白超家族,有800多个家族成员,与 人体生理代谢几乎各个方面都密切关联。它们的构象高度灵活, 调控非常复杂,天然丰度很低。
成纤维细胞生长因子(FGF)
血管内皮生长因子(VEGF)
功能:
配体受体结合
受体蛋白质 构象改变
使底物磷酸化,与细胞的增殖、 分化、癌变有关。
(存在自身磷酸化位点,调节酪 氨酸激酶活性)
(二)细胞内受体结构特征
❖ 胞内受体通常为由400~1000个氨基酸组成的单体蛋白,包括四个区域:
❖ ①高度可变区:位于N末端的氨基酸序列高度可变,长度不一,具有转录激活功能。 ❖ ②DNA结合区:其DNA结合区域由66~68个氨基酸残基组成,富含半胱氨酸残基
❖ ③PKA对基因表达的调节作用
表12-2PKA对底物蛋白的磷酸化作用
底物蛋白 核中酸性蛋白质 核糖体蛋白 细胞膜蛋白
微管蛋白 心肌肌原蛋白 心肌肌质网膜蛋白 肾上腺素受体蛋白β
磷酸化的后果
生理意义
加速转录
促进蛋白质合成
加速翻译
促进蛋白质合成
膜蛋白构象及功能改变 构象及功能改变
改变膜对水及离子的通 透性
,具两个锌指结构,由此可与DNA结合。 ❖ ③铰链区:为一短序列,可能有与转录因子相互作用和触发受体向核内移动的
《细胞信号转导》PPT课件
molecularbiology生物化学与分子生物学教研室第一节细胞通讯第二节细胞信号转导的分子机制第三节不同受体介导的细胞信号转导通路第四节细胞信号转导与医学细胞外信号细胞内的多种分子的浓度活性位置变化蛋白激酶与蛋白磷酸酶proteinkinaseproteinphosphatasegtp结合蛋白gtpbindingproteinmolecularswitchsgtpgtpgdpgtpgtpgtpg蛋白的主要类型肾上腺素腺苷酸环化酶atpcamp无活性pka活化pka磷酸化酶b激酶糖原合酶糖原分解增加肾上腺素腺苷酸环化酶atpcampg蛋白一类和gtp或gdp结合位于胞膜胞浆面的外周蛋白具有信号转导功能由三个亚基组成非活化形式活化形式proteinactivationpkacampacplcippkacampac11gtp结合蛋白异源三聚体低分子量g蛋白gtp结合形式为活性形式gdp结合形式为非活性形式2130kda称为ras超家族现有50多种具有gtp酶活性13gapgtpaseactivatingproteingtpase激活蛋白sosguanidineexchangefactor鸟苷酸交换因子gefgtpoffgdpgaprasrassosgap第二节细胞信号转导的分子机制15蛋白复合物proteincomplexesclusters是细胞信号转导分子共同构成的基本工作场所是信号转导过程特异性和精确性的保证是网络性调控的基础signalosomestransducisomessignalcomplexsignalcassettessignalingmodules16转录调控复合物17蛋白相互作用是信号转导复合物形成的基础蛋白相互识别的结构基础蛋白复合物的重要结构蛋白衔接蛋白adapterprotein支架蛋白scaffoldprotein1840proteininteractiondomain19sh2domainsrcsh2srchomologydomainpyeei20sh3domainclassrkxxpxxpclasspxxpxrsrchomologydomain蛋白激酶btkphthsh3sh2催化区衔接蛋白grb2sh3sh2sh3转录因子statdna结合区sh2ta细胞骨架蛋白tensinsh2ptb22phosphotyrosine?sh2?ptbapoptosis?dd?ded?car