3寒假复习必修一之函数的定义域(学生版)

合集下载

高中数学必修一-函数的定义域

高中数学必修一-函数的定义域

函数的定义域知识集结知识元函数与映射的概念知识讲解1、一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合中A任意一个数x,在集合中B都有唯一确定的数f(x)和它对应,那么就称为A→B从集合A到集合B 的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合的子集.注意:(1)值域由定义域和对应关系唯一确定;(2)f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x 的乘积.在不同的函数中f的具体含义不同.2.设A、B是两个非空集合,如果存在一个法则f,使得对A中的每个元素a,按法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记作f:A→B。

其中,b称为元素a在映射f下的象,记作:b=f(a);a称为b关于映射f的原象。

集合A中所有元素的象的集合称为映射f的值域,记作f(A)。

注意:(1)对于A中不同的元素,在B中不一定有不同的象;(2)B中每个元素都有原象(即满射),且集合A中不同的元素在集合B中都有不同的象(即单射),则称映射f建立了集合A和集合B之间的一个一一对应关系,也称f是A到B上的一一映射。

例题精讲函数与映射的概念例1.给出下列四个对应:如图,其构成映射的是()A.只有①②B.只有①④C.只有①③④D.只有③④例2.A={1,2,3},b={a,b},则从A到B的可以构成映射的个数()A.4个B.6个C.8个D.9个例3.已知A={x|0≤x≤4},B={y|0≤y≤2},下列对应法则中可以是从A至B的函数的有.①f:x→y=②f:x→y=③f:x→y=x④f:x→y=2x.例4.下列图象中可作为函数y=f(x)图象的是()A.B.C.D.函数相等知识讲解判断两个函数是否为同一函数函数的构成要素:定义域、对应关系、值域.所以判断两个函数是不是同一函数,就看定义域和对应法则是否一样.注意:判断函数是否是同一个函数,一般是同解变形化简函数的表达式,考察两个函数的定义域是否相同,对应法则是否相同.例题精讲函数相等例1.下列四组中的f(x),g(x),表示同一个函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣1,g(x)=﹣1C.f(x)=x2,g(x)=()4D.f(x)=x3,g(x)=例2.下列各组函数中,表示同一函数的是()A.f(x)=x和g(x)=B.f(x)=|x|和g(x)=C.f(x)=x|x|和g(x)=D.f(x)=和g(x)=x+1,(x≠1)例3.'试判断以下各组函数是否表示同一函数?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n﹣1(n∈N*);(4)f(x)=,g(x)=;(5)f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.'例4.下列函数中与函数y=x是相同函数的是()A.B.y=C.D.例5.在下列四组函数中,f(x)与g(x)表示同一函数的是()A.B.C.D.具体函数的定义域知识讲解函数的定义域及其求法1.定义函数的定义域就是使函数有意义的自变量的取值范围.2.求解函数定义域的常规方法(1)如果f(x)是整式,其定义域是实数集R;(2)如果f(x)是分式,其定义域是使分母不为0的实数集合;(3)如果f(x)是二次根式(或偶次根式),其定义域是使根号内的式子不小于0的实数集合;(4)如果f(x)是由以上几个部分的数学式子构成的,其定义域是使各部分式子都有意义的实数集合;(5)如果f(x)=x^0的定义域是{x∈R|x≠0};(6)实际问题要具体分析.例题精讲具体函数的定义域例1.函数f(x)=+的定义域是()A.[﹣1,+∞)B.[2,+∞)C.[﹣1,2]D.(﹣1,2)例2.'求下列函数的定义域(1)(2).'例3.'求函数的定义域.'例4.函数的定义域为.复合函数的定义域知识讲解抽象函数的定义域(1)对在同一对应法则f下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;(2)函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.例题精讲复合函数的定义域例1.'设函数f(x)=.(1)当a=5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,试求a的取值范围.'例2.已知函数y=f(x)定义域是[﹣2,3],则y=f(2x﹣1)的定义域是()A.B.[﹣1,4]C.D.[﹣5,5]例3.已知函数y=f(x+1)的定义域是[﹣2,3],则y=f(x2)的定义域是()A.[﹣1,4]B.[0,16]C.[﹣2,2]D.[1,4]例4.函数f(x2)的定义域为(﹣3,1],则函数f(x﹣1)的定义域为()A.[2,10)B.[1,10)C.[1,2]D.[0,2]备选题库知识讲解本题库作为知识点“函数的定义域”的题目补充.例题精讲备选题库例1.函数f(x)=的定义域为()A.[2,+∞)B.(2,+∞)C.[0,2)∪(2,+∞)D.[2,+∞)例2.已知函数f(x+3)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1)B.C.(-1,0)D.()例3.下列函数中,与函数y=的定义域相同的函数为()C.y=xe x D.A.B.例4.已知函数f(2x+1)的定义域为(0,3),则f(x)的定义域为()A.(1,3)B.(1,7)C.(1,3)D.(-,1)例5.已知f(x)的定义域为[-1,5],则f(2x+5)的定义域为()A.[-1,5]B.[3,15]C.[-3,0]D.[0,3]例6.设函数的定义域A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,3)B.(1,3]C.[-3,1)D.(-3,1)例7.函数的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3)∪(1,+∞)D.(-∞,-3[∪[1,+∞)当堂练习单选题练习1.已知函数f(x)的定义域为(-1,1),则函数的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(-1,1)练习2.函数的定义域为()A.(2,3)B.(3,4]C.(2,4]D.(2,3)∪(3,4]练习3.已知函数f(x)=lg的定义域为A,函数g(x)=lg(1+x)-lg(1-x)的定义域为B,则下述关于A、B的关系中,不正确的为()A.A⊇B B.A∪B=B C.A∩B=B D.B⊊A练习4.函数f(x-4)的定义域为[3,27],则函数f(x)的定义域为()A.[-2,7]B.[-1,7]C.[-2,-1]D.[3,27]若函数f(x)的定义域为[2,8],则函数的定义域为()A.(2,4]B.(2,3)∪(3,4]C.[1,4]D.[1,3)∪(3,4]练习6.若函数f(x)=ln(x+1),则函数g(x)=f(x)+f(-x)的定义域为()A.(-1,2]B.(-1,1)C.(-2,2)D.[-2,2]填空题练习1.若函数在区间(-∞,1]内有意义,则实数a的取值范围是______练习2.函数y=arccos(x-1)的定义域为_______.练习3.若函数在区间(-∞,1]上有意义,则实数a的取值范围是________.练习4.已知函数y=f(x-1)的定义域为[0,2],则f(ax)+f(),(a≥1)的定义域是__.练习5.函数y=(a>0,且a≠1)的定义域是(-∞,0],则实数a的取值范围为_______.练习1.'函数f(x)=,(1)若f(x)的定义域为[-2,1],求实数a的值.(2)若f(x)的定义域为R,求实数a的取值范围.'练习2.'设函数(a>0且a≠1).(Ⅰ)求函数f(x)的定义域,并判断它的奇偶性;(Ⅱ)若,求x的取值范围.'练习3.'已知函数(x>0),(1)是否存在实数a,b(a<b),使得函数y=f(x)的定义域和值域都是[a,b],若存在,求出a,b的值,若不存在,说明理由(2)若存在实数a,b(a<b),使得函数y=f(x)的定义域是[a,b]时,值域为[ma,mb],(m≠0),求m的取值范围.'练习4.'设函数.(Ⅰ)当a=5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,试求实数a的取值范围.'。

必修一函数的定义域

必修一函数的定义域

函数的定义域一、限制条件下的定义域:例题:求下列函数的定义域(1)()1211-+-=x x x x f ; (2)()3)6(0-+-=x x x f ;(3)()xx x a x f --=22()0>a ; (4)()2222x x x f ---=.练习求下列函数的定义域:(1)()3522-+=x x x f ;(2)()12++=x x x f ; (3)()()23223log 32x x x x x f -++-+=;(4)()()1log -=x a a x f .二、函数定义域与一元二次不等式的恒成立问题 例题:已知函数()862+-+-=m mx mx x f 的定义域为R ,求实数m 的取值范围.练习1 若函数()12++=ax x x f 的定义域为R ,求实数a 的取值范围.练习2若函数()31323-+-=ax ax x x f 的定义域为R ,求实数a 的取值范围.三、抽象复合函数的定义域问题 例题:求下列函数的定义域:(1)已知函数()x f 的定义域为[],,22-求函数()12-=x f y 的定义域. (2)已知函数()42+x f 的定义域为[]10,,求函数()x f 的定义域. (3)已知函数()x f 的定义域为[]21,-,求函数()()112--+x f x f 的定义域.练习1、若函数()x f 的定义域是[]20161,,则函数()1+x f 的定义域是 2、已知函数()12+x f 的定义域为⎥⎦⎤⎢⎣⎡-212,,则()x f 的定义域为 3、已知函数()1+x f 的定义域是[]32,-,则()1-x f 的定义域是 4、若函数()x f 的定义域是[]20,,则函数()()12-=x x f x g 的定义域是函数的定义域综合练习题1、函数()223x x x f --=的定义域为 ;2、函数()()11lg -+=x x x f 的定义域为 ; 3、函数()3121++-=x x f x 的定义域为 ; 4、函数2111ln x x y -+⎪⎭⎫ ⎝⎛+=的定义域为 ; 5、函数()()1log 122-=x x f 的定义域为 ; 6、函数()1log 12-=x x f 的定义域为 ; 7、函数()()32lo 22-+=x x g x f 的定义域为 ;8、函数()365lg 42-+-+-=x x x x x f 的定义域为 ; 9、函数()()()x x x x f --+=ln 1的定义域为 ; 10、函数()()241ln 1x x x f -++=的定义域为 ; 11、函数()xx x f -=2ln 的定义域为 ; 12、已知函数()1+x f 的定义域为[]32,-,则()12-x f 的定义域为 .。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

盘点高一数学必修一期末复习定义域必备知识点

盘点高一数学必修一期末复习定义域必备知识点

盘点高一数学必修一期末复习定义域必备知识

数学的学习每一小节都要掌握好,以下是为您提供的定义域必备知识点,希望可以帮助到你!
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.
那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的
定义域还要保证实际问题有意义.
(又注意:求出不等式组的解集即为函数的定义域。

)
构成函数的三要素:定义域、对应关系和值域
注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应
关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
盘点高一数学必修一期末复习定义域必备知识点就为大家
提供这些,更多内容请关注!。

高一函数定义域和值域知识点

高一函数定义域和值域知识点

高一函数定义域和值域知识点在高中数学中,函数是一个非常重要的概念。

函数是一个映射关系,它将一个集合中的元素对应到另一个集合中的元素。

而函数的定义域和值域则是函数的两个基本性质,它们对于理解函数的性质和特点非常关键。

一、函数的定义域函数的定义域是指函数中所有可能输入的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输入可以采取哪些值。

例如,考虑一个简单的函数f(x) = √x。

这个函数的定义域是什么呢?我们知道平方根是一个实数运算,但是如果x取负值,那么该函数就无法定义了。

因此,这个函数的定义域是所有非负实数。

我们可以表示为:定义域D = [0, +∞)。

同样地,对于一个分式函数g(x) = 1/x,我们知道分母不能为零。

因此,该函数的定义域是除了x=0之外的所有实数。

我们可以表示为:定义域D = (-∞, 0)∪(0, +∞)。

另外,有些函数的定义域可能受到一些附加条件的限制。

比如,如果考虑一个函数h(x) = log(x),我们知道对数运算要求x必须大于0,因此,该函数的定义域是所有正实数。

我们可以表示为:定义域D = (0, +∞)。

二、函数的值域函数的值域是指函数中所有可能输出的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输出可以采取哪些值。

例如,考虑函数f(x) = x^2,我们可以通过平方运算得到一个非负数。

因此,该函数的值域是所有非负实数。

我们可以表示为:值域R = [0,+∞)。

同样地,对于函数g(x) = sin(x),我们知道正弦函数的取值范围是在[-1, 1]之间的所有实数。

因此,该函数的值域是[-1, 1]。

另外,有些函数的值域可能受到一些附加条件的限制。

比如,如果考虑函数h(x) = e^x,我们知道指数函数的取值范围是大于0的实数。

因此,该函数的值域是大于0的所有实数。

我们可以表示为:值域R = (0, +∞)。

总结起来,函数的定义域和值域是函数的两个基本性质。

高中数学必修一 专题三 函数的定义域和值域(含详解)

高中数学必修一 专题三 函数的定义域和值域(含详解)

专题三函数的定义域和值域一.选择题(共12小题)1.函数的定义域是()A.(﹣1,+∞)B.(﹣1,1)∪(1,+∞) C.[﹣1,+∞)D.[﹣1,1)∪(1,+∞)2.已知函数f(x)=的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2) B.(1,4) C.R D.(﹣,﹣1)∪(1,)3.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤4.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.B.f:x→y=2﹣x C.D.5.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.6.下列函数与函数y=x相等的是()A.B.C.D.7.如图所示,可表示函数图象的是()A.①B.②③④C.①③④D.②8.下列四组函数,表示同一函数的是()A.,g(x)=xB.C.D.f(x)=|x+1|,g(x)=9.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是()A.B.(﹣∞,0]C.[1,+∞)D.R10.若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)11.二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为()A.[﹣2,6]B.[﹣3,+∞)C.[﹣3,6]D.[﹣3,﹣2]12.若函数的定义域、值域都是[2,2b],则()A.b=2 B.b∈[1,2]C.b∈(1,2)D.b=1或b=2二.填空题(共4小题)13.函数f(x)=的定义域为,值域为.14.函数的定义域是.15.函数y=的定义域为R,则k的取值范围.16.函数的值域为.三.解答题(共6小题)17.求下列函数的定义域:(1);(2).18.已知函数f(x)=(1)求f(1)+f(2)+f(3)+f()+f()的值;(2)求f(x)的值域.19.已知函数y=的定义域为R,求实数m的取值范围.20.当x>0时,求函数的值域.21.已知函数,(1)求函数的定义域;(2)求的值.22.求函数f(x)=x2+|x﹣2|,x∈[0,4]的值域.专题三(2)函数的概念参考答案与试题解析一.选择题(共12小题)1.函数的定义域是()A.(﹣1,+∞)B.(﹣1,1)∪(1,+∞) C.[﹣1,+∞)D.[﹣1,1)∪(1,+∞)【分析】由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组求解.【解答】解:由,解得x≥﹣1且x≠1.∴函数的定义域是[﹣1,1)∪(1,+∞).故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2.已知函数f(x)=的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2) B.(1,4) C.R D.(﹣,﹣1)∪(1,)【分析】由已知函数的定义域可得1<x2<2,求解不等式组得答案.【解答】解:∵数f(x)=的定义域为(1,2),∴由1<x2<2,得﹣<x<﹣1或1<x<.即函数f(x2)的定义域是(﹣,﹣1)∪(1,).故选:D.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.3.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤【分析】由函数f(x)=的定义域是R,表示函数的分母恒不为零,即方程ax2+ax﹣3=0无解,根据一元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.【解答】解:由a=0或可得﹣12<a≤0,故选:B.【点评】求函数的定义域时要注意:(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f 下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.4.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.B.f:x→y=2﹣x C.D.【分析】根据函数的定义分别进行判断即可.【解答】解:C的对应法则是f:x→y=x,可得f(4)=∉B,不满足映射的定义,故C的对应法则不能构成映射.故C的对应f中不能构成A到B的映射.故选:C.【点评】本题给出集合A、B,要求我们找出从A到B的映射的个数,着重考查了映射的定义及其判断的知识,属于基础题.5.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.【分析】利用函数定义,根据x取值的任意性,以及y的唯一性分别进行判断.【解答】解:B中,当x>0时,y有两个值和x对应,不满足函数y的唯一性,A,C,D满足函数的定义,故选:B.【点评】本题主要考查函数的定义的应用,根据函数的定义和性质是解决本题的关键.6.下列函数与函数y=x相等的是()A.B.C.D.【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和已知函数一致即可.【解答】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,y=|x|,对应关系不一致.C.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7.如图所示,可表示函数图象的是()A.①B.②③④C.①③④D.②【分析】利用函数的定义分别对四个图象进行判断.【解答】解:由函数的定义可知,对定义域内的任何一个变化x,在有唯一的一个变量y与x对应.则由定义可知①③④,满足函数定义.但②不满足,因为②图象中,当x>0时,一个x对应着两个y,所以不满足函数取值的唯一性.所以不能表示为函数图象的是②.故选:C.【点评】本题主要考查了函数的定义以及函数的应用.要求了解,对于一对一,多对一是函数关系,一对多不是函数关系.8.下列四组函数,表示同一函数的是()A.,g(x)=xB.C.D.f(x)=|x+1|,g(x)=【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.【解答】解:对于A,f(x)==|x|,与g(x)=x的对应关系不同,∴不是同一函数;对于B,f(x)=(x≥2或x≤﹣2),与g(x)==(x≥2)的定义域不同,∴不是同一函数;对于C,f(x)=x(x∈R),与g(x)==x(x≠0)的定义域不同,∴不是同一对于D,f(x)=|x+1|=,与g(x)=的定义域相同,对应关系也相同,是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是()A.B.(﹣∞,0]C.[1,+∞)D.R【分析】直接由已知函数解析式求得函数值得答案.【解答】解:f(x)=,x∈{1,2,3},当x=1时,f(1)=1;当x=2时,f(2)=;当x=3时,f(3)=.∴函数f(x)的值域是.故选:A.【点评】本题考查函数值域的求法,是基础的计算题.10.若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【分析】由题意:函数y是一个复合函数,值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0.即最小值要小于等于0.【解答】解:由题意:函数y=是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:⇒解得:a≥3所以a的取值范围是[3,+∞).故选:B.【点评】本题考查了复合函数的值域的求法,通过值域来求参数的问题.属于基11.二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为()A.[﹣2,6]B.[﹣3,+∞)C.[﹣3,6]D.[﹣3,﹣2]【分析】利用二次函数的单调性即可求解值域.【解答】解:函数f(x)=x2﹣4x+1,其对称轴x=2,开口向上,∵x∈[3,5],∴函数f(x)在[3,5]单调递增,当x=3时,f(x)取得最小值为﹣2.当x=5时,f(x)取得最小值为6∴二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为[﹣2,6].故选:A.【点评】本题考查二次函数的单调性求解最值问题,属于函数函数性质应用题,较容易.12.若函数的定义域、值域都是[2,2b],则()A.b=2 B.b∈[1,2]C.b∈(1,2)D.b=1或b=2【分析】根据二次函数的性质建立关系解得b的值.【解答】解:函数其对称轴x=2,∴函数f(x)在定义域[2,2b]是递增函数,且2b>2,即b>1.那么:f(2b)=2b即2b=﹣4b+4解得:b=2故选:A.【点评】本题考查了定义域、值域的关系,利用二次函数的性质,属于基础题.二.填空题(共4小题)13.函数f(x)=的定义域为[﹣3,1] ,值域为[0,2] .【分析】根据函数的定义域和值域的定义进行求解即可.【解答】解:要使函数有意义,则3﹣2x﹣x2≥0,即x2+2x﹣3≤0,解得﹣3≤x≤1,故函数的定义域为[﹣3,1],设t=3﹣2x﹣x2,则t=3﹣2x﹣x2=﹣(x+1)2+4,则0≤t≤4,即0≤≤2,即函数的值域为[0,2],故答案为:[﹣3,1],[0,2]【点评】本题主要考查函数定义域和值域的求解,利用换元法结合一元二次函数的性质是解决本题的关键.14.函数的定义域是[﹣3,1] .【分析】根据使函数的解析式有意义的原则,结合偶次根式的被开方数必须不小于0,我们可以构造关于自变量x的不等式组,解不等式组,可得答案.【解答】解:要使函数的解析式有意义自变量x须满足解得﹣3≤x≤1即函数的定义域是[﹣3,1]故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域及其求法,其中列出满足条件的不等式组,是解答本题的关键.15.函数y=的定义域为R,则k的取值范围[0,2] .【分析】把函数y=的定义域为R转化为kx2﹣4kx+6≥0对任意x∈R恒成立.然后对k分类求解得答案.【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].【点评】本题考查函数的定义域及其求法,考查数学转化思想方法,是中档题.16.函数的值域为.【分析】令(t≥0),得x=﹣t2+1,把原函数转化为关于t的一元二次函数求解.【解答】解:令(t≥0),得x=﹣t2+1,∴原函数化为y=.∴数的值域为:.故答案为:.【点评】本题考查函数值域的求法,训练了利用换元法求函数的值域,是中档题.三.解答题(共6小题)17.求下列函数的定义域:(1);(2).【分析】(1)由二次根式的意义可知:(2)由二次根式和分式的意义可知:,分别解不等式组可得答案.【解答】解:(1)由二次根式的意义可知:,∴定义域为[﹣8,3].(2)由二次根式和分式的意义可知:∴定义域为{﹣1}.故答案为:(1)定义域为[﹣8,3],(2)定义域为{﹣1}.【点评】本题为函数定义域的求解,使式子有意义,化为不等式组是解决问题的关键,属基础题.18.已知函数f(x)=(1)求f(1)+f(2)+f(3)+f()+f()的值;(2)求f(x)的值域.【分析】(1)直接根据函数解析式求函数值即可.(2)根据x2的范围可得1+x2的范围,再求其倒数的范围,即为所求.【解答】解:(1)原式=++=.(2)∵1+x2≥1,∴≤1,即f(x)的值域为(0,1].【点评】本题考查了函数的值与函数的值域的求法,可怜虫推理能力与计算能力,属于中档题.19.已知函数y=的定义域为R,求实数m的取值范围.【分析】根据题意,一元二次不等式x2+6mx+m+8≥0恒成立;△≤0,求解集即可.【解答】解:函数y=的定义域为R,∴x2+6mx+m+8≥0恒成立;∴△=36m2﹣4(m+8)≤0,整理得9m2﹣m﹣8≤0,解得﹣≤m≤1,∴实数m的取值范围是﹣≤m≤1.【点评】本题考查了一元二次不等式恒成立的应用问题,是基础题.20.当x>0时,求函数的值域.【分析】利用分离常数法,结合基本不等式即可求解值域;【解答】解:∵x>0,x+1>0∴函数===2(当且仅当x=时取等号)故得原式函数的值域为[,+∞).【点评】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.21.已知函数,(1)求函数的定义域;(2)求的值.【分析】(1)根据分式及偶次根式成立的条件可得,,解不等式可求函数的定义域(2)直接把x=﹣3,x=代入到函数解析式中可求【解答】解:(1)由题意可得,解不等式可得,{x|x≥﹣3且x≠﹣2}故函数的定义域,{x|x≥﹣3且x≠﹣2}(2)f(﹣3)=﹣1,f()=【点评】本题主要考查了函数的定义域的求解,函数值的求解,属于基础试题22.求函数f(x)=x2+|x﹣2|,x∈[0,4]的值域.【分析】去掉绝对值,得到两段函数,并对每段函数配方即可求出该段的函数f (x)的范围,对两段上求得的f(x)求并集即可求得f(x)的值域.【解答】解:f(x)=;∴当x∈[0,2]时,当x∈(2,4]时,f(x)∈(4,18]综上,即函数f(x)的值域为.【点评】考查求函绝对值函数的值域的求法,以及配方法求二次函数的值域.。

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。

函数值的集合{f(x│x∈A}叫做函数的值域。

(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。

②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。

3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。

(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。

2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。

3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。

常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。

(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。

高中数学必修一定义域与值域(超全的方法!)

高中数学必修一定义域与值域(超全的方法!)

高中数学精英讲解——函数(概念理解以及定义域)令狐采学【第一部分】知识复习【第二部分】典例讲解考点一:函数的定义域1)已知解析式,求定义域例1.写出下列函数定义域_________________________;_____________________________.例2例3R围变式1.AB. C.1) D.变式2.2)求抽象函数的定义域例1.是()A例2__________[0,4]变式1.的定义域()A变式2.考点二:函数的解析式1)换元法,配凑法,求解析式例1..变式1.(1(22)已知解析式形式,求解析式例1.例2.4变式1 设二次函数()f x 满足f (x +2)=f (2-x ),且方程()0f x =的两实根的平方和为10,)(x f 的图象过点(0,3),求f (x )的解析式. 3)求抽象函数的解析式例.已知[]221)(,21)(x x x g f x x g -=-= (x0),求)21(f .变式1.设f (x -1)=3x-1,则f (x)=___________________________.例.设函数()f x 对任意x 、y 满足()()()f x y f x f y +=+,且(2)4f =,则(1)f -=____A .-2B .±21 C .±1D .2变式.函数()f x 对于任意实数x 满足条件1(2)()f x f x +=,若(1)5f =-,求((5))f f .考点四:分段函数 例1.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f =. 例2已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取A (,1)(2,)-∞-⋃+∞B (1,2)-C (2,1)-D (,2)(1,)-∞-⋃+∞ 例3.已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x =. 例4若函数1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩则不等式1|()|3f x ≥的解集为例5的解集是变式2.a 的取值范围是变式3.定义在R 上的函数f(3)=()A.-1 B. -2 C.1 D. 2考点五:函数概念的应用例.判断下列各组中的两个函数是同一函数的为()变式1.A .B .C .D .。

高中数学函数的定义域(解析版)

高中数学函数的定义域(解析版)

1.函数的概念一般地,设A ,B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A 专高中数学函数的定义域(解析版).2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.3.复合函数一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f (g (x )),其中y =f (u )叫做复合函数y =f (g (x ))的外层函数,u =g (x )叫做y =f (g (x ))的内层函数.考点一求给定解析式的函数的定义域【方法总结】常见函数定义域的类型【例题选讲】[例1](1)函数y =ln(1-x )x +1+1x的定义域是()A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)答案D解析-x >0,+1>0,≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)函数y =-x 2+2x +3lg(x +1)的定义域为()A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3]答案B解析要使函数有意义,xx 2+2x +3≥0,+1>0,+1≠1,解得-1<x <0或0<x ≤3,所以函数的定义域为(-1,0)∪(0,3].(3)y =x -12x-log 2(4-x 2)的定义域是()A .(-2,0)∪(1,2)B .(-2,0]∪(1,2)C .(-2,0)∪[1,2)D .[-2,0]∪[1,2]答案C 解析,>0,所以x ∈(-2,0)∪[1,2).(4)函数f (x )=2-2x +1log 3x的定义域为()A .{x |x <1}B .{x |0<x <1}C .{x |0<x ≤1}D .{x |x >1}答案B解析-2x ≥0,>0,3x ≠0,∴0<x <1.(5)函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.答案(0,2]解析-|x -1|≥0,x -1≠0,x ≤2,≠0,即0<x ≤2,故所求函数的定义域为(0,2].【对点训练】1.下列函数中,与函数y 的定义域相同的函数为()A .y =1sin x B .y =ln x xC .y =x e xD .y =sin x x1.答案D解析函数y 的定义域为{x |x ≠0};y =1sin x 的定义域为{x |x ≠k π,k ∈Z};y =ln xx 的定义域为{x |x >0};y =x e x 的定义域为R ;y =sin xx 的定义域为{x |x ≠0}.故选D .2.函数y =log 2(2x -4)+1x -3的定义域是()A .(2,3)B .(2,+∞)C .(3,+∞)D .(2,3)∪(3,+∞)2.答案D解析由题意,x -4>0,-3≠0,解得x >2且x ≠3,所以函数y =log 2(2x -4)+1x -3的定义域为(2,3)∪(3,+∞).3.函数f (x )=2x -1+1x -2的定义域为()A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)3.答案C解析x -1≥0,-2≠0,解得x ≥0,且x ≠2.4.函数f (x )=10+9x -x 2lg(x -1)的定义域为()A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]4.答案D解析要使函数f (x )有意义,则x +9x -x 2≥0,-1>0,x -1)≠0,x +1)(x -10)≤0,>1,≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].5.函数y =+1-x 2的定义域为________.5.答案(0,1]解析+1x >0,-x 2≥0<-1或x >0,1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1].考点二求抽象函数的定义域【方法总结】求抽象函数定义域的方法【例题选讲】[例2](1)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为()A .(-1,1)B 1C .(-1,0)D 答案B解析令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0,得-1<x <-12.(2)已知函数f (x )的定义域为(-1,1),则函数g (x )=f (x -1)的定义域为()A .(-2,0)B .(-2,2)C .(0,2)D -12,答案C解析1<x2<1,1<x -1<1,2<x <2,x <2,∴0<x <2,∴函数g (x )=f (x -1)的定义域为(0,2).(3)已知函数f (x )的定义域为[0,2],则函数g (x )=f (2x )+8-2x 的定义域为()A .[0,1]B .[0,2]C .[1,2]D .[1,3]答案A解析x ≤2,-2x ≥0,解得0≤x ≤1.故选A .(4)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.答案[-1,2]解析因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].(5)若函数y =f (2x)的定义域为12,2,则y =f (log 2x )的定义域为________.答案,16]解析由题意可得x ∈12,2,则2x ∈[2,4],log 2x ∈[2,4],解得x ∈,16],即y =f (log 2x )的定义域为,16].【对点训练】6.已知函数f (x )=-x 2+2x +3,则函数f (3x -2)的定义域为()A .13,53B .-1,53C .[-3,1]D .13,16.答案A解析由-x 2+2x +3≥0,解得-1≤x ≤3,即f (x )的定义域为[-1,3].由-1≤3x -2≤3,解得13≤x ≤53,则函数f (3x -2)的定义域为13,53,故选A .7.设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为()A .(-9,+∞)B .(-9,1)C .[-9,+∞)D .[-9,1)7.答案B解析f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )]-x >0,-lg(1-x )>0的解集,解得-9<x<1,所以f [f (x )]的定义域为(-9,1).故选B .8.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是()A .[1,2]B .(-1,1]C .-120D .(-1,0)8.答案D解析由f (2x -1)的定义域是[0,1],得0≤x ≤1,故-1≤2x -1≤1,∴f (x )的定义域是[-1,1],∴要使函数f (2x +1)log 2(x +1)有意义,需满足1≤2x +1≤1,+1>0,+1≠1,解得-1<x <0.9.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为()A .[0,1]B .[log 23,2]C .[1,log 23]D .[1,2]9.答案B解析∵f (x +1)的定义域为[0,1],即0≤x ≤1,∴1≤x +1≤2.∵f (x +1)与f (2x -2)是同一个对应关系f ,∴2x -2与x +1的取值范围相同,即1≤2x -2≤2,也就是3≤2x ≤4,解得log 23≤x ≤2.∴函数f (2x -2)的定义域为[log 23,2].考点三已知函数定义域求参数【方法总结】解决已知定义域求参数问题的思路方法【例题选讲】[例3](1)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为_________.答案[-2,2]解析若函数f (x )=x 2+ax +1的定义域为实数集R ,则x 2+ax +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2,即实数a 的取值范围是[-2,2].(2)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是()A .[0,4)B .(0,4)C .[4,+∞)D .[0,4]答案D解析由题意可得mx 2+mx +1≥0恒成立.当m =0时,1≥0恒成立;当m ≠0时,则m >0,Δ=m 2-4m ≤0,解得0<m ≤4.综上可得:0≤m ≤4.(3)若函数f (x )2221x ax a+--的定义域为R ,则a 的取值范围为________.答案[-1,0]解析因为函数f (x )的定义域为R ,所以22+2-x ax a-1≥0对x ∈R 恒成立,即22+2-x ax a≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.(4)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是()A 0,34B .0,34C .0,34D .0,34答案D 解析∵函数y =mx -1mx 2+4mx +3的定义域为R ,∴mx 2+4mx +3≠0,∴m =0或m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34,∴实数m 的取值范围是0,34【对点训练】10.函数y =ln(x 2-x -m )的定义域为R ,则m 的范围是________.10.答案-∞,-14解析由条件知,x 2-x -m >0对x ∈R 恒成立,即Δ=1+4m <0,∴m <-14.11.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.11.答案-92解析函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}a <0,1+2=-b ,1×2=b a,a =-32,b =-3,所以a +b =-32-3=-92.12.若函数y=ax+1的定义域为R,则实数a的取值范围是________.ax2+2ax+312.答案[0,3)解析因为函数y=ax+1的定义域为R,所以ax2+2ax+3=0无实数解,即函ax2+2ax+3数u=ax2+2ax+3的图象与x轴无交点.当a=0时,函数u=3的图象与x轴无交点;当a≠0时,则Δ=(2a)2-4·3a<0,解得0<a<3.综上所述,a的取值范围是[0,3).。

高一数学必修一函数专题:定义域

高一数学必修一函数专题:定义域

例题二:已知:函数 f (x) (2x2 5x 2)0 。计算:函数 f (x) 的定义域。
解答:根据一个式子的零次方,这个式子不等于零得到: 2x2 5x 2 0 x 2 且 x 1 。 2
所以:函数 f (x) 的定义域: x (, 1 ) ( 1 ,2) (2,) 。 22
x2 2x 3 0 代表 x 轴下方的图像 x (,1) (3,) 。 (Ⅲ)二次函数 y 2x2 2x 1开口向上, (2)2 4 2 1 4 8 4 0 与 x 轴无交点。如下图所示:
2x2 2x 1 0 代表 x 轴上方和 x 轴上的图像 x R 。 (Ⅳ)二次函数 y x2 3x 4 开口向下, 32 4 (1) (4) 9 16 7 0 与 x 轴无交点。
第二部分:不等式解法
第一种不等式:一元一次不等式
例题:解下列一元一次不等式。
(Ⅰ) 2x 1 0
(Ⅱ) 2 3x 0
解答:(Ⅰ) 2x 1 0 2x 1 x 1 。 2
(Ⅱ) 2 3x 0 3x 2 x 2 。 3
(Ⅲ) 1 x 3 x 3 (2) x 6 。 2
x2 2x 0 代表 x 轴上方图像 x: x (0,2) 。
限制条件四:一个式子的零次方,这个式子不等于零
例题一:已知:函数 f (x) (x 2)0 。计算:函数 f (x) 的定义域。
解答:根据一个式子的零次方,这个式子不等于零得到: x 2 0 x 2 x 2 。 所以:函数 f (x) 的定义域: x (,2) (2,) 。
例题二:已知:函数
f
(x)
1 x 2x 1
。计算:函数
f
(x)
的定义域。
解答:根据分母不等于零得到: 2x 1 0 2x 1 ,1 20 2x 20 x 0 。

高一数学必修一函数的定义域和值域资料

高一数学必修一函数的定义域和值域资料

高一数学必修一函数的定义域和值域资料
函数的定义域和值域是高一数学中的重要概念。

它们是相关函数与变量之间的关系,关系到函数求值。

因此,学习高一数学,必须深入了解它们。

定义域:定义域也称为函数的定义区域,是指给定函数f ←→y=f(x)(其中x,y为实变量)的实变量x的取值范围的集合,也就是为了使f(x)的值确实存在,z取值范围的集合。

一般而言,x的取值范围通常为数轴上的所有实数或部分实数,也就是x∈R。

而如果有些函数涉及有理数,那么定义域x取值范围为:x∈Q,也就是定义域只能取到有理数。

值域:函数值域就是函数在给定定义域上可能出现的值集合,称为函数值域。

记f ←→y=f(x)(其中x,y为实变量),则值域Df={y:y=f(x),x∈Df },其中,Df为定义域。

举例说明:
1. 不等式f(x)<2的值域
当x∈R时,函数f(x)的定义域就是R,而值域为{y:y<2,x∈R}={y:y<2}。

以上就是函数的定义域和值域的概念及其具体的表示方法的介绍,希望小伙伴们能够更好的理解这些概念,为学习数学提供助力。

必修1 函数的定义域 复习专题 (含解析)答辩

必修1 函数的定义域  复习专题  (含解析)答辩

必修1 函数的定义域复习专题 (含解析一.选择题(共17小题)1.(2007•陕西)函数f(x)=lg的定义域为()A.[0,1] B.(﹣1,1)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)函数的定义域及其求法。

考点:分对数的真数一定要大于0,进而构造不等式进行求解.析:解解:由,知,1﹣x2>0,即,x2<1,进而得到,﹣1<x<1答:故,函数的定义域为(﹣1,1)故选B考查对数真数的要求,即,真数要大于0.点评:2.(2006•湖南)函数的定义域是()A.(0,1] B.(0,+∞)C.[1,+∞)D.(1,+∞)考函数的定义域及其求法。

点:分根据对数函数的定义,及根式有意义的条件,进行求解.解答:解:∵函数的定义域是log2x≥0,解得x≥1,选C.点评:此题主要考查对数函数定义域的求法,注意根式里面要大于等于0,这是个易错点.3.(2005•江西)函数的定义域为()A.(1,2)∪(2,3)B.(﹣∞,1)∪(3,+∞)C.(1,3)D.[1,3]考点:函数的定义域及其求法。

分析:首先,考查对数的定义域问题,也就是log2(﹣x2+4x﹣3)的真数(﹣x2+4x﹣3)一定要大于零,其次,分母不能是零.解答:解:由﹣x2+4x﹣3>0,得1<x<3,又因为log2(﹣x2+4x﹣3)≠0,即﹣x2+4x﹣3≠1,得x≠2故,x的取值范围是1<x<3,且x≠2.定义域就是(1,2)∪(2,3)故选A.点评:对定义域的考查一定要使得式子有意义.比方说分母不能是0,对数的真数必须大于0,偶次开方一定非负等等.4.(2004•陕西)函数y=的定义域是()A.[﹣,﹣1)∪(1,] B.(﹣,﹣1)∪(1,)C.[﹣2,﹣1)∪(1,2]D.(﹣2,﹣1)∪(1,2)考点:函数的定义域及其求法;对数的运算性质。

专题:计算题。

分析:由函数表达式知,被开方数大于或等于0,故对数的真数大于0且对数值小于或等于1,x2﹣1>0,且x2﹣1≤1;解可得答案.解答:解:﹣≤x<﹣1或1<x≤.∴y=的定义域为[﹣,﹣1)∪(1,].答案:A点评:考查对数的定义域和单调性.5.函数y=的定义域为()A.{x|x≤1}B.{x|x≥1}C.{x|x≥1或x≤0}D.{x|0≤x≤1}考点:函数的定义域及其求法。

数学人教A版必修第一册第三章函数的概念与性质单元复习

数学人教A版必修第一册第三章函数的概念与性质单元复习
+

+ + + = + + + ,
整理得 − + + = ,
所以
− =
=
,所以

+=
= −
所以 = − + .
(4)用-x替换 + − = + 中的x,
则 () = + + .
∴ () = − + .
由题意可知:
(3)因为() − (−) = + ①,
+ −
所以(−) − () = − + ②,
= +

+ + + − + +
f(x)在区间D上单调递增
f(x)在区间D上单调递减
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
知识点梳理
(2)单调区间的定义
单调递减
单调递增
如果函数y=f(x)在区间D上_________或_________,那么就说函数y=f(x)在这一区间具有(严格的)单
调性,区间D叫做y=f(x)的单调区间.
知识点梳理
7.函数的奇偶性
奇偶性
定义
图象特点
偶函数
一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且
f(-x)=f(x)
___________,那么函数f(x)就叫做偶函数
y轴
关于____对称
奇函数
一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且

数学必修一函数知识点

数学必修一函数知识点

数学必修一函数知识点一、函数的概念1. 函数的定义:给定一个集合A,另一个集合B,如果存在一个确定的对应关系f,使得A中的每一个元素x都对应B中的一个元素y,我们就称f: A → B为一个函数。

2. 函数的表示:通常用f(x) = y来表示函数关系,其中x是自变量,y是因变量。

二、函数的图象1. 坐标图:通过在平面直角坐标系中绘制点(x, y)来表示函数的图象。

2. 常见函数图象:线性函数、二次函数、指数函数、对数函数等。

三、函数的性质1. 单调性:函数在某个区间内,随着自变量的增加,函数值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x) = f(x)则称为偶函数;如果满足f(-x) = -f(x)则称为奇函数。

3. 周期性:如果存在一个非零实数T,使得对于所有x,都有f(x+T) = f(x),则称函数f(x)具有周期T。

四、函数的运算1. 四则运算:两个函数的和、差、积、商。

2. 复合函数:如果有两个函数f(x)和g(x),那么(f(g(x)))定义为f和g的复合函数。

五、常见函数类型1. 线性函数:f(x) = ax + b,其中a和b是常数。

2. 二次函数:f(x) = ax^2 + bx + c,其中a、b和c是常数。

3. 指数函数:f(x) = a^x,其中a > 0且a ≠ 1。

4. 对数函数:f(x) = log_a(x),其中a > 0且a ≠ 1。

六、函数的应用1. 实际问题建模:将实际问题转化为函数关系进行求解。

2. 最值问题:求解函数的最大值和最小值。

3. 函数的极值:研究函数在某个区间内的最大值和最小值。

七、函数的极限1. 极限的定义:描述函数值随着自变量趋向于某一点时的行为。

2. 极限的性质:极限的四则运算、夹逼定理等。

八、导数与微分1. 导数的定义:描述函数在某一点处的瞬时变化率。

2. 微分的定义:函数的微小增量的线性部分。

请注意,以上内容是一个概要,您可以根据需要添加详细的解释、例题和图形来丰富文档内容。

高中函数定义域知识点总结

高中函数定义域知识点总结

高中函数定义域知识点总结高中函数定义域知识定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。

其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。

平时数学中,实行“定义域优先”的原则,无可置疑。

然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。

如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。

才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。

“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。

高一数学必修一函数的定义域和值域

高一数学必修一函数的定义域和值域

课 题 函数的概念和图像授课日期及时段教学目的1.理解函数及其定义域、值域的概念,并能求函数的定义域、值域2.能用描点法画函数的图像3.了解函数的表示方法,重点掌握函数的解析法4.了解分段函数的概念,掌握分段函数的解析式表达形式和图像的画法5.理解函数的单调性,掌握判断函数单调性和求函数最值的方法6.能画单调函数的图像并根据图像判断函数的增减性,求函数的最值7.理解掌握判断函数的奇偶性的方法 了解映射的定义,明确函数与映射的异同之处教学内容1.函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别2.思考:对于不同的函数如:①x x y 22-=②1-=x y ③11+=x y ④()52lg +=x y ⑤x y -=11 的定义域如何确定3.通常表示函数的方法有:4.()x f y =的定义域为A x x A ∈21,,。

函数是增函数, 函数是减函数, 函数是奇函数, 函数是偶函数。

讲授新课: 一、函数的判断例1.<1>下列对应是函数的是注:检验函数的方法(对于定义域内每一值值域内是否存在唯一的值与它对应) ①x y y x =→: ②12++→x x x <2>下列函数中,表示同一个函数的是:( ) 注:定义域和对应法则必须都相同时,函数是同一函数A.()()()2,x x g x x f == B.()()2,x x g x x f ==C.()()24,22--=+=x x x g x x f D.()()33,x x g x x f ==练习:1.设有函数组:①2,x y x y ==②33,x y x y ==③x xy x y ==,④()()x x y x x y =<>⎩⎨⎧-=,0011 ⑤x y x y lg 2,lg 2== ⑥10lg,1lg x y x y =-= 其中表示同一函数的是 。

二:函数的定义域注:确定函数定义域的主要方法 (1)若()x f 为整式,则定义域为R.(2)若()x f 是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题 例:1.求下列函数的定义域: (1)2322---=x x xy (2)x x y -⋅-=11(3)xy --=113 (4)2253x x y -+-=(5)()⎪⎩⎪⎨⎧--=xx x x f 2341 (6)t 是时间,距离()t t f 360-=2.已知函数()x f 的定义域是[-3,0],求函数()1+x f 的定义域。

高中函数定义域知识点

高中函数定义域知识点

高中函数定义域知识点高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,那么接下来给大家分享一些关于高中函数定义域知识,希望对大家有所帮助。

高中函数定义域知识定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。

其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。

平时数学中,实行“定义域优先”的原则,无可置疑。

然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。

如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。

才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。

高中 必修一 函数的定义域和值域无答案 知识点+例题 全面

高中 必修一 函数的定义域和值域无答案 知识点+例题 全面

学科教师辅导教案―函数的定义域与值域
[巩固] 求函数x x y -+=142的值域.
(4)分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题也可以利用反函数法; [例] 求函数1
1
3+-=x x y 的值域.
[巩固] 求函数125
x
y x -=+的值域.
(5)判别式法:将函数y=f(x)转化为关于x 的一元二次方程,利用方程有解求出原函数的值域. (函数的定义域为R,且分子和分母没有公因式)
[例] 求函数3
27
4222++-+=x x x x y 的值域.
[巩固] 求函数4
32
+=x x
y 的值域.
(6)函数的单调性法:根据函数在定义域(或某个定义域的子集)上的单调性求出函数的值域;
1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为 ( )
A .-1
B .0
C .1
D .2
2.函数y =x +1
x
的定义域为________.
巩固基础训练。

高一数学定义域重要知识点

高一数学定义域重要知识点

高一数学定义域重要知识点数学是一门基础学科,其中的定义域是一个重要的概念。

在高一数学学习中,我们需要掌握定义域的相关知识点。

本文将介绍定义域的概念、定义域的求解方法以及定义域在实际问题中的应用。

一、定义域的概念定义域是函数中自变量的所有可能取值的集合。

简单来说,就是函数中自变量可以取的值的范围。

对于一个函数来说,自变量的取值范围决定了函数的输入值。

例如,对于函数y = 2x+1来说,x可以取任意实数值,所以定义域为全体实数,用符号表示为D: R。

二、定义域的求解方法定义域的求解方法主要取决于函数的类型。

下面分别介绍了常见函数类型的定义域求解方法。

1. 一次函数一次函数的通式为y = kx + b,其中k和b为常数。

对于一次函数来说,它的定义域为全体实数,即D: R。

2. 幂函数幂函数的通式为y = x^n,其中n为整数。

幂函数的定义域取决于幂指数n的奇偶性。

- 当n为正偶数时,幂函数的定义域为全体非负实数,即D: [0, +∞)。

- 当n为正奇数时,幂函数的定义域为全体实数,即D: R。

- 当n为负数时,幂函数的定义域为非零实数,即D: R*。

3. 根式函数根式函数的通式为y = √x。

根式函数的定义域一般要求被开方的表达式大于等于0,即x≥0。

所以根式函数的定义域为非负实数集合,即D: [0, +∞)。

4. 有理函数有理函数为两个多项式相除的函数,例如y = (x+1)/(x-2)。

有理函数的定义域需要排除使分母为0的值。

- 在这个例子中,分母不能为0,即x-2≠0,解得x≠2。

- 所以有理函数的定义域为除去x=2的全体实数,即D: (−∞, 2) ∪ (2, +∞)。

5. 指数函数与对数函数指数函数和对数函数的定义域一般要求底数大于0且不等于1。

- 对于指数函数y = a^x,a>0且a≠1,定义域为全体实数,即D: R。

- 对于对数函数y = loga x,a>0且a≠1,定义域为正实数,即D: R*。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 函数定义域
我们把函数的自变量允许取值的范围叫做这个函数的定义域。

一 给解析式求定义域:
函数的定义域的常用求法:
1、解析式为整式时,x 取任何实数;
2、分式的分母不等于零;
3、偶次方根的被开方数大于等于零;
4、任何非零数的零次幂等于一
5、对数的真数大于零;
6、指数函数和对数函数的底数大于零且不等于1;
7、三角函数正切函数tan y x =中()2x k k Z π
π≠+∈;
1. 解析式为整式时,x 取任何实数。

例1求下列函数的定义域 (1)y=-5x 2, (2) y=3x+5,
2.当解析式为分式时,x 取分母不为零.....
的实数. 例2.求下列函数的定义域(1)y=11-x (2) y=x
x 312+-
3. 当解析式为偶次根式时,x 取被开方数为非负数........
的实数 例3.求下列函数的定义域
(1)y=x -3, (2)y=42+x , (3)y=221
+x
4.当解析式为复合表达式时,首先逐个列出不等式,求出各部分的允许取值范围,再求其公共部分。

例4.求下列函数的定义域
(1)y=
43--x x (2)y=x x 513- (3)y=6522+--x x x
(4)y=32523++
+x x
(5) 12y x =-
y =;
(7)y =
(8)y =
(9)01(21)1
11y x x =+-+-
5.对数的真数大于零
例5 (1)函数)13lg(13)(2
++-=x x x x f 的定义域是 A.),31
(+∞- B. )1,31(- C. )31,31(- D. )31
,(--∞
(2) 函数)1(log 22
1-=x y 的定义域为( )
A 、[)(]2,11,2 --
B 、)2,1()1,2( --
C 、[)(]2,11,2 --
D 、)
2,1()1,2( --
二 复合函数的定义域求法
给f(x)定义域求f[g(x)]定义域,或给f[g(x)]定义域求f(x),或给f[g(x)]定义域求f[h(x)] 例6:(1)已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域;
练习1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。

2.已知)(x f 的定义域为[1,2],求()x f 23-定义域
(2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域
练习1.已知(32)f x -的定义域为]30(,,求)(x f 定义域。

2.已知()2-x f 的定义域为[1,2],求)(x f 定义域
(3)已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。

练习1.已知(32)f x -的定义域为]30(,,求()2-x f 定义域。

2.已知()2-x f 的定义域为[1,2],求)1(+x f 定义域
变式训练:设2()lg 2x
f x x +=-,则)1(+x f +()2-x f 的定义域为
三 给定义域求参数
例7:(1)已知函数24()43
x f x mx mx -=
++的定义域为R ,则实数m 的取值范围是( )
(2)若函数
的定义域是R,则m 的取值范围是:___________
【课后作业】 1.已知函数
的定义域为F ,函数的定义域为G ,则:
A . B. C. D. 2.函数y=x --113
的定义域为 ( )
A (-∞,1]
B (-∞,0) (0,1]
C (-∞,0) (0,1)
D [1,+ ∞)
3.
函数y =的定义域是: ( )
A .[1,)+∞
B .23(,)
+∞ C .23[,1] D .23(,1] 4..
函数y =( )
A.(3,+∞)
B.[3, +∞)
C.(4, +∞)
D.[4, +∞)
5.若21()log (21)
f x x =+,则()f x 的定义域为( ) A .1,02⎛⎫- ⎪⎝⎭ B .1,2⎛⎫-+∞ ⎪⎝⎭ C . ()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D .1,22⎛⎫- ⎪⎝⎭
6.函数1()lg(1)1f x x x
=++-的定义域是( ) A .(,1)-∞-
B .(1,+∞)
C .(-1,1)∪(1,+∞)
D .(-∞,+∞) 7.函数y=22++-x x 的定义域为___________.
8.求下列函数的定义域;
(1)y=x 1
11
+; (2)y=x x x -+||)1(0 (3)32+=x y ;
(4))1)(21(1+-=x x y ; (5)|
|)1(0x x x y +-=; (6)51+-=x x y .
9.函数y=1122-+-x x 的定义域是___________
10.函数y=x
x x --22
4的定义域为
11.已知函数()f x =的定义域是一切实数,则m 的取值范围是( D )。

(A )0<m ≤4 (B )0≤m ≤1 (C )m ≥4 (D )0≤m ≤4
12.已知函数(2)x y f =的定义域为[1,2],则函数2(log )y f x =的定义域是( B )。

(A )[1,2] (B )[4,16] (C )[0,1] (D )[-∞,0]
13.(1)已知()f x 的定义域为[]2,3-,求(21)f x -定义域。

(2)已知2(1)f x -的定义域为[]2,3-,求()f x 的定义域。

(3) 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 。

5[0,];2
14.知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

11m -≤≤。

相关文档
最新文档