2.2直接证明与间接证明 教学设计 教案

合集下载

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案

教学准备1. 教学目标一. 知识及技能目标(1)了解直接证明的两种基本方法: 综合法和分析法.(2)了解综合法和分析法的思维过程和特点.二. 过程及方法目标(1)通过对实例的分析、归纳及总结, 增强学生的理性思维能力.(2)通过实际演练, 使学生体会证明的必要性, 并增强他们分析问题、解决问题的能力.三. 情感、态度及价值观通过本节课的学习, 了解直接证明的两种基本方法, 感受逻辑证明在数学及日常生活中的作用, 养成言之有理、论之有据的好习惯, 提高学生的思维能力.2. 教学重点/难点教学重点: 综合法和分析法的思维过程及特点。

教学难点: 综合法和分析法的应用。

3. 教学用具多媒体、板书4. 标签教学过程一、复习引入【师】证明对我们来说并不陌生, 我们在上一节学习的合情推理, 所得的结论的正确性就是要证明的, 并且我们在以前的学习中, 积累了较多的证明数学问题的经验, 但这些经验是零散的、不系统的, 这一节我们将通过熟悉的数学实例, 对证明数学问题的方法形成较完整的认识。

合情推理分为归纳推理和类比推理, 所得的结论的正确性是要证明的, 数学中的两大基本证明方法——直接证明及间接证明。

今天我们先学习直接证明。

二、新知探究(一)知识点一:综合法1.引例探究证明下列问题: 已知a,b>0,求证: /问题1: 其左右两边的结构有什么特点?【生】右边是3个数a, b, c的乘积的4倍, 左边为两项之和, 其中每一项都是一个数及另两个数的平方和之积.问题2: 利用哪个知识点可以沟通两个数的平方和及这两个数的积的不等关系?【生】基本不等式问题3: 步骤上应该怎么处理?【解答过程】问题4: 讨论上述证明形式有什么特点?【生】充分讨论, 思考, 找出以上问题的证明方法的特点2.形成概念。

直接证明和间接证明(4个课时)教案

直接证明和间接证明(4个课时)教案

直接证明和间接证明(4个课时)教案2.2直接证明与间接证明教学目标:(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法证明简单的不等式;(3)能根据实际题目灵活地选择适当地证明方法;(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议:1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题证明方法的选择.(1)不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析①在证明不等式的各种方法中,比较法是最基本、最重要的方法.②证明不等式的比较法,有求差比较法和求商比较法两种途径.由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.③求差比较法的基本步骤是:“作差→变形→断号”.其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.③综合法证明不等式的逻辑关系是:(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:(已知)<==(逐步推演不等式成立的必要条件)<==(结论)④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.(5)关于分析法与综合法关系①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.第一课时不等式的证明(比较法)教学目标1.掌握证明不等式的方法——比较法;2.熟悉并掌握比较法证明不等式的意义及基本步骤.教学重点:比较法的意义和基本步骤.教学难点:常见的变形技巧.教学方法;启发引导法.教学过程:(-)导入新课教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?找学生回答问题.(学生回答:,,,)[点评]要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.(二)新课讲授【尝试探索,建立新知】作差比较法[问题] 求证教师引导学生分析、思考,研究不等式的证明.学生研究证明不等式,尝试完成问题.[本问点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.③理论依据是:④由,,知:要证明只需证;需证明这种证明不等式的方法通常叫做比较法.目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1.求证[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[本例点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号;②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;④例1介绍了变形的一种常用方法——配方法.例2 .已知都是正数,并且,求证:[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴.即:[本例点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;3322例、已知都是实数且求证≠+>+a b a b a b a b ab3,,,33223223:()()()()a b a b ab a a b ab b +-+=---证明2222()()()()a a b b a b a b a b =---=--2()()a b a b =+-,0,0a b a b >∴+>Q 2()0a b a b ≠∴->Q 又23322()()0()()0a b a b a b a b ab +->+-+>故即3322a b a b ab ∴+>+[本例点评]①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比较法:1 ,,,,.a b b a a b a b a b a b ≥=例已知是正数求证当且仅当时等号成立:a b a b a b b a b a a b a a b a b b ---⎛⎫== ⎪⎝⎭证明(,,)0,1,0,1,.a b a b a a a b a b b b a b -⎛⎫≥>≥-≥∴≥ ⎪⎝⎭=根据要证的不等式的特点交换的位置不等式不变不妨设则当且仅当时等号成立,,.a b b a a b a b a b ∴≥=当且仅当时等号成立 小结:作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式. (最后是与1比较)(三)课堂练习教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.练习:1.求证2.已知 , , ,d 都是正数,且,求证 目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.(四)布置作业2、已知:a ,b ∈R +.求证:a 5+b 5≥a 3b 2+a 2b 3 2211x x ≤+3、求证: .7341(0)q q q q +≥+>4、求证: 2,()a ba b R a b ab ++∈≥5、设a,b 求证:第二课时 综合法●教学目标(一)教学知识点 综合法证明不等式. (二)能力训练要求1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式. (三)德育渗透目标 掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步巩固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点1.掌握综合法证明不等式的基本思路,即“由因导果”,从已知条件及已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A (已知)⇒B 1⇒B 2⇒…⇒B n ⇒B(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有: (1)a 2≥0或(a ±b )2≥0.(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab 即a 2+b 2≥2|ab |.(3)ab ba ≥+2,对a >0,b >0,当且仅当a =b 时取“=”号. (4)当a ,b 同号时有abb a +≥2,当且仅当a =b 时取“=”号.(5)33abc c b a ≥++ (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. (6)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. ●教学难点“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点. ●教学过程 1.课题导入[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数”的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系: (1)a 2≥0,或(a ±b )2≥0;(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab ,即a 2+b 2≥2|ab |;(3)ab ba ≥+2,(a ,b ∈R +),当且仅当a =b 时取“=”号; (4)ab ≤222b a +,(a ,b ∈R);ab ≤(2ab )2,(a ,b ∈R +),当且仅当a =b 时取“=”号;(5)abb a +≥2,(ab >0),当且仅当a =b 时取“=”号; (6)33abc c b a ≥++,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号;(7)a 3+b 3+c 3≥3abc ,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号.今天,我们在上一节课学习“比较法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课一般地,从已知条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。

直接证明和间接证明(4个课时)课程教案

直接证明和间接证明(4个课时)课程教案

2.2直接证明与间接证明教学目标:(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法证明简单的不等式;(3)能根据实际题目灵活地选择适当地证明方法;(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议:1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题证明方法的选择.(1)不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析①在证明不等式的各种方法中,比较法是最基本、最重要的方法.②证明不等式的比较法,有求差比较法和求商比较法两种途径.由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.③求差比较法的基本步骤是:“作差→变形→断号”.其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.③综合法证明不等式的逻辑关系是:(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:(已知)<==(逐步推演不等式成立的必要条件)<==(结论)④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.(5)关于分析法与综合法关系①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.第一课时不等式的证明(比较法)教学目标1.掌握证明不等式的方法——比较法;2.熟悉并掌握比较法证明不等式的意义及基本步骤.教学重点: 比较法的意义和基本步骤.教学难点: 常见的变形技巧.教学方法;启发引导法.教学过程:(-)导入新课教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?找学生回答问题.(学生回答:,,,)[点评]要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.(二)新课讲授【尝试探索,建立新知】作差比较法[问题] 求证教师引导学生分析、思考,研究不等式的证明.学生研究证明不等式,尝试完成问题.[本问点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.③理论依据是:④由,,知:要证明只需证;需证明这种证明不等式的方法通常叫做比较法.目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1.求证[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[本例点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号;②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;④例1介绍了变形的一种常用方法——配方法.例2 . 已知都是正数,并且,求证:[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴.即:[本例点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;3322例、已知都是实数且求证≠+>+a b a b a b a b ab3,,,33223223:()()()()a b a b ab a a b ab b +-+=---证明2222()()()()a a b b a b a b a b =---=--2()()a b a b =+-,0,0a b a b >∴+>2()0a b a b ≠∴->又23322()()0()()0a b a b a b a b ab +->+-+>故即3322a b a b ab ∴+>+[本例点评]①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比较法:1 ,,,,.a b b a a b a b a b a b ≥=例已知是正数求证当且仅当时等号成立:a ba b a b b a b a a b a a b a b b ---⎛⎫== ⎪⎝⎭证明(,,)0,1,0,1,.a ba b a a a b a b b b a b -⎛⎫≥>≥-≥∴≥ ⎪⎝⎭=根据要证的不等式的特点交换的位置不等式不变不妨设则当且仅当时等号成立,,.a b b a a b a b a b ∴≥=当且仅当时等号成立小结:作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(最后是与1比较)(三)课堂练习教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题. 练习:1.求证2.已知 , , ,d 都是正数,且,求证目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学. (四)布置作业2、已知:a ,b ∈R +.求证:a 5+b 5≥a 3b 2+a 2b 32211xx ≤+3、求证: .7341(0)q q q q +≥+>4、求证:2,()a ba bR a b ab ++∈≥5、设a,b 求证:第二课时综合法●教学目标(一)教学知识点综合法证明不等式.(二)能力训练要求1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式.(三)德育渗透目标掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步巩固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点1.掌握综合法证明不等式的基本思路,即“由因导果”,从已知条件及已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A(已知)⇒B1⇒B2⇒…⇒B n⇒B(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有:(1)a2≥0或(a±b)2≥0.(2)a2+b2≥2ab,a2+b2≥-2ab即a2+b2≥2|ab|.(3)ab ba ≥+2,对a >0,b >0,当且仅当a =b 时取“=”号. (4)当a ,b 同号时有abb a +≥2,当且仅当a =b 时取“=”号.(5)33abc c b a ≥++ (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号.(6)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. ●教学难点“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点. ●教学过程 1.课题导入[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数”的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系: (1)a 2≥0,或(a ±b )2≥0;(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab ,即a 2+b 2≥2|ab |; (3)ab ba ≥+2,(a ,b ∈R +),当且仅当a =b 时取“=”号; (4)ab ≤222b a +,(a ,b ∈R );ab ≤(2ab )2,(a ,b ∈R +),当且仅当a =b 时取“=”号;(5)abb a +≥2,(ab >0),当且仅当a =b 时取“=”号; (6)33abc c b a ≥++,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号; (7)a 3+b 3+c 3≥3abc ,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号.今天,我们在上一节课学习“比较法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课一般地,从已知条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案第一章:直接证明与间接证明的概念介绍1.1 直接证明的概念1.2 间接证明的概念1.3 直接证明与间接证明的区别与联系第二章:直接证明的方法与技巧2.1 综合法2.2 分析法2.3 穷举法2.4 反证法第三章:间接证明的方法与技巧3.1 反证法3.2 归谬法3.3 举例法3.4 类比法第四章:直接证明与间接证明的应用实例4.1 几何证明实例4.2 代数证明实例4.3 数列证明实例4.4 函数证明实例第五章:总结与练习5.1 直接证明与间接证明的总结5.2 相关练习题及解答第六章:综合性练习与拓展6.1 综合性练习题及解答6.2 证明方法的拓展与应用6.3 证明题目的设计与分析第七章:数学竞赛中的直接证明与间接证明7.1 数学竞赛中直接证明的问题类型7.2 数学竞赛中间接证明的问题类型7.3 数学竞赛证明题目的解题策略第八章:直接证明与间接证明在实际问题中的应用8.1 直接证明在实际问题中的应用案例8.2 间接证明在实际问题中的应用案例8.3 直接证明与间接证明在科学研究中的应用第九章:数学史中的直接证明与间接证明9.1 古代数学家与直接证明9.2 古代数学家与间接证明9.3 直接证明与间接证明在数学发展史中的重要性第十章:总结与复习10.1 直接证明与间接证明的回顾与总结10.2 重点知识点梳理10.3 复习题及解答重点和难点解析重点环节一:直接证明与间接证明的概念介绍直接证明与间接证明的概念是理解整个教学内容的基础,对于学生来说是一个关键的认知节点。

需要通过丰富的实例和生活中的比喻,帮助他们建立起清晰的概念框架。

重点环节二:直接证明的方法与技巧综合法、分析法、穷举法和反证法是直接证明的主要方法,这些方法的掌握对于学生解决实际证明问题至关重要。

应通过详细的案例分析和练习,使学生能够熟练运用这些方法。

重点环节三:间接证明的方法与技巧反证法、归谬法、举例法和类比法是间接证明的重要手段,它们各有特点和适用场景。

2.2直接证明与间接证明(教学设计)(3)

2.2直接证明与间接证明(教学设计)(3)

2.2直接证明与间接证明(教学设计)(3)2. 2 .2 反证法教学目标:知识与技能目标:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

过程与方法目标:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观目标:通过学生的参与,激发学生学习数学的兴趣。

教学重点:了解反证法的思考过程、特点教学难点:反证法的思考过程、特点教学过程:一、复习回顾:1、综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

2、分析法的特点是:执果索因,即寻找使结论成立的条件。

3、分析法的书写格式:要证明命题B 为真,只需要证明命题1B 为真,从而有……这只需要证明命题2B 为真,从而又有…………这只需要证明命题A 为真而已知A 为真,故命题B 必为真二、创设情境、新课引入:如果用直接证明的方法证明比较困难时,那我们就采用间接证明方法……反证法,三、师生互动、新课讲解:1、反证法(1)定义:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法 ( reduction to absurdity ) .(2)分类反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

(3)证明步骤:用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

(3)常用的反设(否定)(补集)反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案第一章:直接证明与间接证明的概念介绍1.1 直接证明与间接证明的定义1.2 直接证明与间接证明的区别与联系1.3 直接证明与间接证明在数学证明中的应用场景第二章:直接证明的基本方法2.1 综合法2.2 演绎法2.3 归纳法2.4 实例分析:运用直接证明方法证明数学定理第三章:间接证明的基本方法3.1 反证法3.2 归谬法3.3 实例分析:运用间接证明方法证明数学定理第四章:直接证明与间接证明的综合运用4.1 直接证明与间接证明的结合运用4.2 实例分析:运用直接证明与间接证明的综合方法证明数学定理4.3 运用策略:选择合适的证明方法第五章:证明题的类型与解题技巧5.1 证明题的常见类型5.2 解题技巧与策略5.3 实例分析:解决数学证明题的方法与步骤第六章:证明题的练习与解析6.1 练习题设计与布置6.2 学生练习题解答的注意事项6.3 实例分析:证明题的练习与解析第七章:直接证明与间接证明在几何证明中的应用7.1 几何证明中直接证明与间接证明的策略7.2 几何证明题型的特点与解题方法7.3 实例分析:几何证明题的直接证明与间接证明第八章:直接证明与间接证明在代数证明中的应用8.1 代数证明中直接证明与间接证明的策略8.2 代数证明题型的特点与解题方法8.3 实例分析:代数证明题的直接证明与间接证明第九章:直接证明与间接证明在数论证明中的应用9.1 数论证明中直接证明与间接证明的策略9.2 数论证明题型的特点与解题方法9.3 实例分析:数论证明题的直接证明与间接证明第十章:证明方法的创新与拓展10.1 创新证明方法的探索与实践10.2 拓展证明思路与技巧10.3 实例分析:创新证明方法在解决数学问题中的应用第十一章:证明过程的逻辑性与严密性11.1 证明过程中的逻辑推理11.2 证明的严密性与完整性11.3 实例分析:评估证明过程的逻辑性与严密性第十二章:证明题的评讲与反馈12.1 证明题评讲的目的与方法12.2 学生证明题解答的常见问题分析12.3 实例分析:证明题的评讲与反馈第十三章:数学竞赛中的直接证明与间接证明13.1 数学竞赛证明题的特点13.2 数学竞赛中直接证明与间接证明的策略13.3 实例分析:数学竞赛证明题的解答方法第十四章:数学研究中的直接证明与间接证明14.1 数学研究中证明方法的应用14.2 数学研究中的创新证明方法14.3 实例分析:数学研究中的直接证明与间接证明第十五章:总结与反思15.1 直接证明与间接证明教学的收获与反思15.2 学生证明能力的培养与提高15.3 实例分析:教学实践中的成功案例与改进方向重点和难点解析本文主要介绍了直接证明与间接证明的教学设计教案,涵盖了直接证明与间接证明的概念、基本方法、综合运用、证明题的类型与解题技巧、几何证明、代数证明、数论证明、证明过程的逻辑性与严密性、证明题的评讲与反馈、数学竞赛中的直接证明与间接证明、数学研究中的直接证明与间接证明以及总结与反思等十五个章节。

人教版高中数学选修2-2教学案2.2直接证明与间接证明(教师版)

人教版高中数学选修2-2教学案2.2直接证明与间接证明(教师版)

直接证明与间接证明__________________________________________________________________________________ __________________________________________________________________________________ (1)了解直接证明的一种基本方法──综合法、分析法; (2) 了解间接证明的一种基本方法──反证法;(3)了解综合法、分析法、反证法的思考过程与特点,会用综合法、分析法、反证法证明数学问题. 类型一、直接证明: 一. 综合法1.定义:从命题的条件出发,利用定义、公理、定理及运算法则,经过一系列的推理论证,最后推导出所要证明的结论成立.2.思维特点:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法3.框图表示:(P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论) 二.分析法1.定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.2. 思维特点:执果索因步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法3.框图表示:(用Q 表示要证明的结论,P n 表示充分条件)4.分析法的书写格式:,经(; (①直接证明困难;②需分成很多类进行讨论.③结论为“至少”、“至多”、“有无穷多个” ---类命题; ④结论为 “唯一”类命题; (4)关键在于归缪矛盾:a 、与已知条件矛盾;b 、与公理、定理、定义矛盾;c 、自相矛盾。

要证:⋯⋯ 只要证:⋯⋯ 只需证:⋯⋯ ⋯⋯显然成立 上述各步均可逆 所以,结论成立题型一 综合法:例1 已知a ,b ,c 是不全相等的正数,求证:c b a ac c b b a lg lg lg lg lg lg++>+++++例2 在△ABC 中,三个内角A ,B ,C 的对边分别为a , b ,c ,且A ,B ,C 成等差数列, a , b ,c转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来. 练习:1、在△ABC 中,三个内角A ,B ,C 的对边分别为,,a b c ,且A ,B ,C 成等差数列, ,,a b c 成等比数列,求证△ABC 为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C ; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是A + B + C =π; a , b ,c 成等比数列,转化为符号语言就是2b ac =.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.证明:由 A , B , C 成等差数列,有 2B=A + C . ① 因为A ,B ,C 为△ABC 的内角,所以A + B + C=π. ⑧由①② ,得B=3π. 由a , b ,c 成等比数列,有2b ac =. 由余弦定理及③,可得 再由④,得22a c ac ac +-=. 因此a c =. 从而A=C.由②③⑤,得 A=B=C=3π. 所以△ABC 为等边三角形.解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.2、已知,,+∈R b a 求证.ab b a b a b a ≥本题可以尝试使用差值比较和商值比较两种方法进行。

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案第一章:直接证明与间接证明概述1.1 直接证明的概念与特点1.2 间接证明的概念与特点1.3 直接证明与间接证明的联系与区别第二章:直接证明方法2.1 综合法2.2 分析法2.3 穷举法2.4 构造法第三章:间接证明方法3.1 反证法3.2 归谬法3.3 举例法3.4 类比法第四章:直接证明与间接证明的应用4.1 数学定理的证明4.2 数学命题的证明4.3 实际问题的证明第五章:案例分析与练习5.1 案例分析:运用直接证明与间接证明解决实际问题5.2 练习题:选择题、填空题、解答题第六章:证明策略与证明方法的选择6.1 证明策略的选择6.2 直接证明与间接证明的转换6.3 证明方法的适用场景分析第七章:证明过程中的逻辑思维训练7.1 逻辑思维的基本概念7.2 证明过程中的逻辑推理7.3 逻辑思维在证明中的应用实例第八章:数学竞赛中的直接证明与间接证明8.1 数学竞赛证明题的特点8.2 数学竞赛中的直接证明策略8.3 数学竞赛中的间接证明技巧第九章:数学研究中的直接证明与间接证明9.1 数学研究中的证明方法9.2 直接证明与间接证明在数学研究中的应用9.3 数学研究中的证明策略案例分析10.1 直接证明与间接证明的核心概念回顾10.2 证明方法的综合运用10.3 证明策略在数学学习和研究中的应用10.4 拓展阅读材料与思考题重点和难点解析一、直接证明与间接证明概述补充说明:直接证明与间接证明是数学证明的两种基本方式,它们在证明过程中的应用场景和证明方法各有不同。

理解它们之间的联系与区别有助于学生更好地选择合适的证明方法。

二、直接证明方法补充说明:构造法是直接证明中的一种重要方法,通过构造特定的数学对象或模型来证明问题的正确性。

学生在学习构造法时,需要掌握构造的核心思想和方法。

三、间接证明方法补充说明:反证法是间接证明中的一种常用方法,通过假设命题的反面成立,进而得出矛盾,从而证明原命题的正确性。

2.2直接证明与间接证明学案(1)

2.2直接证明与间接证明学案(1)

2.2直接证明与间接证明学习目标:1.结合已经学过的数学实例,了解直接证明的两种基本方法:综合法和分析法,了解间接证明的一种基本方法:反证法;2.了解综合法、分析法和反证法的思考过程、特点.重点:根据问题的特点,结合综合法、分析法和反证法的思考过程、特点,选择适当的证明方法或把不同的证明方法结合使用.难点:根据问题的特点,选择适当的证明方法或把不同的证明方法结合使用.学习策略分析法和综合法在证明方法中都占有重要地位,是解决数学问题的重要思想方法。

当所证命题的结论与所给条件间联系不明确,常常采用分析法证明;当所证的命题与相应定义、定理、公理有直接联系时,常常采用综合法证明.在解决问题时,常常把分析法和综合法结合起来使用。

反证法解题的实质是否定结论导出矛盾,从而说明原结论正确。

在否定结论时,其反面要找对、找全.它适合证明“存在性问题、唯一性问题”,带有“至少有一个”或“至多有一个”等字样的数学问题.知识点一:直接证明1、综合法(1)定义:一般地,从命题的已知条件出发,利用公理、已知的定义及定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的的基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.(3)综合法的思维框图:用表示已知条件,为定义、定理、公理等,Q表示所要证明的结论,则综合法可用框图表示为:(已知)(逐步推导结论成立的必要条件)(结论)2、分析法(1)定义:一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.(2)分析法的基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.(3)分析法的思维框图:用表示已知条件和已有的定义、公理、公式、定理等,所要证明的结论,则用分析法证明可用框图表示为:(结论)(逐步寻找使结论成立的充分条件)(已知)(4)分析法的格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证。

直接证明与间接证明 精品教案

直接证明与间接证明 精品教案

2.2直接证明与间接证明【课题】:2.2.2反证法【设计与执教者】:广州石化中学张洪娟gz100088@【学情分析】:前面我们学习了两种直接证明问题的方法——综合法和分析法。

在以前的学习中,学生已经接触过用反证法证明数学命题,本节课进一步熟悉运用反证法证明某些直接证明较难解决的数学问题。

【教学目标】:(1)知识与技能:结合已学过的数学实例,了解间接证明的方法——反证法;了解反证法的思考过程、特点(2)过程与方法:能够运用反证法证明数学问题(3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯【教学重点】:了解反证法的思考过程、特点;运用反证法证明数学问题。

【教学难点】:运用反证法证明数学问题。

【课前准备】:Powerpoint【教学过程设计】:【练习与测试】:1.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,则a 、b 、c 中至少有一个是偶数时,下列假设中正确的是( ) A. 假设a 、b 、c 都是偶数B. 假设a 、b 、c 都不是偶数C. 假设a 、b 、c 至多有两个是偶数D. 假设a 、b 、c 至多有两个是偶数答案:B解:反证法的假设,恰好与结论相反,“至少有一个”的否定是“一个也没有”。

选B 。

2.用反证法证明命题“若整数n 的立方是偶数,则n 也是偶数”如下:假设n 是奇数,则n=2k+1(k ∈Z),33(21)n k =+=_____________________________________,这与已知3n 是偶数矛盾,所以n 是偶数。

答案:322(463)1k k k +++解:和的立方公式展开 333232(21)812612(463)1n k k k k k k k =+=+++=+++答案为322(463)1k k k +++。

3.已知平面α和不在这个平面内的直线a 都垂直于平面β,求证:直线a ∥平面α。

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案第一章:直接证明与间接证明的概念介绍1.1 直接证明的概念引导学生回顾数学证明的基本概念,引入直接证明的概念。

通过具体例子解释直接证明的思路和方法。

让学生尝试用直接证明的方法证明一些简单的数学命题。

1.2 间接证明的概念引导学生理解直接证明的局限性,引入间接证明的概念。

通过具体例子解释间接证明的思路和方法,如反证法、归纳法等。

让学生尝试用间接证明的方法证明一些简单的数学命题。

第二章:直接证明的方法与技巧2.1 综合法引导学生学习综合法的概念和思路。

通过具体例子讲解综合法的运用方法和技巧。

让学生练习运用综合法证明一些简单的数学命题。

2.2 分析法引导学生学习分析法的概念和思路。

通过具体例子讲解分析法的运用方法和技巧。

让学生练习运用分析法证明一些简单的数学命题。

第三章:间接证明的方法与技巧3.1 反证法引导学生学习反证法的概念和思路。

通过具体例子讲解反证法的运用方法和技巧。

让学生练习运用反证法证明一些简单的数学命题。

3.2 归纳法引导学生学习归纳法的概念和思路。

通过具体例子讲解归纳法的运用方法和技巧。

让学生练习运用归纳法证明一些简单的数学命题。

第四章:直接证明与间接证明的应用实例4.1 几何证明引导学生运用直接证明和间接证明解决几何问题。

通过具体例子讲解几何证明的思路和方法。

让学生练习解决一些几何证明问题。

4.2 代数证明引导学生运用直接证明和间接证明解决代数问题。

通过具体例子讲解代数证明的思路和方法。

让学生练习解决一些代数证明问题。

第五章:总结与提高5.1 总结直接证明与间接证明的概念和方法。

引导学生总结本节课所学的直接证明和间接证明的概念和方法。

强调直接证明和间接证明的运用技巧和注意事项。

5.2 提高证明能力引导学生思考如何提高自己的数学证明能力。

提供一些证明题目,让学生进行练习和思考。

第六章:综合法与分析法的比较与应用6.1 综合法与分析法的异同引导学生比较综合法与分析法的相同点和不同点。

人教版高中选修(B版)2-22.2直接证明与间接证明课程设计

人教版高中选修(B版)2-22.2直接证明与间接证明课程设计

人教版高中选修(B版)2-22.2直接证明与间接证明课程设计一、课程背景本课程是人教版高中选修(B版)2-22.2直接证明与间接证明,共计5个学时。

本课程原本是在高中数学教学中,采用了系统的教学方法来对直接证明和间接证明进行详细介绍,让学生们通过实际操作,掌握证明思想与方法,提高数学素养,也让学生们更好地了解到数学在实际生活中的运用。

二、课程内容本课程主要内容包括直接证明和间接证明两个部分,分别从如下几个方面进行讲解:1. 直接证明•直接证明的定义和原理•直接证明的方法和技巧•直接证明的实践操作2. 间接证明•间接证明的定义和原理•间接证明的方法和技巧•间接证明的实践操作三、课程设计本课程的教学设计采用了PBL(Problem-based Learning)的教学法,以问题为引导,让学生自主探究和学习。

具体设计如下:1. 开始设计本节课的目标是让学生了解什么是直接证明和间接证明,以及它们的区别和联系,引导学生独立思考如下问题:•直接证明和间接证明分别是什么?•直接证明和间接证明的区别是什么?•直接证明和间接证明的联系是什么?2. 探究设计本节课的目标是让学生掌握直接证明和间接证明的具体方法和技巧。

老师将提供两个问题,学生自己选择用直接证明或间接证明来解决。

•问题1:证明一个三角形等边三角形的内角都是60度•问题2:证明两个角分别是垂直角和锐角的三角形,第三个角一定是钝角3. 实践设计本节课的目标是让学生通过实践掌握直接证明和间接证明的应用。

老师提供一组数据,学生需要在课堂上进行实践操作,运用所学的知识和方法解决问题。

•数据:假定在一个三角形ABC中,AB=5,AC=6,BC=9•问题:证明三角形ABC是钝角三角形四、课程评价针对本课程,将会采用二元评价模型,分别从过程与结果两个角度对学生进行评价。

具体评价如下:1. 过程评价•是否能积极参与课堂互动•是否能认真听讲并做好笔记•是否能主动提出疑问并寻求解答•是否能合理安排时间并高效完成课堂任务2. 结果评价•是否能准确理解直接证明和间接证明的概念和区别•是否能掌握直接证明和间接证明的方法和技巧•是否能运用所学的知识和技能解决问题•是否能具备一定的分析和解决问题的能力五、总结本课程通过PBL的教学方法,使学生独立思考、自主探究和实践应用,旨在提高学生的数学素养和解决问题的能力,同时也能让同学们更好地理解和应用数学知识,在日常生活和学习中大有裨益。

教学设计2:直接证明与间接证明

教学设计2:直接证明与间接证明

7.5 直接证明与间接证明【考纲分析】1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.2.从考查形式上看,主要以不等式、立体几何、解析几何、函数与方程、数列等知识为载体,考查综合法、分析法、反证法等方法.【复习指导】在备考中,对本部分的内容,要抓住关键,即分析法、综合法、反证法,要搞清三种方法的特点,把握三种方法在解决问题中的一般步骤,熟悉三种方法适用于解决的问题的类型,同时也要加强训练,达到熟能生巧,有效运用它们的目的.【基础梳理】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法.②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.2.间接证明一般地,由证明p⇒q转向证明:¬q⇒r⇒…⇒t.t与假设矛盾,或与某个真命题矛盾.从而判定¬q为假,推出q为真的方法,叫做反证法.【助学微博】一个关系综合法与分析法的关系分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.两个防范(1)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.(2)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.【考向探究】考向一 综合法的应用【例1】►设a ,b ,c >0,证明:a 2b +b 2c +c 2a≥a +b +c .【训练1】 设a ,b 为互不相等的正数,且a +b =1,证明:1a +1b>4.考向二 分析法的应用【例2】►已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m.【训练2】 已知a ,b ,m 都是正数,且a <b .考向三 反证法的应用【例3】►已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数.(2)用反证法证明f (x )=0没有负根.【训练3】 已知a ,b 为非零向量,且a ,b 不平行,求证:向量a +b 与a -b 不平行.答案【例1】[审题视点] 用综合法证明,可考虑运用基本不等式.证明 ∵a ,b ,c >0,根据均值不等式,有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c 2a+a +b +c ≥2(a +b +c ). 当且仅当a =b =c 时取等号.即a 2b +b 2c +c 2a≥a +b +c . 综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性.【训练1】证明 1a +1b =⎝⎛⎭⎫1a +1b ·(a +b )=2+b a +a b≥2+2=4. 又a 与b 不相等.故1a +1b>4. 【例2】[审题视点] 先去分母,合并同类项,化成积式.证明 ∵m >0,∴1+m >0.所以要证原不等式成立,只需证明(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题顺利获解的关键.【训练2】证明 要证明a +m b +m >a b,由于a ,b ,m 都是正数, 只需证a (b +m )<b (a +m ),只需证am <bm ,由于m >0,所以,只需证a <b .已知a <b ,所以原不等式成立.(说明:本题还可用作差比较法、综合法、反证法)【例3】[审题视点] 第(1)问用单调增函数的定义证明;第(2)问假设存在x 0<0后,应推导出x 0的范围与x 0<0矛盾即可.证明 (1)法一 任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0.所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1=x 2-2x 1+1-x 1-2x 2+1x 2+1x 1+1=3x 2-x 1x 2+1x 1+1>0, 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.法二 f ′(x )=a x ln a +3x +12>0,∴f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1,又0<ax 0<1,所以0<-x 0-2x 0+1<1,即12<x 0<2,与x 0<0(x 0≠-1)假设矛盾.故f (x 0)=0没有负根. 当一个命题的结论是以“至多”,“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.【训练3】证明 假设向量a +b 与a -b 平行,即存在实数λ使a +b =λ(a -b )成立,则(1-λ)a +(1+λ)b =0,∵a ,b 不平行,∴⎩⎪⎨⎪⎧ 1-λ=0,1+λ=0,得⎩⎪⎨⎪⎧λ=1,λ=-1, 所以方程组无解,故假设不成立,故原命题成立.。

直接证明与间接证明优秀教学设计

直接证明与间接证明优秀教学设计

2.2直接证明与间接证明【课题】:2.2.1 综合法和分析法(2)【设计与执教者】:广州石化中学张洪娟gz100088@【学情分析】:前一阶段刚刚学习了人们在日常活动和科学研究中经常使用的两种推理——合情推理和演绎推理。

数学结论的正确性必须通过逻辑推理的方式加以证明。

这是数学区别于其他学科的显著特点。

本节学习两类基本的证明方法:直接证明与间接证明。

在以前的学习中,学生已经接触过用综合法、分析法和反证法证明数学命题,但他们对这些证明方法的内涵和特点不一定非常清楚,逻辑规则也会应用不当。

本部分结合学生已学过的数学知识,通过实例引导学生分析这些基本证明方法的电教过程与特点,并归纳出操作流程框图,使他们在以后的学习和生活中,能自觉地、有意识地运用这些方法进行数学证明,养成言之有理、论证有据的习惯。

【教学目标】:(1)知识与技能:结合已学过的数学实例,了解直接证明的基本方法——分析法;了解分析法的思考过程、特点(2)过程与方法:能够运用分析法证明数学问题(3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯【教学重点】:了解分析法的思考过程、特点;运用分析法证明数学问题。

【教学难点】:根据问题特点,选择适当的证明方法证明数学问题;分析法证明问题的正确格式【课前准备】:几何画板【教学过程设计】:教学环节教学活动设计意图七、设计反思学生在用分析法证明问题时,往往缺少必要的叙述环节,直接从还应证式出发推证。

教学中应强调证明格式,对于普通班,可以要求学生将草稿纸上的分析过程倒过来写,只用综合法的方式证题,这样会清晰得多。

【练习与测试】:1.用分析法证明:欲使①A>B ,只需②C<D ,这里①是②的()A .充分条件 B. 必要条件C. 充要条件D. 即不充分也不必要条件答案:B解:由分析法的证题思路知:②①,但①不一定推出②,故选B 。

⇒2.2,M N ==-则( )A .M ≥N B. M>N C. M ≤ND. M<N答案:B解:M>N ⇐222)>⇐88->-⇐<⇐∵15<24显然成立,∴选B3. 已知:函数f(x)=lgx ,求证:对于任意两个不相等的正数,不等式21,x x 成立。

直接证明与间接证明(教学设计)

直接证明与间接证明(教学设计)

2.2直接证明与间接证明(教学设计)(1)2. 2 .1 综合法和分析法(1)--综合法教学目标:知识与技能目标:(1)理解综合法证明的概念;(2)能熟练地运用综合法证明数学问题。

过程与方法目标:(1)通过实例引导学生分析综合法的思考过程与特点;(2)引导学生归纳出综合法证明的操作流程图。

情感、态度与价值观:(1) 通过综合法的学习,体会数学思维的严密性、抽象性、科学性。

(2)通过综合法的学习,养成审核思维的习惯。

教学重点:了解综合法的思考过程、特点教学难点:对综合法的思考过程、特点的概括教学过程:一、复习回顾,新课引入:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。

数学结论的正确性必须通过逻辑推理的方式加以证明。

本节我们将学习两类基本的证明方法:直接证明与间接证明。

二、师生互动,新课讲解:1. 综合法在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论。

例1(课本P36例):已知a,b>0,求证2222()()4a b c b c a abc +++≥给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。

教师最后归结证明方法。

充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义证明:因为222,0b c bc a +≥>,所以22()2a b c abc +≥。

因为222,0c a ac b +≥>,所以22()2b c a abc +≥。

因此 2222()()4a b c b c a abc +++≥。

一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法。

用P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论,则综合法可表示为: ()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

人教版高中数学选修(1-2)-2.2《直接证明与间接证明(第2课时)》教学设计

人教版高中数学选修(1-2)-2.2《直接证明与间接证明(第2课时)》教学设计

2.2.2直接证明与间接证明(第2课时)(陈昌杰)一、教学目标1.核心素养培养学生用分析法证明简单问题的推理技能,进一步培养学生逻辑推理能力,以及分析、解决问题的能力.2.学习目标(1)结合学过的数学实例,了解直接证明的基本方法:分析法.了解分析法的思维过程、特点.(2)会用分析法证明数学问题,培养学生的分析问题、解决问题的能力,提高学生思维能力.3.学习重点掌握分析法的思维过程、特点及其解题步骤,会用分析法证明数学问题.4.学习难点根据问题的特点,结合分析法的思考过程、特点,应用分析法证明较复杂的数学问题.二、教学设计1.预习任务任务1预习教材P38—P41,思考:什么是分析法?分析法的本质是什么?任务2分析的思考过程、特点分别是什么?任务3分析法证明问题的方法、步骤是怎样的?2.预习自测1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法答案:C由综合法和分析法的意义与特点,知C错误.2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac <3a,则证明的依据应是()A.a-b>0B.a-c>0C.(a-b)(a-c)>0D.(a-b)(a-c)<0答案:Cb2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a+c)>0⇔(a-c)(a-b)>0.3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2答案:C要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.(二)课堂设计1.知识回顾引例:阅读下列证明过程,回答问题.证明不等式:3+22<2+7成立,可用下面的方法进行.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2.展开得11+46<11+47,只需证明6<7,显然6<7成立.∴3+22<2+7成立.1.本题证明从哪里开始?从结论开始.2.证题思路是什么?寻求每一步成立的充分条件.。

直接证明和间接证明(4个课时)教案

直接证明和间接证明(4个课时)教案

2.2直接证明与间接证明教学目标:〔1〕理解证明不等式的三种方法:比拟法、综合法和分析法的意义;〔2〕掌握用比拟法、综合法和分析法证明简单的不等式;〔3〕能根据实际题目灵活地选择适当地证明方法;〔4〕通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议:1.知识结构:〔不等式证明三种方法的理解〕==〉〔简单应用〕==〉〔综合应用〕2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题证明方法的选择.〔1〕不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立〔或都不成立〕,而并非是带入具体的数值去验证式子是否成立.〔2〕比拟法证明不等式的分析①在证明不等式的各种方法中,比拟法是最根本、最重要的方法.②证明不等式的比拟法,有求差比拟法和求商比拟法两种途径.由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比拟法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比拟法,使用求商比拟法证明一定要注意(b>0)这一前提条件.③求差比拟法的根本步骤是:“作差→变形→断号〞.其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比拟法的根本步骤是:“作商→变形→判断商式与1的大小关系〞,需要注意的是,作商比拟法一般用于证明不等号两侧的式子同号的不等式.〔3〕综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果〞:从的不等式出发,通过一系列条件推导变换,推导出求证的不等式.③综合法证明不等式的逻辑关系是:〔〕==〉〔逐步推演不等式成立的必要条件〕==〉〔结论〕〔4〕分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆〞,并说出可逆的根据.②分析法的思路是“执果导因〞:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:〔〕<==〔逐步推演不等式成立的必要条件〕<==〔结论〕④分析法是证明不等式时一种常用的根本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.〔5〕关于分析法与综合法关系①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后到达题设的条件.即推理方向是:结论.综合法那么是从数学题的条件出发,经过逐步的逻辑推理,最后到达待证结论或需求问题.即:结论.③分析法的特点是:从“结论〞探求“需知〞,逐步靠拢“〞,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“〞推出“可知〞,逐步推向“未知〞,其逐步推理实际上是要寻找的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比拟麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.第一课时不等式的证明〔比拟法〕教学目标1.掌握证明不等式的方法——比拟法;2.熟悉并掌握比拟法证明不等式的意义及根本步骤.教学重点:比拟法的意义和根本步骤.教学难点:常见的变形技巧.教学方法;启发引导法.教学过程:〔-〕导入新课教师提问:根据前一节学过〔不等式的性质〕的知识,我们如何用实数运算来比拟两个实数与的大小?找学生答复以下问题.〔学生答复:,,,〕[点评]要比拟两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比拟法.现在我们就来学习:用比拟法证明不等式.目的:通过教师设置问题,引导学生回忆所学的知识,引出用比拟法证明不等式,导入本节课学习的知识.〔二〕新课讲授【尝试探索,建立新知】作差比拟法[问题] 求证教师引导学生分析、思考,研究不等式的证明.学生研究证明不等式,尝试完成问题.[本问点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比拟两个实数的大小、比拟式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比拟转化为一个一般式子与0的大小比拟,使问题简化.③理论依据是:④由,,知:要证明只需证;需证明这种证明不等式的方法通常叫做比拟法.目的:帮助学生构建用比拟法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1.求证[分析]由比拟法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[本例点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号;②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;④例1介绍了变形的一种常用方法——配方法.例2 .都是正数,并且,求证:[分析]这是分式不等式的证明题,依比拟法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴.即:[本例点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;3322例、已知都是实数且求证≠+>+a b a b a b a b ab3,,,33223223:()()()()a b a b ab a a b ab b +-+=---证明2222()()()()a a b b a b a b a b =---=--2()()a b a b =+-,0,0a b a b >∴+>2()0a b a b ≠∴->又23322()()0()()0a b a b a b a b ab +->+-+>故即3322a b a b ab ∴+>+[本例点评]①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比拟法:1 ,,,,.a b b a a b a b a b a b ≥=例已知是正数求证当且仅当时等号成立:a b a b a b b a b a a b a a b a b b ---⎛⎫== ⎪⎝⎭证明(,,)0,1,0,1,.a b a b a a a b a b b b a b -⎛⎫≥>≥-≥∴≥ ⎪⎝⎭=根据要证的不等式的特点交换的位置不等式不变不妨设则当且仅当时等号成立,,.a b b a a b a b a b ∴≥=当且仅当时等号成立小结:作商比拟法的根本步骤是:“作商→变形→判断商式与1的大小关系〞,需要注意的是,作商比拟法一般用于证明不等号两侧的式子同号的不等式. 〔最后是与1比拟〕(三)课堂练习教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.练习:1.求证2. , , ,d 都是正数,且,求证 目的:掌握用比拟法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反应课堂教学效果,调节课堂教学.〔四〕布置作业2、:a ,b ∈R +.求证:a 5+b 5≥a 3b 2+a 2b 3 2211x x ≤+3、求证: .7341(0)q q q q +≥+>4、求证: 2,()a ba b R a b ab ++∈≥5、设a,b 求证:第二课时 综合法●教学目标(一)教学知识点综合法证明不等式.(二)能力训练要求1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式.(三)德育渗透目标掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步稳固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点1.掌握综合法证明不等式的根本思路,即“由因导果〞,从条件及不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A ()⇒B 1⇒B 2⇒…⇒B n ⇒B(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有:(1)a 2≥0或(a ±b )2≥0.(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab 即a 2+b 2≥2|ab |. (3)ab b a ≥+2,对a >0,b >0,当且仅当a =b 时取“=〞号. (4)当a ,b 同号时有ab b a +≥2,当且仅当a =b 时取“=〞号. (5)33abc c b a ≥++ (a >0,b >0,c >0),当且仅当a =b =c 时取“=〞号. (6)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=〞号.●教学难点“由因导果〞时,从哪个不等式出发适宜是综合法证明不等式的难点.●教学过程1.课题导入[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数〞的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系:(1)a 2≥0,或(a ±b )2≥0;(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab ,即a 2+b 2≥2|ab |; (3)ab b a ≥+2,(a ,b ∈R +),当且仅当a =b 时取“=〞号; (4)ab ≤222b a +,(a ,b ∈R );ab ≤(2ab )2,(a ,b ∈R +),当且仅当a =b 时取“=〞号;(5)abb a +≥2,(ab >0),当且仅当a =b 时取“=〞号; 〔6〕33abc c b a ≥++,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=〞号; 〔7)a 3+b 3+c 3≥3abc ,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=〞号.今天,我们在上一节课学习“比拟法〞证明不等式的根底上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课一般地,从条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学准备
1. 教学目标
(1)知识与技能:结合已学过的数学实例,了解直接证明的两种基本方法——综合法和分析法;了解综合法、分析法的思考过程、特点
(2)过程与方法:能够运用综合法、分析法证明数学问题
(3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯
2. 教学重点/难点
【教学重点】:
了解综合法、分析法的思考过程、特点;运用综合法、分析法证明数学问题。

【教学难点】:
根据问题特点,选择适当的证明方法证明数学问题。

3. 教学用具
多媒体
4. 标签
2.2.1 综合法和分析法(1)
教学过程
课堂小结
综合法和分析法的思考过程、特点;分析法证明问题时需要注意的地方;综合法与分析法的关系。

相关文档
最新文档