江苏专版2019届高考数学一轮复习第二章基本初等函数导数的应用第11讲导数与函数的单调性课件文
2019届高三数学一轮复习目录(理科)
2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。
高考数学(文)一轮复习文档:第二章 基本初等函数、导数及其应用 第11讲导数与函数的单调性 Word版含答案
第11讲导数与函数的单调性,)函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.教材习题改编函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是( )C 根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.2.教材习题改编函数f(x)=x3-3x+1的单调增区间是( )A.(-1,1) B.(-∞,1)C.(-1,+∞) D.(-∞,-1),(1,+∞)D f′(x)=3x2-3.由f′(x)>0得,x<-1或x>1.故单调增区间为(-∞,-1),(1,+∞),故选D.3.教材习题改编函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.增函数D.减函数D 因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.4.教材习题改编函数f (x )=sin x +kx 在(0,π)上是增函数,则实数k 的取值范围为________.因为f ′(x )=cos x +k ≥0, 所以k ≥-cos x ,x ∈(0,π)恒成立. 当x ∈(0,π)时,-1<-cos x <1, 所以k ≥1.k ≥15.教材习题改编函数f (x )=x 2-ax -3在(1,+∞)上是增函数,则实数a 的取值范围是________.f ′(x )=2x -a ,因为f (x )在(1,+∞)上是增函数, 所以2x -a ≥0在(1,+∞)上恒成立. 即a ≤2x ,所以a ≤2.a ≤2利用导数判断或证明函数的单调性已知函数f (x )=ln x -ax 2+(2-a )x .讨论f (x )的单调性. 【解】 f (x )的定义域为(0,+∞).f ′(x )=1x-2ax +(2-a )=-(2x +1)(ax -1)x.①若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. ②若a >0,则由f ′(x )=0得x =1a,且当x ∈(0,1a)时,f ′(x )>0,当x >1a时,f ′(x )<0.所以f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:(a +a 2-82,+∞)上单调递增.求函数的单调区间求函数f (x )=ln x -12x 2+x -12的单调区间.【解】 因为f (x )=ln x -12x 2+x -12,且定义域为(0,+∞),所以f ′(x )=1x -x +1=-(x -1-52)(x -1+52)x.令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).当x ∈(0,1+52)时,f ′(x )>0;当x ∈(1+52,+∞)时,f ′(x )<0,所以函数f (x )的单调递增区间为(0,1+52),单调递减区间为(1+52,+∞).已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调区间. (1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x. 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的单调递减区间为(-∞,-4),(-1,0),单调递增区间为(-4,-1),(0,+∞).函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)已知函数单调性求参数的取值范围; (2)比较大小或解不等式.(1)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2]B .(-∞,-1]C . 因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x<1,故k ≤0.(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.角度一 已知函数单调性求参数的取值范围1.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. (2,3]角度二 比较大小或解不等式2.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .D .(0,8)B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9., )——分类讨论思想研究函数的单调性已知函数f (x )=(ax 2-x +a )e x,试讨论函数f (x )的单调性. 【解】 f ′(x )=(x +1)(ax +a -1)e x.当a =0时,f ′(x )在(-∞,-1)上时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;f ′(x )在(-1,+∞)上时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.当a >0时,因为-1+1a >-1,所以f (x )在(-∞,-1)和(-1+1a,+∞)上单调递增,在(-1,-1+1a)上单调递减;当a <0时,因为-1+1a <-1,所以f (x )在(-∞,-1+1a)和(-1,+∞)上单调递减,在(-1+1a,-1)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解中分a >0,a =0,a <0三种情况讨论.已知函数f (x )=a ln x +12x 2-(1+a )x .求函数f (x )的单调区间.f ′(x )=a x +x -(1+a )=x 2-(1+a )x +a x =(x -1)(x -a )x.当a ≤0时,若0<x <1,则f ′(x )<0,若x >1,则f ′(x )>0,故此时函数f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞);当0<a <1时,f ′(x ),f (x )的变化情况如下表:当a =1时,f ′(x )=(x -1)2x≥0,所以函数f (x )的单调递增区间是(0,+∞);当a >1时,同0<a <1时的解法,可得函数f (x )的单调递增区间是(0,1),(a ,+∞),单调递减区间是(1,a )., )1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( ) A .(-∞,518]B .(-∞,3]C .[518,+∞)D . f ′(x )=3x 2-2tx +3,由于f (x )在区间上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0在上恒成立,则t ≥32(x +1x )在上恒成立,因为y =32(x +1x )在上单调递增,所以t ≥32(4+14)=518,故选C.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( )A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) A 因为f (x )=x ·sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3. 又x ∈⎝⎛⎭⎪⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3. 所以f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,故选A. 5.(2017·郑州第一次质量预测) 已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)B 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈时,f (x )≥g (x )恒成立,则a 的取值范围为( )A .a ≥11B .a ≤11C .a ≥418D .a ≤418A f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1.因为x ∈,所以a ≥9x +3x 2-1x 3.令1x=t ,则当t ∈⎣⎢⎡⎦⎥⎤12,1时,a ≥9t +3t 2-t 3.令h (t )=9t +3t 2-t 3,h ′(t )=9+6t -3t 2=-3(t -1)2+12.所以h ′(t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以h ′(t )min =h ′⎝ ⎛⎭⎪⎫12=-34+12>0. 所以h (t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以a ≥h (1)=11,故选A.7.函数y =12x 2-ln x 的单调递减区间为________.对于函数y =12x 2-ln x ,易得其定义域为{x |x >0},y ′=x -1x =x 2-1x ,令x 2-1x<0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).(0,1)8.若函数f (x )=13x 3-32x 2+ax +4恰在上单调递减,则实数a 的值为________.因为f (x )=13x 3-32x 2+ax +4,所以f ′(x )=x 2-3x +a ,又函数f (x )恰在上单调递减, 所以-1,4是f ′(x )=0的两根, 所以a =(-1)×4=-4. -49.(2017·石家庄二中开学考试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.由题可得函数定义域为(0,+∞),f ′(x )=1x+2xln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.(1,2)10.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).(-3,0)∪(0,+∞)11.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)求函数f (x )的单调区间.(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0. (2)由(1)得,f ′(x )=x 2-ax =x (x -a ).①当a =0时,f ′(x )=x 2≥0恒成立,即函数f (x )在(-∞,+∞)内为单调增函数. ②当a >0时,由f ′(x )>0得,x >a 或x <0;由f ′(x )<0得0<x <a .即函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). ③当a <0时,由f ′(x )>0得,x >0或x <a ;由f ′(x )<0得,a <x <0.即函数f (x )的单调递增区间为(-∞,a ),(0,+∞),单调递减区间为(a ,0).12.(2017·河北省衡水中学模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫x +a x e x,a ∈R . (1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a =-1时,求证:f (x )在(0,+∞)上为增函数.函数f (x )的定义域为{x |x ≠0},f ′(x )=x 3+x 2+ax -a x 2e x . (1)当a =0时,f (x )=x ·e x ,f ′(x )=(x +1)e x,所以f (1)=e ,f ′(1)=2e.所以曲线y =f (x )在点(1,f (1))处的切线方程是y -e =2e(x -1),即2e x -y -e =0. (2)证明:当a =-1时,f ′(x )=x 3+x 2-x +1x 2e x (x >0). 设g (x )=x 3+x 2-x +1,则g ′(x )=3x 2+2x -1=(3x -1)(x +1).令g ′(x )=(3x -1)(x +1)>0,得x >13. 令g ′(x )=(3x -1)(x +1)<0,得0<x <13. 所以函数g (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,+∞上是增函数, 所以函数g (x )在x =13处取得最小值, 且g ⎝ ⎛⎭⎪⎫13=2227>0. 所以g (x )在(0,+∞)上恒大于零.于是,当x ∈(0,+∞)时,f ′(x )=x 3+x 2-x +1x 2e x >0恒成立.所以当a=-1时,函数f(x)在(0,+∞)上为增函数.13.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由. (1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对任意x∈R都成立.即e x≤0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≥0对任意x∈R都成立.所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R上单调递减.若函数f(x)在R上单调递增,则f′(x)≥0对任意x∈R都成立,即e x≥0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≤0对任意x∈R都成立.而Δ=(a-2)2+4a=a2+4>0,故函数f(x)不可能在R上单调递增.综上可知函数f(x)不是R上的单调函数.。
2019届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性课件文
求函数 f(x)=ln x-12x2+x-12的单调区间.
解:因为 f(x)=ln x-12x2+x-12,
且定义域为(0,+∞),
所以 f′(x)=1x-x+1=-(x-1-2
5)(x-1+2 x
5) .
令 f′(x)=0,所以 x1=1+2 5,x2=1-2 5(舍去). 当 x∈(0,1+2 5)时,f′(x)>0; 当 x∈(1+2 5,+∞)时,f′(x)<0, 所以函数 f(x)的单调递增区间为(0,1+2 5), 单调递减区间为(1+2 5,+∞).
-2<a2<-1,
-4<a<-2,
由 Δ >0,
a2-8>0, 得
g′(-2)>0, 6+2a>0,
g′(-1)>0, 3+a>0,
-4<a<-2, 即a>2 2或a<-2 2,解之得-3<a<-2 2,
a>-3,
即实数 a 的取值范围为(-3,-2 2).
则其在区间(-π,π)上的解集为-π,-π2和0,π2, 即 f(x)的单调递增区间为-π,-π2和0,π2.
求可导函数单调区间的一般步骤和方法 (1)确定函数 f(x)的定义域; (2)求 f′(x),令 f′(x)=0,求出它在定义域内的一切实数根; (3)把函数 f(x)的间断点(即 f(x)的无定义点)的横坐标和上面 的各实数根按由小到大的顺序排列起来,然后用这些点把函 数 f(x)的定义区间分成若干个小开区间; (4)确定 f′(x)在各个开区间内的符号,根据 f′(x)的符号判定函 数 f(x)在每个相应小开区间内的增减性.
1.函数 f(x)=ex-x 的单调递增区间是__(0_,__+__∞__)___. [解析] 因为 f(x)=ex-x,所以 f′(x)=ex-1, 由 f′(x)>0,得 ex-1>0,即 x>0.
【配套K12】全国版2019版高考数学一轮复习第2章函数导数及其应用第11讲导数在研究函数中的应用学
第11讲导数在研究函数中的应用板块一知识梳理·自主学习[必备知识]考点1 函数的导数与单调性的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.考点2 函数的极值与导数1.函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值;2.函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.考点3 函数的最值与导数1.函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.2.求y =f (x )在[a ,b ]上的最大(小)值的步骤 (1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.[必会结论]1.若函数f (x )的图象连续不断,则f (x )在[a ,b ]内一定有最值.2.若函数f (x )在[a ,b ]内是单调函数,则f (x )一定在区间端点处取得最值. 3.若函数f (x )在开区间(a ,b )内只有一个极值点,则相应的极值点一定是函数的最值点.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =12x 2-ln x 的单调减区间为(-1,1).( )(2)在函数y =f (x )中,若f ′(x 0)=0,则x =x 0一定是函数y =f (x )的极值.( ) (3)函数的极大值不一定比极小值大.( )(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 答案 (1)× (2)× (3)√ (4)√2.[课本改编]函数y =x 2(x -3)的单调递减区间是( ) A .(-∞,0) B .(2,+∞) C .(0,2) D .(-2,2)答案 C解析 y ′=3x 2-6x ,由y ′<0,得0<x <2. 3.[课本改编]设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 答案 D解析 f ′(x )=-2x 2+1x =x -2x2,∵x >0,∴当x >2时,f ′(x )>0,f (x )是增函数;当0<x <2时,f ′(x )<0,f (x )是减函数,∴x =2为f (x )的极小值点.4.[2018·苏锡常镇一调]f (x )=e x-x (e 为自然对数的底数)在区间[-1,1]上的最大值是( )A .1+1eB .1C .e +1D .e -1答案 D解析 f ′(x )=e x-1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e <12+2-e <0,所以f (1)>f (-1).故选D.5.[2017·浙江高考]函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )答案 D解析 观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.故选D.6.[课本改编]函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________.答案 3解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0,知函数f (x )的图象与x 轴的交点个数为3.板块二 典例探究·考向突破 考向利用导数研究函数的单调性例 1 [2018·大庆模拟]已知函数f (x )=a ln x +12x 2+(a +1)x +3.(1)当a =-1时,求函数f (x )的单调递减区间;(2)若函数f (x )在区间(0,+∞)上是增函数,求实数a 的取值范围.解 (1)当a =-1时,f (x )=-ln x +x 22+3,定义域为(0,+∞).则f ′(x )=-1x+x .由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得0<x <1.所以函数f (x )的单调递减区间为(0,1).(2)因为函数f (x )在(0,+∞)上是增函数,所以f ′(x )=ax+x +a +1≥0在(0,+∞)上恒成立,所以x 2+(a +1)x +a ≥0,即(x +1)(x +a )≥0在(0,+∞)上恒成立.因为x +1>0,所以x +a ≥0对x ∈(0,+∞)恒成立,所以a ≥0.即实数a 的取值范围是[0,+∞).若本例中的函数变为f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性.解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0), 令f ′(x )=0,解得x 1=0,x 2=2-2aa.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0.若本例中的函数变为f (x )=(a -1)ln x +ax 2+1,a ∈R ,试讨论f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减. (3)当0<a <1时,令f ′(x )=0,解得x =1-a2a, 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0, 故f (x )在⎝⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 触类旁通讨论函数单调性的方法(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【变式训练1】 (1)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞是增函数,则a 的取值范围是________.答案 [3,+∞)解析 由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max<1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.经检验,当a =3时,满足题意.(2)[2018·青岛模拟]已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.考向 利用导数研究函数的极值命题角度1 知图判断函数极值情况例 2 [2018·江门模拟]设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D解析 由图可得函数y =(1-x )f ′(x )的零点为-2,1,2,则当x <1时,1-x >0,此时在(-∞,-2)上f ′(x )>0,在(-2,1)上f ′(x )<0;当x >1时,1-x <0,此时在(1,2)上f ′(x )<0,在(2,+∞)上f ′(x )>0.所以f (x )在(-∞,-2)为增函数,在(-2,2)为减函数,在(2,+∞)为增函数,因此f (x )有极大值f (-2),极小值f (2).故选D.命题角度2 已知函数求极值例 3 已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k(k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f ′(x )=e x (x -1)+e x-1,此时f ′(1)≠0,故排除A 、B 项;当k =2时,f ′(x )=e x (x -1)2+(e x-1)(2x -2),此时f ′(1)=0,在x =1附近左侧,f ′(x )<0,在x =1附近右侧,f ′(x )>0,所以x =1是f (x )的极小值点.命题角度3 已知函数的极值求参数范围例 4 (1)函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a ,b 的值为( )A .a =3,b =-3,或a =-4,b =11B .a =-4,b =1,或a =-4,b =11C .a =-1,b =5D .以上都不正确 答案 D解析 f ′(x )=3x 2-2ax -b ,依题意,有⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3-2a -b =0,1-a -b +a 2=10,解得⎩⎪⎨⎪⎧a =-4,b =11,或⎩⎪⎨⎪⎧a =3,b =-3.当a =3且b =-3时,f ′(x )=3x 2-6x +3≥0,函数f (x )无极值点,故符合题意的只有⎩⎪⎨⎪⎧a =-4,b =11.故选D.(2)函数f (x )=x (x -m )2在x =1处取得极小值,则m =________. 答案 1解析 f ′(1)=0可得m =1或m =3. 当m =3时,f ′(x )=3(x -1)(x -3),1<x <3,f ′(x )<0;x <1或x >3,f ′(x )>0,此时x =1处取得极大值,不合题意,所以m =1.触类旁通函数极值问题的常见类型及解题策略(1)已知导函数图象判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f ′(x )―→求方程f ′(x )=0的根―→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.考向利用导数研究函数的最值例 5 [2017·北京高考]已知函数f (x )=e xcos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=e xcos x -x ,所以f ′(x )=e x(cos x -sin x )-1,f ′(0)=0.又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x(cos x -sin x -sin x -cos x )=-2e xsin x .当x ∈⎝⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,所以对任意x ∈⎝ ⎛⎦⎥⎤0,π2有h (x )<h (0)=0,即f ′(x )<0, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1,最小值为f ⎝ ⎛⎭⎪⎫π2=-π2. 触类旁通利用导数求函数最值的方法当函数在一个区间内只有唯一的极小(大)值时,这个极小(大)值就是最小(大)值;当函数在一个区间内的极值有多个时,就要把这些极值和区间的端点值进行比较,比较大小的基本方法之一就是作差法.【变式训练2】 已知函数f (x )=a x+ln x -2,a ∈R .(1)若曲线y =f (x )在点P (2,m )处的切线平行于直线y =-32x +1,求函数f (x )的单调区间;(2)是否存在实数a ,使函数f (x )在(0,e 2]上有最小值2?若存在,求出a 的值,若不存在,请说明理由.解 (1)∵f (x )=a x +ln x -2(x >0), ∴f ′(x )=-a x2+1x(x >0),又曲线y =f (x )在点P (2,m )处的切线平行于直线y =-32x +1,∴f ′(2)=-14a +12=-32⇒a =8.∴f ′(x )=-8x 2+1x =x -8x2(x >0),令f ′(x )>0,得x >8,f (x )在(8,+∞)上单调递增; 令f ′(x )<0,得0<x <8,f (x )在(0,8)上单调递减. ∴f (x )的单调递增区间为(8,+∞),单调递减区间为(0,8). (2)由(1)知f ′(x )=-a x 2+1x =x -ax2(x >0).①当a ≤0时,f ′(x )>0恒成立,即f (x )在(0,e 2]上单调递增,无最小值,不满足题意.②当a >0时,令f ′(x )=0,得x =a ,所以当f ′(x )>0时,x >a ,当f ′(x )<0时,0<x <a , 此时函数f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减.若a >e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (e 2)=ae 2+ln e 2-2=a e 2,由ae 2=2,得a =2e 2,满足a >e 2,符合题意;若a ≤e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (a )=a a+ln a -2=ln a -1,由ln a -1=2,得a =e 3,不满足a ≤e 2,不符合题意,舍去.综上可知,存在实数a =2e 2,使函数f (x )在(0,e 2]上有最小值2.考向利用导数研究生活中的优化问题例6 [2015·江苏高考]某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy .假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b,得⎩⎪⎨⎪⎧a25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1000,b =0.(2)①由(1)知,y =1000x 2(5≤x ≤20), 则点P 的坐标为⎝ ⎛⎭⎪⎫t ,1000t 2,设在点P 处的切线l交x ,y 轴分别于A ,B 点,y ′=-2000x,则l 的方程为y -1000t2=-2000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3000t 22=32 t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时, g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数.从而,当t =102时,函数g (t )有极小值,也是最小值,所以g (t )min =300,此时f (t )min=15 3.故当t =102时,公路l 的长度最短,最短长度为153千米. 触类旁通利用导数解决生活中优化问题的方法求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,该极值点也就是最值点.【变式训练3】 某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5).设该食品厂每公斤蘑菇的出厂价为x 元(25≤x ≤40),根据市场调查,日销售量q 公斤与e x成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价x 为多少时,该工厂的每日利润y 最大?并求最大值.解 (1)设日销量q =k e x (k ≠0),则ke 30=100,∴k =100e 30, ∴日销量q =100e30ex ,∴y =100e 30(x -20-t )ex(25≤x ≤40). (2)当t =5时,y =100e 30(x -25)e x ,y ′=100e 30(26-x )e x. 由y ′≥0得x ≤26,由y ′≤0,得x ≥26,∴y 在区间[25,26]上单调递增,在区间[26,40]上单调递减,∴当x =26时,y max =100e 4, 即当每公斤蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e 4元.核心规律1.利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且有条理,可减少失分.2.求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小.3.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.一个函数在其定义域内最值是唯一的,可以在区间的端点处取得.满分策略1.注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行.2.解题时要注意区分求单调性和已知单调性求参数范围等问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.3.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.板块三 启智培优·破译高考创新交汇系列3——利用导数研究函数的图象与性质[2016·全国卷Ⅰ]函数y =2x 2-e |x |在[-2,2]的图象大致为( )解题视点 该题易出现的问题是不能抓住选项的差异性与函数性质的对应,困惑于解析式的复杂形式,导致无从下手.解析 解法一:令f (x )=y =2x 2-e |x |.当x ∈(0,2]时,f (x )=2x 2-e x,f ′(x )=4x -e x.f ′(x )在(0,2)上只有一个零点x 0,且当0<x <x 0时,f ′(x )<0;当x 0<x ≤2时,f ′(x )>0.故f (x )在(0,2]上先减后增,又f (2)-1=7-e 2<0,所以f (2)<1.故选D.解法二:令f (x )=y =2x 2-e |x |,则f (2)=8-e 2>0,故排除A ;f (2)-1=7-e 2<0,∴f (2)<1,故排除B ;f ⎝ ⎛⎭⎪⎫12=12-e 12 <0.5-1.5=-1=f (0),故排除C.故选D.答案 D答题启示 函数图象的识别主要利用函数的定义域、值域、奇偶性、单调性以及函数值的符号等.解决此类问题应先观察选项的不同之处,然后根据不同之处研究函数的相关性质,进而得到正确的选项.如该题中函数解析式虽然比较复杂,但借助函数的定义域与函数的单调性很容易利用排除法得到正确选项.跟踪训练[2018·赣州模拟]函数y =x 2e x的图象大致为( )答案 A解析 因为y ′=2x e x +x 2e x =x (x +2)e x ,所以当x <-2或x >0时,y ′>0,函数y =x 2ex为增函数;当-2<x <0时,y ′<0,函数y =x 2e x为减函数,排除B ,C ;又y =x 2e x≥0,所以排除D.故选A.板块四 模拟演练·提能增分[A 级 基础达标]1.函数y =x 4-4x +3在区间[-2,3]上的最小值为( ) A .72 B .36 C .12 D .0答案 D解析 因为y ′=4x 3-4,令y ′=0即4x 3-4=0,解得x =1.当x <1时,y ′<0,当x >1时,y ′>0,在[-2,3]上只有一个极值点,所以函数的极小值为y |x =1=0,所以y min =0.2.[2018·南阳模拟]已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞)B .(0,1)和(2,+∞) C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)答案 C解析 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x =(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12,(2,+∞).3.[2018·无锡模拟]设函数f (x )=x e x,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点 答案 D解析 f ′(x )=(x +1)e x,当x <-1时,f ′(x )<0,当x >-1时,f ′(x )>0,所以x =-1为f (x )的极小值点.故选D.4.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有( )A .0个零点B .1个零点C .2个零点D .3个零点答案 B解析 ∵f ′(x )=x 2-2ax ,且a >2, ∴当x ∈(0,2)时,f ′(x )<0, 即f (x )在(0,2)上是单调减函数. 又∵f (0)=1>0,f (2)=113-4a <0,∴f (x )在(0,2)上恰好有1个零点.故选B.5.[2018·珠海模拟]设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b ) 答案 C解析 ∵f ′(x )>g ′(x ),∴[f (x )-g (x )]′>0. ∴f (x )-g (x )在[a ,b ]上是增函数. ∴f (a )-g (a )<f (x )-g (x ). 即f (x )+g (a )>g (x )+f (a ).6.已知函数f (x )=kx 3+3(k -1)x 2-k 2+1(k >0).(1)若f (x )的单调递减区间是(0,4),则实数k 的值为________; (2)若f (x )在(0,4)上为减函数,则实数k 的取值范围是________. 答案 (1)13 (2)⎝ ⎛⎦⎥⎤0,13解析 (1)f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13.(2)由f ′(x )=3kx 2+6(k -1)x ≤0并结合导函数的图象可知,必有-2(k -1)k≥4,解得k ≤13.又k >0,故0<k ≤13.7.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________.答案 (2,+∞)解析 令g (x )=f (x )-x , ∴g ′(x )=f ′(x )-1.由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0,∴g (x )>0的解集为(2,+∞).8.[2018·西宁模拟]若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-19,+∞ 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 9.[2018·广西模拟]已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解 (1)由题意知f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与f ′(x )随x 的变化情况如下:所以,f (2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.10.[2018·金华模拟]函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)f′(x)=a+ln x+1,f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x) =ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,也可转化为y=f(x)与y=m+1的图象有两个不同的交点,由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1即m>-2,①当0<x<1时,f(x)=x(-1+ln x)<0;当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞(或者举例:当x=e2时,f(e2)=e2>0).如图,由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.故m的取值范围为(-2,-1).[B级知能提升]1.[2016·四川高考]已知a为函数f(x)=x3-12x的极小值点,则a=( )A .-4B .-2C .4D .2答案 D解析 由题意可得f ′(x )=3x 2-12=3(x -2)(x +2), 令f ′(x )=0,得x =-2或x =2, 则f ′(x ),f (x )随x 的变化情况如下表:2.[2018·山东师大附中检测]已知函数f (x )=x e x,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-1e ,+∞ B .[-1,+∞)C .[-e ,+∞) D.⎣⎢⎡⎭⎪⎫-1e ,+∞答案 D解析 f ′(x )=e x+x e x=(1+x )e x,当x >-1时,f ′(x )>0,函数单调递增;当x <-1时,f ′(x )<0,函数单调递减.所以当x =-1时,f (x )取得极小值即最小值,f (-1)=-1e .函数g (x )的最大值为a .若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则有g (x )的最大值大于或等于f (x )的最小值,即a ≥-1e.故选D.3.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.答案 (1,2)解析 ∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).4.[2018·沈阳模拟]已知函数f (x )=(2x -4)e x +a (x +2)2.(a ∈R ,e 为自然对数的底数)(1)当a =1时,求曲线y =f (x )在点P (0,f (0))处的切线方程; (2)当x ≥0时,不等式f (x )≥4a -4恒成立,求实数a 的取值范围. 解 (1)当a =1时,f (x )=(2x -4)e x+(x +2)2, 则f ′(x )=(2x -2)e x+2x +4,f ′(0)=-2+4=2. 又因为f (0)=-4+4=0,所以曲线y =f (x )在点P (0,f (0))处的切线方程为y -0=2(x -0),即y =2x .(2)因为f ′(x )=(2x -2)e x+2a (x +2),令g (x )=f ′(x )=(2x -2)e x+2a (x +2), 有g ′(x )=2x ·e x+2a 且函数y =g ′(x )在[0,+∞)上单调递增,当2a ≥0时,有g ′(x )≥0,此时函数y =f ′(x )在[0,+∞)上单调递增,则f ′(x )≥f ′(0)=4a -2.①若4a -2≥0即a ≥12时,函数y =f (x )在[0,+∞)上单调递增,则f (x )min =f (0)=4a -4,不等式恒成立;②若4a -2<0即0≤a <12时,则在[0,+∞)上存在f ′(x 0)=0,此时函数y =f (x )在x ∈(0,x 0)上单调递减,在(x 0,+∞)上单调递增且f (0)=4a -4, 所以不等式不可能恒成立,故不符合题意.当2a <0时,有g ′(0)=2a <0,则在[0,+∞)上存在g ′(x 1)=0,此时g (x )在(0,x 1)上单调递减,在(x 1,+∞)上单调递增,所以函数y =f ′(x )在x ∈[0,+∞)上先减后增.又f ′(0)=-2+4a <0,则函数y =f (x )在x ∈[0,+∞)上先减后增. 又f (0)=4a -4,所以不等式不可能恒成立,故不符合题意.综上所述,实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥12. 5.已知函数f (x )=12ax 2+ln x ,其中a ∈R .(1)求f (x )的单调区间;(2)若f (x )在(0,1]上的最大值是-1,求a 的值.解 (1)f ′(x )=ax 2+1x,x ∈(0,+∞).当a ≥0时,f ′(x )>0,从而函数f (x )在(0,+∞)上单调递增; 当a <0时,令f ′(x )=0,解得x =-1a 或x =--1a(舍去).此时,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝⎛⎭⎪⎫0,-1a ,单调减区间是⎝⎛-1a,+∞ ).(2)①当a ≥0时,由(1)得函数f (x )在(0,1]上的最大值为f (1)=a2.令a2=-1,得a =-2,这与a ≥0矛盾,不合题意. ②当-1≤a <0时,-1a ≥1,由(1)得函数f (x )在(0,1]上的最大值为f (1)=a 2. 令a2=-1,得a =-2,这与-1≤a <0矛盾,不合题意.③当a <-1时,0< -1a<1,由(1)得函数f (x )在(0,1]上的最大值为f ⎝⎛⎭⎪⎫-1a .令f ⎝⎛⎭⎪⎫-1a =-1,解得a =-e ,符合a <-1.综上,当f (x )在(0,1]上的最大值是-1时,a =-e.。
高考数学一轮复习 第2章 第11节 导数在研究函数中的应用课件 理 苏教版
ppt精选
4
3.函数的最值
(1)最大值与最小值的概念
如果在函数定义域 I 内存在 x0,使得对任意的 x∈I,总有 f(x)≤f(x0) ,则称 f(x0)为函数 f(x)在定义域上的最大值.如果在函 数定义域 I 内存在 x0,使得对任意的 x∈I,总有f(x)≥f(x0) ,则称
f(x0)为函数 f(x)在定义域上的最小值.
[解] f′(x)=cos x-xsin x-cos x=-xsin x. 令 f′(x)=0,得 x=kπ(k∈N*). 当 x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时 f′(x)<0; 当 x∈((2k+1)π,(2k+2)π)(k∈N)时,sin x<0,此时 f′(x)>0. 故 f(x)的单调递减区间为(2kπ,(2k+1)π)(k∈N),单调递增区 间为((2k+1)π,(2k+2)π)(k∈N).
ppt精选
13
[解] (1)f′(x)=x2+2x+a,方程 x2+2x+a=0 的判别式 Δ=4 -4a,
∴当 a≥1 时,Δ≤0,∴f′(x)≥0, 此时 f(x)在(-∞,+∞)上单调递增.
当 a<1 时,方程 x2+2x+a=0 的两根为-1± 1-a,
当 x∈(-∞,-1- 1-a)时,f′(x)>0,此时 f(x)单调递增,
[解析] ∵f′(x)=6x2-12x=6x(x-2), 由 f′(x)=0,得 x=0 或 x=2. ∵f(0)=m,f(2)=-8+m,f(-2)=-40+m, 有 f(0)>f(2)>f(-2). ∴m=3,最小值为 f(-2)=-37. [答案] -37
ppt精选
9
4.(2014·新课标Ⅱ)若函数 f(x)=kx-ln x 在区间(1,+∞)上单 调递增,则 k 的取值范围是________.
(江苏专版)2019届高考数学一轮复习第二章基本初等函数、导数的应用第1讲函数及其表示课件文
2x+a,x<1, 1.已知实数 a≠0,函数 f(x)= 若 f(1-a) -x-2a,x≥1, 3
- 4 . =f(1+a),则 a 的值为________
[解析] 当 a>0 时,1-a<1,1+a>1, 由 f(1-a)=f(1+a)可得 2-2a+a=-1-a-2a, 3 解得 a=- ,不合题意; 2 当 a<0 时,1-a>1,1+a<1,
x(x+4),x≥0, 2 .已知函数 f(x) = 则 f(1) + f( - 3) = x(x-4),x<0,
26 ________.
[解析] f(1)=1×5=5,f(-3)=-3×(-3-4)=21, 故 f(1)+f(-3)=5+21=26.
3 . 以 下 给 出的 对 应是 从集 合 A 到 B 的映 射 的序 号 为
④集合 A={x|x 是新华中学的班级},集合 B={x|x 是新华中 学的学生},对应法则 f:每一个班级都对应班里的学生.
[解析] 由于新华中学的每一个班级里的学生都不止一个,即 一个班级对应的学生不止一个,所以④不是从集合 A 到集合 B 的映射.
必明辨的 2 个易错点 (1)对相等函数的概念理解不清致误. (2)对分段函数意义理解不清致误.
y=f(x),x∈A . 为从集合 A 到集合 B 的一个函数.记作_________________
(2)函数的定义域、值域 在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取值范围 A 叫
定义域 ;与 x 的值相对应的 y 值叫做函数值, 做函数的__________ 值域 函数值的集合{f(x)|x∈A}叫做函数的__________ .显然,值
√
近年届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性演练直击高考文(20
(江苏专版)2019届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性分层演练直击高考文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性分层演练直击高考文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性分层演练直击高考文的全部内容。
第11讲导数与函数的单调性1.函数f(x)=x3-15x2-33x+6的单调减区间为________.[解析] 由f(x)=x3-15x2-33x+6得f′(x)=3x2-30x-33,令f′(x)〈0,即3(x-11)(x+1)<0,解得-1<x〈11,所以函数f(x)的单调减区间为(-1,11).[答案] (-1,11)2.(2018·苏中八校学情调查)函数f(x)=x-ln x的单调递减区间为________.[解析]函数的定义域是(0,+∞),且f′(x)=1-错误!=错误!,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).[答案](0,1)3.(2018·长春调研)已知函数f(x)=错误!x3+ax+4,则“a>0”是“f(x)在R上单调递增”的________条件.[解析] f′(x)=32x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.[答案] 充分不必要4.(2018·郑州第一次质量预测)已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是________.[解析]依题意得,当x〉0时,f′(x)〉0,f(x)是增函数;当x<0时,f′(x)〈0,f (x)是减函数.又f(-3)=f(5)=1,因此不等式f(x)〈1的解集是(-3,5).[答案] (-3,5)5.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=________.[解析] 设f(x)=x3-3x+c,对f(x)求导可得,f′(x)=3x2-3,令f′(x)=0,可得x=±1,易知f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f(1)=1-3+c=0,可得c=2;若f(-1)=-1+3+c=0,可得c=-2.[答案]-2或26.若函数f(x)=错误!x3-错误!x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.[解析]因为f(x)=错误!x3-错误!x2+ax+4,所以f′(x)=x2-3x+a,又函数f(x)恰在[-1,4]上单调递减,所以-1,4是f′(x)=0的两根,所以a=(-1)×4=-4.[答案] -47.已知函数f(x)=-错误!x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.[解析]由题意知f′(x)=-x+4-错误!=错误!=-错误!,由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1〈t+1或t〈3<t+1,得0<t〈1或2〈t<3。
2019届高考数学(文科)江苏版1轮复习课件:第2章 基本初等函数、导数的应用 10 第10讲 导数的概念与运算
x
(1,1) . 处的切线垂直,则 P 的坐标为________
【解析】 (1)当 x>0 时,-x<0,则 f(-x)=ex 1+x.又 f(x)
-
ex 为偶函数,所以 f(x)=f(-x)= +x,所以当 x>0 时,f′(x) e =ex 1+1,则曲线 y=f(x)在点(1,2)处的切线的斜率为 f′(1)
(2,+∞) . 2.若 f(x)=x2-2x-4ln x,则 f′(x)>0 的解集为__________
4 [解析] 由题意 x>0,且 f′(x)=2x-2- . x 4 令 f′(x)>0,则 2x-2- >0,所以 2x2-2x-4>0, x 解得 x<-1 或 x>2,又 x>0,所以 x>2.
3 sin x - - 3 (2)因为 y=x +x + 2 =x +x 2+sin x·x 2, x
3
-
3 2
所以 y′=(x +x +sin x·x 2)′
-
3
-
3 2
3 -5 - - =3x - x 2+cos x·x 2+(-2x 3)sin x 2
2
cos x 2sin x 3 =3x - 5 + x2 - x 3 . 2 x
【解】
1 1 x (1)y′=(e ·ln x)′=e ln x+e · =e ln x+x. x
x x x 3
1 (2)因为 y=x +1+ 2, x 2 所以 y′=3x - 3. x
2
x 1 x (3)因为 y=-sin -cos2= sin x, 2 2 1 1 1 sin x 所以 y′=2 ′=2(sin x)′=2cos x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据函数单调性确定参数范围的方法 (1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则 区间(a,b)是相应单调区间的子集. (2)转化为不等式的恒成立问题,即“若函数单调递增,则 f′(x)≥0;若函数单调递减,则 f′(x)≤0”来求解.
已知函数 f(x)=ln x,g(x)=12ax2+2x(a≠0). (1)若函数 h(x)=f(x)-g(x)存在单调递减区间,求 a 的取值范 围; (2)若函数 h(x)=f(x)-g(x)在[1,4]上单调递减,求 a 的取值 范围.
1.函数 f(x)=ex-x 的单调递增区间是__(0_,__+__∞__)___. [解析] 因为 f(x)=ex-x,所以 f′(x)=ex-1, 由 f′(x)>0,得 ex-1>0,即 x>0.
2.函数 f(x)=sin x+kx 在(0,π)上是增函数,则实数 k 的取 值范围为__k_≥__1___. 解析:因为 f′(x)=cos x+k≥0, 所以 k≥-cos x,x∈(0,π)恒成立. 当 x∈(0,π)时,-1<-cos x<1, 所以 k≥1.
【解】 (1)函数 f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调
递增,等价于 f′(x)=1-23cos 2x+acos x=-43cos2x+acos x+53
≥0 在(-∞,+∞)恒成立.设 cos x=t,则 g(t)=-43t2+at+53
g(1)=-43+a+53≥0
由函数的单调性研究参数问题(高频考点) (1)若函数 f(x)=x-13sin 2x+asin x 在(-∞,+∞)单 调递增,则 a 的取值范围是________. (2)已知函数 g(x)=13x3-12ax2+2x. ①若 g(x)在(-2,-1)内为减函数,求实数 a 的取值范围; ②若 g(x)在区间(-2,-1)内不单调,求实数 a 的取值范围.
f(x)的单调递增区间是__-__π_,__-__π2__和___0_,__π2___.
【解析】 (1)y=12x2-ln x, y′=x-1x=x2-x 1 =(x-1)x(x+1)(x>0). 令 y′<0,得 0<x<1, 所以单调递减区间为(0,1).
(2)f′(x)=sin x+xcos x-sin x=xcos x, 令 f′(x)=xcos x>0,
a≤-3,
即实数 a 的取值范围为(-∞,-3].
②因为 g(x)在(-2,-1)内不单调,g′(x)=x2-ax+2,
-2<a2<-1, 所以 g′(-2)·g′(-1)<0 或 Δ >0,
g′(-2)>0, g′(-1)>0.
由 g′(-2)·g′(-1)<0,得(6+2a)·(3+a)<0,无解.
必明辨的 1 个易错点 函数 f(x)在(a,b)内单调递增,则 f′(x)≥0;f′(x)>0 是 f(x)在 (a,b)内单调递增的充分不必要条件.
1.已知函数 f(x)=x3-3x-1,则 f(x)的单调递减区间是 (_-__1_,__1_)_. [解析] 因为 f(x)=x3-3x-1, 所以 f′(x)=3x2-3, 令 f′(x)<0 即 3x2-3<0,
第二章 基本初等函数、导数的应用
第11讲 导数与函数的单调性
函数的单调性 在(a,b)内可导函数 f(x),f′(x)在(a,b)任意子区间内都不 恒等于 0. f′(x)≥0⇔f(x)在(a,b)上为____增_函__数___. f′(x)≤0⇔f(x)在(a,b)上为____减_函__数___.
解得-1<x<1, 所以 f(x)的单调递减区间为(-1,1).
2.已知 f(x)=x3-ax 在[1,+∞)上是增函数,则 a 的最大值 是____3 ____. [解析] f′(x)=3x2-a≥0,即 a≤3x2, 又因为 x∈[1,+∞), 所以 a≤3,即 a 的最大值是 3.
求函数的单调区间 (1)函数 y=12x2-ln x 的单调递减区间为__(_0_,_1_)__. (2)已知定义在区间(-π,π)上的函数 f(x)=xsin x+cos x,则
求函数 f(x)=ln x-12x2+x-12的单调区间.
解:因为 f(x)=ln x-12x2+x-12,
且定义域为(0,+∞),
所以 f′(x)=1x-x+1=-(x-1-2
5)(x-1+2 x
5) .
令 f′(x)=0,所以 x1=1+2 5,x2=1-2 5(舍去). 当 x∈(0,1+2 5)时,f′(x)>0; 当 x∈(1+2 5,+∞)时,f′(x)<0, 所以函数 f(x)的单调递增区间为(0,1+2 5), 单调递减区间为(1+2 5,+∞).
-2<a2<-1,
-4<a<-2,
由 Δ >0,
a2-8>0, 得
g′(-2)>0, 6+2a>0,
g′(-1)>0, 3+a>0,
-4<a<-2, 即a>2 2或a<-2 2,解之得-3<a<-2 2).
≥0 在[-1,1]恒成立,所以
,
g(-1)=-43-a+35≥0
解得-13≤a≤13.故填-31,13.
(2)①因为 g′(x)=x2-ax+2,且 g(x)在(-2,-1)内为减函数,
所以 g′(x)≤0,即 x2-ax+2≤0 在(-2,-1)内恒成立,
所以g′(-2)≤0,即4+2a+2≤0,解之得 g′(-1)≤0, 1+a+2≤0,
则其在区间(-π,π)上的解集为-π,-π2和0,π2, 即 f(x)的单调递增区间为-π,-π2和0,π2.
求可导函数单调区间的一般步骤和方法 (1)确定函数 f(x)的定义域; (2)求 f′(x),令 f′(x)=0,求出它在定义域内的一切实数根; (3)把函数 f(x)的间断点(即 f(x)的无定义点)的横坐标和上面 的各实数根按由小到大的顺序排列起来,然后用这些点把函 数 f(x)的定义区间分成若干个小开区间; (4)确定 f′(x)在各个开区间内的符号,根据 f′(x)的符号判定函 数 f(x)在每个相应小开区间内的增减性.