2016高考三角函数专题测试题 及答案
2016理科数学高考真题分类第三单元 三角函数
第三单元 三角函数C1 角的概念及任意角的三角函数C2 同角三角函数的基本关系式与诱导公式5.C2、C6[2016·全国卷Ⅲ] 若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825C .1 D.16255.A [解析] cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+4³341+⎝⎛⎭⎫342=6425. 16.C2,C7,C8[2016·山东卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan B cos A.(1)证明:a +b =2c ; (2)求cos C 的最小值.16.解:(1)证明:由题意知2(sin A cos A +sin B cos B )=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B . 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab =a 2+b 2-a +b 222ab=38(a b +b a )-14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.C3 三角函数的图象与性质 5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.9.C3[2016·江苏卷] 定义在区间[0,3π]上的函数y =sin 2x 的图像与y =cos x 的图像的交点个数是________.9.7 [解析] 方法一:令sin 2x =cos x ,即2sin x cos x =cos x ,解得cos x =0或sin x =12, 即x =k π+π2或x =2k π+π6或x =2k π+56π(k ∈Z ),又x ∈[0,3π],故x =π2,3π2,5π2或x =π6,5π6,13π6,17π6,共7个解,故两个函数的图像有7个交点. 7个.3.C3[2016·四川卷] 为了得到函数y =sin(2x -π3)的图像,只需把函数y =sin 2x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度3.D [解析] 由题可知,y =sin ⎝⎛⎭⎫2x -π3=sin 2⎝⎛⎭⎫x -π6,则只需把y =sin 2x 的图像向右平移π6个单位长度.7.C3[2016·全国卷Ⅱ] 若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图像的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )7.B [解析] 平移后的图像对应的解析式为y =2sin 2⎝⎛⎭⎫x +π12,令2⎝⎛⎭⎫x +π12=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ). 7.C7,C3[2016·山东卷] 函数f (x )=(3sin x +cos x )·(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 7.B [解析] f (x )=2sin x cos x -3sin 2x +3cos 2x =sin 2x +3cos 2x =2sin(2x +π3),故T =2π2=π.5.C3[2016·浙江卷] 设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关5.B [解析] 若b =0,则f (x )=sin 2x +c =1-cos 2x 2+c =-12cos 2x +12+c 的最小正周期是π;若b ≠0,则f (x )=sin 2x +b sin x +c 的最小正周期是2π,故选B.C4 函数sin()y A x ωϕ=+的图象与性质7.C4[2016·北京卷] 将函数y =sin (2x -π3)图像上的点P (π4,t )向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图像上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π37.A [解析] 因为P (π4,t )在函数y =sin (2x -π3)的图像上,所以t =sin (2³π4-π3)=sin π6=12.因为s >0,y =sin (2x -π3)=sin 2(x -π6),所以函数y =sin (2x -π3)的图像至少向左平移π6个单位长度可以得到函数y =sin 2x 的图像,所以s 的最小值为π6.12.C4[2016·全国卷Ⅰ] 已知函数f (x )=sin(ωx +φ)(ω>0,|φ|≤π2),x =-π4为f (x )的零点,x =π4为y =f (x )图像的对称轴,且f (x )在π18,5π36单调,则ω的最大值为( )A .11B .9C .7D .512.B [解析] 由已知可得-π4ω+φ=k π,k ∈Z ,π4ω+φ=m π+π2,m ∈Z ,两式相加,得2φ=(k +m )π+π2.因为|φ|≤π2,所以k +m =0或k +m =-1,即φ=±π4,两式相减得ω=2(m -k )+1,即ω为正奇数.因为函数f (x )在区间(π18,5π36)单调,所以只要该区间位于函数f (x )图像的两条相邻对称轴之间即可,且5π36-π18≤12³2πω,即ω≤12.(1)当φ=π4时,f (x )=sin (ωx +π4),则k π-π2≤π18ω+π4且5π36ω+π4≤k π+π2,k ∈Z ,解得36k -272≤ω≤36k +95.由于ω≤12,故k 最大取1,此时4.5≤ω≤9,此时ω的最大值为9.(2)当φ=-π4时,f (x )=sin (ωx -π4),则k π-π2≤π18ω-π4且5π36ω-π4≤k π+π2,k ∈Z ,解得36k -92≤ω≤36k +275.由于ω≤12,故k 最大取0,此时ω≤275,此时ω的最大值为5.综上可知,ω的最大值为9. 14.C4[2016·全国卷Ⅲ] 函数y =sin x -3cos x 的图像可由函数y =sin x +3cos x 的图像至少向右平移________个单位长度得到.14.2π3 [解析] 函数y =sin x -3cos x =2sin (x -π3)的图像可由函数y =sin x +3cosx =2sin (x +π3)的图像至少向右平移2π3个单位长度得到.10.C4[2016·浙江卷] 已知2cos 2x +sin 2x =A sin (ωx +φ)+b (A >0),则A =________,b =________.10.2 1 [解析] 2cos 2x +sin 2x =sin 2x +cos 2x +1=2sin(2x +π4)+1,故A =2,b=1.12.C4,F3[2016·上海卷] 在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线y =1-x 2上一个动点,则BP →²BA →的取值范围是________.12.[0,1+2] [解析] 由题意得y =1-x 2表示以原点为圆心,1为半径的上半圆,设P (cos α,sin α),α∈[0,π],则BA →=(1,1),BP →=(cos α,sin α+1),所以BP →²BA →=cos α+sin α+1=2sin(α+π4)+1,因为α∈[0,π],所以0≤BP →²BA →≤1+ 2.13.C4[2016·上海卷] 设a ,b ∈R ,c ∈[0,2π).若对任意实数x 都有2sin(3x -π3)=a sin(bx +c ),则满足条件的有序实数组(a ,b ,c )的组数为________.13.4 [解析] 根据题意a =±2,b =±3.若a =2,则当b =3时,c =5π3,当b =-3时,c =4π3;若a =-2,则当b =3时,c =2π3,当b =-3时,c =π3.所以满足条件的有序实数组(a ,b ,c )的组数为4.C5 两角和与差的正弦、余弦、正切15.C5,C8[2016·北京卷] 在△ABC 中,a 2+c 2=b 2+2ac . (1)求∠B 的大小;(2)求2cos A +cos C 的最大值. 15.解:(1)由余弦定理及题设得 cos B =a 2+c 2-b 22ac =2ac 2ac =22.又因为0<∠B <π,所以∠B =π4.(2)由(1)知∠A +∠C =3π4.2cos A +cos C =2cos A +cos 3π4-A=2cos A -22cos A +22sin A =22cos A +22sin A =cos A -π4.因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1.15.C8、C5[2016·江苏卷] 在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos A -π6的值.15.解:(1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-452=35,由正弦定理知AC sin B =ABsin C ,所以AB =AC ²sin C sin B =6³2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos(B +π4)=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45³22+35³22=-210.因为0<A <π,所以sin A =1-cos 2A =7210,因此cos(A -π6)=cos A cos π6+sin A sin π6=-210³32+7210³12=72-620.C6 二倍角公式5.C2、C6[2016·全国卷Ⅲ] 若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825C .1 D.16255.A [解析] cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+4³341+⎝⎛⎭⎫342=6425. 11.C6[2016·四川卷] cos 2π8-sin 2π8=________.11.22 [解析] 由题可知,cos 2π8-sin 2π8=cos π4=22. 9.C6[2016·全国卷Ⅱ] 若cos (π4-α)=35,则sin 2α=( )A.725B.15 C .-15 D .-7259.D [解析] ∵cos (π4-α)=35,∴sin 2α=cos (π2-2α)=2cos 2(π4-α)-1=-725. 7.C6,C7[2016·上海卷] 方程3sin x =1+cos 2x 在区间[0,2π]上的解为________. 7.π6或5π6[解析] 由3sin x =1+cos 2x ,得3sin x =2-2sin 2x ,所以2sin 2x +3sin x -2=0,解得sin x =12或sin x =-2(舍去),所以原方程在区间[0,2π]上的解为π6或5π6.C7 三角函数的求值、化简与证明7.C7,C3[2016·山东卷] 函数f (x )=(3sin x +cos x )·(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 7.B [解析] f (x )=2sin x cos x -3sin 2x +3cos 2x =sin 2x +3cos 2x =2sin(2x +π3),故T =2π2=π.16.C2,C7,C8[2016·山东卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan B cos A.(1)证明:a +b =2c ; (2)求cos C 的最小值.16.解:(1)证明:由题意知2(sin A cos A +sin B cos B )=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B . 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-a +b 222ab=38(a b +b a )-14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.7.C6,C7[2016·上海卷] 方程3sin x =1+cos 2x 在区间[0,2π]上的解为________. 7.π6或5π6[解析] 由3sin x =1+cos 2x ,得3sin x =2-2sin 2x ,所以2sin 2x +3sin x -2=0,解得sin x =12或sin x =-2(舍去),所以原方程在区间[0,2π]上的解为π6或5π6.C8 解三角形15.C5,C8[2016·北京卷] 在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值. 15.解:(1)由余弦定理及题设得 cos B =a 2+c 2-b 22ac =2ac 2ac =22.又因为0<∠B <π,所以∠B =π4.(2)由(1)知∠A +∠C =3π4.2cos A +cos C =2cos A +cos 3π4-A=2cos A -22cos A +22sin A=22cos A +22sin A =cos A -π4.因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1.14.C8、E6[2016·江苏卷] 在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.14.8 [解析] 方法一:∵sin A =2sin B sin C ,sin A =sin(B +C )=sin B cos C +cos B sin C ,∴sin B cos C +cos B sin C =2sin B sin C ,两边同除以cos B cos C ,可得tan B +tan C =2tan B tan C ,tan A tan B tan C =-tan(B +C )tan B tan C =-tan B +tan C1-tan B tan C²tan B tan C =2(tan B tan C )2tan B tan C -1,由三角形为锐角三角形得tan B >0,tan C >0,tan A =tan B +tan Ctan B tan C -1>0,即tan B tan C -1>0.令tan B tan C -1=t (t >0),则tan A tan B tan C =2(t +1)2t =2t +1t+2≥8,当t =1,即tan B tan C =2时取等号.方法二:同方法一可得tan B +tan C =2tan B tan C , 又tan A +tan B +tan C =tan A +(1-tan B tan C )·tan(B +C )=tan A -tan A +tan A tan B tan C =tan A tan B tan C ,所以tan A tan B tan C =tan A +tan B +tan C =tan A +2tan B tan C ≥22tan A tan B tan C ⇒tan A tan B tan C ≥8,当且仅当tan A =2tan B tan C =4时取等号.15.C8、C5[2016·江苏卷] 在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos A -π6的值.15.解:(1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-452=35,由正弦定理知AC sin B =ABsin C ,所以AB =AC ²sin C sin B =6³2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos(B +π4)=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45³22+35³22=-210.因为0<A <π,所以sin A =1-cos 2A =7210,因此cos(A -π6)=cos A cos π6+sin A sin π6=-210³32+7210³12=72-620.17.C8[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.17.解:(1)由已知及正弦定理,得 2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C , 可得cos C =12,所以C =π3.(2)由已知,得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25, 所以△ABC 的周长为5+7.8.C8[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-310108.C [解析] 如图所示,作AD ⊥BC 交BC 于点D ,设BC =3,则AD =BD =1,AB=2,AC = 5.由余弦定理得32=(2)2+(5)2-2³2³5³cos A ,解得cos A =-1010.13.C8[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.13.2113 [解析] ∵cos A =45,cos C =513,且A ,C 为三角形的内角,∴sin A =35,sin C =1213, ∴sin B =sin(A +C )=sin A cos C +cos A sin C =6365.由正弦定理得b sin B =a sin A ,解得b =2113.16.C2,C7,C8[2016·山东卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A.(1)证明:a +b =2c ; (2)求cos C 的最小值.16.解:(1)证明:由题意知2(sin A cos A +sin B cos B )=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B . 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab =a 2+b 2-a +b 222ab=38(a b +b a )-14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.3.C8[2016·天津卷] 在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .43.A [解析] 设AC =x ,由余弦定理得cos 120°=x 2+9-132·x ·3=-12,则x 2-4=-3x ⇒x 2+3x -4=0,解得x =1或x =-4(舍),∴AC =1.16.C8[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.16.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以 B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B , 所以A =2B .(2)由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B .又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4. 9.C8[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________. 9.733 [解析] 利用余弦定理可求得最大边所对角的余弦值为32+52-722³3³5=-12,所以此角的正弦值为32,设外接圆半径为R ,则由正弦定理得2R =732,所以R =733. C9 单元综合17.C9[2016·四川卷] 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b=sin C c. (1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=65bc ,求tan B . 17.解:(1)证明:根据正弦定理,可设a sin A =b sin B =c sin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C ,代入cos A a +cos B b =sin C c 中,有 cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C .(2)由b 2+c 2-a 2=65bc 及余弦定理,得 cos A =b 2+c 2-a 22bc =35, 所以sin A =1-cos 2A =45. 由(1)知,sin A sin B =sin A cos B +cos A sin B ,所以45sin B =45cos B +35sin B , 故tan B =sin B cos B=4. 15.C9[2016·天津卷] 已知函数f (x )=4tan x sin (π2-x )cos (x -π3)- 3. (1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间[-π4,π4]上的单调性. 15.解:(1)f (x )的定义域为{x|x ≠π2+k π,k ∈Z}.f (x )=4tan x cos x cos (x -π3)-3=4sin x cos (x -π3)-3=4sin x (12cos x +32sin x )-3=2sin x cos x +23sin 2x -3=sin 2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin (2x -π3), 所以f (x )的最小正周期T =2π2=π. (2)令z =2x -π3,函数y =2sin z 的单调递增区间是[-π2+2k π,π2+2k π],k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z . 设A =[-π4,π4],B ={x|-π12+k π≤x ≤5π12+k π},k ∈Z ,易知A ∩B =[-π12,π4]. 所以当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上单调递增,在区间[-π4,-π12)上单调递减.6.[2016·大理一模] 函数f (x )=sin 2x -sin ⎝⎛⎭⎫2x +π3的最小值为( ) A .0 B .-1 C .- 2 D. -26.B [解析] f (x )=sin 2x -12sin 2x -32cos 2x =12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3,故所求最小值为-1.11.[2016·宿州一检] 函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图像如图K161所示,为了得到函数y =cos ωx 的图像,只需把函数y =f (x )的图像( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度 11.D [解析] 根据已知得14³2πω=7π12-π3=π4,解得ω=2,又f ⎝⎛⎭⎫7π12=sin ⎝⎛⎭⎫2³7π12+φ=-1,所以φ=2k π+3π2-7π6=2k π+π3,k ∈Z .因为|φ|<π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫2x +π3,只要把函数y =f (x )的图像向左平移π12个单位长度,便可得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π3=sin ⎝⎛⎭⎫2x +π2=cos 2x 的图像. 5.[2016·宜宾诊断] 已知在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若sin(B-A )+sin(B +A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( ) A.334 B.736C.213D. 334或7365.D [解析] 由sin(B -A )+sin(B +A )=3sin 2A ,得2sin B cos A =6sin A cos A ,所以cosA =0或sinB =3sin A .若cos A =0,则A =π2,在Rt △ABC 中,C =π3,所以b =c tan C =213,此时△ABC 的面积S =12bc =12³213³7=736;若sin B =3sin A ,即b =3a ,由余弦定理得7=a 2+9a 2-2·a ·3a ·12,得a =1,所以b =3,此时△ABC 的面积S =12ab sin C =12³1³3³32=334. 15.[2016·贵阳模拟] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ).(1)求角B 的大小;(2)求函数f (x )=2cos 2x +cos(2x -B )在区间⎣⎡⎦⎤0,π2上的最小值及对应x 的值. 15.解:(1)由已知得b cos A =()2c +a cos ()π-B ,即sin B cos A =-()2sin C +sin A cos B ,即sin ()A +B =-2sin C cos B ,∴sin C =-2sin C cos B , ∴cos B =-12,即B =2π3. (2)f ()x =2cos 2x +cos 2x cos 2π3+sin 2x sin 2π3= 32cos 2x +32sin 2x =3sin ⎝⎛⎭⎫2x +π3, 由x ∈⎣⎡⎦⎤0,π2知2x +π3∈⎣⎡⎦⎤π3,4π3. 当2x +π3=4π3,即x =π2时,f ⎝⎛⎫π2=3³⎝⎛⎭⎫-32=-32, 所以函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为-32,此时x =π2. 17.[2016·安庆二模] 如图K183所示,D 是直角三角形ABC 斜边BC 上一点,AC =3DC .(1)若∠DAC =30°,求角B 的大小;(2)若BD =2DC ,且AD =22,求DC 的长.图K18417.解:(1)在△ADC 中,由AC sin ∠ADC =DC sin ∠DAC,及AC =3DC , 得sin ∠ADC =3sin ∠DAC =32. 又∠ADC =B +∠BAD =B +60°>60°,所以∠ADC =120°.于是C =180°-120°-30°=30°,所以B =60°.(2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,AB =6x .于是sin B =AC BC =33,所以cos B =63. 在△ABD 中, AD 2=AB 2+BD 2-2AB ·BD cos B ,即(22)2=6x 2+4x 2-2³6x ²2x ²63=2x 2 ,得x =2. 故DC =2.。
2016-2019年高考真题三角函数解答题全集(含详细解析)
2016-2019年高考真题三角函数解答题全集(含详细解析)1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值.11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长.23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积.28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A =.(1)求B ; (2)已知1cos 3A =,求sin C 的值.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性. 38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.2016-2019年高考真题三角函数解答题全集(含详细解析)参考答案与试题解析1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.【解答】解:22()2sin 4cos 11cos22(1cos2)13cos2f x x x x x x =-+=--++=-. (1)()f x 的最小正周期22T ππ==; (2)g ()()3cos(2)3cos 22x xx f x ==-=-,[0x ∈,]3π,3cos [3x ∴-∈-,3]2-.即()g x 在区间[0,]3π的最大值为32-,最小值为3-.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >,cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a =,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<, 可得ABC ∆面积13sin 23S a π==∈. 3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值. 【解答】解(Ⅰ)在三角形ABC 中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得43a b =,23a c =,由余弦定理可得222222416199cos 22423a a a ac b B ac aa +-+-===-.(Ⅱ)由(Ⅰ)得sin B ,从而sin 22sin cos B B B ==, 227cos2cos sin 8BB B =-=-,故71sin(2)sin 2cos cos2sin 66682B B B πππ+=+=-⨯=. 4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.【解答】解:(1)由()sin f x x =,得 ()sin()f x x θθ+=+, ()f x θ+为偶函数,∴()2k k Z πθπ=+∈, [0θ∈,2)π,∴2πθ=或32πθ=, (2)22[()][()]124y f x f x ππ=+++ 22sin ()sin ()124x x ππ=+++1cos(2)1cos(2)6222x x ππ-+-+=+11(cos2cos sin 2sin sin 2)266x x x ππ=---3sin 214x x =+)16x π=-+, x R ∈,∴sin(2)[1,1]6x π-∈-,∴)1[16y x π=-+∈, ∴函数22[()][()]124y f x f x ππ=+++的值域为:[1. 5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.【解答】解:(Ⅰ)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(Ⅱ)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin c bC B=,∴5sin 2sin 7c BC b=== b c >,B C ∴>,C ∴为锐角,11cos 14C ∴=, sin()sin cos cos sin B C B C B C ∴-=-111()142=--=. 6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 【解答】解:(1)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c . 3a c =,b =,2cos 3B =, ∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得c =. (2)sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=,22sin cos 1B B +=,sin B ∴,cos B =sin()cos 2B B π∴+==. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.【解答】解:(1)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(2)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin a bA B =,3sin 2sin 7a BA b∴===,sin()sin()sin B C A A π∴+=-==8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .【解答】解:(1)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c . 设22(sin sin )sin sin sin B C A B -=-C .则222sin sin 2sin sin sin sin sin B C B C A B C +-=-,∴由正弦定理得:222b c a bc +-=,2221cos 222b c a bc A bc bc +-∴===,0A π<<,3A π∴=.(2)2b c +=,3A π=,∴sin 2sin A B C +=,∴2sin()2sin 3C C π+-=解得sin()6C π-=64C ππ∴-=,46C ππ=+,1sin sin()sin cos cos sin 464646222C ππππππ∴=+=+=⨯=. 9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .【解答】证明:(1)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,∴由正弦定理得:22sin sin sin a b cR A B C====, sin 2aA ∴=,sin 2b B =,sin 2c C =,222(sin sin )()sin A C a b B -=-,222()()442a cb a b ∴-=-,化简,得:222a b c ab +-=, 故222a b c ab +-=. 解:(2)222a b c ab +-=,2221cos 222a b c ab C ab ab +-∴===,解得3C π=,32sin 23c C ∴===. 10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值. 【解答】解:(Ⅰ)在ABC ∆中,由正弦定理得sin sin a bA B=,得sin sin b A a B =, 又sin cos()6b A a B π=-.sin cos()6a B a B π∴=-,即1sin cos()cos cos sin sin sin 6662B B B B B B πππ=-=+=+,tan B ∴又(0,)B π∈,3B π∴=.(Ⅱ)在ABC ∆中,2a =,3c =,3B π=,由余弦定理得b ==sin cos()6b A a B π=-,得sin A =,a c <,cosA ∴=,sin 22sin cos A A A ∴==, 21cos22cos 17A A =-=,11sin(2)sin 2cos cos2sin 27A B A B A B ∴-=-=-=11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)a b <,A B ∴<,即A 是锐角, 1cos 7B =-,sin B ∴== 由正弦定理得sin sin a b A B =得7sin 7sin 8a BA b===, 则3A π=.(Ⅱ)由余弦定理得2222cos b a c ac B =+-, 即216449277c c =++⨯⨯⨯,即22150c c +-=, 得(3)(5)0c c -+=, 得3c =或5c =-(舍), 则AC边上的高sin 3h c A ===12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.【解答】解:(1)由22431sin cos sin cos ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,227cos225cos sin ααα∴=-=-; (2)由(1)得,24sin 22sin cos 25ααα==,则sin 224tan 2cos27ααα==-. α,(0,)2πβ∈,(0,)αβπ∴+∈,sin()αβ∴+= 则sin()tan()2cos()αβαβαβ++==-+.tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+∴-=-+==-++.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【解答】解:(1)90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.∴由正弦定理得:sin sin AB BD ADB A =∠∠,即25sin sin 45ADB =∠︒,2sin 45sin 5ADB ︒∴∠==, AB BD <,ADB A ∴∠<∠,cos ADB ∴∠==(2)90ADC ∠=︒,cos sin BDC ADB ∴∠=∠=, 2DC =BC ∴=5==.14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值. 【解答】解:(Ⅰ)角α的顶点与原点O 重合,始边与x 轴非负半轴重合,终边过点3(5P -,4)5-.35x ∴=-,45y =-,||1r OP =,4sin()sin 5y r απα∴+=-=-=; (Ⅱ)由35x =-,45y =-,||1r OP ==,得4sin 5α=-,3cos 5α=-,又由5sin()13αβ+=,得12cos()13αβ+=±,则1235456cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=⨯-+⨯-=-, 或1235416cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=-⨯-+⨯-=. cos β∴的值为5665-或1665.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值.【解答】解:()I 函数21cos2()sin cos 22x f x x x x x -=+=+ 1sin(2)62x π=-+,()f x 的最小正周期为22T ππ==; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32, 可得52[66x ππ-∈-,2]6m π-,即有262m ππ-…,解得3m π…, 则m 的最小值为3π. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.【解答】解:(1)2()sin 22cos f x a x x =+,2()sin 22cos f x a x x ∴-=-+,()f x 为偶函数, ()()f x f x ∴-=,22sin 22cos sin 22cos a x x a x x ∴-+=+, 2sin20a x ∴=, 0a ∴=;(2)()14f π=,2sin2cos ()1124a a ππ∴+=+=,a ∴=,2()22cos 2cos212sin(2)16f x x x x x x π∴+++=++,()1f x =2sin(2)116x π∴++=sin(2)6x π∴+= 2264x k πππ∴+=-+,或52264x k πππ+=+,k Z ∈, 524x k πππ∴=-+,或1324x k ππ=+,k Z ∈, [x π∈-,]π, 1324x π∴=或1924x π=或524x π=-或1124x π=-17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值 【解答】解:(1)若1()3f α=,且[0α∈,]π,则1cos 3α=,则sin 3α==,则111()cos()cos cos sin sin 3333326f ππππαααα-=-=+=⨯+=. (2)函数2213(2)2()cos22cos 2cos 2cos 12(cos )22y f x f x x x x x x =-=-=--=--,1cos 1x -剟,∴当1cos 2x =时,函数取得最小值,最小值为32-. 18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.【解答】解:(1)函数221()cos sin 2f x x x =-+ 1cos22x =+,(0,)x π∈, 由222k x k πππ-剟,解得12k x k πππ-剟,k Z ∈,1k =时,12x ππ剟,可得()f x 的增区间为[2π,)π;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =, 若f (A )0=,即有1cos202A +=, 解得223A π=,即13A π=,由余弦定理可得2222cos a b c bc A =+-, 化为2560c c -+=, 解得2c =或3, 若2c =,则cos 0B =<,即有B 为钝角,2c =不成立, 则3c =,ABC ∆的面积为11sin 5322S bc A ==⨯⨯=. 19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值【解答】(Ⅰ)解:由sin sin a bA B=,得sin sin a B b A =, 又sin 4sin a A b B =,得4sin sin b B a A =, 两式作比得:4a bb a=,2a b ∴=.由222)ac a b c =--,得222b c a +-=,由余弦定理,得2225cos 2b c aA bcac +-===; (Ⅱ)解:由(Ⅰ),可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==. 由(Ⅰ)知,A 为钝角,则B 为锐角,∴cos B = 于是4sin 22sin cos 5B B B ==,23cos212sin 5B B =-=,故43sin(2)sin 2cos cos2sin (55B A B A B A -=-=⨯-= 20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.【解答】解:(Ⅰ)在ABC ∆中,a b >, 故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有22242cos 2536256135b ac ac B =+-=+-⨯⨯⨯=,b ∴=由正弦定理sin sin a bA B=,得sin sin a B A b =b ∴=sin A (Ⅱ)由(Ⅰ)及a c <,得cos A =,12sin 22sin cos 13A A A ∴==, 25cos212sin 13A A =-=-.故125sin(2)sin 2cos cos2sin 44413213226A A A πππ+=+=⨯-=.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【解答】解:(Ⅰ)函数()sin()sin()62f x x x ππωω=-+-sin cos cos sin sin()662x x x πππωωω=---3cos 2x x ωω=-)3x πω=-,又()3sin()0663f πππω=-=,∴63k ππωπ-=,k Z ∈,解得62k ω=+, 又03ω<<, 2ω∴=;(Ⅱ)由(Ⅰ)知,())3f x x π-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数)3y x π-的图象;再将得到的图象向左平移4π个单位,得到)43y x ππ+-的图象,∴函数())12y g x x π=-;当[4x π∈-,3]4π时,[123x ππ-∈-,2]3π,sin()[12x π∴-∈1],∴当4x π=-时,()g x 取得最小值是32-. 22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长. 【解答】解:(1)由三角形的面积公式可得21sin 23sin ABC a S ac B A∆==, 3sin sin 2c B A a ∴=,由正弦定理可得3sin sin sin 2sin C B A A =, sin 0A ≠,2sin sin 3B C ∴=; (2)6cos cos 1B C =, 1cos cos 6B C ∴=, 121cos cos sin sin 632B C B C ∴-=-=-, 1cos()2B C ∴+=-,1cos 2A ∴=, 0A π<<,3A π∴=,2sin sin sin a b c R A B C ===== 2sin sin 22123(23)b c bc B C R R ∴====,8bc ∴=,2222cos a b c bc A =+-, 229b c bc ∴+-=,2()9392433b c cb ∴+=+=+=,b c ∴+=∴周长3a b c ++=23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2s i n ()8s i n 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .【解答】解:(1)2sin()8sin 2BA C +=, sin 4(1cos )B B ∴=-, 22sin cos 1B B +=,2216(1cos )cos 1B B ∴-+=, 2216(1cos )cos 10B B ∴-+-=,216(cos 1)(cos 1)(cos 1)0B B B ∴-+-+=, (17cos 15)(cos 1)0B B ∴--=, 15cos 17B ∴=; (2)由(1)可知8sin 17B =, 1sin 22ABC S ac B ∆==,172ac ∴=, 2222217152cos 2217b ac ac B a c ∴=+-=+-⨯⨯ 22215()2153617154a c a c ac =+-=+--=--=, 2b ∴=.24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….【解答】解:(Ⅰ)())2sin cos 3f x x x x π=--,13(22)sin 22co x x x =+-,1sin 22x x =+, sin(2)3x π=+,22T ππ∴==, ()f x ∴的最小正周期为π,(Ⅱ)[4x π∈-,]4π, 2[36x ππ∴+∈-,5]6π, 1sin(2)123x π∴-+剟,1()2f x ∴-… 25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【解答】解:(1)sin 0A A +=, tan A ∴=0A π<<,23A π∴=, 由余弦定理可得2222cos a b c bc A =+-, 即2128422()2c c =+-⨯⨯-,即22240c c +-=,解得6c =-(舍去)或4c =, 故4c =.(2)2222cos c b a ab C =+-, 1628422cos C ∴=+-⨯⨯,cos C ∴=22cos AC CD C∴===12CD BC ∴=11sin 4222ABC S AB AC BAC ∆=∠=⨯⨯=,12ABD ABC S S ∆∆∴=26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积. 【解答】解:(1)60A ∠=︒,37c a =,由正弦定理可得33sin sin 77C A ==, (2)7a =,则3c =,C A ∴<,22sin cos 1C C +=,又由(1)可得13cos 14C =,131sin sin()sin cos cos sin 142B A C A C A C ∴=+=+=+=11sin 7322ABC S ac B ∆∴==⨯⨯=28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.【解答】解:函数22()sin cos f x x x x =--7cos 2cos22sin(2)6x x x x π=-=+ (Ⅰ)2275()2sin(2)2sin 23362f ππππ=⨯+==, (Ⅱ)2ω=,故T π=, 即()f x 的最小正周期为π, 由72[262x k πππ+∈-+,2]2k ππ+,k Z ∈得: 5[6x k ππ∈-+,]3k ππ-+,k Z ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,k Z ∈. 29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.【解答】解:()2sin cos cos2f x x x x ωωω=+, sin2cos2x x ωω=+,)4x πω=+,由于函数的最小正周期为π, 则:22T ππω==, 解得:1ω=.(2)由(1)得:函数())4f x x π=+,令222()242k x k k Z πππππ-+++∈剟,解得:3()88k x k k Z ππππ-++∈剟, 所以函数的单调递增区间为:3[,]()88k k k Z ππππ-++∈. 30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 【解答】(1)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()sin cos cos sin C A B A B A B =+=+,sin sin cos cos sin sin()B A B A B A B ∴=-=-,由A ,(0,)B π∈,0A B π∴<-<,B A B ∴=-,或()B A B π=--,化为2A B =,或A π=(舍去). 2A B ∴=.()II 解:2cos 3B =,sin B ∴=.21cos cos22cos 19A B B ==-=-,sin A =.2122cos cos()cos cos sin sin ()3927C A B A B A B ∴=-+=-+=-⨯-+=. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A=. (1)求B ; (2)已知1cos 3A =,求sin C 的值.【解答】解:(1)sin 2sin a B A =,2sin sin cos sin A B B B A ∴=,cos B ∴=6B π∴=.(2)1cos 3A =,sin A ∴,11sin sin()sin cos cos sin 23C A B A B A B ∴=+=++⨯=.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 【解答】解:(Ⅰ)221cos2()23sin()sin (sin cos )23sin 1sin 2231sin 22xf x x x x x x x x π-=---=-+=-+sin 212sin(2)13x x x π==-,令222232k x k πππππ--+剟,求得51212k x k ππππ-+剟, 可得函数的增区间为[12k ππ-,5]12k ππ+,k Z ∈. (Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得2sin()13y x π=-+的图象;再把得到的图象向左平移3π个单位,得到函数()2sin 1y g x x ==+的图象,()2sin 166g ππ∴==33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.【解答】(Ⅰ)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()2sin cos B A B A B ∴++=sin sin cos cos sin 2sin cos B A B A B A B ∴++=sin sin cos cos sin sin()B A B A B A B ∴=-=-A ,B 是三角形中的角, B A B ∴=-, 2A B ∴=;(Ⅱ)解:ABC ∆的面积24a S =,∴21sin 24a bc A =, 22sin bc A a ∴=,2sin sin sin sin2B C A B ∴==, sin cos C B ∴=,90B C ∴+=︒,或90C B =+︒, 90A ∴=︒或45A =︒.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.【解答】解:(1)ABC ∆中,4cos 5B =,(0,)B π∈, 3sin 5B ∴=, sin sin AB ACC B=,6235AB ∴==;(2)cos cos()cos()sin sin cos cos A A C B B C B C π==--=-+=-= A 为三角形的内角,sin A ∴=,1cos()sin 62A A A π∴-=+=35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.【解答】解:(Ⅰ)在ABC ∆中,222a c b +=.222a c b ∴+-=.222cos 2a c b B ac +-∴==, 4B π∴=(Ⅱ)由()I 得:34C A π=-,∴3cos cos()4A C A A π++-A A A =A A =+ sin()4A π=+.3(0,)4A π∈, (44A ππ∴+∈,)π,故当42A ππ+=时,sin()4A π+取最大值1,cos A C +的最大值为1.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .【解答】(Ⅰ)证明:在ABC ∆中,cos cos sin A B Ca b c+=, ∴由正弦定理得:cos cos sin sin sin sin A B C A B C+=, ∴cos sin cos sin sin()1sin sin sin sin A B B A A B A B A B++==,sin()sin A B C +=.∴整理可得:sin sin sin A B C =,(Ⅱ)解:22265b c a bc +-=,由余弦定理可得3cos 5A =.4sin 5A =,cos 3sin 4A A = cos cos sin 1sin sin sin AB CA B C +==,cos 1sin 4B B =, tan 4B =.37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性.【解答】解:(1)()4tan sin()cos()23f x x x x ππ=--.2x k ππ∴≠+,即函数的定义域为{|2x x k ππ≠+,}k Z ∈,则1()4tan cos (cos )2f x x x x x =14sin (cos )2x x x =22sin cos x x x =+sin 2cos 2)x x =+--sin 2x x =2sin(2)3x π=-, 则函数的周期22T ππ==; (2)由222232k x k πππππ-<-<+,k Z ∈,得51212k x k ππππ-<<+,k Z ∈,即函数的增区间为(12k ππ-,5)12k ππ+,k Z ∈, 当0k =时,增区间为(12π-,5)12π,k Z ∈, [4x π∈-,]4π,∴此时(12x π∈-,]4π, 由3222232k x k πππππ+<-<+,k Z ∈, 得5111212k x k ππππ+<<+,k Z ∈,即函数的减区间为5(12k ππ+,11)12k ππ+,k Z ∈,当1k =-时,减区间为7(12π-,)12π-,k Z ∈, [4x π∈-,]4π,∴此时[4x π∈-,)12π-,即在区间[4π-,]4π上,函数的减区间为[4π∈-,)12π-,增区间为(12π-,]4π.38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 【解答】解:(Ⅰ)在ABC ∆中,0C π<<,sin 0C ∴≠已知等式利用正弦定理化简得:2cos (sin cos sin cos )sin C A B B A C +=, 整理得:2cos sin()sin C A B C +=, 即2cos sin(())sin C A B C π-+= 2cos sin sin C C C =1cos 2C ∴=, 3C π∴=;(Ⅱ)由余弦定理得221722a b ab=+-, 2()37a b ab ∴+-=,1sin 2S ab C ===6ab ∴=,2()187a b ∴+-=, 5a b ∴+=,ABC ∴∆的周长为5+.39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.【解答】解:(Ⅰ)证明:由tan tan 2(tan tan )cos cos A BA B B A+=+得: sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+; ∴两边同乘以cos cos A B 得,2(sin cos cos sin )sin sin A B A B A B +=+;2sin()sin sin A B A B ∴+=+;即sin sin 2sin A B C +=(1);根据正弦定理,2sin sin sin a b c R A B C ===; ∴sin ,sin ,sin 222a b c A B C R R R ===,带入(1)得:2222a b c R R R +=; 2a b c ∴+=;(Ⅱ)2a b c +=;2222()24a b a b ab c ∴+=++=;22242a b c ab ∴+=-,且244c ab …,当且仅当a b =时取等号; 又a ,0b >; ∴21c ab…; ∴由余弦定理,222223231cos 12222a b c c ab c C ab ab ab +--===-…; cos C ∴的最小值为12. 40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.【解答】解:在ABC ∆中,由BD AC ⊥可得90BDC ∠=︒, 因为E 为BC 的中点,所以12DE CE BC ==, 则:EDC C ∠=∠,由90BDC ∠=︒,可得90C DBC ∠+∠=︒,由90ABC ∠=︒,可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠,而EDC C ∠=∠,所以,EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.【解答】解:()sin 2sin()3f x x x x π==+,∴函数的周期为2T π=,函数的最大值为2,且函数取得最大值时,232x k πππ+=+,即26x k ππ=+,k Z ∈.。
2016年高考数学理真题分类汇编:三角函数 Word版(学生版)
2016年高考数学理试题分类汇编三角函数一、选择题1、(2016年北京高考)将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3π D.t =,s 的最小值为3π2、(2016年山东高考)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π (B )π (C )23π (D )2π3、(2016年四川高考)为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点 (A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度4、(2016年天津高考)在△ABC 中,若AB ,120C ∠= ,则AC = ( )(A )1 (B )2 (C )3 (D )45、(2016年全国I 高考)已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )56、(2016年全国II 高考)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) (A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈7、(2016年全国III 高考)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)16258、(2016年全国III 高考)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )- 9、(2016年浙江高考)设函数2()sin sin f x x b x c =++,则()f x 的最小正周期A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关10、(2016年全国II 高考)若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725-二、填空题1、(2016年上海高考)方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________2、(2016年上海高考)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________3、(2016年四川高考)cos 2π8–sin 2π8= . 4、(2016年全国II 高考)ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = .5、(2016年全国III 高考)函数sin y x x =的图像可由函数sin y x x =的图像至少向右平移_____________个单位长度得到.6、(2016年浙江高考)已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________.三、解答题1、(2016年北京高考) 在∆ABC 中,222+=+a c b .(1)求B ∠ 的大小;(2cos cos A C + 的最大值.2、(2016年山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A+=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.3、(2016年四川高考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B C a b c +=. (I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B .4、(2016年天津高考)已知函数f(x)=4tanxsin(2x π-)cos(3x π-(Ⅰ)求f (x )的定义域与最小正周期;(Ⅱ)讨论f(x)在区间[,44ππ-]上的单调性.5、(2016年全国I 高考)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B +b A c = (I )求C ;(II )若c ABC △=的面积为2ABC △的周长.6、(2016年浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cosB.(I )证明:A =2B ; (II )若△ABC 的面积2=4a S ,求角A 的大小.。
高考真题——三角函数与解三角形真题(加答案)
全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换( 3 题)1.(2015 年1 卷2)o o o osin20cos10cos160sin10=()(A)32(B)32(C)12(D)12【解析】原式= o o o osin20cos10cos20sin10=osin30=12,故选 D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016 年3 卷)(5)若tan 34,则2cos2sin2()(A) 6425(B)4825(C) 1 (D)1625【解析】由tan 34,得34sin,cos55或34sin,cos55,所以2161264cos2sin24252525,故选A.考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016 年2 卷9)若cos π345,则sin2=(A)725(B)15(C)15(D)725【解析】∵cos345,ππ72sin2cos22cos12425,故选D.二、三角函数性质( 5 题)4.(2017年3卷6)设函数πf(x)cos(x),则下列结论错误的是()3A.f(x)的一个周期为2πB.y f(x)的图像关于直线8πx对称3C.f(x)的一个零点为πx D.f(x)在6π(,π)2单调递减【解析】函数πf x cos x的图象可由y cos x向左平移3π个单位得到,3如图可知,f x在π,π2上先递减后递增,D选项错误,故选 D.yO x-65(. 2017 年2 卷14)函数23f x sin x3cos x(x0,)的最大值是.42【解析】2321f x1cos x3cos x cos x3cos x44 23cos1x,x0,,则cos x0,1,当22cos3x时,取得最大值 1.26.(2015 年1 卷8)函数f(x)= cos(x)的部分图像如图所示,则f(x)的单调递减区间为()(A)(1,3),k k k Z44(B)13(2k,2k),k Z44(C)13(k,k),k Z 44(D)13(2k,2k),k Z44【解析】由五点作图知,1+4253+42,解得=,=4,所以f(x)cos(x),4令22,k x k k Z,解得412k<x<432k k Z4(12k,432k),k Z,故选D. 考点:三角函数图像与性质45.(2015 年2 卷10)如图,长方形ABCD 的边AB=2 ,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A、B 两点距离之和表示为x 的函数f(x),则f(x)的图像大致为的运动过程可以看出,轨迹关于直线B.x对称,且f()f(),且轨迹非线型,故选2426.(2016 年1 卷12)已知函数f(x)sin(x+)(0,),x为f(x)的零24点, x为y f(x)图像的对称轴,且f(x)在45,单调,则的最大值为1836(A)11 (B)9 (C)7 (D)5 考点:三角函数的性质三、三角函数图像变换( 3 题)7.(2016 年2 卷7)若将函数y=2sin 2x 的图像向左平移π个单位长度,则平移后图象的对12称轴为(A)kππx k Z (B)26kππx k Z26(C)kππx k Z (D)212kππx k212Z【解析】平移后图像表达式为πy2sin2x,令12ππ2x kπ+,得对称轴方程:122kππx k Z ,故选B.268.(2016 年 3 卷14)函数y sin x3cos x错误!未找到引用源。
16年全国卷三角函数部分试题及答案
16年三角函数部分高考考题整理:(16年1卷)4、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=C.2D.3答案:D14、题已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= 答案:34-(16年Ⅱ卷)3、 函数=sin()y A x ωϕ+的部分图像如图所示,则 A.2sin(2)6y x π=- B.2sin(2)3y x π=- C.2sin(2+)6y x π= D.2sin(2+)3y x π= 答案:A11、 函数π()cos 26cos()2f x x x =+-的最大值为A.4B.5C.6D.7 答案:B15、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =___.答案:2113(16年Ⅲ卷)6、若tanθ=13,则cos2θ= A.45-B.15-C.15D.45 答案:D9、在ABC ∆中,B=4π,BC 边上的高等于31BC ,则=A sin A.310B.10C.5D.10答案:D14、函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到. 答案:3π(16年北京卷)13、在△ABC 中,23A π∠=,,则b c =_________. 答案:116、已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f (x )的单调递增区间.答案:解:依题,)42sin(22cos 2sin 2cos cos sin 2)(π+=+=+=wx wx wx wx wx wx x f (1))(x f 的最小正周期为πππ===w w T 22 1=∴w(1) x y sin =的单调增区间为[22,22ππππ+-k k ](Z k ∈) 令224222πππππ+≤+≤-k x k 得883ππππ+≤≤-k x k )(x f ∴的单调递增区间为[8,83ππππ+-k k ](Z k ∈)。
【福建省】2016届高考数学(理科)-三角函数-专题练习
- 1 - / 4二、填空题:本大题共4小题,每小题6分.8.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,n A B A B 的值为的图象分别交于M ,N 两点,10.设函数ππ()sin()(0,)22f x x ωφωφ=+>-<<,给出以下四个论断:- 2 - / 4①它的图象关于直线π12x =对称; ②它的图象关于点π(,0)3对称; ③它的周期是π; ④它在区间π[,0]6-上是增函数. 以其中两个论断作为条件,余下论断作为结论,写出你认为正确的一个命题________.三、解答题:解答应写出文字说明,证明过程或演算步骤.11.(本小题满分10分)如图,在ABC △中,π3B =,2BC =,点D 在边AB 上,AD DC =,DE AC ⊥,E 为垂足.(Ⅰ)若BCD △的面积为,求CD 的长;212.(本小题满分15分)为进行科学实验,观测小球A ,B 在两条相交成60角的直线型轨道上运动的情况,如图(乙)所示,运动开始前,A 和B 分别距O 点3 m 和1 m ,后来它们同时以每分钟4 m 的速度各沿轨道l 1,l 2按箭头的方向运动.问:(Ⅰ)运动开始前,A ,B 的距离是多少米?(结果保留三位有效数字);(Ⅱ)几分钟后,两个小球的距离最小?13.(本小题满分15分)如图是函数π()sin()(0,0,0)2f x A x A ωϕωϕ=+>><<的部分图象,M ,N 是它与x 轴的两个交点,D ,C 分别为它的最高点和最低点,点(0,1)F 是线段MD 的中点,2π3CDM S ∆=. (Ⅰ)求函数()f x 的解析式; (Ⅱ)在CDM△中,记DMN α∠=,CMN β∠=.证明:sin 2cos sin C αβ=.- 3 - / 4/53sin 3BC BD B =BCD △中,由余弦定理得cos 2BC BD B =sin60,解得中,由正弦定理得sin sin AE A B =6sin cos cos 2AE A DE A ==.解:(Ⅰ)小球开始运动前的距离为:cos607=4t '=.2(34)(14)cos6048t t t -+=- 4 - / 4。
三角函数题型练习(16年高考为主)
三角函数题型练习(16年高考为主)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三角函数题型练习(16高考题为主)1、(2016年全国I 卷高考)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= (A )2(B )3(C )2(D )32、(2016年全国I 卷高考)将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)3、(2016年全国II 卷高考)函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=4、(2016年全国II 卷高考)函数π()cos 26cos()2f x x x =+-的最大值为( )(A )4 (B )5(C )6(D )75、(2016年全国III 卷高考)若 ,则( ) (A )(B ) (C ) (D )6、(2016年全国III 卷高考)在中,,BC 边上的高等于,则(A )(B ) (C ) (D )7、(2016年全国I 卷高考)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= . 8、(2016年全国II 卷高考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 9、(2016年全国III 卷高考)函数的图像可由函数的图像至少向右平移_____________个单位长度得到.10.【2015高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++(Ⅰ)求()f x 最小正周期;(Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.tan 13θ=cos 2θ=45-15-1545ABC △π4B13BC sin A 310105310sin 3cos y x x =-2sin y x =【解析】(Ⅰ)因为x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x 由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.11.【2015高考新课标1,文17】(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =,且a = 求ABC ∆的面积.解:(I )由题设及正弦定理可得22b ac .又a b ,可得2b c ,2a c ,由余弦定理可得2221cos 24a cb B ac. (II )由(1)知22b ac .因为B 90°,由勾股定理得222a c b .故222a c ac ,得2c a .所以ABC 的面积为1.12.【2015高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos A A A 的值;(2)若B ,34a π==,求ABC ∆的面积.解:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sinC A B A B A B=+=+=,所以11sin39225ABCS ab C∆==⨯⨯=.三角函数练习题1、(2016年全国I卷高考)△ABC的内角A、B、C的对边分别为a、b、c.已知a=2c=,2cos3A=,则b=(AB(C)2(D)3【答案】D2、(2016年全国I卷高考)将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A)y=2sin(2x+π4) (B)y=2sin(2x+π3) (C)y=2sin(2x–π4) (D)y=2sin(2x–π3)【答案】D3、(2016年全国II卷高考)函数=sin()y A xωϕ+的部分图像如图所示,则()(A)2sin(2)6y xπ=-(B)2sin(2)3y xπ=-(C)2sin(2+)6y xπ=(D)2sin(2+)3y xπ=【答案】A4、(2016年全国II卷高考)函数π()cos26cos()2f x x x=+-的最大值为()(A)4 (B)5 (C)6 (D)7【答案】B5、(2016年全国III卷高考)若,则()(A)(B)(C)(D)tan13θ=cos2θ=45-15-1545【答案】D6、(2016年全国III 卷高考)在中,,BC 边上的高等于,则(A ) (B(C )(D【答案】D7、(2016年全国I 卷高考)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= . 【答案】43-8、(2016年全国II 卷高考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】21139、(2016年全国III 卷高考)函数的图像可由函数的图像至少向右平移_____________个单位长度 得到. 【答案】10.【2015高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期;(Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.【答案】(Ⅰ)π ;(Ⅱ)最大值为10 【解析】(Ⅰ)因为x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+xABC △π4B13BC sin A 310sin y x x =2sin y x =3π由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.11.【2015高考新课标1,文17】(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且a = 求ABC ∆的面积. 【答案】(I )14(II )1 【解析】试题分析:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac ,根据勾股定理和即可求出c ,从而求出ABC ∆的面积.试题解析:(I )由题设及正弦定理可得22b ac .又a b ,可得2b c ,2a c , 由余弦定理可得2221cos 24a cb B ac. (II )由(1)知22b ac .因为B 90°,由勾股定理得222a c b .故222a c ac ,得2ca .所以ABC 的面积为1.考点:正弦定理;余弦定理;运算求解能力【名师指点】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择合理的变形复方向,本题考查利用正余弦定理解三角形和计算三角形面积,是基础题.12.【2015高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A的值; (2)若B ,34a π==,求ABC ∆的面积.【答案】(1)25;(2)9【解析】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 39225ABC S ab C ∆==⨯⨯=. 【考点定位】1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.【名师指点】本题主要考查三角函数的基本计算以及解三角形应用.根据两角和的正切公式,计算角A 的正切值,利用同角三角函数基本关系式计算得到第一题的结论;根据角A 的正切值计算得到其正弦值,利用正弦定理计算得到边b 的值,根据三角形内角和为180及两角和的正弦公式计算得到角C 的正弦值,有两边一夹角的面积公式计算得到面积.本题属于中等题,主要考查学生三角函数有关公式的正确应用以及正弦定理、余弦定理、面积公式的灵活应用,考查学生基本的计算能力.。
2016广东高考理数大二轮专项训练三角函数的图象与性质1(含答案)
2016广东高考理数大二轮 专项训练 三角函数的图象与性质1(含答案)第1讲 三角函数的图象与性质考情解读 1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性.2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点.1.三角函数定义、同角关系与诱导公式(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x , tan α=yx .各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦.(2)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(3)诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.2.三角函数的图象及常用性质 函数 y =sin xy =cos xy =tan x图象单调性在[-π2+2k π,π2+2k π](k ∈Z )上单调递增;在[π2+2k π,3π2+2k π](k ∈Z )上单调递减 在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:(π2+k π,0)(k ∈Z );对称轴:x =k π(k ∈Z )对称中心: (k π2,0)(k ∈Z ) 3.三角函数的两种常见变换 (1)y =sin x ―————————―→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)―———————―→纵坐标变为原来的A 倍横坐标不变 y =A sin(ωx +φ)(A >0,ω>0).(2)y =sin xy =sin ωx ―———————―→向左(φ>0)或向右(φ<0)平移|φω|个单位y =sin(ωx +φ)―———————―→纵坐标变为原来的A 倍横坐标不变 y =A sin(ωx +φ)(A >0,ω>0).热点一 三角函数的概念、诱导公式及同角三角函数的基本关系例1 (1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ) A .(-12,32)B .(-32,-12) C .(-12,-32)D .(-32,12) (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值为________.思维启迪 (1)准确把握三角函数的定义.(2)利用三角函数定义和诱导公式. 答案 (1)A (2)-34解析 (1)设Q 点的坐标为(x ,y ), 则x =cos 2π3=-12,y =sin 2π3=32.∴Q 点的坐标为(-12,32).(2)原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义, 得tan α=y x =-34,∴原式=-34.思维升华 (1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关. (2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.(1)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝⎛⎭⎫-35,45,则sin 2α+cos 2α+11+tan α=________. (2)已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4 答案 (1)1825(2)D解析 (1)由三角函数定义, 得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝⎛⎭⎫-352=1825. (2)tan θ=cos 34πsin 34π=-cosπ4sin π4=-1,又sin3π4>0,cos 3π4<0, 所以θ为第四象限角且θ∈[0,2π),所以θ=7π4.热点二 函数y =A sin(ωx +φ)的图象及解析式例2 (1)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象解析式为( )A .y =sin 2xB .y =cos 2xC .y =sin(2x +2π3)D .y =sin(2x -π6)(2)若函数y =cos 2x +3sin 2x +a 在[0,π2]上有两个不同的零点,则实数a 的取值范围为________.思维启迪 (1)先根据图象确定函数f (x )的解析式,再将得到的f (x )中的“x ”换成“x -π6”即可.(2)将零点个数转换成函数图象的交点个数. 答案 (1)D (2)(-2,-1]解析 (1)由图知,A =1,3T 4=11π12-π6,故T =π=2πω,所以ω=2,又函数图象过点(π6,1),代入解析式中,得sin(π3+φ)=1,又|φ|<π2,故φ=π6.则f (x )=sin(2x +π6)向右平移π6后,得到y =sin[2(x -π6)+π6)=sin(2x -π6),选D.(2)由题意可知y =2sin(2x +π6)+a ,该函数在[0,π2]上有两个不同的零点,即y =-a ,y =2sin(2x +π6)在[0,π2]上有两个不同的交点.结合函数的图象可知1≤-a <2,所以-2<a ≤-1.思维升华 (1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置. (2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.(1)如图,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|≤π2)与坐标轴的三个交点P 、Q 、R 满足P (2,0),∠PQR =π4,M 为QR 的中点,PM =25,则A 的值为( )A.83 3 B.163 3 C .8D .16(2)若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小正值为( ) A.16 B.14 C.13D.12答案 (1)B (2)D解析 (1)由题意设Q (a,0),R (0,-a )(a >0). 则M (a 2,-a2),由两点间距离公式得,PM =(2-a 2)2+(a 2)2=25,解得a =8,由此得,T 2=8-2=6,即T =12,故ω=π6,由P (2,0)得φ=-π3,代入f (x )=A sin(ωx +φ)得,f (x )=A sin(π6x -π3),从而f (0)=A sin(-π3)=-8,得A =1633.(2)y =tan(ωx +π4)的图象向右平移π6,得到y =tan(ωx +π4-ωπ6)的图象,与y =tan(ωx +π6)重合,得π4-ωπ6=k π+π6,故ω=-6k +12,k ∈Z , ∴ω的最小正值为12.热点三 三角函数的性质例3 设函数f (x )=2cos 2x +sin 2x +a (a ∈R ). (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈[0,π6]时,f (x )的最大值为2,求a 的值,并求出y =f (x )(x ∈R )的对称轴方程.思维启迪 先化简函数解析式,然后研究函数性质(可结合函数简图). 解 (1)f (x )=2cos 2x +sin 2x +a =1+cos 2x +sin 2x +a =2sin(2x +π4)+1+a ,则f (x )的最小正周期T =2π2=π,且当2k π-π2≤2x +π4≤2k π+π2(k ∈Z )时f (x )单调递增,即k π-38π≤x ≤k π+π8(k ∈Z ).所以[k π-3π8,k π+π8](k ∈Z )为f (x )的单调递增区间.(2)当x ∈[0,π6]时⇒π4≤2x +π4≤7π12,当2x +π4=π2,即x =π8时sin(2x +π4)=1.所以f (x )max =2+1+a =2⇒a =1- 2. 由2x +π4=k π+π2得x =k π2+π8(k ∈Z ),故y =f (x )的对称轴方程为x =k π2+π8,k ∈Z .思维升华 函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式; 第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调增区间;(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象;若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)由题意得:f (x )=2sin ωx cos ωx +23sin 2ωx - 3 =sin 2ωx -3cos 2ωx =2sin(2ωx -π3),由周期为π,得ω=1,得f (x )=2sin(2x -π3),函数的单调增区间为2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,整理得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的单调增区间是[k π-π12,k π+5π12],k ∈Z .(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到y =2sin 2x +1的图象,所以g (x )=2sin 2x +1,令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+11π12=59π12.1.求函数y =A sin(ωx +φ)(或y =A cos(ωx +φ),或y =A tan(ωx +φ))的单调区间 (1)将ω化为正.(2)将ωx +φ看成一个整体,由三角函数的单调性求解. 2.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式 (1)A =y max -y min2,B =y max +y min 2.(2)由函数的周期T 求ω,ω=2πT.(3)利用与“五点法”中相对应的特殊点求φ.3.函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点. 4.求三角函数式最值的方法(1)将三角函数式化为y =A sin(ωx +φ)+B 的形式,进而结合三角函数的性质求解. (2)将三角函数式化为关于sin x ,cos x 的二次函数的形式,进而借助二次函数的性质求解. 5.特别提醒进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身.真题感悟1.(2014·辽宁)将函数y =3sin(2x +π3)的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间[π12,7π12]上单调递减B .在区间[π12,7π12]上单调递增C .在区间[-π6,π3]上单调递减D .在区间[-π6,π3]上单调递增答案 B解析 y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -23π).令2k π-π2≤2x -23π≤2k π+π2,k ∈Z ,得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+712π],k ∈Z .令k =0得其中一个增区间为[π12,712π],故B 正确.画出y =3sin(2x -23π)在[-π6,π3]上的简图,如图,可知y =3sin(2x -23π)在[-π6,π3]上不具有单调性,故C ,D 错误.2.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 答案 π解析 ∵f (x )在⎣⎡⎦⎤π6,π2上具有单调性, ∴T 2≥π2-π6, ∴T ≥2π3.∵f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3,∴f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6, ∴f (x )的一个对称中心的横坐标为π2+π62=π3.∴14T =7π12-π3=π4,∴T =π. 押题精练1.函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图,其中M (m,0),N (n,2),P (π,0),且mn <0,则f (x )在下列哪个区间中是单调的( )A .(0,π4)B .(π4,2π3)C .(π2,3π4)D .(2π3,π)答案 B解析 ∵mn <0,所以当左右移动图象,当图象过原点时,即M 点在原点时,此时T =π,则ω=2,∴f (x )=2sin(2x ),在(π4,3π4)上为减函数,(0,π4)上为增函数;当图象的最高点在y 轴上时,即N 点在y 轴上,34T =π,ω=32,∴f (x )=2sin(32x ),在(0,2π3)上是减函数,(2π3,π)上为增函数.所以f (x )在(π4,2π3)上是单调的.2.已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=12sin 2ωx +3×1+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin(2ωx +π3), 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2,∴f (x )=sin ⎝⎛⎭⎫4x +π3. (2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π6)的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变, 得到y =sin(2x -π6)的图象.所以g (x )=sin(2x -π6).令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数g (t )=sin t 与y =-k 在区间[-π6,5π6]上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.∴-12<k ≤12或k =-1.(推荐时间:50分钟)一、选择题 1.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,当秒针从P 0(此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( )A .y =sin ⎝⎛⎭⎫π30t +π6 B .y =sin ⎝⎛⎭⎫-π60t -π6 C .y =sin ⎝⎛⎭⎫-π30t +π6 D .y =sin ⎝⎛⎭⎫-π30t -π3 答案 C解析 由三角函数的定义可知,初始位置点P 0的弧度为π6,由于秒针每秒转过的弧度为-π30,针尖位置P 到坐标原点的距离为1,故点P 的纵坐标y 与时间t 的函数关系可能为y =sin ⎝⎛⎭⎫-π30t +π6. 2.(2014·四川)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( )A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度D .向右平行移动1个单位长度答案 A解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +12)的图象,即函数y =sin(2x +1)的图象.3.函数y =sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上单调递减,且函数值从1减小到-1,那么此函数图象与y 轴交点的纵坐标为( )A.12B.22C.32D.6+24答案 A解析 依题意知T 2=2π3-π6,∴T =π=2πω,∴ω=2,将点(π6,1)代入y =sin(2x +φ)得sin(π3+φ)=1,又|φ|<π2,φ=π6,故y =sin(2x +π6),与y 轴交点纵坐标为12. 4.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点与最低点,且OM →·ON →=0,则A ·ω等于( )A.π6B.7π12C.7π6D.7π3答案 C解析 由题中图象知T 4=π3-π12,所以T =π,所以ω=2.则M ⎝⎛⎭⎫π12,A ,N ⎝⎛⎭⎫7π12,-A 由OM →·ON →=0,得7π2122=A 2, 所以A =7π12,所以A ·ω=7π6. 5.已知函数f (x )=sin(2x +φ),其中|φ|<π,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)<f (π),则下列结论正确的是( )A .f (1112π)=-1 B .f (7π10)>f (π5) C .f (x )是奇函数D .f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z ) 答案 D解析 由f (x )≤|f (π6)|恒成立知x =π6是函数的对称轴,即2×π6+φ=π2+k π,k ∈Z ,所以φ=π6+k π,k ∈Z ,又f (π2)<f (π),所以sin(π+φ)<sin(2π+φ),即-sin φ<sin φ.所以sin φ>0,得φ=π6,即f (x )=sin(2x +π6), 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z , 即函数的单调递增区间是[k π-π3,k π+π6](k ∈Z ). 6.已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)(ω>0,0<φ<π2)一个周期内的图象上的五个点,如图所示,A (-π6,0),B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6答案 A解析 因为A ,B ,C ,D ,E 是函数y =sin(ωx +φ)(ω>0,0<φ<π2)一个周期内的图象上的五个点,A (-π6,0),B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,所以T =4×(π12+π6)=π,所以ω=2, 因为A (-π6,0),所以f (-π6)=sin(-π3+φ)=0,0<φ<π2,φ=π3. 二、填空题7.(2014·安徽)若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.答案 3π8 解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ). ∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8. 8.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,若x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),则f (x 1+x 2)=________.答案 32解析 观察图象可知,A =1,T =π,∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由已知得φ=π3,故f (x )=sin(2x +π3). 函数图象的对称轴为x =-π6+π32=π12. 又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2), ∴f (x 1+x 2)=f (2×π12)=f (π6)=sin(2×π6+π3)=32. 9.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f (x )的取值范围是________. 答案 [-32,3] 解析 由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin(2x -π6),那么当x ∈[0,π2]时,-π6≤2x -π6≤5π6, 所以-12≤sin(2x -π6)≤1,故f (x )∈[-32,3]. 10.给出命题:①函数y =2sin(π3-x )-cos(π6+x )(x ∈R )的最小值等于-1;②函数y = sin πx cos πx 是最小正周期为2的奇函数;③函数y =sin(x +π4)在区间[0,π2]上单调递增的; ④若sin 2α<0,cos α-sin α<0,则α一定为第二象限角.则真命题的序号是________. 答案 ①④解析 对于①,函数y =2sin(π3-x )-cos(π6+x ) =sin(π3-x ),所以其最小值为-1; 对于②,函数y =sin πx cos πx =12sin 2πx 是奇函数,但其最小正周期为1; 对于③,函数y =sin(x +π4)在区间[0,π4]上单调递增,在区间[π4,π2]上单调递减; 对于④,由⎩⎨⎧sin 2α<0cos α-sin α<0⇒cos α<0,sin α>0,所以α一定为第二象限角. 三、解答题11.已知函数f (x )=A sin(3x +φ)(A >0,x ∈(-∞,+∞),0<φ<π)在x =π12时取得最大值4. (1)求f (x )的最小正周期;(2)求f (x )的解析式;(3)若f (23α+π12)=125,求sin α. 解 (1)f (x )的最小正周期T =2π3. (2)由函数的最大值为4,可得A =4.所以f (x )=4sin(3x +φ).当x =π12时,4sin(3×π12+φ)=4, 所以sin(π4+φ)=1, 所以φ=2k π+π4,k ∈Z , 因为0<φ<π,所以φ=π4. 所以f (x )的解析式是f (x )=4sin(3x +π4). (3)因为f (23α+π12)=125, 故sin(2α+π4+π4)=35. 所以cos 2α=35,即1-2sin 2α=35, 故sin 2α=15.所以sin α=±55.12.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1). (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )在x ∈[0,π2]上的值域. 解 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin(2ωx -π6)+λ, 由直线x =π是y =f (x )图象的一条对称轴,可得sin(2ωπ-π6)=±1, 所以2ωπ-π6=k π+π2(k ∈Z ), 即ω=k 2+13(k ∈Z ). 又ω∈(12,1),k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点(π4,0),得f (π4)=0, 即λ=-2sin(56×π2-π6)=-2sin π4=-2, 即λ=- 2.故f (x )=2sin(53x -π6)-2, ∵x ∈[0,π2],∴53x -π6∈[-π6,2π3], ∴函数f (x )的值域为[-1-2,2-2].。
2016年新课标全国卷试题汇编:三角函数图像 老师专用
2016年新课标全国卷试题汇编:三角函数图像1. (2016全国高考新课标Ⅰ卷· 文数6T )将函数2sin(2)6y x π=+的图像向右平移14个周期后,所得图像对应的函数为( ) A.2sin(2)4y x π=+ B.2sin(2)3y x π=+C.2sin(2)4y x π=- D.2sin(2)3y x π=- 答案:D试题分析:函数y 2sin(2x )6π=+的周期为π,将函数y 2sin(2x )6π=+的图像向右平移14个周期即4π个单位,所得函数为y 2sin[2(x ))]2sin(2x )463πππ=-+=-,故选D. 2. (2016全国高考新课标Ⅰ卷· 文数12T )若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A.[1,1]-B.1[1,]3- C.11[,]33- D.1[1,]3-- 答案:C试题分析:()21cos2cos 03f x x a x '=-+…对x ∈R 恒成立, 故()2212cos 1cos 03x a x --+…,即245cos cos 033a x x -+…恒成立, 即245033t at -++…对[]1,1t ∈-恒成立,构造()24533f t t at =-++,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-⎪⎪⎨⎪-=+⎪⎩……,解得1133a -剟.故选C .3.(2016全国高考新课标Ⅱ卷· 文数11T )函数()cos26cos()2f x x x π=+-最大值为A .4B .5C .6D .7 答案:B4.(2016全国高考新课标Ⅱ卷· 文数3T ) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin()6y x π=+D .2sin()3y x π=+ 答案:A5.(2016全国高考新课标Ⅰ卷·理数12T )已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( ) (A)11 (B)9 (C)7 (D)5 答案:B试题分析:因为4x π=-为()f x 的零点,4x π=为()f x 图像的对称轴,所以()444T kT ππ--=+,即41412244k k T ππω++==⋅,所以41(*)k k N ω=+∈,又因为()f x 在5,1836ππ⎛⎫⎪⎝⎭单调,所以5236181222T ππππω-=≤=,即12ω≤,由此ω的最大值为9.故选B.6.(2016全国高考新课标Ⅱ卷·理数7T ) 若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 答案:B解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .7.(14)(2016全国高考新课标Ⅲ卷·文数14T )函数sin y x x =的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到. 答案:3π8.(14)(2016全国高考新课标Ⅲ卷·理数14T )函数的图像可由函数的图像至少向右平移_____________个 单位长度得到. 答案:试题分析:因为,= ,所以函数的图像可由函数的图像至少向右平移个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.sin y x x =sin y x x =32πsin 2sin()3y x x x π=+=+sin 2sin()3y x x x π=-=-2sin[()]33x π2π+-sin y x x =sin y x x =32π。
2016年全国各地高考数学试题及解答分类汇编大全(09 解三角形)
2016年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题1.(2016全国Ⅰ文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=( )(A(B(C )2 (D )3【答案】D【解析】试题分析:由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D.考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.(2016全国Ⅲ文)在ABC △中,π4B =, BC 边上的高等于13BC ,则sin A =( ) (A )310(B(C(D【答案】D【解析】设BC 边上的高线为AD ,则3,2BC AD DC AD ==,所以AC ==.由正弦定理,知sin sin AC BCB A =3sin 2AD A =,解得sin 10A =,故选D . 考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.3.(2016全国Ⅲ理)在ABC △中,π4B =,BC 边上的高等于13BC,则cos A =( )(A) (B) (C)- (D)- 【答案】C【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC =,222222cos AB AC BC A +-===-选C .考点:余弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4.(2016山东文)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3 (C )π4 (D )π6【答案】C考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5.(2016天津理)在△ABC 中,若AB ,120C ∠= ,则AC = ( )(A )1(B )2(C )3(D )4【答案】A【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.二、填空1. (2016北京文)在△ABC 中,23A π∠= ,a =,则b c =_________.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.2.(2016江苏) 在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识3.(2016全国Ⅱ文、理)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 考点: 正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.【答案】73【解析】试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-, ∴3sin C =,∴732sin c R C == 考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.三、解答题1. (2016北京理)在∆ABC 中,2222+=+a c b ac . (1)求B ∠ 的大小;(2)求2cos cos A C + 的最大值. 【答案】(1)4π;(2)1.考点:1.三角恒等变形;2.余弦定理.【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.2. (2016江苏)在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长; (2)求πcos(6A -)的值. 【答案】(1)【解析】试题分析:(1)利用同角三角函数关系求3sin 5B ,=再利用正弦定理求6sin 23sin 5AC CAB B⋅=== (2)利用诱导公式及两角和余弦公式分别求sin sin()cos()10A B C A B C =+==-+=,最后根据两角差余弦公式求cos(A )6π-=,注意开方时正负取舍. 试题解析:解(1)因为4cos ,0,5B B π=<<所以3sin,5B ===由正弦定理知sin sin AC ABB C=,所以6sin 23sin 5AC C AB B ⋅===考点:同角三角函数关系,正余弦定理,两角和与差公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.3.(2016全国Ⅰ理)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (I )求C ;(II )若c ABC =∆,求ABC 的周长.【答案】(I )C 3π=(II )5【解析】试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据1sin C 2ab =C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据c =C ∆AB 的周长为5.考点:正弦定理、余弦定理及三角形面积公式 【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=-()tan tan A B C+=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”4.(2016山东理)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+(Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a b c +=,故 cos C 的最小值为12. 考点:1.和差倍半的三角函数;2. 正弦定理、余弦定理;3. 基本不等式.【名师点睛】此类题目是解三角形问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到证明目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题覆盖面较广,能较好的考查考生的基本运算求解能力及复杂式子的变形能力5 (2016四川文\理)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.a b ca b ccos sin A k A +cos sin B k B =sin sin C k C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C . (Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故sin tan 4cos BB B==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.6、(2016四川文)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.a b ca b ccos sin A k A +cos sin B k B =sin sin C k C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C .(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故sin tan 4cos BB B==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.7.(2016浙江文)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (Ⅰ)证明:A =2B ;(Ⅱ)若cos B =23,求cos C 的值. 【答案】(I )证明见解析;(II )22cos 27C =.因此,A π=(舍去)或2A B =, 所以,2A B =.(II )由2cos 3B =,得sin B =,21cos 22cos 19B B =-=-,故1cos 9A =-,sin 9A =,22cos cos()cos cos sin sin 27C A B A B A B =-+=-+=. 考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I )用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A ,B 的式子,根据角的范围可证2A =B ;(II )先用同角三角函数的基本关系及二倍角公式可得cos2B ,进而可得cos A 和sin A ,再用两角和的余弦公式可得cosC .8.(2016浙江理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【答案】(I )证明见解析;(II )2π或4π. 试题分析:(I )先由正弦定理可得sin sinC 2sin cos B+=A B ,进而由两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式可得21sin C 24a ab =,进而由二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小. 试题解析:(I )由正弦定理得sin sinC 2sin cos B+=A B ,故()2sin cos sin sin sin sin cos cos sin A B =B+A+B =B+A B+A B , 于是()sin sin B =A-B .又A ,()0,πB∈,故0π<A-B <,所以()πB =-A-B 或B =A-B ,因此πA =(舍去)或2A =B , 所以,2A =B .考点:1、正弦定理;2、两角和的正弦公式;3、三角形的面积公式;4、二倍角的正弦公式.【思路点睛】(I)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A,B的式子,A=B;(II)先由三角形的面积公式及二倍角公式可得含有B,C的式子,再根据角的范围可证2利用三角形的内角和可得角A的大小.。
2016高考三角函数专题测试题及答案
高一数学必修4第一章三角函数单元测试
班级姓名座号评分
一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分)
1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()
A.B=A∩C B.B∪C=C C.AC D.A=B=C
() 2、将分针拨慢5分钟,则分钟转过的弧度数是
A.? 3
sin??2cos?
3sin??5cos?B.-? 3C.? 6D.- ? 6() 3、已知
??5,那么tan?的值为 B.2 C.1616
4、已知角?的余弦线是单位长度的有向线段;那么角?的终边()
A.在x轴上 B.在直线y?x上
C.在y轴上 D.在直线y?x或y??x上
5、若f(cosx)?cos2x,则f(sin15?)等于 ( ) A.-2 23 D.-23
A
.?2 B
.2 C.1
2 D. ?
12 ()6、要得到y?3sin(2x?
A.向左平移
位 ?4)的图象只需将y=3sin2x的图象 ????个单位 B.向右平移个单位C.向左平移个单位D.向右平移个单4488
7、如图,曲线对应的函数是()
A.y=|sinx| C.y=-sin|x| B.y=sin|x| D.y=-|sinx|
8
( )
A.cos160? B.?cos160? C.?cos160? D.?cos160?
9、A为三角形ABC的一个内角,若sinA?cosA?12,则这个三角形的形状为() 25
()
A. 锐角三角形
B. 钝角三角形
C. 等腰直角三角形
D. 等腰三角形 10、函数y?2sin(2x??
3)的图象。
数学三角函数专题测试题(附答案)
数学三⾓函数专题测试题(附答案)三⾓函数测试题第I 卷(共50分)⼀. 选择题(每⼩题5分,共50分)1、已知sin α=54, 并且α是第⼆象限⾓, 那么tan α的值为 ( ) A -34 B -43 C 43 D 342、若θθθ则⾓且,02sin ,0cos <>的终边所在象限是 ( )A .第⼀象限B .第⼆象限C .第三象限D .第四象限3、下列函数中,周期为1的奇函数是()A .x y π2sin 21-=B .)32(sin ππ+=x yC .tan2y x π= D .x x y ππcos sin =4、函数y = sin(2x+25π)的图象的⼀条对称轴⽅程是 ( )A x = -2πB x = -4πC x = 8πD x =45π5、函数)2(3cos 2cos )(ππ-≤≤-+-=x x x x f 有()A .最⼤值3,最⼩值2B .最⼤值5,最⼩值3C .最⼤值5,最⼩值2D .最⼤值3,最⼩值815 6、函数y=asinx -bcosx 的⼀条对称轴⽅程为4π=x ,则直线ax -by+c=0的倾斜⾓是()A .45°B .135°C .60°D .120°7、若函数)sin()(?ω+=x x f 的图象(部分)如图所⽰,则?ω和的取值是 ( )A .3,1πω==B .3,1πω-==C .6,21π?ω==D .6,21π?ω-==8、若f ( x ) = tan (x +4π) ,则 A f (-1) > f ( 0 ) > f (1 ) B f (1 ) > f (0 )> f ( – 1 ) C f (0 ) > f (1 ) > f ( – 1 ) D f (0 ) > f ( – 1 ) > f ( 1 ) 9、若sin x 是减函数,且cos x 是增函数,则2x是第()象限⾓ A ⼆ B ⼀或⼆ C ⼆或三 D ⼆或四10、函数y = 12cos 2sin -+x x 的定义域是A [ 0 ,4π] B [ 42,2πππ+k k ] C [4,πππ+k k ] D [432,42ππππ++k k ]第II 卷(共100分)⼆.填空题(每⼩题5分,共25分) 11.已知=-=-ααααcos sin ,45cos sin 则 12.已知等于则)2cos(),,0(,31cos θππθθ+∈=13、函数)4sin(cos )4cos(sin ππ+++=x x x x y 的最⼩正周期T= 。
高考真题——三角函数及解三角形真题(加答案)
全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。
2016年高考真题解答题专项训练:三角函数
2016年高考真题解答题专项训练:三角函数1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,(Ⅰ)证明:a+b=2c ; (Ⅱ)求cosC 的最小值.试题解析:化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C ++=π,所以()()sin sin sin A B C C +=π-=.2 则a=ksinA ,b=ksinB ,c=ksinC .sinAsinB=sinAcosB+cosAsinB=sin(A+B).在△ABC 中,由A+B+C=π,有sin(A+B)=sin(π–C)=sinC , 所以sinAsinB=sinC . (Ⅱ)由已知,b 2+c 2–a 2,根据余弦定理,有所以由(Ⅰ),sinAsinB=sinAcosB+cosAsinB ,, 故.3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b,c.已知b+c=2acosB. (Ⅰ)证明:A=2B ;(Ⅱ)若△ABC A 的大小.试题解析:(Ⅰ)由正弦定理得sin sin 2sin cos B C A B +=,故()2sin cos sin sin sin sin cos cos sin A B B A B B A B A B =++=++, 于是()sin sin ΒA Β=-.又A ,()0,πB ∈,故0πA B <-<,所以()πB A B =--或B A B =-, 因此πA =(舍去)或2A B =, 所以,2AB =.4(1)求AB 的长; (2. 试题解析:解(1),0B <<π,(25(Ⅰ)求f (x )的定义域与最小正周期;(Ⅱ)讨论f (x )在区间上的单调性. 试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式将函数化为基本三角(Ⅱ)根据(Ⅰ)的结论,研究函数f (x )在区间上单调性. 试题解析:(Ⅰ)()f x 的定义域为所以,()f x 的最小正周期函数2sin y z =的单调递增区间是所以,,()f x 在区间,调递减.6.在△ABC (Ⅰ)求B ∠的大小;.试题解析:取得最大值1. .7.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (Ⅰ)求C ;,求ABC △的周长. 试题解析:(Ⅰ)由已知及正弦定理得()2cos sin cos sin cos sin C ΑΒΒΑC +=,()2cos sin sin C ΑΒC +=.故2sin cos sin C C C =.,所以6ab =. 由已知及余弦定理得,222cos 7a b ab C +-=. 故2213a b +=,从而()225a b +=.所以ΑΒC △的周长为。
2016年浙江省数学高考模拟精彩题选—三角函数含答案
2016浙江精彩题选——三角函数1.(2016宁波十校16).(本题满分14分)在ABC △中,角,,A B C 的对边分别是,,a b c ,且向量(54,4)m a c b =- 与向量(cos ,cos )n C B = 共线.(Ⅰ)求cos B ;(Ⅱ)若10,5b c a c ==<,,且2AD DC = ,求BD 的长度.解:(Ⅰ)(45,5)m a c b =- 与(cos ,cos )n C B = 共线,54cos 5sin 4sin 4cos 4sin a c C A C b B B --∴==4sin cos 4cos sin 5sin cos B C B C A B∴+=4sin()4sin 5sin cos B C A A B∴+== 在三角形ABC △中,sin 0A ≠4cos 5B ∴=……………………………………………………7分(Ⅱ)10,5b c a c ==<,且4cos B =2222cos a c ac B b ∴+-=即242525105a a ∴+-⋅⋅=解得35a a ==或(舍)……………………………………………9分2AD DC = 1233BD BA BC ∴=+ 22222141214122c 2cos 99339933BD BA BC BA BC a a c B ∴=++⋅⋅∙=++⋅⋅⋅⋅ 将3a =和5c =代入得:21099BD = 109=3BD ∴……………………………………………14分2.(2016嘉兴二模16)(本题满分14分)在△ABC 中,设边c b a ,,所对的角为C B A ,,,且C B A ,,都不是直角,22cos cos )8(b a B ac A bc -=+-.(Ⅰ)若5=+c b ,求c b ,的值;(Ⅱ)若5=a ,求△ABC 面积的最大值.解:(Ⅰ)2222222222)8(b a acb c a ac bc a c b bc -=-+⋅+-+⋅-222222222222282b a b c a bc a c b a c b -=-++-+⋅--+08222222=-+⋅--+a c b a c b ,∵△ABC 不是直角三角形,∴04=-bc 故4=bc ,又∵5=+c b ,解得⎩⎨⎧==41c b 或⎩⎨⎧==14c b (Ⅱ)∵5=a ,由余弦定理可得A A bc bc A bc c b cos 88cos 22cos 2522-=-≥-+=,所以83cos ≥A ,所以855sin ≤A ,所以455sin 21≤=∆A bc S ABC .所以△ABC 面积的最大值是455,当83cos =A 时取到.3.(2016衢州二模16)(本题满分14分)已知2()cos cos f x x x x =⋅+.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在锐角△ABC 的三个角,,A B C 所对的边分别为,,a b c ,且()1f C =,求222a b c ab++的取值范围.解:(I)2()cos cos f x x x x=⋅+∴()2sin(2)6f x x π=+Q 222262k x k πππππ-≤+≤+∴36k x k ππππ-≤≤+∴函数()f x 的单调递增区间,,36Z k k k ππππ⎡⎤-+∈⎢⎥⎣⎦(II)Q ()1f C =∴()2sin(216f C C π=+=∴2266C k πππ+=+或52266C k πππ+=+k ∈Z ∴3C π=由余弦定理得:222c a b ab=+-∴222222()12()1a b c a b b a ab ab a b +++=-=+-Q △ABC 为锐角三角形∴022032{A A πππ<<<<∴62,A ππ<<由正弦定理得:2sin()sin 113,2sin sin 2tan 22A b B a A A A π-⎛⎫===+∈ ⎪⎝⎭∴[)2223,4a b c ab++∈点评:注意题中的锐角这个条件4.(2016五校联考二16)(本小题满分15分)如图,四边形ABCD ,60DAB ∠= ,,CD AD CB AB ⊥⊥。
2016年全国各地高考数学试卷分类汇编大全(08 三角函数 三角恒等变换)含解析
(A)向左平行移动 个单位长度(B)向右平行移动 个单位长度
(C)向左平行移动 个单位长度(D)向右平行移动 个单位长度
【答案】D
【解析】试题分析:由题意,为了得到函数 ,只需把函数 的图像上所有点向右移 个单位,故选D.
12.(2016四川文)为了得到函数 的图象,只需把函数y=sinx的图象上所有的点()
(A)向左平行移动 个单位长度(B)向右平行移动 个单位长度
(C)向上平行移动 个单位长度(D)向下平行移动 个单位长度
【答案】A
【名师点睛】本题考查三角函数的图象平移,函数 的图象向右平移 个单位得 的图象,而函数 的图象向上平移 个单位得 的图象.左右平移涉及的是 的变化,上下平移涉及的是函数值 加减平移的单位.
【名师点睛】本题考查三角函数的图象平移,在函数 的图象平移变换中要注意人“ ”的影响,变换有两种顺序:一种 的图象向左平移 个单位得 图象横坐标变为原来的 倍,纵坐标不变,得 的图象,向左平移 个单位得 的图象.
14.(2016天津文)已知函数 , .若 在区间 内没有零点,则 的取值范围是()
2016年全国各地高考数学试卷分类汇编大全
(08三角函数三角恒等变换)
一、选择题
1.(2016北京理)将函数 图象上的点 向左平移 ( )个单位长度得到点 ,若 位于函数 的图象上,则()
A. , 的最小值为 B. , 的最小值为
C. , 的最小值为 D. , 的最小值为
【答案】A
2.(2016全国Ⅰ文)若将函数y=2sin (2x+ )的图像向右平移 个周期后,所得图像对应的函数为()
6.(2016全国Ⅱ理)若将函数 的图像向左平移 个单位长度,则平移后图象的对称轴为()
2016理数—三角函数(选择+填空+答案)
2016年高考理数——三角函数1.全国1理12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )52.全国2理(7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) 3.全国2理(9)若cos(4π–α)= 53,则sin 2α=(A )257(B )51(C )51- (D )257- 4.全国3理(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625 5.全国3理(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )- 6.四川理3. 为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点 (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度7.天津理(3)在△ABC 中,若AB BC =3,120C ∠=o ,则AC =(A )1 (B )2(C )3 (D )4 8.浙江理5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关9.全国3理(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修4第一章三角函数单元测试班级姓名座号评分
一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合
题目要求的.(48分)
1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()
A.B=A∩C B.B∪C=C C.AC D.A=B=C
2、将分针拨慢5分钟,则分钟转过的弧度数是()
A. B.- C. D.-
3、已知的值为()
A.-2 B.2 C. D.-
4、已知角的余弦线是单位长度的有向线段;那么角的终边() A.在轴上 B.在直线上
C.在轴上 D.在直线或上
5、若,则等于 ( )
A. B. C. D.
6、要得到的图象只需将y=3sin2x的图象()A.向左平移个单
位 B.向右平移个单位C.向左平移个单位D.向右平移个单位
7、如图,曲线对应的函数是()
A.y=|sin x| B.y=sin|x|
C.y=-sin|x| D.y=-|sin x|
8、化简的结果是 ( )
A. B. C. D.
9、为三角形ABC的一个内角,若,则这个三角形的形状为()
A. 锐角三角形
B. 钝角三角形
C. 等腰直角三角形
D. 等腰三角形
10、函数的图象()
A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x=对称
11、函数是 ()
A.上是增函数 B.上是减函数
C.上是减函数 D.上是减函数
12、函数的定义域是 ()
A. B.
C. D.
二、填空题:共4小题,把答案填在题中横线上.(20分)
13、已知的取值范围是 .
14、为奇函数, .
15、函数的最小值是.
16、已知则 .
三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤.
17、(8分)求值
18、(8分)已知,求的值.
19、(8分)绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体
W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm?
20、(10分)已知α是第三角限的角,化简
21、(10分)求函数在时的值域(其中为常数)
22、(8分)给出下列6种图像变换方法:
①图像上所有点的纵坐标不变,横坐标缩短到原来的;
②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;
③图像向右平移个单位;
④图像向左平移个单位;
⑤图像向右平移个单位;
⑥图像向左平移个单位。
请用上述变换将函数y = sinx的图像变换到函数y = sin (+)的图像.参考答案
1. B
2. C
3. D
4. A
5. A
6.C
7.C
8.B
9.B 10. B 11.D 12.D
13. 14. 15. 16.
17.原式
18.
,由得
19.设需秒上升100cm .则(秒)
20。
–2tanα
21.
当时,,此时
当时,,此时
22.④②或②⑥。