数学奥林匹克初中训练题(117)
初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)
初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。
点 P的坐标即为 (7, 8)。
10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。
初中数学奥林匹克训练题及答案
初中数学奥林匹克训练题第一试一、选择题(每小题7分,共42分)1.已知m 、n 是两个连续正整数,m<n ,且a=mn ,设x=m -a n a ++,y=m -a n a -+.下列说法正确的是( ).(A)x 为奇数,y 为偶数 (B)x 为偶数,y 为奇数(C)x 、y 都为奇数 (D)x 、y 都为偶数2.设a 、b 、c 和S 分别为三角形的三边长和面积,关于x 的方程b 2x 2+(b 2+c 2-a 2)x+c 2=0的判别式为Δ.则Δ与S 的大小关系为( ).(A)Δ=16S 2 (B)Δ=-16S 2 (C)Δ=16S (D)Δ=-16S3.设a 为5353--+的小数部分,b 为336336--+的小数部分.则a b 12-的值为( ). (A) 6 + 2 -1 (B) 6- 2+1 (C) 6- 2-1 (D) 6+2+14.如图,D 、E 分别为△ABC 的边AB 、AC 上的点,△ACD 与△BCD的周长相等,△ABE 与△CBE 的周长相等,记△ABC 的面积为S.若∠ACB=90°,则AD ·CE 与S 的大小关系为( ).(A)S=AD·CE(B)S>AD·CE(C)S<AD ·CE(D)无法确定5.如图,在△ABC 中,AB=8,BC=7,AC=6,延长边BC 到点P ,使得△PAB 与△PCA 相似.则PC 的长是( ).(A)7 (B)8 (C)9 (D)106.如图,以PQ=2r(r ∈Q)为直径的圆与一个以R(R ∈Q)为半径的圆相切于点P.正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).(A)R=5,r=2 (B)R=4,r=3/2(C)R=4,r=2 (D)R=5,r=3/2二、填空题(每小题7分,共28分)1.已知方程x 2+x-1=0的两个根为α、β.则αββα33+的值为 . 2.把1,2,…,2 008个正整数分成1 004组:a 1,b 1;a 2,b 2;…;a 1 004,b 1 004,且满足a 1+b 1=a 2+b 2=…=a 1004+b 1004.对于所有的i(i=1,2,…,1 004),a i b i 的最大值为 .3.AD 、BE 、CF 为△ABC 的内角平分线.若BD+BF=CD+CE=AE+AF ,则∠BAC 的度数为 .4.下列四个命题:①一组对边相等且一组对角相等的四边形是平行四边形; ②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所联结的对角线被另一条对角线平分的四边形是平行四边形; ④一组对角相等且这一组对角的顶点所联结的对角线平分另一条对角线的四边形是平行四边形.其中,正确命题的序号是 .第二试一、(20分)已知△ABC 中,∠A>∠B>∠C ,且∠A=2∠B.若三角形的三边长为整数,面积也为整数,求△ABC 面积的最小值.二、(25分)已知G 是△ABC 内任一点,BG 、CG 分别交AC 、AB 于点E 、F.求使不等式S △BGF ·S △CGE ≤kS 2△ABC 恒成立的k 的最小值.三、(25分)已知(x+1y 2+)(y+1x 2+)=1.求证:x+y=0.初中数学奥林匹克训练题参考答案第一试一、1.C.x=n+m=m+m+1=2m+1,y=n-m=1.所以,x 、y 都是奇数.2.B.因为Δ=(b 2+c 2-a 2)2-4b 2c 2=(b 2+c 2-a 2+2bc)(b 2+c 2-a 2-2bc)=[(b+c)2-a 2][(b-c)2-a 2]=(b+c+a)(b+c-a)(b-c+a)(b-c-a).记p=21(a+b+c),所以,Δ=2p·2(p-a)·2(p-c)[-2(p-b)]=-16p(p-a)(p-b)(p-c).由海伦公式知S 2=p(p-a)(p-b)(p-c).故Δ=-16S 2.3.B.4.A.设BC=a ,CA=b ,AB=c.由题意知AD+AC=BC+CE=21(a+b+c).故AD=21(a+c-b),CE=21(b+c-a).则AD ·CE=41(a+c-b)(b+c-a)=41[c 2-(a-b)2]=41(c 2-a 2-b 2)+12ab.由∠ACB=90°,知a 2+b 2=c 2,S=21ab.于是,AD ·CE=S. 5.C.由题意知只能是△PAB ∽△PCA. 则有PA/PC=PB/PA=AB/AC=8/6=4/3.故PB=34PA ,PB=PC+BC=PC+7,PA=34PC.又PA 2=PB ·PCPC=9.6.D.辅助线如图.由题意知OA 2=OE 2+AE 2.设AB=2x ,则AE=x. 于是,R 2=[2x-(R-2r)]2+x 2.化简得5x 2-4(R-2r)x+4(r 2-Rr)=0.①要使AB 为有理数,只要x 为有理数,也即方程①的Δ=[-4(R-2r)]2-4×5×4(r2-Rr)=16(R 2+Rr-r 2)为完全平方式,也即只需R 2+Rr-r 2为完全平方式.经验证知,只有选项(D)符合题意.二、1.-7.令A=αββα33+,B=ββαα33+=α2+β2. 由已知有α+β=-1,αβ=-1.故B=(α+β)2-2αβ=1+2=3.①A+B=)=(α3+β3)(1/α+1/β)=-4.②由式①、②得A=-4-3=-7.2.1 009 020.注意到a i b i =41[(a i +b i )2-(a i -b i )2], a i +b i =(1+2 008)×1 004/1 004=2 009.要使a i b i 的值最大,须a i -b i 的值最小,而a i -b i 的最小值为1,此时a i +b i =2 009,a i -b i =1.于是,a i =1 005,b i =1 004,此时,a i b i 的最大值为1 005×1 004=1 009 020.3.60°.记BC=a ,CA=b ,AB=c.由内角平分线定理知 BD= c b ac +,CD=c b ab +,BF=b a ac +,CE=ca ab +. 由BD+BF=CD+CE ,.去分母并化简得a 2c+2ac 2+2bc 2+c 3=a 2b+2ab 2+2b 2c+b 3,即 (c-b)(a 2+2ac+2ab+b 2+c 2+3bc)=0.显然a 2+2ac+2ab+2bc+b 2+c 2+bc=(a+b+c)2+bc>0.于是,c-b=0,即b=c.同理,当CD+CE=AE+AF 时,有c=a.所以,a=b=c ,△ABC 为等边三角形.故∠BAC=60°.4.④.命题①、②、③可分别给出如下反例:命题①:如图5(a)中的四边形ABCD ,其中,△ABD △CDE.命题②:如图5(b),作等腰△ADE ,延长底边ED 到任意点O ,以O 为对角线的交点可作出 ABCE ,而此时四边形ABCD 满足条件AD=(AE=)BC ,且AO=CO ,但不是平行四边形.命题③:如图5(c)中的四边形ABCD ,其中,A 、C 是BD 垂直平分线上的任意两点.图5 以下证明命题④是正确的.如图5(d),已知∠BAD=∠DCB ,且OB=OD.以点O 为中心,将△ABD 逆时针旋转180°.因为OB=OD ,所以,点D 与B 重合, 点B 与D 重合,点A 与射线OC 上某点A 1重合.如果A 1不是C ,则∠BA 1D>∠BCD(A 1在线段OC 内部)或∠BA 1D<∠BCD(A 1在OC 的延长线上),都与∠BA 1D=∠BAD=∠BCD 矛盾,从而,A 1即是C ,即OA=OA 1=OC.所以,四边形ABCD 是平行四边形.第二试一、记BC=a ,CA=b ,AB=c.如图,作∠BAC 的平分线AD ,则∠BAD=∠DAC=∠B ,∠ADC=∠B+∠BAD=2∠B.故△ACD △BCA.于是,b/a=CD/b.①又由角平分线定理知b/c=CD/BD.从而,c b b +=BD CD CD + =a CD .② 由式①、②得a c b +=ba . 故a 2=b(b+c).若(b ,c)=d ,则由式①知d|a ,故不妨设(b ,c)=1.于是,可令b=m 2,b+c=n 2.则a=mn ,c=n 2-m 2.由∠A>∠B>∠C ,知a>b>c ,即mn>m 2>n 2-m 2.故m<n< 2 m.③又m 、n 为正整数,从而,2m-m>1,即m> 2 +1.④ 设△ABC 的面积为S ,由海伦公式知 S=41n(n+m)(n-m)·n)-n)(2m (2m +. 由式④知m ≥3.又由式③容易验证:当3≤m ≤7时,只有m=5时,n=6,n)-n)(2m (2m + =8(有理数),此时,S=14×6×11×1×8=132.下证当m ≥8,n ≥9时,S>162.由式③、④知(2m+n)(2m-n)>3m(2m- 2m)=(6-32)m 2>(6-42)m 2=(2-2)2m 2, n(n+m)(n-m)>n(1+22n)×1=21 (2+ 2)n 2. 由式⑤知 S>14×12(2+ 2)n 2(2- 2)m=14n 2则当m ≥8,n ≥9时,有S>162.故S 的最小值为132,此时,m=5,n=6.所以,a=30,b=25,c=11时,△ABC 面积最小,最小值为132.二、如图,设AF/AB=x ,AE/AC=y.则0<x 、y<1.在△ABE 中,由梅涅劳斯定理有BG/GE·EC/CA·AF/FB=1..从而,u 2+(t-2)u+2t=0在[0,2]内有实根,则Δ=(t-2)2-8t ≥0t ≥6+4 2或t ≤6-4 2.从而t ≤6-4 2.所以,tmax=6-4 2,此时u=2 2 -2.因此,当u=2 2-2,x=y ,即x=y=2-1时,(S △BFG ·S △CEG /S 2△ABC )max=41(6-4 2)2=17-12 2. 故k ≥17-12 2,kmin=17-12 2.三、用反证法证明.(1)先证x=0时y=0,或y=0时x=0.如若不然,假设x=0时,y>0.则 (x+1y 2+)(y+1x 2+)=1y 2+ (y+1)>1,与已知矛盾.当x=0,y<0时,又有 (x+1y 2+)(y+1x 2+)= 1y 2+ (y+1)< 12y 2+-y (1+y)=(1-y)(1+y)=1-y 2<1, 与已知矛盾.故x=0时,y=0. 同理,y=0时,x=0.(2)再证x ≠0,y ≠0时,x+y=0.为此先证xy<0.如若不然,则x>0,y>0或x<0,y<0.当x>0,y>0时,(x+1y 2+)(y+1x 2+)>1,与已知矛盾.当x<0,y<0时,(x+1y 2+)(y+1x 2+)=y)-1x x)(-1y ()y -1)(x x -1(y 222222++++ =y)-1x x)(-1y ()x -(y -122222++≤y)-1x x)(-1y (122++ .但(1y 2+-x>1,1x 2+-y>1,则y)-1x x)(-1y (122++<1,与已知矛盾.从而,xy<0.以下分两种情形讨论.(i)若x+y>0,由于原式关于x 、y 对称,不妨设x>0,y<0.则x>-y ,x2>y2,有(x+1y 2+)(y+1x 2+)>( 1y 2+-y)( 1y 2++y)=1,与已知矛盾.同理,当x<0,y>0时,也与已知矛盾.(ii)若x+y<0,不妨设x>0,y<0.则x<-y ,x 2<y 2,有(x+1y 2+)(y+1x 2+)<(1y 2+-y)( 1y 2++y)=1,与已知矛盾.由(i)、(ii)知,x+y>0和x+y<0均不成立.因此,x+y=0.综上知x+y=0.。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初中数学竞赛数学奥林匹克初中训练题(1)(含解答)
数学奥林匹克初中训练题(1)第 一 试一、选择题:(每小题7分,共42分)1.已知33333a b c abca b c++-=++,则22()()()()a b b c a b b c -+-+--的值为( ) (A)1 (B)2 (C)3 (D)42.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为( )(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)- 3.在ΔABC 中,211a b c=+,则∠A( ) (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是( )(A)2个 (B)3个 (C)4个 (D)5个5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么( )(A)22S CP < (B)22S CP = (C)22S CP > (D)不确定 6.满足方程222()x y x y xy +=++的所有正整数解有( )(A)一组 (B)二组 (C)三组 (D)四组 二、填空题:(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过 分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图, ∠AOB=30O, ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .B第 二 试一、(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二、(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5. (1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长. (2)若,AC =且DF 经过ΔABC 的重心G,求E,F 两点的距离.三、(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.。
数学奥林匹克初中训练题(含答案)
数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分)1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =( ).(A)3/4 (B)5/6 (C)7/12 (D)13/182.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ).(A)-3 (B)-5 (C)-7 (D)-93.方程|xy |+|x +y |=1的整数解的组数为( ).(A)2 (B)4 (C)6 (D)84.a 、b 是方程x 2+(m -5)x +7=0的两个根.则(a 2+ma +7)(b 2+mb +7)=( ).(A)365 (B)245 (C)210 (D)1755.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( )(A)2332+π (B) 33265-π (C) 365-π (D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为( ).(A)5 (B)6 (C)7 (D)8二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是 . 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有个.4.已知△ABC 的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点.证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数.说明:若凸多边形的周界上有n个点,就将其看成n边形,例如,图中的多边形ABCDE要看成五边形.数学奥林匹克初中训练题1参考答案第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz . 根据有理数x 、y 、z 的对称性,可考虑方程组x +y +z =3,2xy = 2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.2.B .注意到f (1)=2a +1,f (3)=12a +1,f (f (1))=a (2a +1)2+a (2a +1)+1.由f (f (1))=f (3),得 (2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5.3.C .因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解.4.D .由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175.5.C .记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 .6.B .将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6.二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, 3.73.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x=a2-b2=(a+b)(a-b)≤100,因a+b、a-b同奇偶,故a+b≥(a-b)+2.(1)若a-b=1,则a+b为奇数,且3≤a+b≤99.于是,a+b可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a-b=2,则a+b为偶数,且4≤a+b≤50.于是,a+b可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值.其他情况下所得的x值均属于以上情形.若a-b=奇数,则a+b=奇数.而x=a2-b2≥a+b≥3,归入(1).若a-b=偶数,则a+b=偶数.而x=(a-b)(a+b)为4的倍数,且a-b≥2,a+b≥4,故x≥8,归入(2).因此,这种x共有49+24=73个.4.168.注意到AB2=(2a)2+482,BC2=(a+7)2+242,AC2=(a-7)2+242.如图,以AB为斜边,向△ABC一侧作直角△ABD,使BD=2a,AD=48,∠ADB=90°.在BD上取点E,使BE=a+7,ED=a-7,又取AD的中点F,作矩形EDFC1.因BC21=BE2+EC21=(a+7)2+242=BC2,AC21=C1F2+AF2=(a-7)2+242=AC2,故点C与点C1重合.而S△ABD=48a,S△CBD=24a,S△ACD=24(a-7),则S△ABC=S△ABD-S△CBD-S△ACD=168.第二试一、将原方程变形得(12x+5)2(12x-2)(12x+12)=660.令12x+5=t,则t2(t-7)(t+7)=660,即t4-49t2=660.解得t2=60或t2=-11(舍去).由此得t=±2 15,即有12x+5=±215.因此,原方程的根为x1,2=121525-.二、如图,易知A、B、C、D四点共圆,B、C、N、M四点共圆,因此,∠ACD=∠ABD=∠MCN.故AC平分∠DCM.同理,BD平分∠CDM.如图,设PH⊥MC于点H,PG⊥MD于点G,PT⊥CD于点T;过点P作XY∥MC,交MD于点X,交AC于点Y;过点Y作YZ∥CD,交MD于点Z,交PT于点R;再作YH1⊥MC于点H1,YT1⊥CD 于点T1.由平行线及角平分线的性质得PH=YH1=YT1=RT.为证PT=PG+PH,只须证PR=PG.由平行线的比例性质得EP/EF=EY/EC=EZ/ED.因此,ZP∥DF.由于△XYZ与△MCD的对应边分别平行,且DF平分∠MDC,故ZP是∠XZY的平分线.从而,PR=PG.因此,所证结论成立.三、设全部碎片中,共有三角形a3个,四边形a4个,……,k边形a k个(a3,a4,…,a k为非负整数).记这些多边形的内角和为S角,于是,S角=a3×π+a4×2π+…+a k(k-2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×2π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S角=20π+16π+2π=38π.于是,a3+2a4+…+(k-2)a k=38.①记这些多边形的边数和为S边.由于每个n边形有n条边,则S边=3a3+4a4+…+ka k.另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S边=2×45+20=110.于是,3a3+4a4+…+ka k=110.②②-①得2(a3+a4+…+a k)=72.故a3+a4+…+a k=36.③①-③得a4+2a5+3a6+…+(k-3)a k=2.因所有a i∈N,故a6=a7=…=a k=0,a4+2a5=2.所以,或者a4=2,a5=0;或者a4=0,a5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。
数学奥林匹克初中训练题15套
数学奥林匹克初中训练题(一)第 一 试一. 选择题 1、已知33333a b c abca b c++-=++,则22()()()()a b b c a b b c -+-+--的值为:A .1B .2C .3D .42、规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为: A .(0,1) B .(1,0) C .(-1,0) D .(0,-1)3、在ΔABC 中,211a b c=+,则∠A:A .一定是锐角B .一定是直角C .一定是钝角D .非上述答案4、下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2();a a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:A .2个B .3个C .4个D .5个5、设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么: A . 22CP S < B .22CP S = C .22CP S > D .不确定6、满足方程222()x y x y xy +=++的所有正整数解有:A .一组B .二组C .三组D .四组 二. 填空题1、一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过 分钟,货车追上了客车.2、若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3、如图1, ∠AOB=30O , ∠AOB 内有一定点P ,且OP=10.在OA 上有一点Q ,OB 上有一点R.若ΔPQR 周长最 小,则最小周长是 .4、已知二次函数2(1)y ax a =≥的图象上两点A ,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一、已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二、如图2,点D 在ΔABC 的边BC 上,且与B ,C 不重合,过点D 作AC 的平行线DE 交AB 于E ,作AB 的平行线DF 交AC 于点F.又知BC=5.(1)设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2)若2,AC AB =且DF 经过ΔABC 的重心G ,求E ,F 两点的距离.三、已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.数学奥林匹克初中训练题(二)第 一 试一、选择题1、有铅笔,练习本,圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1件,共需:A .1.2元B .1.05元C .0.95元D .0.9元2、三角形的三边,,a b c 都是整数,且满足7abc bc ca ab a b c ++++++=,则此三角形的面积等于: A .32B .24C .34D .223、如图1,ΔABC 为正三角形,PM ⊥AB ,PN ⊥AC.设四边形AMPN , ΔABC 的周长分别是,m n ,则有: A .5321<<n m B .4332<<nm C .%79%78<<nm D .%83%80<<nm4、满足22(3)(3)6x y -+-=的所有实数对(,)x y ,使y x取最大值,此最大值为:A .322+B .42+C .533+D .53+5、设333717171p a b c =+++++371d ++.其中,,,a b c d 是正实数,且满足1a b c d +++=.则p 满足:A .p >5B .p <5C .p <2D .p <36、如图2,点O 是正六边形ABCDEF 的中心,OM ⊥CD ,N 为OM 的中点.则:ABN BC N S S 等于:A .9:5B .7:4C .5:3D .3:2二、填空题1、若实数,x y 满足22(1)(1)1x x y y ++++=,则 x y += .2、如图3,CD 为直角ΔABC 斜边AB 上的高,DE ⊥AC.设ΔADE ,ΔCDB ,ΔABC 的周长分别是12,,p p p .当12p p p +取最大值时,∠A= .3、若函数2543kx y kx kx +=++中自变量的取值范围是一切实数,则实数k 的取值范围是 .4、如图4所示,线段AB 与CD 都是⊙O 中的弦,其 108,,36,O O AB AB a CDCD b ====,则⊙O 的半径R= .第 二 试一.(共20分)n 是一个三位数,b 是一个一位数,且22,1a a bb ab ++都是整数,求a b +的最大值与最小值.二.(共25分)如图5,在ΔABC 中,∠A=60O ,O ,I ,H 分别是它的外心,内心,垂心.试比较ΔABC 的外接圆与ΔIOH 的外接圆的大小,证明你的论断.三.(共25分)求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.数学奥林匹克初中训练题(三)第 一 试一、选择题1、在112,,0.2002,(3222),7223n n π----(n 是大于3的整数)这5个数中,分数的个数为:A .2B .3C .4D .52、如图1,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt ΔCEF 的面积为200,则BE 的长为: A .10 B .11 C .12 D .153、已知,,a b c 均为整数,且满足2223a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次方程是:A .2320x x -+=B .2280x x +-=C .2450x x --=D .2230x x --=4、如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O,且 BD=DC=FC=1,则AC 为:A .32 B .3 C .2 D .335、若222a b c a b c k cba+++===,则k 的值为:A .1B .2C .3D .非上述答案6、设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: A .272B .18C .20D .不存在二、填空题1、方程222111013x x x x++=+的实数根是 .2、如图3,矩形ABCD 中,E ,F 分别是BC ,CD 上的点,且4,3,2===∆∆∆ADF CEF ABE S S S ,则AEF S ∆= .3、已知二次函数2(1)y x a x b =+++(,a b 为常数).当3x =时,3;y =当x 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离为 .4、如图4,半径为2cm ,圆心角为90O 的扇形OAB 的 AB 上有一运动的点P .从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心为I ,当点P 在 AB 上从点A 运动到点B 时,内心I 所经过的路径长为 .第 二 试一、(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值.二、(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A ,距公路30km 的地方有一居民点B ,A ,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?三、(25分)从1,2,3,……,3919中任取2001个数。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。
b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。
两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。
两个多项式x3+x2式x2x,与。
,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。
C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。
个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。
,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
奥林匹克竞赛数学试题
奥林匹克竞赛数学试题一、选择题1. 已知函数 \( f(x) = ax^2 + bx + c \),其中 \( a \),\( b \),\( c \) 为常数。
若 \( f(1) = 3 \),\( f(2) = 7 \),\( f(3) =15 \),则 \( a \) 的值为:A. 1B. 2C. 3D. 42. 一个等差数列的前五项和为 35,第五项为 7,求该等差数列的公差。
3. 在直角坐标系中,点 \( A(2,3) \) 关于直线 \( y = x \) 的对称点 \( B \) 的坐标是:A. (3,2)B. (2,2)C. (3,3)D. (2,3)4. 已知圆的周长为 \( 4\pi \),求该圆的面积。
二、填空题5. 一个等比数列的前三项和为 7,且第一项与第二项之和为 4,求该等比数列的第三项。
6. 一个正方形的对角线长度为 10cm,求该正方形的面积。
7. 已知一个三角形的两边长分别为 5cm 和 12cm,且夹角为 60 度,求第三边的长度。
三、解答题8. 证明:对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 + \ldots+ n^2 = \frac{n(n+1)(2n+1)}{6} \)。
9. 一辆汽车从 A 点出发,以每小时 60 公里的速度向 B 点行驶。
同时,另一辆汽车从 B 点出发,以每小时 40 公里的速度向 A 点行驶。
如果两地相距 240 公里,求两辆汽车相遇的时间。
10. 一个无限等差数列的前 \( n \) 项和为 \( S_n \),已知\( S_{10} = 110 \),\( S_{20} - S_{10} = 440 \),求 \( S_{30} \)。
四、综合题11. 在平面直角坐标系中,点 \( P \) 到原点 \( O \) 的距离为 5,点 \( P \) 到直线 \( y = x \) 的距离为 4,求点 \( P \) 的坐标。
初中数学奥林匹克试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 已知 a + b = 0,且 a > 0,则下列结论正确的是()A. a > bB. a < bC. a = bD. 无法确定3. 在△ABC中,若∠A = 45°,∠B = 30°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°4. 若等差数列{an}中,a1 = 3,d = 2,则第10项an等于()A. 19B. 20C. 21D. 225. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = 2xD. y = x + 16. 若一个正方形的对角线长为10cm,则其面积是()A. 25cm²B. 50cm²C. 100cm²D. 200cm²7. 在平面直角坐标系中,点P的坐标为(2,-3),则点P关于x轴的对称点坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)8. 下列各式中,能表示反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x9. 在等腰三角形ABC中,若底边BC的长度为8cm,腰AB的长度为10cm,则高AD 的长度是()A. 6cmB. 8cmC. 10cmD. 12cm10. 若一个正三角形的边长为a,则其面积S是()A. (√3/4)a²B. (√3/2)a²C. (√3/3)a²D. (√3/6)a²二、填空题(每题5分,共50分)11. 若等比数列{an}中,a1 = 2,q = 3,则第5项an等于______。
12. 在△ABC中,若∠A = 40°,∠B = 50°,则∠C的度数是______。
数学奥林匹克初中训练题117
数学奥林匹克初中训练题117第一试一、选择题(每小题7分,共42分)1.已知在△ABC 中,∠A=90°,M 是边BC 的中点,BC 的延长线上的点N 满足AM ⊥AN .△ABC 的内切圆与边AB 、AC 的切点分别为E 、F ,EF 分别与AN 、BC 交于点P 、Q .则PN -QN ( )(A )大于0 (B )等于0 (C )小于0 (D )不能确定2.“姑苏城外寒山寺,夜半钟声到客船.”每逢除夕夜,寒山寺主持便敲钟108响,祈求天下太平.已知寺外的江中有两条客船.当第一次钟声响起时,两船分别以3m/s 和9m/s 的速度分别向上游、下游行驶.若寒山寺到江边的距离忽略不计,且每隔9s 钟响一次,声音传播速度为300m/s ,则当上游的客船听到第108次钟声时,下游的客船只听到了( )次钟声.(A ) 107 (B )106 (C ) 105 (D )1043.把一个四位数的四个数字颠倒顺序,将所得的数与原数相加.如果所得到的和数能被35整除,则称这个四位数为“好数” .那么,所有的“好数”有( )个.(A ) 234 (B )252 (C )270 (D )3694.多项式+++-++321x x x …200920082007++-+++x x x 的最小值是( )(A ) 2019044 (B )2017035 (C ) 2009 (D )05.对k 个正实数1a ,2a ,…,k a ,称ka a a k 22221+++ 为这k 个数的平方平均数.用A n 表示1,2,…,2009中能被n 整除的所有数的平方平均数.则A 2、A 3、A 5、A 7按大小顺序为( )(A )A 2>A 3>A 5、>A 7 (B )A 2<A 3<A 5、<A 7(C )A 3<A 2<A 5、<A 7 (D )A 5<A 3<A 2、<A 76.如图1,甲、乙两名滑冰运动员分别在圆形滑冰场的点A 、B 处,OB=20m ,OA=15m ,且OA ⊥OB ,乙以5m/s 的速度从点B 沿着圆形滑冰场边⊙O 顺时针方向滑行,在乙离开点B 的同时,甲以5m/s 的速度也从点A 沿着一条直线滑行,这条直线能使甲、乙在给定的速度下最早相遇.则最早相遇的时间(s )在( )内.(A ) (0,5) (B )(5,6) (C )(6,7) (D )(7,10)二、(每小题7分,共28分)1.已知n 为自然数,200942++n n 能表示为四个连续自然数的平方和.则所有满足条件的n 的和为 .2.已知k (5≥k )为正整数,}{12,,2,1-k 的子集M 满足:M 中任意若干个元素(至少一个,也可以是全部)的和不为k 2.则M 中最多有 个元素.3.如图2,一名工兵从营地(原点O 处)出发,到A 、B 、C 、D 四处雷区进行探雷工作,各雷区分别为矩形,地雷只埋在整点(横、纵坐标均为整数的点)附近,且该工兵必须沿水平或垂直方向从一整点走到另一相邻整点(称为一“步”).则工兵从营地出发,对四处雷区进行探雷工作后回到营地至少需 步.4.如图3,在筝形ABCD 中,AB=AD ,CB=CD ,∠BDC 的平分线交BC 于点L .已知A 、L 、C 、D 四点共圆.则2∠BAD+3∠BCD = .第二试一、(20分)已知抛物线c bx ax y ++=2与x 轴有两个交点A (1x ,0)、B (2x ,0),其顶点为C .对任意实数x 有c bx ax c x b x a ++≤++22,且方程t c x b x a =++2(0>t )恰有5个实根.证明:0>ac ,0<ab ,0<bc二、(25分)如图4,已知锐角三角形△ABC 的垂心为H ,边BC 的中点为M ,MH 的延长线交△ABC 的外接圆⊙O 于点P ,且OH ⊥AM .求证:AP 、OH 、BC 三线共点.三、(25分)某市为了方便市了出行,修建了一条市内地铁,共有20个站点(包括起始站和终点站).地铁公司准备向物价局提交票价方案.现有两个票价方案:【方案一】每名乘客的票价=该乘客的实际乘车站数(不包括上车的站点)×0.5元;【方案二】三种固定票价:2元(可至多乘坐3站),5元(可至多乘坐10站),7元(全程).该公司进行统计,知从各车站上车的人数基本一致,且假设每名乘客上车后在以后各站下车的概率一样.如果你是公司的领导,为了使本公司的利润最大,你会向物价局提交哪一种方案?请说明理由.参考答案第一试一、1.B如图5.由AM ⊥AN ,知∠ANM=90°-∠AMN=90°-∠AMC=90°-(180°-2∠ACM )=2(∠ACM -45°)=2(∠ACM -∠AFE )=2(∠ACM -∠CFQ )=2∠CQF .故∠NPQ=∠NQP ⇒ PN=QN .2.D .设上游的船客在ts 时听到108次钟声,此时下游的船客只听到了x 次钟声.则)9107(3003⨯-=t t .解得11100107⨯=t (s ). 故下游的船到寒山寺的距离为11100107⨯m . 则113107)1(9111001071131079⨯++<⨯≤⨯+x x , 即999710719997107⨯≤<-⨯x .解得104=x . 3.A . 设四位数是4321a a a a .则)(110)(1001324112344321a a a a a a a a a a a a A +++=+=.因为1001=7×143,所以7|A ⇔7|)(11032a a +⇔7|)(32a a +,5|A ⇔5|)(41a a +. 则(1a ,4a )=(1,4),(1,9),(2,3),(2,8)(3,2),(3,7),(4,1),(4,6),(5,0)(5,5),(6,4),(6,9),(7,3),(7,8),(8,2),(8,7),(9,1),(9,6).(2a ,3a )=(0,7),(1,6),(2,5),(3,4),(4,3),(5,2),=(5,9),(6,1),(6,8),(7,0),(7,7),(8,6),(9,5). 故满足条件的数共有18×13=234个.4.A+++-++321x x x …200920082007++-+++x x x =+++-++)32(1x x x …)20092008(++-+x x ≥)3()2(1+--++x x x +…+)2009()2008(+--x x =3211++++x +…+2009=1220102009-⨯=2019044 当且仅当1-=x 时,上式等号成立.5.D .A 2=1004200821222008200842222222+++=+++ =6401820106200910052⨯=⨯, A 3=66966921332007200763222222+++=+++ =640172010613396703⨯=⨯, A 5=401401215520052005105222222+++=+++=64015201068034025⨯=⨯, A 7=287287217720092009147222222+++=+++ =64025201665752887⨯=⨯ 故A 5<A 3<A 2<A 7.6.C .如图6,射线AO 、BO 分别交⊙O 于点A ’、B ’ .在︵BA ´上依次取点C 、D .AC 、AD 分别交⊙O 于点C ’、D ’,过点O 分别作CC ’、DD ’的垂线,垂足分别为C ''、D ''.设C O ''交D D '于点E .则D O OE C O ''>>''.故AC+AC’<AD+AD’ .由相交弦定理知D A AD C A AC '⋅<'⋅.则C A AC C A AC C A AC '⋅-'+='-4)()(22'4)'(2AD AD AD AD ⋅-+<=2)'(AD AD -.显然,0'>-AC AC ,0'>-AD AD .故''AD AD AC AC -<-.①+②得AC <AD .由点C 、D 的任意性得'AA AD AC AB <<<.设甲、乙最早相遇的时间为t .此时,乙的位置为点t B .设︵A'B 的中点为D .由t AB ≥AB=25152022=+,得5≥t .则乙至少滑行了25m . 又2558202<=⨯ππ,故乙在时间t 时已滑过了点D .则 212255)210()21015(22+=++=>AD AB t . 于是,3.621225>+>t .因此,乙至少滑行了31.5m .5.31104202<=⨯ππ知乙在时间t 时已滑过了点'A . 又m AA 35'=,故甲沿直线滑到︵BA'B'上任一点(除A ’点外)所用时间小于7s .从而7<t .所以,)7,6(∈t .二、1. 712.设22222)2()1()1(20094+++++-=++m m m m n n ,其中m 为正整数.则 5)12(2005)2(22++=++m n ,即2000)2()12(22=+-+n m .因式分解得2000)12)(32(=--++n m n m .因为32++n m 与12--n m 奇偶性相同,且32++n m >12--n m ,所以,(32++n m ,12--n m )=(1000,2),(500,4),(250,8),(200,10),(100,20),(50,40) . 故(m ,n )=(250,497),(246,2251),(64,119),(52,93),(259,38),(22,3) . 因此所有满足条件的和为497+119+93+3=712.2.k .将{}12,,2,1-k 分成k 组:{}12,1-k ,{}22,2-k ,…,{}1,1+-k k ,{}k . 若1+≥k M ,则M 中必有两个元素在同一组中,二者之和为k 2,矛盾. 故k M ≤.又取}12,,1,{-+=k k k M ,其中任取若干个元素的和或者不大于12-k ,或者不小于12)1(+=++k k k ,满足题设条件,且k M =.3. 88.首先,不考虑该工兵在矩形雷区内的走步,只计算在雷区外的走步数.如图7,易知该工兵从雷区A 到B 至少需走2步,从雷区B 到C至少需走3步, 从雷区C 到D 至少需走5步, 从雷区D 到AC至少需走4步.故工兵有四种途径使得所走步数最少.(1)由O →A →B →C →D →O 至少需(1+1)+2+3+5+(2+3)=17步;(2) 由O →B →C →D →A →O 至少需(1+1)+3+5+4+(1+1)=16步;(3) 由O →C →D →A →B →O 至少需(3+2)+5+4+2+(1+1)=18步;(4) 由O →D →A →B →C →O 至少需(2+3)+4+2+3+(3+2)=19步.因此,工兵由O →B →C →D →A →O 其在雷区外所走步数最少.其次,对每个矩形雷区,设该矩形长为a ,宽为b .则该矩形有)1)(1(++b a 个整点.故该工兵在雷区中走完所有整点,至少需1)1)(1(-++b a 步.因此该工兵至少需要走16+(5×5-1)+(4×4-1)+(4×5-1)+(5×3-1)=88步,且按如图7箭头所示途径,该工兵所走步数为88步.4. 540°.如图8,连结AL 交BD 于点M.设AC 、BD 交于点O ,作L 关于AC的对称点'L .易知'L 在线段CD 上.连结'AL 、'ML .由A 、L 、C 、D四点共圆知∠CDL=∠LAC=∠AC L '.由∠BML=∠AMO=90°-∠LAC=90°-∠CDL=90°-21∠BDC=90°-21∠DBC , 知∠BML=∠BLM ⇒BM=BL .又∠'MAL =2∠LAC=2∠CDL =∠'MDL ,则A 、M 、'L 、D 四点共圆. 由CDCL CD CL BD BL BD BM '===知,'ML ∥BC .所以AD L MD L CBD ''∠=∠=∠. 从而ODC OAD ∠=∠23,即)180(23BCD BAD ∠-=∠ . 因此,2∠BAD+3∠BCD=540°.第二试一、设c bx ax x f ++=2)(.由题设,对所有实数x 有)()(x f x f ≤.在式①中,取i x x =(2,1=i )得)(i x f 0)(=≤i x f .故0)(=i x f .所以或者21x x -=,或者012≥>x x .(i )若21x x -=,则)())(())(()(2121121x x a x x x x a x x x x a x f -=+-=--=. 故0=b .但c ax x f y +==2)(的图像(如图9)与t y =至多有4个交点,即)(x f =t 至多有4个实根,矛盾.(ii )若0=i x ,则x ax ax x x x x a x f 2221))(()(-=--=.故0=c . 但由x ax ax x f y 22)(-==的图像(如图10)知,t x f =)(的实数个数为2,4,6,矛盾.所以,012>>x x .由2121221)())(()(x ax x x x a ax x x x x a x f ++-=--=得0,2121>=-=+ac x x a b x x 故0,0><ac ab .从而得02<bc a ,得0<bc .二、由OH ⊥AM ,知AB ≠AC .不妨设AB>AC.如图11,连结OM ,作AD ⊥BC 于点D ,则H 在AD 上.由BAC R ACBBAC AB AH ∠=∠∠=cos 2sin cos ,BAC R OM ∠=cos ,其中R 为⊙O 的半径,得AH=2OM .分别取AM 、AH 的中点'M 、'H .由中位线定理知''H M ∥MH .又OM ∥H H '且OM =H H ',故四边形'OMHH 为平行四边形.则'OH ∥MH .所以O 、'M 、'H 三点共线.在MH 的延长线上取点'P ,使M AP '∠=90°.则'AP 是分别以AM 、AH 为直径的⊙M 、⊙'H 的公共弦.故''H M 垂直平分'AP .因此,点O 在'AP 的垂直平分线上.则OP OA OP ==',故点P 与点'P 重合. 从而∠APM=90°.设OH 、AM 交于点N ,AP 、BC 交于点Q.连结PD 、HD .由∠APM=∠ANH=∠MDH=90°知A 、N 、H 、P ;M 、N 、H 、D ;A 、M 、D 、P ;P 、Q 、D 、H 分别四点共圆.则∠PHQ=∠PDQ=∠PAN . 故点Q 在NH 的延长线上.因此,AP 、OH 、BC 三线共点.二、方案二.设每辆车在各站点上车的人数均为k .按方案一:从第i (19,,2,1 =i )站上车的乘客坐的站数平均数为)21(21)]20(1[21i i -=-+.故车票收入为: 4209)12110(4)21920(215.0k k k =-⨯=+++⨯⨯ (元). 按方案二.在第一站上车的乘客买2元、5元、7元车票的人数各占193、197、199;在第二站上车的乘客买2元、5元、7元车票的人数各占183、187、188;……;在第9站上车的乘客买2元、5元、7元车票的人数各占113、117、111;在第10站上车的乘客买2元、5元、7元车票的人数各占103、107;在第11站上车的乘客买2元、5元车票的人数各占93、96;……;在第16站上车的乘客买2元、5元车票的人数各占43,41;在第17、18、19站上车的乘客都买2元车票.故车票收入为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++++++++⎪⎭⎫ ⎝⎛++++111188199741859610718719753431831932 k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛----+⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛+++=1110181019109743839365101181191356411811916 k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++-+⨯++⎪⎭⎫ ⎝⎛+++-++=418191)156(101)356(111181191)70356(99 k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++-+=418191911118119129104199 k ()420965142449946911929499k k k k >=--+>⎪⎭⎫ ⎝⎛⨯-⨯-+>. 故选方案二.。
(完整版)初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初中数学奥林匹克模拟试卷1-10套
数学奥林匹克模拟试卷(一)一、选择题:1、已知311=-=-b b a a ,且3>+b a ,则33ab b a -的值是( )。
(A )521(B )1321(C )533(D )13332、如果二次函数()522++++=k x k x y 的图象与x 轴的两个不同交点的横坐标是正的,那么k 值应为( )(A )4>k 或5.-<k (B )45-<<-k (C )4.-≥k 或5-≤k (D )45-≤≤-k3、如图,∆ABC 为锐角三角形,BE ⊥AC 于F ,则ABCAEF S S ∆∆:的值为( )(A )A sin (B )A cos (C )A 2sin (D )A 2cos4、方程1997111=+y x 的正整数解的组数为( ) (A )1(B )2(C )3(D )大于等于45、P 为∆ABC 内一点,PA 、PB 、PC 把∆ABC 的面积分成三等分,则P 点是∆ABC 的( )(A )内心(B )外心(C )垂心(D )重心6、抛物线122++=bx x y 与直线ab ax y 22+=的图象至多有一个交点,则的最大值是( )(A )1(B )23(C )22(D )0 二、填空题:1、已知四个实数的乘积为1,其中任意一个数与其余三个数的积的和都等于1000,则此四数的和是_________。
2、如果c yz b xz a xy ===,,,而且它们都不等于0,则222z y x ++=_________。
AB CE F A B CED G3、若抛物线()242+++=a x ax y 全在x 轴的上方,a 的范围是_________。
4、如图,在图形ABCD 中,AB ∥CD ,∠A=900,E 为BC 重点,GE ⊥BC 于,交DA 延长线于G ,DC=17cm ,AB=25cm ,BC=10cm ,则CE=_________。
数学奥林匹克初中训练题1及答案
数学奥林匹克初中训练题(1)第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定 ( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC =且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.。
初三数学奥林匹克竞赛题及答案
导读:初三数学奥林匹克竞赛题及答案,答案:,答案:33的倍数共有60个,初三奥数题,这题奥数题的答案说,答案:少一个条件:AB=AC(△MBO∽△OCN就意味着∠B=∠C,实数x的值为???答案:显然当x=1002时y最小,初三数学奥林匹克竞赛题及答案已知3a^2-10ab+8b^2+5a-10b=0,求……已知实数a、b满足3a^2-10ab+8b^2+5a-10b=0,求u=9a^2+72b+2初三数学奥林匹克竞赛题及答案已知3a^2-10ab+8b^2+5a-10b=0,求……已知实数a、b满足3a^2-10ab+8b^2+5a-10b=0,求u=9a^2+72b+2的最小值答案:分解因式(a-2b)(3a-4b)+5a-10b=0即(a-2b)(3a-4b+5)=0从而a=2b或4b=3a+5带入u就可做了。
a=2b的u=-344b=3a+5的u=11即u最小为-34***从1,2,3,4……2010这2010个正整数中,最多有多少个数,可以在这些数中任选三个数的乘积都能被33整除?答案:33的倍数共有60个所以{3,11,33,66,99……1980,任意一个数}所以最多63个数***(1)五位数abcde 满足下列条件它的各位数都不为0(2)它是一个完全平方数(3)它的万位上的数字a 和bc de 都是完全平方数求所有满足上诉条件的5位数***怎样的四个点可以共圆,初三奥数题这题奥数题的答案说。
∠APB=∠BQR=90°,∴BQRP四点共圆,这是为什 1么??这是因数四边形BQRP的两个对角BRP和PBQ的和是90°依据是对角互补的四边形是圆内接四边形!***如图,圆O中,AB,AC为切线分别切圆与D,E且BC过O点,F为弧DE 上一点,过F作圆O的切线交AB,AC于M,N。
求证,△MBO∽OCN答案:少一个条件:AB=AC(△MBO∽△OCN 就意味着∠B=∠C,但是题目只说BC过O)1) 显然∠DOB=90°-∠B,∠EOC=90°-∠C,于是∠DOE=180°-(∠DOB+∠EOC)=∠B+∠C=2∠B2)显然∠DOM=∠FOM,∠EON=∠FON,于是2∠DOE=∠DOM+∠FOM+∠EON+∠FON=2(∠FOM+∠FON)=2∠MON3) 比较1)、2)的结论可知∠MON=∠B=∠C4) 根据3)的结论,以及∠BMO=∠OMN可知△MBO∽△MON5) 根据3)的结论,以及∠CNO=∠ONM可知△OCN∽△MON6) 由4)、5)的结论可知△MBO∽△OCN证毕***绝对值用()表示。
数学奥林匹克竞赛试卷初中
一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。
12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。
13. 一个数的平方根是±2,那么这个数是______。
14. 下列各数中,是质数的是______。
15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。
16. 若一个等边三角形的边长为a,那么它的周长是______。
初中数学奥林匹克竞赛全真试题
初中数学奥林匹克竞赛全真试题第一题:简单的数列已知一个数列的前五项分别是:1,3,5,7,9问:这个数列的第六项是多少?解析:根据已知条件,我们可以看出这个数列是一个等差数列,且公差为2。
我们可以用递推公式来求解这个数列的第六项。
设数列的第一个项为a,公差为d,则数列的第n项可以表示为:a + (n-1)d。
将已知条件代入可得:a = 1, d = 2。
所以,第六项的值为:1 + (6-1)*2 = 11。
答案:第六项为11。
第二题:寻找规律观察以下数字序列:1,3,6,10,15,21,28...问:这个序列中的第十项是多少?解析:我们可以看出,这个数字序列是一个递增的等差数列,且首项为1,公差为1。
我们可以使用递推公式来寻找这个序列中的第十项。
设数列的第一个项为a,公差为d,则数列的第n项可以表示为:a + (n-1)d。
将已知条件代入可得:a = 1, d = 1。
所以,第十项的值为:1 + (10-1)*1 = 46。
答案:第十项为46。
第三题:求三角形面积已知一个三角形的底边长为6 cm,高为8 cm。
问:这个三角形的面积是多少?解析:三角形的面积可以通过底边长和高来计算,公式为:面积 = 底边长* 高 / 2。
将已知条件代入可得:面积= 6 * 8 / 2 = 24 cm²。
答案:这个三角形的面积为24 cm²。
第四题:求方程的解解方程:2x + 3 = 7解析:为了求解方程,我们需要将x的系数移到等式的右边,并将常数项移到等式的左边。
将方程化简可得:2x = 7 - 3继续化简可得:2x = 4最后,将方程两边同除以2可得:x = 2。
答案:方程的解为x = 2。
第五题:追赶问题A、B两个人同时从同一起点出发,A的速度为6 m/s,B的速度为8 m/s。
问:如果A比B慢12秒钟到达终点,终点离起点多远?解析:设终点距离起点的距离为d,根据题意可以列出等式:d / 6 = d / 8 + 12。