高等数学2期末复习题与答案

合集下载

高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。

解:选A 。

23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。

2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。

x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。

解:选D 。

()⎰⎰+-=202220412rdr r r d I πθ 。

4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。

高等数学2期末复习题与答案(可编辑修改word版)

高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。

《高等数学二》期末复习题及答案_28171462418361700

《高等数学二》期末复习题及答案_28171462418361700
13、(本题满分12分)求口(1-/一丁)心d1其中。是由》=",y = 0,
D
2 ,2t
x+y= 1
在第一象限内所围成的区域。
x= 0
14、(本题满分12分)一质点沿曲线>,= /从点(0,0,0)移动到点
z = r
(0, 1, 1),求在此过程中,力户=Jl + x*7-£ + 9所作的功W。
15、(本题满分10分)判别级数ynsin-的敛散性。
23、设L为连接(1,0)与(0,1)两点的直线段,则j(x+y)4s=
24、lim/x"=
(21。。)次+/ +1 _1
25、2=3,b=4,[与B的夹角是工,«')axb =2
26、已知三角形的顶点A(U,T),8(2J,0),C(0,0,2),则AABC的面积等于
27、点(2,3』)至1|点加2(274)的距离附|“[=
3、积分/=JJje4/b的值为x2+y2<4
4、若a,b为互相垂直的单位向量,则a b=
5、交换积分次序jjiZrJo /(x,yMy=
6、级数£(:+/)的和是
“1LJ
7、二一即=
Dxy,T)
8、二元函数z = sin(2x + 3y),则」=
9、设/(x, y)连续,交换积分次序J:八[J(x,y}dy=
11、B解:若级数£%收敛,由收敛的性质4G。三个选项依然是“■1
收敛的,而£(%+2)未必收敛,或者排除法选择B。/1.1
12、C解:二重积分|].f(#,y)d#dy的值与函数有关,与积分区域有关, 而与积分变量的字母表达没关系。
13、B解:利用平行向量对应的坐标成比例,Z=(84,-2),则

高数二期末考试题及答案

高数二期末考试题及答案

高数二期末考试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' + y = 0 \) 的通解是?A. \( y = C_1 e^{-x} + C_2 e^x \)B. \( y = C_1 \cos(x) + C_2 \sin(x) \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln(x) + C_2 \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是?A. 3B. 1C. 0D. \( \frac{1}{3} \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^2 - 6x + 8 \) 的最小值是 ________。

答案:22. 函数 \( f(x) = e^x \) 的导数是 ________。

答案:\( e^x \)3. 函数 \( y = \ln(x) \) 的定义域是 ________。

答案:\( (0, +\infty) \)4. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。

答案:原点三、计算题(每题10分,共30分)1. 求函数 \( y = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数。

高等数学二(含答案)

高等数学二(含答案)

高等数学(二)一、选择题1函数1ln xy x-=的定义域是 ( D ) ](0,1) B (0,1)(1,4)C (0,4) D (0,1)(1,4A ⋃⋃2 设2,0,(x)sin ,0a bx x f bx x x ⎧+≤⎪=⎨>⎪⎩ 在x=0处连续,则常数a ,b 应满足的关系是 ( C )A a<bB a>bC a=bD a ≠b3 设(sin )cos 21f x x =+ 则(sin )(cos )f x f x += ( D ) A 1 B -1 C -2 D 24 若(x)xln(2x)f = 在0x 处可导,且'00()2,()f x f x ==则 ( B )221 B C D e 2e A e5 设(x)f 的一个原函数为xlnx ,则(x)dx xf =⎰ ( B )22221111x (lnx)C B x (lnx)C24421111C x (lnx)CD x (lnx)C4224A ++++-+-+6 设'(x)(x 1)(2x 1),x (,)f =-+∈-∞+∞ ,则在(12,1)内,f (x )单调( B ) A 增加,曲线y=f (x )为凹的 B 减少,曲线y=f (x )为凹的 C 减少,曲线y=f (x )为凸的 D 增加,曲线y=f (x )为凸的 7 设(0,0)z(x y)e ,xy z y ∂=+=∂则( C ) A -1 B 1 C 0 D 2 8 设2239k x dx =⎰ ,则k= ( 0 )9 011lim sin sin x x x x x →⎛⎫+= ⎪⎝⎭( B ) A 0 B 1 C 2 D +∞ 10 {A ,B ,C 三个事件中至少有一个发生}这一事件可以用事件的关系表示为( A )A A ⋃B ⋃C B A ⋂B ⋃C C A ⋃B ⋂CD A ⋂B ⋂C 二 填空题11 设21(x)x f x=+ 则"(1)f =____4_____12 与曲线3235y x x =+- 相切且与直线6x+2y-1=0平行的直线方程__y=-3x-6__ 13()sin x x dx +=⎰21cos 2x x C -+ 14 设ln ,z y x dz ==则 _y/x*dx+lnxdy_________ 15 0sin 2lim3x xx→= __2/3_______16函数z = 的定义域为__{(x,y)|x 2+y 2≤1}______ 17 设函数y=xcosx ,则y ’=_cosx-xsinx____18 设函数332,0(x),0x x f x x +≤⎧=⎨>⎩ 则f (0)=____2__________19 曲线32113y x x =-+ 的拐点是__(1,1/3)_________20 若2n x y x e =+ 则(n)y = ___22n n x n A e + _____ 三、计算题 21 求极限02sin 2lim sin 3x x xx x→+-解:原式=00224lim lim 232x x x x xx x x→→+==---22计算lim x x →+∞22 lim limlimx x x x →+∞====解:原式 1=23 计算sin x xdx ⎰cos cos cos cosx sinx xd x x x xdx x =-=-+=-+⎰⎰解:原式24 计算4211xdx xπ++⎰442200424021=dx dx 1+x 1+x 1 =arctan ln(1x )21 =arctan ln(1)4216x x ππππππ+++++⎰⎰解:原式25 设z (x ,y )是由方程2224x y z z ++= 所确定的隐函数,求dz222(x,y,z)x 42,2,242242224222F y z z F F Fx y z x y z F z x x x F x z z z F z x y y F y z z z z z x y dz dx dy dx dyx y z z=++-∂∂∂===-∂∂∂∂∂∂=-=-=∂∂--∂∂∂∂=-=-=∂∂--∂∂∂∴=+=+∂∂--解:设则有:26 设sin x y e x =,证明"'220y y y -+='""'sin cos sin cos cos sin 2cos 222cos 2(sin cos )2sin =0x x x x x x x xxxxy e x e xy e x e x e x e x e x y y y e x e x e x e x =+=++-=∴-+=-++解:27 (1)求曲线x y e = 及直线x=1,x=0,y=0所围成的图形D 的面积S (2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V110011222001e e 1e =ee 222xx x xx x dx ee y e dx ππππ===-==-⎰⎰解:由题知曲线直线的交点:(1,) 则(1) (2))和(28 讨论函数21x y x=+ 的单调区间和凹凸区间,并求出极值和拐点的坐标。

自考高等数学2试题及答案

自考高等数学2试题及答案

自考高等数学2试题及答案一、选择题(每题3分,共30分)1. 下列函数中,满足f(2+x)=f(2-x)的是:A. f(x) = sin(x)B. f(x) = cos(x)C. f(x) = x^2D. f(x) = e^x答案:B2. 设函数f(x)在点x=a处可导,且f'(a)≠0,那么曲线y=f(x)在点(x=a, y=f(a))处的切线斜率为:A. f(a)B. f'(a)C. f(a+1)D. 0答案:B3. 不等式e^x > x^2在区间(0, +∞)上成立的充要条件是:A. x > 0B. x > 1C. x > 2D. x > 3答案:A4. 设数列{an}是等差数列,且a1=1,a2=3,a3=5,则此等差数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 曲线y=x^3在点(1,1)处的法线方程为:A. y=3x-2B. y=-3x+4C. y=3x+2D. y=-3x-2答案:B6. 设函数f(x)在区间[a,b]上连续,若f(x)在[a,b]上单调递增,则f(x)在[a,b]上:A. 有最大值和最小值B. 有最大值或最小值C. 有界但不一定有最大值或最小值D. 无界答案:A7. 二元函数z=xy^2在点(1,1)处的偏导数分别为:A. 1, 2B. 2, 1C. 1, 1D. 2, 28. 设函数f(x)在区间(-∞, +∞)上满足f(x)=f(x+3),则f(x)的周期为:A. 1B. 3C. 6D. 不确定答案:B9. 利用定积分的几何意义,计算曲边梯形的面积,其公式为:A. ∫[a,b] f(x) dxB. ∫[b,a] f(x) dxC. ∫[a,b] f(x) + g(x) dxD. ∫[a,b] f(x) - g(x) dx答案:A10. 微积分基本定理指出,若函数f(x)在区间[a,b]上连续,且F(x)是f(x)的一个原函数,则:A. F(b) - F(a) = f(b) - f(a)B. F(b) - F(a) = ∫[a,b] f(x) dxC. F(b) - F(a) = f(a) - f(b)D. F(b) - F(a) = ∫[b,a] f(x) dx答案:B二、填空题(每题4分,共20分)11. 若函数f(x)=x^2+1在区间[-1,2]上的最大值为M,则M=________。

第二学期高等数学期末考试试卷及答案1

第二学期高等数学期末考试试卷及答案1

第二学期高等数学期末考试试卷答案一.填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中.1.过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,,垂直的平面方程为_____________________________. 2.设()22ln y x z +=,则=∂∂==11y x xz , ________________________.3.交换累次积分的顺序()=⎰⎰12xxdyy x f dx, ______________________.4.设222lnz y x u ++=,则()=u grad div ___________________.5.设幂级数∑∞=0n nn x a 的收敛半径为1R ,幂级数∑∞=0n n n x b 的收敛半径为2R ,且+∞<<<210R R ,则幂级数()∑∞=+0n nn n x b a 的收敛半径为_____________.答案:⒈ 043=+--z y x ; ⒉ 1;⒊ ()⎰⎰1yydx y x f dy ,;⒋2221zy x ++;⒌ 1R .二.选择填空题(本题满分15分,共有5道小题,每道小题3分)。

以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效. 1.函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的【 】. (A ).充分条件; (B ).必要条件; (C ).充分必要条件; (D ).既不是必要,也不是充分条件.2.设D 是xOy 平面上以()11,、()11,-、()11--,为顶点的三角形区域,1D 是D 在第一象限的部分,则积分()⎰⎰+Ddxdyy x xy sin cos等于【 】.(A ).⎰⎰1sin cos 2D ydxdy x ; (B ).⎰⎰12D xydxdy ;(C ).()⎰⎰+1sin cos 4D dxdy y x xy ; (D ).0.3.下列级数中,属于条件收敛的是【 】.(A ).()()∑∞=+-111n nnn ; (B ).()∑∞=-1si n 1n nn nn π ;(C ).()∑∞=-121n nn; (D ).()∑∞=+-1131n nn .4.设函数()x f 是以π2为周期的周期函数,它在[)ππ,-上的表达式为()⎩⎨⎧<≤<≤-=ππx x xx f 000 ,再设()x f 的Fourier (傅立叶)级数的和函数为()x s ,则()=πs 【 】. (A ).2π-; (B ).π- ; (C ).0 ; (D ).π .5.设向量a 、b 、c 满足:0c b a =++,则=⨯+⨯+⨯a c c b b a【 】.(A ).0 ; (B ).c b a⨯⨯;(C ).c b ⨯; (D ).()b a⨯3. 答案: ⒈ (A ); ⒉ (C ); ⒊ (B ); ⒋ (A ); ⒌ (D ). 三.(本题满分7分)设()xy y x f z ,22-=,其中函数f 具有二阶连续的偏导数,试求xz ∂∂,yx z ∂∂∂2.解:212f y f x xz '+'=∂∂ ,()2221222112224f xyffyx xyf yx z ++-+-=∂∂∂ .四.(本题满分7分) 计算三重积分()⎰⎰⎰Ω+=dxdydzz x I ,其中Ω是由曲面22y x z +=及221y x z --=所围成的空间区域.解:作球坐标变换θϕρcos sin =x ,θϕρsin sin =y ,ϕρcos =z , 则空间区域Ω变为,104020≤≤≤≤≤≤Ω'ρπθπθ,,:,因此,()⎰⎰⎰Ω+=dxdydzz x I()⎰⎰⎰Ω+=ρϕθϕρϕρθϕρd d d s i n c o s c o s s i n 2()⎰⎰⎰+=12420s i n c o s c o s s i n ρϕρϕρθϕρϕθππd d d8π=五.(本题满分8分) 计算曲面积分()()⎰⎰∑-+++=dxdy z dzdx z y dydz xz I 322912其中∑为曲面122++=y x z ()21≤≤z ,取下侧.解:取平面21=∑z :,取上侧.则∑与1∑构成封闭曲面,取外侧.令∑与1∑所围空间区域为Ω,由Gauss 公式,得 ⎰⎰⎰⎰∑∑+∑-=11I()⎰⎰⎰⎰⎰≤+Ω--=132229y x dxdydxdydz⎰⎰⎰⎰⎰≤+--=121120222y x rdxdydz rdr d πθ2π-=六.(本题满分8分) 判别级数()()()()()∑∞=++++12222!2!!3!2!1n n n的敛散性.解: ()()()()()!2!!3!2!102222n n u n ++++=≤()()()()()!2!!!!2222n n n n n ++++≤, ()()n v n n n =⋅=!2!2而()()()()()()()!2!!12!11limlim221n n n n n n v v n nn n ⋅++⋅+=→∞+→∞()()()14122121lim3<=+++=→∞n n n n n所以,由比值判别法,知级数()()∑∑∞=∞=⋅=121!2!n n n n n n v 收敛.再由比较判别法知级数()()()()()∑∑∞=∞=++++=122221!2!!3!2!1n n nn n u 收敛.七.(本题满分8分) 选取a 与b ,使得dy yx b y x dx yx y ax 2222++--++成为某一函数()y x u ,的全微分,并求()y x u ,. 解:()22y x y ax y x P ++=,,()22y x by x y x Q ++-=, 由()()()dy y x Q dx y x P y x du ,,,+=,得xQ yP ∂∂=∂∂即有()()()()222222222222yxxb y x y x yxyy ax y x +⋅+--+=+⋅+-+解得,1=a ,0=b .所以,()()()()()⎰+--+=y x yx dyy x dx y x y x u ,,,0122⎰⎰+--=yxdy yxyx xdx 0221()⎰⎰+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=yyyx y x d x y x y d x 0222202211ln()x yx xy x ln ln 21arctan ln 22-++-=()xyyx a r c t a n ln 2122-+=八.(本题满分8分) 过直线⎩⎨⎧=-+=-+0272210z y x z y x 作曲面273222=-+z y x 的切平面,求此切平面的方程. 解:过已知直线作平面束方程()0272210=-++--+z y x z y x λ,即()()()0272210=-+-+++z y x λλλ,其法向量为{}λλλ--++=2210,,n.设所求切平面的切点坐标为()000z y x ,,,则有()()()⎪⎪⎩⎪⎪⎨⎧=-+-+++=-+---=+=+02722102732222610000202020000z y x z y x z y x λλλλλλ , 解得1113000-====λ,,,z y x .或1917173000-=-=-=-=λ,,,z y x .因此,所求切平面方程为027339=--+z y x ,或02717179=-+--z y x .九.(本题满分8分)求极限:()422221lim xx tu t x x eduedt ---→-⎰⎰+.解:交换积分()⎰⎰--222x tu t x du edt 中的顺序,有()()⎰⎰⎰⎰----=uu t x x tu t x dt edu du edt 022222,u t v -=,则有()⎰⎰-----=uvuu t dv edt e22所以()()4242222221lim 1lim xuu t xx xx tu t x x edt edueduedt---→---→-=-⎰⎰⎰⎰++4242002222221l i m 1l i mxx vx xxuvx ex d veed ud v e---→---→⎰⎰⎰-=-⎪⎪⎭⎫ ⎝⎛-=++212lim lim 1lim424222==-⋅=-→--→-→+++⎰xx x vx xx ex dvee十.(本题满分8分)利用⎪⎭⎫ ⎝⎛-x x dx d 1cos 的幂级数展开式,求级数()()∑∞=⎪⎭⎫⎝⎛--122!2121n nn n n π的和.解: 设()⎪⎭⎫⎝⎛-=x x dx d x s 1cos ,由于()()()()∑∑∞=-∞=-=--=-11202!211!211c o s n n nn nnn xxn xxx ()-∞<<∞-x因此,()()()⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=∑∞=-112!211c o s n n n n xdx d x x dx d x s()()∑∞=---=122!2121n n nxn n另一方面, ()21c o s s i n 1c o s x x x x x x dxd x s +--=⎪⎭⎫ ⎝⎛-=所以,()()∑∞=---=+--1222!21211c o s s i n n n nxn n xx x x ()-∞<<∞-x当2π=x 时,()()∑∞=-⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛1222!21212n n nn n s ππ,所以,()()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--∑∞=222!2121212πππs n n n nn2221c o s s i n 2ππ=+--⋅⎪⎭⎫ ⎝⎛=x x x x x22212c o s 2s i n24⎪⎭⎫ ⎝⎛+--⋅=πππππ21π-=十一.(本题满分8分)已知x 、y 、z 为实数,而且32=++z y e x证明:32≤z y e x.(提示:考虑函数()()223ye y e y xf xx--=,.) 解: 设()()223ye y e y xf xx--=,,由题设32=++z y e x , 得 32≤+y e x, 即 32=+y e x为其边界.下面只需证明:()()223ye y e y xf xx--=,在区域32≤+y ex上的最大值为1.令:()()()()⎪⎩⎪⎨⎧=--='=--='0232023222y e y e y x f y e y e y x f x x y x x x ,,, 解方程组得驻点()10,,()10-,和()0,x .对于驻点()10,和()10-,,有 ()110=,f ,()110=-,f对于驻点()0,x ,()00=,x f ;在边界32=+y e x 上,()002=⋅=y e y x f x,,所以,函数()()223y e y e y x f x x --=,的最大值为1,即()()1322≤--=ye y e y xf xx,即32≤z ye x.。

高数2期末练习(附答案)

高数2期末练习(附答案)

第 1 页 高数2练习一、选择题1、设c 是一非零向量,λ是一实数,若__D___则a b =(,a b 均为向量). A .a b λλ= B .a c b c ⨯=⨯ C .a c b c ⋅=⋅ D .a c b c ⋅=⋅且a c b c ⨯=⨯2、若0),(),(0000='='y x f y x f y x ,则),(y x f 在),(00y x 下列结论正确的是 ( B )A、连续, B 、偏导数存在, C 、有极值, D 、可微.3、交换积分110(,)xdx f x y dy -⎰⎰的秩序等于 ( D )A .1100(,)xdy f x y dx -⎰⎰ B .1100(,)xdy f x y dx -⎰⎰C .11(,)dy f x y dx ⎰⎰ D .110(,)ydy f x y dx -⎰⎰4、设L 是从点(0,0)沿折线11--=x y 至点(2,0)的折线段,则积分⎰-Lydx xdy 等于( D )A.0B.-1C.2D.-25、下列命题错误的是 ( D )A . 如果1n n u ∞=∑与1n n v ∞=∑都收敛,则1()n n n u v ∞=+∑必收敛B .如果1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑必发散C .如果1n n u ∞=∑与1n n v ∞=∑都发散,则1()n n n u v ∞=+∑不一定发散D .如果1()n n n u v ∞=+∑收敛,则1n n u ∞=∑与1n n v ∞=∑必都收敛6、下列级数中发散的是 ( D )A 、132nn ∞=∑B、1(1)nn ∞=-∑ C 、3131n n n ∞=+∑D、1n ∞=∑7、下列级数中条件收敛的是 ( A )(A )∑∞=+-11)1cos(n n n π(B )∑∞=+⋅-131)1(n nn n (C )∑∞=+121!1n n(D )∑∞=+-1)1()1(n nn n第 2 页1、若b,a为两非零向量,则0b a =⨯是ba 与同向的( B )A.充要条件B.必要条件C.充分条件D.既非充分也非必要条件 2、函数z =0,0)处( B )A 、 不连续B 、 偏导数不存在C 、 任一方向的方向导数存在D 、可微 3、交换积分次序后,⎰⎰=x edy y x f dx ln 01),(( C )A.⎰⎰yeedx y x f dy ),(10B.⎰⎰ee 0dx )y ,x (f dy C.⎰⎰eeydx y x f dy ),(10 D.⎰⎰eeeydx y x f dy ),(04、已知()()2y x ydydx ay x +++为某函数的全微分,则a 等于( D )A 、 -1B 、 0C 、1D 、2 1、设直线L :22211-+==-z y x 及平面π:01232=+++-z y x ,则直线L于平面π的位置关系是直线L ( B )A.在平面π上B. 平行于平面πC. 垂直于平面πD. 与平面π斜交 2、设函数yx y x f arctan),(=,则(2,1)y f '=( B )A.52 B. 52- C.51 D. 51-3、函数22xy y x z -=在点(1,1)P 使其方向导数取得最大值的单位方向向量是( C )A .j i - B. j i +- C.ji 2222-D. ji 2222+-4、 交换二次积分ln 10(,)ex dx f x y dy⎰⎰的次序为( C )A.10(,)ye edy f x y dx ⎰⎰B.00(,)ee dyf x y dx ⎰⎰C.10(,)ye edy f x y dx ⎰⎰D.0(,)yee edy f x y dx⎰⎰5、下列级数中绝对收敛的级数是( A )A.1211(1)n n n∞+=-∑ B .111(1)n n n∞+=-∑ C.∑∞=++-11122)1(n nnn D.∑∞=+-11)1(n n二、填空题第 3 页1、过原点且与直线⎩⎨⎧=-+-=+-+0532062z y x z y x 垂直的平面方程为_______730x y z --=______________.2、由方程1=++z e y x 所确定的函数),(y x z 全微分=dz ___zdx dy e+-_______________.3、101lim (1)x x y xy →→-=____1e -___________.5、设L 为椭圆17422=+yx,其周长为a ,则⎰++Lds y x xy )47(22= 28a . 6、设a 为常数若级数,0()n n u a ∞=-∑收敛,则lim n x u →∞=_______a _______________.7、级数11(1)nn n xn∞-=-∑的收敛域为____(1,1]-_________________.1、过点M(1,4,3)且法向量为n=i-j+k 的平面方程______0x y z -+=_____________2、z=2y lnx, 则"xx z =________22y x-______________3、函数z=()xy x +ln 的定义域___{(,)|00}x y x x y >+>且________________________4、设zyx u =,则 ()=1,,1,1du_________dx dy -___________________5、当=K _____1-______时,向量{}{}3,1,,0,1,1-=-=K b a相互垂直6、求()ds y x L⎰+,其中L 为连接(1,0)及(0,1)两点的直线段7、以曲面z=sin(xy)为顶,D :-1≤x ≤1,-1≤y ≤1为底的曲顶柱体体积的二重积分表达式________sin Dxydxdy ⎰⎰_____________________第 4 页8、若L 是平行于y 轴的有向线段则⎰=Ldx y x p ),(__________0____________11、过点)1,0,1(-且与平面42=-+z y x 平行的平面方程为 230x y z +--= 12、设3222z xz y ++=确定函数),(y x f z =,则10==∂∂y x xz = 13-13、设L 为2x y =上从点)0,0(O 到)1,1(A 之间的曲线段,则=⎰Lxds11215、常数项级数∑∞=++12231n n n 的和=S 12-三、计算题1、已知曲面221z x y =-- 上的点P 处的切平面平行于平面 122=++z y x ,求点P 处的切平面方程.2(1)2(1)(1)0x y z -+-++=2、设()1yz xy =+ ,求xy z ''.121(1)2(1)(1)[ln(1)]1y y x y y xy y xy xy xy---=++++++3、计算()211Dx dxdy y -+⎰⎰,其中D 是由曲线2y x =与直线2y x =-所围成. 04、验证:在整个平面内,22xy dx x ydy +是某个函数的全微分,并求出一个这样的函数.222x y5、、已知曲线积分⎰+Ldy x yf dx xy )(2与路径无关,其中)(x f 具有一阶连续导数,且0)0(=f ,求⎰+)1,1()0,0(2)(dyx yf dx xy 的值. 21()2f x x =6、计算曲线积分()()22sin LI xy dx x y dy =---⎰,其中L是半圆周y =上从(0,0)O 到(1,1)A 的有向弧段. 1sin 264--7、将下列函数展开为x 的幂级数.第 5 页(1) ()(1)xf x x e =+,01,!nn n x x Rn ∞=+=∈∑(2)()12x f x x=-. 11(1)2,||2nnn n xx ∞+==-<∑(3))23ln()(x x f +=,10(1)233ln 3(),1322nn n n x x n ∞+=-=+-<<+∑8、在曲线x=t,y=32,t z t =上求一点,使该点的切线平行于平面x+2y+z=4。

《高等数学二》考试题及答案

《高等数学二》考试题及答案

《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。

高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。

二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。

(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。

(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。

(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。

2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。

原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。

高等数学II试卷及答案

高等数学II试卷及答案

06/07试卷(B )(本试卷共4页)1、函数⎪⎩⎪⎨⎧=≠+=0001sin 1sin ),(xy xy x y y x y x f ,则极限),(lim 00y x f y x →→=。

(A)不存在(B)等于1(C)等于零 (D)等于2 2、设函数221y x z +-=,则点(,)00是函数z 的(A )极大值点但非最大值点(B )极大值点且是最大值点(C )极小值点但非最小值点(D )极小值点且是最小值点3、设f (x ,y )为连续函数,则积分可交换积分次序为4、 级数()∑∞=⎪⎭⎫ ⎝⎛--1cos 11n n n α(常数0>α)(A )发散;(B )条件收敛;(C )绝对收敛;(D )敛散性与α有关。

5、幂级数n n n x n 2131-∞=∑⎪⎭⎫ ⎝⎛+的收敛半径是 (A)1;(B)3e ;(C)3-e ;(D)1-.6、微分方程x x y y 2cos =+''的一个特解应具有形式(A )x D Cx x B Ax 2sin )(2cos )(+++(B )x Bx Ax 2cos )(2+(C )x B x A 2sin 2cos +(D )x B Ax 2cos )(+一. 1、设函数xy y x y x y x f =+=),(,),(22ϕ,则[]),(),,(y x y x f f ϕ=??????。

2、曲线3231,2,t z t y t x ===在点)31,2,1(处的切线方程是。

3、曲线上任一点),(y x 处的切线斜率为该点横坐标的平方,则此曲线的方程是。

4、如果幂级数()∑∞=-01n n n x a 在1-=x 处收敛,在3=x 处发散,则它的收敛域是. 二. 解答下列各题(本大题共2小题,总计12分) 1、(5分)设)tan ln(x y z =,求y x z z ,。

2、(7分)求函数xy z e u z +-=在点(2,1,0)处沿曲面3=+-xy z e z 法线方向四、解答下列各题(本大题共2小题,总计14分) 1、(7分)计算二重积分224+-⎰⎰D xy dxdy 其中D :x2+y 2≤9.f (x ,y )为连续函数,写出积分在极坐标系中先积r 后积θ的二次积分。

高数(二)期末复习题

高数(二)期末复习题

1 0

1 0
ρ3
sin
θ
cos
θ
dz
(C)
π
2
0

1 0

1 0
ρ2
sin
θ
cos
θ
dz
(B)
2π 0
1 0

1 0
ρ2
sin
θ
cos
θ
dz
(D)
π
2
0

1 0dρFra bibliotek1 0
ρ3
sin
θ
cos
θ
dz
6. 设 L 是 xoy 平面上的有向曲线, 下列曲线积分中, ( ) 是与路径无关的
(A) L 3yx2 dx + x3 dy (C) L 2x y dx − x2 dy
高数(二)期末复习题
只是把高数(二)期末复习题单独拿出来
作者: sikouhjw、xajzh 组织: 临时组织起来的重排小组 时间: May 29, 2019 版本: 1.00
“不论一个人的数学水平有多高, 只要对数学拥有一颗真诚的心, 他就在自己的心灵上得到了升华。”—SCIbird
目录
1 声明
7. 设 Σ 是上半圆锥面 z = x2 + y2(0
z
1)
,
则曲面积分

Σ
x2 + y2
dS =
8. 级数
∞ n=1
1 n(n+1)

1 2n
的和为
三、综合题( 8 小题, 共 52 分)
1.
求方程
dy dx
=
xy 1+x2

高等数学二试题及完全解析

高等数学二试题及完全解析

2018年全国硕士研究生入学统一考试数学二考研真题与全面解析(Word 版)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1.若()212lim 1x x x e ax bx→++=,则()(A )1,12a b ==-(B )1,12a b =-=-(C )1,12a b ==(D )1,12a b =-=【答案】(B )【解析】由重要极限可得()()()2222222112200111lim211lim lim 1(1)lim 1(1)x x x x xx x x x x e ax bx e ax bx x xe ax bx x x e ax bx e ax bx e ax bx e →→→++-++-•++-→=++=+++-=+++-=,因此,222222001()12lim 0lim 0xx x x x ax bx x e ax bx x x→→++++++-=⇒=ο 或用“洛必达”:2(1)200012212lim 0lim lim 0222x x x b x x x e ax bx e ax b e a ax x ⇒=-→→→++-++++=⇒=======, 故1,12a b ==-,选(B ).2.下列函数中在0x =处不可导的是() (A )()sin f x x x =(B )()sin f x x x =(C )()cos f x x =(D )()cos f x x =【答案】(D )【解析】根据导数定义,A.000sin ()(0)limlim lim 0x x x x x x x f x f x x x→→→-===g ,可导;B.000sin ()(0)limlim lim 0x x x x x x x f x f x x x→→→-===g ,可导; C.20001cos 1()(0)2lim lim lim 0x x x x x f x f x x x→→→---===,可导; D.()200011cos 122lim lim limx x x x x x x x x→→→---==,极限不存在。

第二学期高数(下)期末考试试卷及答案

第二学期高数(下)期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1一、填空题(每空3 分,共15 分)1。

设,则.2。

曲面在点处的切平面方程是.3.交换累次积分的次序:.4.设闭区域D是由分段光滑的曲线L围成,则:使得格林公式:成立的充分条件是:。

其中L是D的取正向曲线;5.级数的收敛域是。

二、单项选择题(每小题3分,共15分)1.当,时,函数的极限是A。

等于0; B. 等于;C。

等于; D. 不存在.2.函数在点处具有偏导数,是函数在该点可微分的A.充分必要条件;B。

充分但非必要条件;C。

必要但非充分条件; D. 既非充分又非必要条件。

3.设,则A。

; B。

;C.;D。

4.若级数在处收敛,则此级数在处A。

绝对收敛; B。

条件收敛;C.发散;D.收敛性不确定。

5。

微分方程的特解应设为A.;B.;C.;D.。

三。

(8分)设一平面通过点,而且通过直线,求该平面方程.解:平行该平面该平面的法向量所求的平面方程为:即:四.(8分)设,其中具有二阶连续偏导数,试求和.解:令,五.(8分)计算对弧长的曲线积分其中是圆周与直线在第一象限所围区域的边界.解:其中::::而故:六、(8分)计算对面积的曲面积分,其中为平面在第一卦限中的部分.解::,七。

(8分)将函数,展开成的幂级数.解:,而,,,八。

(8分)求微分方程:的通解。

解:,原方程为:通解为:九。

幂级数:1。

试写出的和函数;(4分)2.利用第1问的结果求幂级数的和函数.(8分)解:1、于是2、令:由1知:且满足:通解:由,得:;故:十.设函数在上连续,且满足条件其中是由曲线,绕轴旋转一周而成的曲面与平面(参数)所围成的空间区域。

1、将三重积分写成累次积分的形式;(3分) 2、试求函数的表达式。

(7分)解:1、旋转曲面方程为:由,得:故在面的投影区域为::2、由1得:记:则:两边乘以:,再在上积分得:解得:故:第二学期期末高数(下)考试试卷及答案2三、填空题(每空3 分,共15 分)1.曲线,绕轴旋转一周所得到的旋转曲面的方程是。

高数2 期末试题

高数2 期末试题

汕头大学09-10学年春季学期《高等数学II 》期末考试试卷A 参考答案及评分标准开课单位 数学系任课老师、评卷人 林小苹 谢长珍 任玉杰 熊成继一、基本计算题(本大题共有4小题,每小题7分,共28分)。

1、计算对弧长的曲线积分2Lxy zds ⎰,其中L 是点(1,0,1)到点(0,3,6)的直线段。

解:曲线的参数方程为1,3,15,01x t y t z t t =-==+≤≤。

(2分)于是ds ==,代入得 (2分)1220(1)(15)L xy zds t t dt =-+⎰⎰ (2分)= (1分)2、求曲线积分3223()()Lx x y dx xy y dy -+-⎰ ,其中L 是圆周221x y +=逆时针方向的一周。

解:注意曲线的方向,利用Green 公式得322322()()()L DI x x y dx xy y dy y x dxdy =-+-=+⎰⎰⎰ (4分) 其中D 为圆221x y +≤,再用极坐标计算二重积分得213002I d r dr ππθ==⎰⎰。

(3分)注:此题也可象第1小题那样用参数方程,代入计算,分值也是2、2、2、1。

3、机械部件为空间曲面221(),012z x y z =+≤≤,它的面密度(,,)x y z z ρ=。

求这个部件的总质量。

解:质量(,,)M x y z dS ρ∑=⎰⎰ (2分) 空间曲面221:(),012z x y z ∑=+≤≤在xoy 平面上的投影 (1分) 为22:2D x y +≤,面积微元dS ==,代入得 (1分)2220011(22D M x y d r π=+=⎰⎰⎰ (2分)2(15π=+。

(1分) 4、设∑为柱面221x y +=被平面0z =及3z =所截得的第一卦限内的部分,前侧(x 轴y 轴正向)为正,计算对坐标的曲面积分xdydz ydzdx zdxdy ∑++⎰⎰。

解:除这个柱面外,再加上四个平面:0z =、3z =、0x =、0y =,它们围成立体Ω,它的体积为34π。

高数二期末考试题

高数二期末考试题

高数二期末考试题第一篇:高数二期末考试题高数是我们比较难学的一个科目,下面是小编整理的高数二期末考试题,希望对你有帮助。

一、填空。

(28分值)1、1米=()厘米 45厘米-6厘米=()厘米37厘米+5厘米=()厘米23米-8米=()米2、6个3相加,写成乘法算式是(),这个式子读作()。

3、在下面的()里最大能填几?()×6<27()<3×74×()<15 35>7×()4、在算式4×7=28中,4是(),7是(),28是()。

5、先把下面的口诀补充完整,再根据口诀写出两道乘法算式。

八九()()二十四6、小芳和小伙伴们计划两天做100颗星,昨天做了58颗,今天他们大约要做()颗。

7、一把三角板上有()个角,其中()个是直角。

8、算得积是18的口诀有()和()。

9、在○里填上“+”、“-”、“×”或“<”、“>”、“=”。

8○6=48 36○73-37 9×7○652○2=4 43○6×7 18○9=9二、判断。

(5分值)1、9个相加的和是13。

()2、小强身高大约是137厘米。

()3、角都有一个顶点,两条边。

()4、计算48+29,得数大约是70。

()5、1米和100厘米一样长。

()三、选择题。

(把正确答案的序号填在括号里,5分值)1、5个3相加是多少?正确的列式是()A、5+5+5=15 B、5+3=8 C、5×3=152、用2、6、0三个数字组成的两位数有()个。

A、2 B、4C、63、小明有50元钱,买故事书花了28元,他大约还剩()元。

A、22B、30C、204、5+5+5+4,不可以改写成算式()。

A、5×4B、5×3+4C、4×5-15、4个好朋友见面互相拥抱一次,共要拥抱()次。

A、3次B、4次C、6次四、计算。

(26分值)1、用竖式计算。

(15分值)90-47= 59+26= 63-28=37+46-54= 81-32-27= 42-34+57=2、列式计算。

高等数学B2期末试卷及其答案

高等数学B2期末试卷及其答案

华南农业年夜学期末测验试卷〔A 卷〕2010学年第2学期测验科目: 初等数学B Ⅱ 测验范例:〔闭卷〕测验 测验时刻:120分钟学号姓名年级专业一、 填空题〔本年夜题共5小题,每题3分,共15分〕 1.曲面是由坐标面xoy 上的曲线绕轴扭转一周而成。

2.设函数在点处存在偏导数,那么它在该点处获得极值的须要前提是。

3.设,那么。

4.设发散,那么。

5.已经知道某二阶常系数齐次线性微分方程的通解为,那么该微分方程为。

二、选择题〔本年夜题共5小题,每题3分,共15分〕 6.与向量跟都垂直的单元向量是〔〕 〔A〕;〔B 〕;〔C 〕;〔D 〕。

7.设函数可微,且,假设,那么的值为〔〕 〔A〕;〔B 〕;〔C 〕;〔D 〕。

8.设是延续函数,那么〔〕 〔A 〕;〔B 〕; 〔C 〕;〔D 〕。

9.以下级数前提收敛的是〔〕 〔A 〕;〔B 〕;〔C 〕;〔D 〕。

10.差分方程的一个特解方式为〔是待定常数〕〔〕 〔A 〕;〔B 〕; 〔C 〕;〔D 〕。

三、盘算题〔本年夜题共8小题,每题7分,共56分〕11.求平行于立体且与球面相切的立体的方程。

12.求二重极限。

13.设,而,,求14.设,责备微分。

15.盘算二次积分。

1.5CM16.推断级数的敛散性,假如收敛,是相对收敛依然前提收敛,并阐明来由。

17.求解初值咨询题:。

18.求幂级数的收敛域,并求其跟函数。

四、使用题〔此题8分〕19.设某公司所属的甲、乙两厂消费统一种产物,当甲、乙两厂的产量分不为跟〔单元:千件〕时,总本钱函数为〔单元:万元〕现有总本钱53万元,咨询怎样布置消费才干使甲、乙两厂的产量之跟最年夜?五、证实题〔此题6分〕20.设跟收敛,且〔〕,证实也收敛。

2010初等数学BⅡ期末测验试卷参考谜底:一、填空题:1.,。

2.。

3.。

4.。

5.。

二、选择题:6.〔A〕。

7.〔B〕。

8.〔C〕。

9.〔D〕。

10.〔D〕。

三、盘算题:1.5CM11.【解】依题意可设立体的方程为…………………………〔2分〕又因为立体与球面相切,故球心到立体的间隔即是球面半径,即…………………………〔5分〕那么,故立体的方程为或……………〔7分〕12.【解】因为,因而……………〔4分〕因而,有……………〔7分〕13.【解】由链式法那么,有……………………………………〔2分〕………………〔6分〕……………〔7分〕14.【解】因为,,故,……………………………………〔3分〕因而,有…………………………〔7分〕15.【解】…………………………〔3分〕………………………〔7分〕16.【解】设,因为〔〕,由比拟判不法可知,原级数不相对收敛。

2020-2021《高等数学II》期末课程考试试卷B(含答案)

2020-2021《高等数学II》期末课程考试试卷B(含答案)

第 1 页 共2页 第 1 页 共2页2020-2021《高等数学II 》期末课程考试试卷B适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共5小题,每小题3分,共15分)1. 级数013nn ∞=⎛⎫⎪⎝⎭∑的和为 1.52.222ln()u x y z =++在点(1,2,1)M -处的梯度为Mgradu =121333i j k -+. 3. 改变积分顺序11(,)⎰⎰ydy f x y dx =100(,)⎰⎰xdx f x y dy .4. 设z=()2cos xy ,xz∂∂=()sin 2-y xy ; y z ∂∂=()sin 2-x xy5.()(2,2,0sin limx y x y →= 4.二.单项选择. (共5小题,每小题3分,共15分)1. 设D 为圆域: 224x y +≤,曲面1D 是D 在第一象限中的部分.则有(D ). (A) 14DD xd xd σσ=⎰⎰⎰⎰ (B) 14DD yd yd σσ=⎰⎰⎰⎰(C) 14DD xyd xyd σσ=⎰⎰⎰⎰ (D) 122224DD x y d x y d σσ=⎰⎰⎰⎰.2.⎰-++2224sin 2xdx x x 为( D )A 、2πB 、3πC 、3235D 、0 3. 下列命题正确的是( B ).A. 若),(y x f z =在),(00y x 处可微,则),(),,(y x f y x f y x ''在该点处连续;B. 若),(y x f z =在),(00y x 处可微,则),(),,(0000y x f y x f y x ''存在;C. 若),(y x f z =在),(00y x 处),(),,(0000y x f y x f y x ''都存在,则),(y x f 在),(00y x处连续;D.若),(y x f z =在),(00y x 处的二阶偏导数都存在,则),(),,(y x f y x f y x '' 在),(00y x 处连续. 4.设2z x y =,则dz =( B ).A.dx dy +B.22xydx x dy +C.2x dx ydy +D.2x ydx dy + 5. 坐标面yoz 上的曲线2y z =绕z 轴旋转一周而得旋转曲面方程为( A ) A 、22y x z += B 、222y x z += C 、22y z = D 、221y x +=三、解下列各题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》2期末复习题一、填空题:1. 函数)3ln(12222y x y x z --+-+=的定义域是 1≦X^2+Y^2<3 .2.设,)1(y x z +=则=∂∂yz(1)ln(1)y x x ++ . 3.函数22ln(1)z x y =++在点(1,2)的全微分(1,2)dz= 1233dx dy +4.设,),(22y x xy y x f +=+则=),(y x f .设22(,),yf x y x y x+=-则=),(y x f .5.设v e z u sin = 而 xy u = y x v += 则=∂∂yz[sin()cos()]xy e x x y x y +++ 6.函数 22y x z += 在点(1,2)处沿从点(1,2)到点(2,32+)的方向导数是 1+7.改换积分次序⎰⎰=2022),(y ydx y x f dy ;11(,)y dy f x y dx -=⎰ .8.若L 是抛物线 x y =2上从点A )1,1(-到点B )1,1(的一段弧,则⎰Lxydx =9.微分方程22(1)0x x e dy ye dx ++=的通解为 . 二、选择题: 1.y xy y x )tan(lim)0,2(),(→ 等于 ( )(上下求导)A .2, B.21C.0D.不存在 2.函数 y x z -= 的定义域是( D )A .{}0,0),(≥≥y x y x B.{}y x y x ≥2),(C.{}y x y y x ≥≥2,0),( D .{}y x y x y x ≥≥≥2,0,0),(3.=∂∂),(00|),(y x xy x f ( B ) A.x y x f y y x x f x ∆-∆+∆+→∆),(),(lim00000B.x y x f y x x f x ∆-∆+→∆),(),(lim 00000C.xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim00000D. x y x x f x ∆∆+→∆),(lim 0005.设)(22y x F z +=,且F 具有导数,则=∂∂+∂∂yzx z (D ) A.y x 22+; B.)()22(22y x F y x ++; C. )()22(22y x F y x +'-; D. )()22(22y x F y x +'+. 6.曲线 t a x cos =,t a y sin =,amt z =,在 4π=t 处的切向量是 ( D )A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m - 7.对于函数xy x y x f +=2),( ,原点)0,0( ( A )A .是驻点但不是极值点 B.不是驻点 C.是极大值点 D.是极小值点 8.设I=dxdy y x D⎰⎰-+5221, 其中D 是圆环4122≤+≤y x 所确定的闭区域,则必有( )A .I 大于零 B.I 小于零 C.I 等于零 D.I 不等于零,但符号不能确定。

9. 已知L 是平面上不包含原点的任意闭曲线,若曲线积分220L xdx aydyx y -=+⎰ ,则a 等于 ( ).A -1B 1C 2D -210.若L 为连接)0,1(及)1,0(两点的直线段,则曲线积分()Lx y ds +⎰=( )A .0 B.1 C.2 D.211.设D 为,222y y x ≤+则=+⎰⎰dxdy y x f D)(22( )A.dx y x f dy y y )(222022+⎰⎰-; B. rdr r f d )(21020⎰⎰θπ;C. rdr r f d )(2sin 20⎰⎰θπθ; D. dy y x f dx )(222011+⎰⎰-.12. 微分方程()1x e y y '+=的通解为( )A.x ye c =;B.x ye x c -=+;C.()x y x c e -=+;D.x y cxe -= 13.( )是微分方程x y y e -'''+=在初始条件01,1x x yy =='==-下的特解.A.12x y c c xe -=-;B.x y xe -=-;C.12x y xe -=-;D.1x y xe -=-. 三、计算题:1.设33(sin ,)x z f e y x y =+,求 zx∂∂及z y ∂∂,其中f 具有一阶连续偏导数.2.设sin sin x y u v x v y u +=+⎧⎨=⎩, 求 x u ∂∂, x v∂∂3.求旋转抛物面 122-+=y x z 在点)4,1,2(处的切平面及法线方程。

4.求函数322(,)339f x y x y x y x =-++-3的极值5.计算2Dxy dxdy ⎰⎰,其中D 是由圆周 422=+y x 及y 轴所围成的右半闭区域.6.计算2y Dedxdy -⎰⎰,其中D 是以O (0,0),A (1,1),B (0,1)为顶点的三角 形闭区域.7.计算⎰⎰⎰Ωxdxdydz ,其中Ω是三个坐标面与平面 1=++z y x 所围成的区域.8.计算 ⎰-+++-Ldy y x dx y x )1353()42(,其中L 为圆2522=+y x 的正向边界。

9.计算曲线积分33()(),Ly x dy x y dx +++⎰其中L 是从O(0, 0)沿上半圆x y x 222=+到A(2, 0).10.验证:在整个xoy 面内,xdy y xdx y x 2cos 3cos 3cos 3sin sin 4-是某个函数的全微分,并求出这样的一个函数.11.求微分方程22(1)24x y xy x '++= 的通解.12.求解微分方程的特解: 22(3)20,(0)1y x dy xydx y -+==13.解微分方程 23()()0yy y y ''''-+=.四、应用题:1.用钢板制造一个容积为V 的无盖长方形水池,应如何选择水池的长、宽、高才最省钢板.2.已知矩形的周长为24cm ,将它绕其一边旋转而构成一圆柱体,试求所得圆柱体体积最大时的矩形面积.3.求抛物线242y x y x ==与曲线所围成的闭区域的面积.4.求抛物面226z x y =--与锥面z =所围成的立体的体积.高等数学2期末复习题答案一、填空题:1、22{(,)13}x y x y ≤+<2、(1)ln(1)y x x ++3、1233dx dy +4、22(1)2;1x y x y y--+ 5、[sin()cos()]xy e x x y x y +++6、1+ (注:方向导数0,00000()(,)cos (,)cos x y x y f f x y f x y lαβ∂=+∂)7、402(,)x dx f x y dy ⎰⎰;111(,)(,)xdx f x y dy dx f x y dy +-+⎰⎰⎰8、45(注:01104(5L xydx x dx =+=⎰⎰⎰) 9、22(1)x y e C +=二、选择题:1、A; 2. D; 3. B; 4.缺 5. D; 6. D; 7. A; 8. A; 9. A; 10.C; 11. C; 12.C; 13.D 三、计算题:1.解:令33sin ,x u e y v x y ==+,则2212sin 3sin 3x x z z u z v z z e y x e y f x f x u x v x u v ∂∂∂∂∂∂∂''=⋅+⋅=+=⋅+⋅∂∂∂∂∂∂∂ 2212cos 3cos 3x x z z u z v z z e y y e y f y f y u y v y u v∂∂∂∂∂∂∂''=⋅+⋅=+=⋅+⋅∂∂∂∂∂∂∂ 2. 解:两方程分别两边对x 求偏导数,注意,u v 是关于,x y 的二元函数,得1sin cos cos u vx xv u v x v y u x x ∂∂⎧=+⎪⎪∂∂⎨∂∂⎪+=⎪∂∂⎩ 即1cos cos sin u vx xu v y u x v v x x ∂∂⎧+=⎪⎪∂∂⎨∂∂⎪-=⎪∂∂⎩这是以,u vx x∂∂∂∂为未知量的二元线性方程组。

当 11(cos cos )0cos cos J x v y u y u x v==-+≠-时,有111cos sin sin cos cos cos u x v vv x v x J x v y u ∂+==-∂+,111sin cos cos sin cos cos v v y uy u v x J x v y u∂-==-∂+ 3. 解:旋转抛物面 122-+=y x z 在点)4,1,2(处的切向量 (2,1,4)(2,2,1)(4,2,1)n x y =-=-于是,所求切平面方程为 4(2)2(1)(4)0x y z -+---=,即 4260x y z +--= 法线方程为214421x y z ---==- 4. 解:解方程组223690360fx x xf y y y ∂⎧=+-=⎪∂⎪⎨∂⎪=-+=∂⎪⎩,得四个驻点1234(1,0),(1,2),(3,0),(3,2)P P P P --.又66,0,66xxxy yy f x f f y ''''''=+==-+.对21(1,0),0,P AC B ->且0A >,则1(1,0)P 是函数的极小值点;对22(1,2),0P AC B -<,则2(1,2)P 不是极值点; 对23(3,0),0P AC B --<,则3(3,0)P -不是极值点;对24(3,2),0P AC B -->,且0A <,则4(3,2)P -是函数的极大值点. 于是,函数有极小值(1,0)1395f =+-=-,极大值 (3,2)27827122731f -=--+++=.5. 解:利用极坐标变换,令cos ,sin x r y r θθ==,则dxdy rdrd θ=,且D 可表示为:02,22r ππθ≤≤-≤≤.于是2Dxy dxdy ⎰⎰22242202cos sin cos sin Dr r rdrd r dr d ππθθθθθθ-=⋅⋅=⎰⎰⎰⎰2253021164sin 5315r ππθ-=⋅=. 6. 解:三角形区域D 由直线,1y x y ==及y 轴围成,选择先对x 积分,22221111011(1)22yy y y y Dedxdy dy edx yedy e e -----===-=-⎰⎰⎰⎰⎰.(注:此题也可以参看课本167页例2的解法)7.解题过程见课本124页例1.8. 解:(,)24,(,)3513P x y x y Q x y x y =-+=+-在L 围成的圆域D:2225x y +≤上全在连续的偏导数,1,3P Q y x ∂∂=-=∂∂,从而 4Q Px y∂∂-=∂∂.于是由格林公式,得 (24)(3513)44425100LDDx y dx x y dy dxdy dxdy ππ-+++-===⋅=⎰⎰⎰⎰⎰.9. 解:33(,),(,)P x y x y Q x y y x =+=+,有1P Qy x∂∂==∂∂ 在整个xoy 平面上恒成立,所以曲线积分与路径无关,故可取x 轴上线段OA 作为积分路径.OA 的方程为0y =,且x 从0变到2,0dy =,从而3333()()()()LOAy x dy x y dx y x dy x y dx+++=+++⎰⎰22340144x dx x ===⎰.10. 解:(,)4sin sin 3cos ,(,)3cos3cos 2P x y x y x Q x y y x ==-,有4sin cos 3cos36sin 2cos3Px x y x y y∂=⋅=∂,3cos32(sin 2)6sin 2cos3Qy x x y x∂=-⋅-=∂, 即有P Q y x∂∂=∂∂在整个xoy 平面上恒成立,因此在整个xoy 面内,xdy y xdx y x 2cos 3cos 3cos 3sin sin 4-是某个函数的全微分.取ARB 为积分路径,其中各点坐标分别为(0,0),(,0),(,)A R x B x y ,得 (,)(0,0)(,)4sin sin3cos 3cos3cos2x y u x y x y xdx y xdy =-⎰4sin sin 3cos 3cos3cos 24sin sin 3cos 3cos3cos 2ARRBx y xdx y xdy x y xdx y xdy=-+-⎰⎰03cos3cos 23cos 2cos3xyydx y xdy x ydy =+-=-⎰⎰⎰13cos 2sin 3sin 3cos 23yx y y x =-⋅=-.11. 解法一:方程可改写为 2222411x x y y x x '+=++,这是一阶非齐次线性微分方程.先求对应的齐次线性方程的通解.由2201xy y x '+=+,分离变量,得221dy x dx y x =-+,两边积分,解得 121C y x =+. 用常数变易法,将1C 换成()C x .即2()1C x y x =+,22212()()1(1)xy C x C x x x ''=-++. 代入原方程,化简得 2()4C x x '=.故 34()3C x x C =+. 于是方程的通解为 3214()13y x C x =++. 解法二:方程可改写为 2222411x x y y x x '+=++. 这是一阶非齐次线性微分方程,其中22224(),()11x x P x Q x x x ==++.利用通解公式()()(())P x dxP x dx y e Q x e dx C -⎰⎰=+⎰222221124()1x xdx dx x x x e e dx C x -++⎰⎰=++⎰2232221414[(1)]()1113x x dx C x C x x x =⋅++=++++⎰.12. 课本212页第8题第(1)小题。

相关文档
最新文档