2020高中数学单元训练8 函数的奇偶性、周期性
高中数学基础之函数的奇偶性与周期性
高中数学基础之函数的奇偶性与周期性函数的奇偶性:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.(偶函数的图象特点:关于y轴对称;奇函数的图象特点:关于原点中心对称.)函数的周期性:一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有□01f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.函数周期性常用结论对f(x)定义域内任一自变量x:①若f(x+a)=-f(x),则T=2a(a≠0).,则T=2a(a≠0).②若f(x+a)=1f(x),则T=2a(a≠0).③若f(x+a)=-1f(x)④若f(x+a)+f(x)=c,则T=2a(a≠0,c为常数).函数图象的对称性①若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a 对称.②若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.③若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.④若对于R上的任意x都有f(2b-x)+f(x)=0,则函数y=f(x)的图象关于点(b,0)中心对称.利用函数奇偶性可以解决的问题(1)求函数值:将待求值利用奇偶性转化为求已知解析式的区间上的函数值.(2)求解析式:将待求区间上的自变量转化到已知解析式的区间上,再利用奇偶性的定义求出.(3)求解析式中的参数:利用待定系数法求解,根据f (x )±f (-x )=0得到关于参数的恒等式,由系数的对等性得方程(组),进而得出参数的值.(4)画函数图象:利用函数的奇偶性可画出函数在其关于原点对称区间上的图象. (5)求特殊值:利用奇函数的最大值与最小值之和为零可求一些特殊结构的函数值. 例1 已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x 2,则f (2023)=( )A .20232B .1C .0D .-1 答案 D解析 因为f (x +2)=-f (x ),所以f (x +4)=f (x ),所以函数f (x )的周期为4,因为f (x )为R 上的奇函数,且当0≤x ≤1时,f (x )=x 2,所以f (2023)=f (506×4-1)=f (-1)=-f (1)=-1.故选D.例2 已知函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈(1,2)时,f (x )=-3x 2+2,则f ⎝ ⎛⎭⎪⎫143=( )A .-103 B .103 C .-23 D .23答案 B解析 ∵f (x +1)为奇函数,∴f (x +1)=-f (-x +1),∵f (x +2)为偶函数,∴f (x +2)=f (-x +2),∴f ((x +1)+1)=-f (-(x +1)+1)=-f (-x ),即f (x +2)=-f (-x ),∴f (-x +2)=f (x +2)=-f (-x ).令t =-x ,则f (t +2)=-f (t ),∴f (t +4)=-f (t +2)=f (t ),∴f (x +4)=f (x ).故函数f (x )的周期为4.∴f ⎝ ⎛⎭⎪⎫143=f ⎝ ⎛⎭⎪⎫23=-f ⎝ ⎛⎭⎪⎫43=103.故选B.例3 定义在R 上的函数f (x )满足f (x +2)=f (x ),当x ∈[3,5]时,f (x )=1-|x -4|,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫sin π3>f ⎝ ⎛⎭⎪⎫cos π3 B .f (sin 1)>f (cos 1)C .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3 D .f (sin 2)>f (cos 2)答案 C解析 ∵当x ∈[3,5]时,f (x )=1-|x -4|,f (x +2)=f (x ),∴当x ∈[-1,1]时,f (x )=f (x+2)=f (x +4)=1-|x |,当x ∈[0,1]时,f (x )=1-x ,∴函数f (x )在[0,1]上为减函数,又0<cos π3<sin π3<1,∴f ⎝ ⎛⎭⎪⎫sin π3<f ⎝ ⎛⎭⎪⎫cos π3,A 错误;0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),B 错误;f ⎝ ⎛⎭⎪⎫cos 2π3=f ⎝ ⎛⎭⎪⎫-12=12,f ⎝ ⎛⎭⎪⎫sin 2π3=f ⎝ ⎛⎭⎪⎫32=2-32,∴f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3,C 正确;f (sin 2)=1-sin 2,f (cos 2)=1-|cos 2|=1+cos 2,又sin 2π3<sin 2<1,cos 2π3<cos 2<0,∴0<1-sin 2<1-32,12<1+cos 2<1,∴f (sin 2)<f (cos 2),D 错误.故选C.例4 已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-112=________.答案 52解析 因为f (x +2)=-1f (x ),所以f (x +4)=f (x ),所以f ⎝ ⎛⎭⎪⎫-112=f ⎝ ⎛⎭⎪⎫52,又2≤x ≤3时,f (x )=x ,所以f ⎝ ⎛⎭⎪⎫52=52,所以f ⎝ ⎛⎭⎪⎫-112=52. 例5 已知定义域为R 的函数f (x )在区间(-∞,5]上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) 答案 C解析 ∵f (5+t )=f (5-t ),∴函数f (x )的图象关于直线x =5对称,∴f (-1)=f (11),∵函数f (x )在区间(-∞,5]上单调递减,∴f (x )在(5,+∞)上单调递增.∴f (9)<f (11)<f (13),即f (9)<f (-1)<f (13).例6 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m答案 B解析 由f (-x )=2-f (x )得f (x )的图象关于(0,1)对称,而y =x +1x =1+1x 也关于(0,1)对称,∴对于每一组对称点,x i +x i ′=0,y i +y i ′=2,∴∑mi =1 (x i +y i )=∑mi =1x i +∑mi =1y i =0+2×m2=m .例7 已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +3|,-4≤x <0(a >0且a ≠1).若函数f (x )的图象上有且只有两个点关于原点对称,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,14B .⎝ ⎛⎭⎪⎫0,14∪(1,+∞)C .⎝ ⎛⎭⎪⎫14,1∪(1,+∞)D .(0,1)∪(1,4) 答案 C解析 当-4≤x <0时,函数y =|x +3|关于原点对称的函数为-y =|-x +3|,即y =-|x -3|(0<x ≤4),因为函数f (x )的图象上有且只有两个点关于原点对称,则等价为函数f (x )=log a x (x >0)与y =-|x -3|(0<x ≤4)的图象只有一个交点,作出两个函数的图象如图所示,若a >1,则f (x )=log a x (x >0)与y =-|x -3|(0<x ≤4)的图象只有一个交点,满足条件,当x =4时,y =-|4-3|=-1,若0<a <1,要使两个函数图象只有一个交点,则满足f (4)<-1,即log a 4<-1,得14<a <1.综上可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫14,1∪(1,+∞).故选C.例8 已知函数g (x )的图象与f (x )=x 2-mx 的图象关于点(-1,2)对称,且g (x )的图象与直线y =-4x -4相切,则实数m =( )A .2B .-4C .4D .-1 答案 C解析 设(x ,y )是函数g (x )的图象上任意一点,则其关于(-1,2)对称的点为(-2-x ,4-y ),因此点(-2-x ,4-y )在f (x )的图象上,所以4-y =(-2-x )2-m (-2-x ),整理得y =-x 2-mx -4x -2m ,即g (x )=-x 2-mx -4x -2m ,又g (x )的图象与直线y =-4x -4相切,所以方程-x 2-mx -4x -2m =-4x -4,即x 2+mx +2m -4=0有两个相等的实数根,则m 2-4(2m -4)=0,可得m =4.故选C.例9 定义在R 上的函数f (x )满足f (2-x )=f (x ),且当x ≥1时,f (x )=⎩⎨⎧-x +3,1≤x <4,1-log 2x ,x ≥4,若对任意的x ∈[t ,t +1],不等式f (2-x )≤f (x +1+t )恒成立,则实数t 的最大值为( )A .-1B .-23 C .-13 D .13 答案 C解析 ∵f (2-x )=f (x ),∴函数f (x )的图象关于直线x =1对称,∵当x ≥1时,f (x )=⎩⎨⎧-x +3,1≤x <4,1-log 2x ,x ≥4,当1≤x <4时,f (x )=3-x 为减函数,且f (x )∈(-1,2];当x ≥4时,f (x )=1-log 2x 为减函数,且f (x )∈(-∞,-1],∴f (x )在[1,+∞)上是减函数,在(-∞,1]上是增函数.若不等式f (2-x )≤f (x +1+t )对任意x ∈[t ,t +1]恒成立,由对称性可得|2-x -1|≥|x +1+t -1|对任意x ∈[t ,t +1]恒成立,即有|x -1|≥|x +t |⇔-2x +1≥2tx +t 2⇔(2t +2)x +t 2-1≤0对任意x ∈[t ,t +1]恒成立,令g (x )=(2t +2)·x +t 2-1,则⎩⎨⎧g (t )≤0,g (t +1)≤0,即⎩⎨⎧2(t +1)t +t 2-1≤0,2(t +1)(t +1)+t 2-1≤0,即⎩⎨⎧3t 2+2t -1≤0,3t 2+4t +1≤0,解得-1≤t ≤-13,∴实数t 的最大值为-13.故选C. 轴对称(1)f (a -x )=f (a +x )⇔f (x )的图象关于直线x =a 轴对称(当a =0时,恰好就是偶函数). (2)f (a -x )=f (b +x )⇔f (x )的图象关于直线x =a +b2轴对称.(3)f (x +a )是偶函数,则f (x +a )=f (-x +a ),进而可得到f (x )的图象关于直线x =a 轴对称. 中心对称(1)f (a -x )=-f (a +x )⇔f (x )的图象关于点(a ,0)中心对称(当a =0时,恰好就是奇函数). (2)f (a -x )=-f (b +x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0中心对称.(3)f (a -x )+f (b +x )=2c ⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,c 中心对称.。
2020届高三文理科数学一轮复习《函数的奇偶性和周期性》专题汇编(学生版)
《函数的奇偶性和周期性》专题一、函数奇偶性相关知识点1.奇函数、偶函数的概念(1)图像关于原点对称的函数叫作奇函数.(2)图像关于y轴对称的函数叫作偶函数.2.判断函数的奇偶性,其中包括两个必备条件(1) 定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2) 判断f(x)与f(-x)是否具有等量关系:若f(-x)=-f(x),则这个函数是奇函数;若f(-x)=f(x),则这个函数是偶函数3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(3)如果奇函数y=f(x)在原点有定义,则f(0)=0.(4)在公共定义域内有:奇±奇→奇,偶±偶→偶,奇×奇→偶,偶×偶→偶,奇×偶→奇.二、函数周期性相关知识点1.周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.函数周期性的三个常用结论(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0).(4)偶函数y=f(x)满足f(x+a)=f(-x+a),则T=2a.(a>0).(5)奇函数y=f(x)满足f(x+a)=f(-x+a),则T=4a.(a>0). 题型一函数的奇偶性1.判断下列函数的奇偶性(1)f(x)=3-x2+x2-3; (2)f(x)=(1-x) 1+x 1-x;(3)f(x)=lg (1-x2)|x-2|-2; (4)f(x)=⎩⎪⎨⎪⎧x2+x,x<0,-x2+x,x>0.2.下列函数中为奇函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x题型二:奇函数、偶函数性质的应用(1求函数解析式;2求参数值)1.已知函数f (x )是偶函数,且当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )的解析式为________;2.已知f (x )=2x +24x -1,若f (ln (a 2+1+a ))=1,则f (ln (a 2+1-a ))=________;3.若函数f (x )=x ⎝ ⎛⎭⎪⎫1-a 2+1e x +1为偶函数,则a =________.4.已知函数f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=log 3(x +1)+a ,则f (-8)=( )A .-3-aB .3+aC .-2D .25.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数6.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为________.7.若函数f (x )=ax 2+bx +1是定义在[-1-a,2a ]上的偶函数,则该函数的最大值为____题型三 函数的周期性1.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________2.定义在R 上的函数f (x )满足f (x +2)=1f (x ),当x ∈[0,2)时,f (x )=x +e x ,则f (2018)=___3.若f (x )是定义在R 上的周期为4的函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,cosπx ,1<x ≤2,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫293=________.4.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.5.已知奇函数f (x )满足f (1-x )=f (1+x ),则( )A .函数f (x )是以2为周期的周期函数B .函数f (x )是以4为周期的周期函数C .函数f (x +1)是奇函数D .函数f (x +2)是偶函数题型四 函数性质(单调性、奇偶性、周期性)的综合应用1.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23 2.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________3.定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫x +32=f (x ),当x ∈⎝⎛⎦⎤0,12时,f (x )=log 12 (1-x ), 则f (x )在区间⎝⎛⎭⎫1,32内是( ) A .减函数且f (x )>0 B .减函数且f (x )<0 C .增函数且f (x )>0 D .增函数且f (x )<04.函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]5.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)《函数的奇偶性和周期性》课后作业1.已知R 上的奇函数f (x )满足:当x <0时,f (x )=log 2(1-x ),则f [f (7)]=( )A .1B .-1C .2D .-22.已知f (x )为定义在R 上周期为2的奇函数,当-1≤x <0时,f (x )=x (ax +1),若f ⎝⎛⎭⎫52=-1,则a =( )A .6B .4C .-1425 D .-63.已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=( )A .2B .3C .4D .54.已知f (x )是定义在[-2b,1+b ]上的偶函数,且在[-2b,0]上为增函数,则f (x -1)≤f (2x )的解集为( )A.⎣⎡⎦⎤-1,23B.⎣⎡⎦⎤-1,13 C .[-1,1] D.⎣⎡⎦⎤13,15.已知f (x )是定义在R 上周期为4的奇函数,当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12 C .2 D .-26.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x7.已知函数f (x )=2x2x -1+a 为奇函数,则实数a =________.8.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -x B.12(e x +e -x ) C .12(e -x -e x ) D .12(e x -e -x )9.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=_____10.若函数f (x )=ax 2+bx +8(a ≠0)是偶函数,则g (x )=2ax 3+bx 2+9x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数11.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)12.已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________.13.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.14.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))=____15.设函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则f (x )<0的解集是( )A .{x |-3<x <0或x >3}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}16.定义在R 上的偶函数f (x )满足f (x +1)=f (-x +1),当x ∈(0,1]时,f (x )=x ,则f ⎝⎛⎭⎫72=__17.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln (1+x ),则当x <0时,f (x )=________.18.已知f (x )是定义在R 上的偶函数,并且f (x +3)=-1f (x ),当1<x ≤3时,f (x )=cos πx 3,则f (2023)=________.19.已知定义域为R 的奇函数f (x ),当x >0时,满足f (x )=⎩⎨⎧-log 2(7-2x ),0<x ≤32,f (x -3),x >32,则f (1)+f (2)+f (3)+…+f (2020)=( ) A .log 25 B .-log 25 C .-2 D .020.函数f (x )=π2-sin x3+|x |的最大值是M ,最小值是m ,则f (M +m )的值等于( )A .0B .2πC .π D.π221.若f (x )=ln (e 3x +1)+ax 是偶函数,则a =________.22.下列函数中,既是偶函数又在区间(1,2)内单调递减的是( )A .f (x )=xB .f (x )=1x 2C .f (x )=2x +2-x D .f (x )=-cos x23.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C . 54 D .324.已知f (x )=e x -e -x2,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数25.f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=_____26.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)27.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=__28.已知f (x )是奇函数,g (x )=2+f (x )f (x ). 若g (2)=3,则g (-2)=__________.29.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=__________.30.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (3)=3,则f (2 019)的值为( )A .3B .0C .-3D .±331.已知f (x )是定义在R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则f (x )在[1,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数32.已知f (x )是定义域(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是__________.33.已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是( )A .(3,+∞)B .(-∞,-3)C .(-∞,-1)∪(3,+∞)D .(-1,3)34.已知f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)35.定义在R 上的奇函数f (x )满足:f (x +1)=f (x -1),且当-1<x <0时,f (x )=2x -1,则f (log 220)等于( )A.14 B .-14 C .-15 D.1536.已知函数f(x)=2x-2-x,则不等式f(2x+1)+f(1)≥0的解集是________.37.设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.(1)判断f(x)的奇偶性;(2)试求出函数f(x)在区间[-1,2]上的表达式.。
函数的奇偶性、周期性与对称性-高考数学复习
法二
− −1
因为 f ( x )是偶函数,所以 f (1)- f (-1)= - −
−1
−1
− −1
=
=0,所以 a -1=1,所以 a =2.故选D.
−1
目录
高中总复习·数学
解题技法
利用函数的奇偶性求参数值的解题策略
目录
高中总复习·数学
考向3 利用奇偶性求解析式及函数值
【例3】 (1)已知偶函数 f ( x ),当 x ∈[0,2)时, f ( x )=2
π
sin x ,当 x ∈[2,+∞)时, f ( x )=log2 x ,则 f (- )+ f (4)
3
=(
)
B. 1
D. 3
目录
高中总复习·数学
解析:∵函数 f ( x )是偶函数,当 x ∈[0,2)时, f ( x )=2 sin
所以 f ( x )既是奇函数又是偶函数.
目录
高中总复习·数学
(3) f ( x )=
36− 2
|+3|−3
解:由 f ( x )=
;
36− 2
|+3|−3
,可得
36 − 2 ≥ 0,
−6 ≤ ≤ 6,
⇒ቊ
故函数 f ( x )的定义域为
൝
| + 3| − 3 ≠ 0 ≠ 0且 ≠ −6,
1(符合题意).故选A.
目录
高中总复习·数学
2. (多选)下列函数中为非奇非偶函数的是(
)
A. y = x +e x
目录
高中总复习·数学
解析:
记 f ( x )= x +e x ,则 f (-1)=-1+e-1, f (1)=
奇偶性及周期性习题
函数函数的奇偶性与周期性一、函数的奇偶性知识点归纳1函数的奇偶性的定义:如果对于函数f(x)定义域内的任意一个x , 都有f(-x)=f(x), 那么函数f(x)就叫偶函数.如果对于函数f(x)定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫奇函数. 2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;3()f x 为偶函数()(||)f x f x ⇔=;若奇函数()f x 的定义域包含0,则(0)0f =“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;4判断函数的奇偶性的方法:(1)定义法:若函数的定义域不是关于原点的对称区间,则立即判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点的对称区间,再判断f(-x)= -f(x )或f(-x)=f(x)是否成立 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-(2)图像法:奇(偶)函数的充要条件是它的图像关于原点(或y 轴)对称. 5设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇应用举例1、常见函数的奇偶性:奇函数:ax y =(a 为常数),x y sin =,x y tan =,k xk y (=为常数)偶函数:a y =(a 为常数),0=a 时既为奇函数又为偶函数2ax y =()0≠a ,c axy +=2()0≠a ,ax y =(a 为常数),x y cos = 非奇非偶函数:)0(≠+=b b kx y ,)0(2≠++=b c bx ax y ,)0(≠+=c c ax y ,)0(≠+=c cx k y ,)1,0(≠>=a a a y x,)1,0(log≠>=a a x y a既奇又偶函数:0=y 2、对奇偶性定义的理解例1 下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x ∈R),其中正确命题的个数是( ) A .1 B .2 C .3 D .4分析:偶函数的图象关于y 轴对称,但不一定相交,因此③正确,①错误;奇函数的图象关于原点对称,但不一定经过原点,因此②不正确;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R ,故④错误,选A .练习:1、(2007全国Ⅰ))(x f ,是定义在R 上的函数,,则“)(x f ,均为偶函数”是“)(x h 为偶函数”的BA.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件 解析:∵f (x )、g (x )均为偶函数,∴f (-x )=f (x ),g (-x )=g (x ).∴h (-x )=f (-x )+g (-x )=f (x )+g (x )=h (x ).∴h (x )为偶函数. 但若h (-x )=h (x ),即f (-x )+g (-x )=f (x )+g (x ), 不一定f (-x )=f (x ),g (-x )=g (x ), 例f (x )=x 2+x ,g (x )=-x . 2、(2007江苏)设f (x )=l g ()是奇函数,则使f (x )<0的x 的取值范围是A A.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞) 解析:∵f (x )为奇函数,∴f (0)=0.解之,得a =-1.∴f (x )=lg.令f (x )<0,则0<<1,∴x ∈(-1,0). 3、已知函数解析式,判断或证明函数的奇偶性例2判断下列函数的奇偶性(1) f (x)=x 3+x (2) f (x)=3x 4+6x 2 +a (3) f (x)=3x+1 (4) f (x)=x 2,x ∈[- 4 , 4),(5)1sin +=x y 例3判断下列各函数的奇偶性: (1)1()(1)1x f x x x+=--;(2)22lg(1)()|2|2x f x x -=--;解:(1)由101x x+≥-,得定义域为[1,1)-,关于原点不对称,∴()f x 为非奇非偶函数(2)由2210|2|20x x ⎧->⎪⎨--≠⎪⎩得定义域为(1,0)(0,1)- ,∴22lg(1)()(2)2x f x x -=---22lg(1)x x-=-,∵2222lg[1()]lg(1)()()x x f x x x----=-=--()f x = ∴()f x 为偶函数练习:1、判断函数 f ( x ) = 的奇偶性解:由题∴ 函数的定义域为 [-1 , 0 ) ∪ ( 0 , 1 ]此时 f ( x ) =故 f ( x ) 是奇函数4、抽象函数奇偶性的判定与证明例4(2007北京西城)已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+,(1)求证:()f x 是奇函数;(2)若(3)f a -=,用a 表示(12)f解:(1)显然()f x 的定义域是R ,它关于原点对称.在()()()f x y f x f y +=+中,2|2|12-+-x x⎩⎨⎧≠-+≥-02|2|012x x ⎩⎨⎧±≠+≤-+⇒220)1)(1(x x x ⎩⎨⎧-≠≠≤≤-⇒4011x x x 且2)2(12-+-x xxx 21-=xx x f ---=-2)(1)(又xx 21--== -f ( x )令y x =-,得(0)()()f f x f x =+-,令0x y ==,得(0)(0)(0)f f f =+,∴(0)0f =, ∴()()0f x f x +-=,即()()f x f x -=-, ∴()f x 是奇函数. (2)由(3)f a -=,()()()f x y f x f y +=+及()f x 是奇函数, 得(12)2(6)4(3)4(3)4f f f f a ===--=-. 例5.(2006年辽宁)设是上的任意函数,下列叙述正确的是(C )A.是奇函数 B.是奇函数 C.是偶函数 D.是偶函数解:据奇偶函数性质:易判定f (x )·f (-x )是偶函数,f (x )-f (-x )是奇函数 f (x )·|f (-x )|的奇偶取决于f (x )的性质,只有f (x )+f (-x )是偶函数正确。
高中数学函数奇偶性知识点归纳考点分析配经典案例分析
函数奇偶性知识点归纳考点分析及经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数.2.奇函数:一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个都必须成立;3、可逆性:是偶函数;奇函数;4、等价性:;;5、奇函数的图像关于原点对称,偶函数的图像关于轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
7、判断或证明函数是否具有奇偶性的根据是定义。
8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
并且关于原点对称。
三、关于奇偶函数的图像特征一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数;即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) 偶函数的图像关于轴对称,反过来,如果一个函数的图像关于轴对称,那么这个函数是偶函数。
()f x x ()()f x f x -=()f x ()f x x ()()f x f x -=-()f x x )()(x f x f =-⇔)(x f )()(x f x f -=-⇔)(x f )()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=)()(x f x f -=-⇔0)()(=+-x f x f y y y即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。
函数的奇偶性、对称性与周期性总结,史上最全
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
2020年高考数学(人教版)总复习-函数的基本性质--函数的奇偶性与周期性、单调性(含解析)
1 x2 x 1
( 1 x2 1)2 x2
(D)a2-2M
13.偶函数 y=f(x)在 x∈〔0,+ ∞)时,f(x)=x-1,则 f (x-1)<0 的解集是( )
(A){x|-1<x<0}
(B){x|x<o 或 1<x<2}
(C){x|0<x<2}
(D){x|1<x<2}
14.若函数 f(x)=(x+a)3,对任意 t∈R,总有 f(1+t)=-f(1-t),则 f(2)+f(-2)的值是( )
(A)9
(B)-7
(C)-5
(D)-11
4.已知函数 y=f(x)是偶函数,又 y=f(x-2)在[0,2]上是单调减函数,则( )
(A)f(0)<f(-1)<f(2)
(B)f(-1)<f(0)<f(2)
(C)f(-1)<f(2)<f(0)
(D)f(2)<f(-1)<f(0)
5.已知 y=f(x)是定义在 R 上的奇函数,当 x≥0 时,f(x)=x2-2x,则在 R 上 f(x)的表达式
.
x
7、设
f
(x)
lg(1
2
x
a)
是奇函数,则使
f
(x)
0的
x
值的取值范围是
A.(-1,0)
B.(0,1)
()
C.(-∞,0)
D.(-∞,0)∪(1,+∞)
5/9
8、 f (x), g(x) 是定义在 R 上的函数, h(x) f (x) g(x), 则“ f (x), g(x) 均为偶函数” 是“ h(x) 为偶函数”的
高中数学基础之函数的奇偶性与周期性
D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+
高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
高中数学_函数的周期性练习题含答案
高中数学 函数的周期性练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 定义在R 上的偶函数f(x)满足f(1−x)=f(1+x),f(0)=2,则f(10)=( ) A.−4 B.−2 C.2 D.42. 若f(x)是R 上周期为3的偶函数,且当0<x ≤32时,f(x)=log 4x ,则f(−132)=( ) A.−2 B.2 C.−12D.123. 已知函数f (x )满足f (1+x )=f (1−x ),且f (−x )=f (x ),当1≤x ≤2时,f (x )=2x −1,则f (2021)的值为( ) A.2 B.1 C.0 D.−14. 已知函数f(x)满足f(1+x)+f(1−x)=0,且f(−x)=f(x),当1≤x ≤2时,f(x)=2x −1,求f(2017)=( ) A.−1 B.0 C.1 D.25. 定义在R 上的偶函数f(x)满足f(1+x)=f(1−x),当x ∈[0, 1]时,f(x)=−x +1,设函数g(x)=e −|x−1|(−1<x <3),则f(x)与g(x)的图象所有交点的横坐标之和为( ) A.3 B.4 C.5 D.66. 已知函数y =f (x )对任意x ∈R 都有f (x +2)=f (−x )且f (4−x )+f (x )=0成立,若f (0)=1,则f (2019)+f (2020)+f (2021)的值为( ) A.1 B.2 C.0 D.−27. 定义在R 上的偶函数f (x )满足f (1−x )=f (1+x ),当x ∈(−1,0]时,f (x )=tan πx 3,则f (194)=( )A.−1B.−2C.0D.18. 已知f (x )是R 上的偶函数且满足f (x +3)=−f (x ),若f (1)>7,f (2021)=4+3a ,则实数a 的取值范围为( ) A.(0,+∞)B.(1,+∞)C.(−∞,0)D.(−∞,1)9. 已知函数f (x )满足:对任意x ∈R ,f (−x )=−f (x ),f (2−x )=f (2+x ),且在区间[0,2]上,f (x )=x 22+cos x −1 ,m =f(√3),n =f (7),t =f (10),则( )A.m <n <tB.n <m <tC.m <t <nD.n <t <m10. 定义在R 上的偶函数f (x )满足f (2−x )=f (2+x ),且当x ∈[0,2]时,f (x )={e x −1,0≤x ≤1,x 2−4x +4,1<x ≤2. 若关于x 的不等式m|x|≤f (x )的整数解有且仅有9个,则实数m 的取值范围为( ) A.(e−17,e−15] B.[e−17,e−15] C.(e−19,e−17] D.[e−19,e−17]11. 定义在R 上的函数f (x )满足f (x )=f (x +5),当x ∈[−2,0)时,f (x )=−(x +2)2,当x ∈[0,3)时,f (x )=x ,则f (1)+f (2)+⋯+f (2021)=( ) A.809 B.811 C.1011 D.101312. 设f(x)是周期为4的奇函数,当0≤x ≤1时,f(x)=x ⋅(1+x),则f(−92)=________.13. 已知f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=−f (x ),则f (2016)=________.14. 已知函数f(x)的定义域为R ,且f(x)=−f(x +2),若当x ∈[0, 2)时,f(x)=3x ,则f(2019)=________15. 已知定义在R 上的函数f (x ),对任意实数x 均有f (x +4)=−f (x )+2√2,若函数f (x −2)的图象关于直线x =2对称,则f (2018)=________.16. 已知函数f (x )为R 上的奇函数,且f (−x )=f (2+x ),当x ∈[0,1]时,f (x )=2x +a 2x,则f (101)+f (105)的值为________.17. 定义在R 上的函数f (x )满足f (x +6)=f (x ).当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,−1≤x <3,则f (4)=________;f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=________.18. 定义在R上的奇函数f(x)满足f(x+2)=f(−x),当x∈[−1,0]时,f(x)=x2+2x,则f(2021)=________.19. 已知函数f(x)满足f(2−x)=f(2+x),当x≤2时,f(x)=−x2+kx+2.(1)求f(x)的解析式;(2)求f(x)在[2,4]上的最大值..20. 已知定义在R上的奇函数f(x)有最小正周期4,且x∈(0, 2)时,f(x)=e xx(1)求f(x)在[−2, 2]上的解析式;(2)若|f(x)|≥λ对任意x∈R恒成立,求实数λ的取值范围.21. 已知函数f(x)在R上满足f(2−x)=f(2+x),f(7−x)=f(7+x)且在闭区间[0,7]上,只有f(1)=f(3)=0.试判断函数y=f(x)的奇偶性;试求方程f(x)=0在闭区间[−2011,2011]上根的个数,并证明你的结论.22. 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=−f(x).当x∈[0,2]时,f(x)=2x−x2.求证:f(x)是周期函数;当x∈[2,4]时,求f(x)的解析式;计算f(0)+f(1)+f(2)+⋯+f(2013).23. 已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0, 1)时,f(x)=2x.4x+1(1)证明f(x)在(0, 1)上为减函数;(2)求函数f(x)在[−1, 1]上的解析式;(3)当λ取何值时,方程f(x)=λ在R上有实数解.参考答案与试题解析高中数学 函数的周期性练习题含答案一、 选择题 (本题共计 11 小题 ,每题 3 分 ,共计33分 ) 1.【答案】 C【考点】 函数的求值函数奇偶性的性质 函数的周期性【解析】根据题意,分析可得f(x)是周期为2的周期函数,则有f(10)=f(0),即可得答案. 【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x), 又由f(x)为偶函数,则有f(−x)=f(x), 即f(x −1)=f(1−x)=f(1+x), 所以f(x)=f(2+x),则函数f(x)是周期为2的周期函数, 故f(10)=f(0)=2. 故选C . 2.【答案】 C【考点】 函数的周期性 偶函数 【解析】根据题意,由函数的奇偶性与周期性可得f(−132)=f(−12)=f(12),结合函数的解析式分析可得答案. 【解答】解:由题意得f(x)是R 上周期为3的偶函数, 则f(−132)=f(−12)=f(12).因为当0<x ≤32时,f(x)=log 4x ,所以f(12)=log 412=−12, 所以f(−132)=−12. 故选C .3. 【答案】 B【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1).从而得到|f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2021)的值.【解答】解:∵f(1+x)=f(1−x),且f(−x)=f(x),则f[1+(1+x)]=f[1−(1+x)],即f(2+x)=f(−x)=f(x).∵ f(x)是以2为周期的周期函数,当1≤x≤2时,f(x)=2x−1∴f(2021)=f(2×1010+1)=f(1)=21−1=1.故选B.4.【答案】C【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1),从而得到f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2017)的值.【解答】解:∵f(1+x)+f(1−x)=0,且f(−x)=f(x),∴f(1+x)=−f(1−x)=−f(x−1).令x−1=t,得f(t+2)=−f(t),∴f(x+4)=−f(x+2)=f(x),∴f(x)以4为周期的周期函数.∵当1≤x≤2时,f(x)=2x−1,∴f(2017)=f(4×504+1)=f(1)=21−1=1.故选C.5.【答案】B【考点】函数的周期性函数奇偶性的性质【解析】此题暂无解析【解答】解:因为f(1+x)=f(1−x),且f(x)为定义在R上的偶函数,所以有f(1+x)=f(1−x)=f(x−1),即f(x+2)=f(x),函数f(x)为周期为2的偶函数,且关于x=1对称.又因为g(x)=e−|x−1|(−1<x<3)关于x=1对称,所以f(x)与g(x)的图象一共有四个交点,交点的横坐标之和为2+2=4.故选B.6.【答案】A【考点】函数的求值函数的周期性【解析】由题意,根据f(x+2)=f(−x)以及f(4−x)=−f(x)可推导y=f(x)是周期为4的周期函数,可得f(2019)=f(3),f(2021)=f(1),代入f(4−x)=−f(x)可计算结果,又f(2020)=f(0)=0,代入计算即可.【解答】解:已知f(x+2)=f(−x),则f(2−x)=f(x).又f(4−x)=−f(x),可得f(4−x)+f(2−x)=0,所以f(x+2)=−f(x),即f(x+4)=f[(x+2)+2]=−f(x+2)=f(x),可得函数y=f(x)是周期为4的周期函数,则f(2019)=f(3),f(2020)=f(0),f(2021)=f(1).因为f(4−x)+f(x)=0,所以f(4−1)+f(1)=0,即f(3)+f(1)=0,可得f(2019)+f(2020)+f(2021)=0+1=1.故选A.7.【答案】A【考点】函数奇偶性的性质函数的周期性函数的求值【解析】此题暂无解析【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x),则f(−x)=f(2+x),又由f(x)为偶函数,则有f(−x)=f(x),则f(x+2)=f(x),函数f(x)是周期为2的偶函数,故f(194)=f(34)=f(−34)=tan[π3×(−34)]=−1.故选A.8.【答案】B函数奇偶性的性质函数的周期性【解析】【解答】解:因为f(x+3)=−f(x),所以f(x+6)=−f(x+3)=f(x),所以f(x)是周期为6的周期函数,所以f(2021)=f(6×337−1)=f(−1)=f(1).因为f(1)>7,所以f(2021)=4+3a>7,解得a>1.故选B.9.【答案】B【考点】函数的周期性利用导数研究函数的单调性奇偶性与单调性的综合【解析】由f(−x)=−f(x),f(2−x)=f(2+x)判断出该函数的奇偶性及对称性、周期性.再将自变量转变到同一周期内利用单调性进行比大小.【解答】解:∵f(−x)=−f(x),f(2−x)=f(2+x),∴f(x)为奇函数,∴f[2−(x+2)]=f(2+x+2),即f(−x)=f(x+4)=−f(x),∴f(x+8)=−f(x+4)=f(x),即f(x)的最小正周期为8,∴f(7)=f(8−1)=f(−1)=−f(1),f(10)=f(8+2)=f(2),当x∈[0,2]时,f(x)=x 22+cos x−1,f′(x)=x−sin x,f′′(x)=1−cos x≥0,∴f′(x)=x−sin x为单调递增函数,f′(x)≥f′(0)=0,∴f(x)=x22+cos x−1为单调递增函数,即当x∈[0,2]时,f(x)≥f(0)=0,∴−f(1)<0,0<f(1)<f(√3)<f(2),∴f(7)<f(√3)<f(10),即n<m<t.故选B.10.C【考点】 函数的周期性 函数奇偶性的性质 分段函数的应用根的存在性及根的个数判断【解析】本题考查函数的图象与性质及不等式与函数的结合. 【解答】解:∵ f (−x )=f (x ),f (2−x )=f (2+x ),∴ f(2+x)=f(−x −2)=f(−x +2),∴ f (x +4)=f (x ),即f (x )是以4为周期的函数,作出函数f (x )的图象如图所示.令g (x )=m|x|,将g (x )的图象绕坐标原点旋转可得 {7m ≤e −1,9m >e −1,即{m ≤e−17,m >e−19 则实数m 的取值范围为(e−19,e−17].故选C . 11.【答案】 A【考点】 函数的周期性 函数的求值【解析】【解答】解:由f (x )=f (x +5)可知f (x )周期为5, 因为当x ∈[−2,0)时,f (x )=−(x +2)2; 当x ∈[0,3)时,f (x )=x ,所以f (−2)+f (−1)+f (0)+f (1)+f (2)=2. 又因为f (x )周期为5,所以f (x )+f (x +1)+f (x +2)+f (x +3)+f (x +4)=2, 因此f (1)+f (2)+⋯+f (2021)=f (1)+[f (2)+f (3)+f (4)+f (5)+f (6)]+⋯+f (2021) =f (1)+2×404 =809. 故选A .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 ) 12.−34【考点】 函数的周期性 函数奇偶性的性质 函数的求值 【解析】由奇函数的性质可得,f(−92)=−f(92),由周期性可得f(92)=f(92−4)=f(12),进而得解. 【解答】解:由题意可得,f(−92)=−f(92)=−f(92−4)=−f(12)=−12×(1+12)=−12×32=−34. 故答案为:−34. 13.【答案】 0【考点】 函数的求值 函数的周期性 函数奇偶性的性质【解析】由f (x +2)=−f (x )可得f (x )是周期为4的函数,把f (2016)转化成f (0))求解即可. 【解答】解:对任意实数x ,恒有f (x +2)=−f (x ),则f(x +4)=f(x +2+2)=−f(x +2)=f(x), 所以f (x )是周期为4的函数, 所以f (2016)=f (0),又f (x )是定义在R 上的奇函数, 所以f (0)=0, 所以f (2016)=0. 故答案为:0. 14.【答案】 −3【考点】 求函数的值 函数的周期性 函数的求值【解析】推导出f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,从而f(2019)=f(3)=−f(1),由此能求出结果.【解答】∵函数f(x)的定义域为R,且f(x)=−f(x+2),∴f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,∴f(2019)=f(3)=−f(1)=−(3)故答案为:−(3)15.【答案】√2【考点】函数奇偶性的性质函数的周期性【解析】由已知条件推导出f(−x)=f(x),故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),由此能求出结果.【解答】解:由函数f(x−2)的图象关于直线x=2对称可知,函数f(x)的图象关于y轴对称,故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),又f(2)=−f(−2)+2√2,f(−2)=f(2),所以f(2)=√2.故答案为:√2.16.【答案】3【考点】函数奇偶性的性质函数的周期性函数的求值【解析】暂无【解答】解:因为f(x)为R上的奇函数,所以f(0)=1+a=0,所以a=−1,(0≤x≤1),所以f(x)=2x−12x.则f(1)=32又因为f (x )为奇函数,所以f (−x )=f (2+x )=−f (x ),则f (x +4)=f (x ),所以f (x )的周期为4,所以f (101)+f (105)=2f (1)=32×2=3. 故答案为:3.17.【答案】0,337【考点】函数的求值函数的周期性【解析】先由f (x +6)=f (x )判断周期为6,直接计算f (4);然后计算2017=6×36+1,把f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)转化为=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017) ,即可求解.【解答】解:因为f (x +6)=f (x ),所以函数f (x )的周期为6的周期函数,当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,x −1≤x <3,所以f (4)=f (−2)=−(−2+2)2=0,因为2017=6×336+1,f (1)=1,f (2)=2,f (3)=f (−3)=−(−3+2)2=−1, f (4)=0,f (5)=f (−1)=−1,f (6)=f (0)=0,所以f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017)=36×(1+2−1+0−1+0)+1=337.故答案为:0;337.18.【答案】1【考点】函数奇偶性的性质函数的周期性【解析】无【解答】解:因为f (x )是奇函数,所以f (x +2)=f (−x )=−f (x ),所以f (x +4)=f(x +2+2)=−f(x +2)=f (x ),所以f (x )的周期为4.所以f (x +4)=f (x ),故f (x )是以4为周期的周期函数,则f (2021)=f (4×505+1)=f (1)=−f (−1)=−[(−1)2−2]=1.故答案为:1.三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )19.【答案】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f (x )max =f (4)=2;当8−k 2≤2,即k ≥4时,f (x )在[2,4]上单调递减,则f (x )max =f (2)=2k −2;当2<8−k 2<4,即0<k <4时,f (x )max =f (8−k 2)=k 2+84. 综上所述,f (x )max ={ 2,k ≤0,k 2+84,0<k <4,2k −2,k ≥4.【考点】函数的周期性二次函数在闭区间上的最值分段函数的应用函数解析式的求解及常用方法【解析】【解答】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f(x)max=f(4)=2;当8−k2≤2,即k≥4时,f(x)在[2,4]上单调递减,则f(x)max=f(2)=2k−2;当2<8−k2<4,即0<k<4时,f(x)max=f(8−k2)=k2+84.综上所述,f(x)max={2,k≤0,k2+84,0<k<4,2k−2,k≥4.20.【答案】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.【考点】函数恒成立问题函数的周期性奇函数【解析】(1)由f(x)是x∈R上的奇函数,得f(0)=0.再由最小正周期为4,得到②和f(−2)的值.然后求(−2, 0)上的解析式,通过在(−2, 0)上取变量,转化到(0, 2)上,即可得到结论.(2)|f(x)|≥λ等价于|f(x)|min≥λ,由f(x)的最小正周期为4得,问题转化为求x∈[−2, 2]时的|f(x)|min,由(1)易求;【解答】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.21.【答案】函数f(x)既不是奇函数也不是偶函数.∵f(x)=f[2+(x−2)]=f[2−(x−2)]=f(4−x),f(x)=f[7+(x−7)]=f(7−(x−7))=f(14−x),∴f(14−x)=f(4−x),即f[10+(4−x)]=f(4−x),∴f(x+10)=f(x),即函数f(x)的周期为10.又∵f(1)=f(3)=0,∴f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即x=1+10n和x=3+10n(n∈Z)均是方程f(x)=0的根.由−2011≤1+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±201,共403个;由−2011≤3+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±200,−201,共402个;所以方程f(x)=0在闭区间[−2011,2011]上的根共有805个.【考点】函数的周期性抽象函数及其应用函数的图象与图象变化【解析】此题暂无解析【解答】若y=f(x)为偶函数,则f(−x)=f(2−(x+2))=f(2+(x+2))=f(4+x)=f(x),∴f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(−0)=−f(0),∴f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.略22.【答案】证明∵f(x+2)=−f(x),∴f(x+4)=−f(x+2)=f(x).∴f(x)是周期为4的周期函数.f(x)=x2−6x+8,x∈[2,4].1【考点】函数的周期性奇偶性与单调性的综合【解析】此题暂无解析【解答】思维启迪:只需证明f(x+T)=f(x),即可说明f(x)是周期函数;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵x∈[2,4],∴−x∈[−4,−2],∴4−x∈[0,2],∴f(4−x)=2(4−x)−(4−x)2=−x2+6x−8,又f(4−x)=f(−x)=−f(x),∴−f(x)=−x2+6x−8,即f(x)=x2−6x+8,x∈[2,4].思维启迪:由f(x)在[0,2]上的解析式求得f(x)在[−2,0]上的解析式,进而求f(x)在[2,4]上的解析式;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵f(0)=0,f(2)=0,f(1)=1,f(3)=−1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=⋯=f(2008)+f(2009)+f(2010)+f(2011)=0.∴f(0)+f(1)+f(2)+⋯+f(2013)=f(0)+f(1)=1.思维启迪:由周期性求和.探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.23.【答案】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分【考点】函数的周期性函数奇偶性的性质与判断【解析】(1)利用函数单调性的定义证明.(2)利用函数的周期性和奇偶性求对应的解析式.(3)利用函数的性质求函数f(x)的值域即可.【解答】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分。
2020年高考数学一轮复习考点题型课下层级训练08函数的奇偶性与周期性(含解析)
课下层级训练(八) 函数的奇偶性与周期性[A 级 基础强化训练]1.(2019·山东潍坊月考)下列函数中,即是单调函数又是奇函数的是( )A .y =sin xB .y =2|x |C .D .y =x 3【答案】D [由题意可知,A 中,函数y =sin x 不是单调函数,所以不符合题意;B 中,函数y =2|x |是偶函数,所以不符合题意;C 中,函数是非奇非偶函数,所以不符合题意;D 中,函数y =x 3为定义域上的单调增函数,且为奇函数,符合题意.]2.(2019·山东潍坊模拟)已知f (x )是定义在R 上的奇函数,当x ≥0时f (x )=3x +m (m 为常数),则f (-log 35)的值为( )A .4B .-4C .6D .-6 【答案】B [当x ≥0时f (x )=3x +m (m 为常数),则f (0)=30+m =0,则m =-1.∴f (x )=3x-1.∵函数f (x )是定义在R 上的奇函数,∴f (-log 35)=-f (log 35)=-(3log 35-1)=-4.]3.(2019·辽宁抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .2B .-2C .-98D .98 【答案】B [因为f (x +4)=f (x ),所以函数f (x )的周期T =4,又f (x )在R 上是奇函数,所以f (7)=f (-1)=-f (1)=-2.]4.(2019·甘肃天水月考)已知f (x )=e x -e -x 2,则下列正确的是( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数【答案】A [定义域为R ,∵f (-x )=e -x -e x 2=-f (x ),∴f (x )是奇函数,∵e x 是R 上的增函数,-e -x 也是R 上的增函数,∴e x -e -x 2是R 上的增函数,] 5.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)【答案】A [由题意知f (x )为偶函数,所以f (-2)=f (2),又x ∈[0,+∞)时,f (x )为减函数,且3>2>1,∴f (3)<f (2)<f (1),即f (3)<f (-2)<f (1).]6.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )=( )A .3B .0C .-1D .-2 【答案】B [设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.]7.(2019·贵州适应性考试)已知f (x )是奇函数,g (x )=2+f x f x . 若g (2)=3,则g (-2)=________. 【答案】-1 [由题意可得g (2)=2+f 2f 2=3,则f (2)=1,又f (x )是奇函数,则f (-2)=-1,所以g (-2)=2+f -2f -2=2-1-1=-1.] 8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=________. 【答案】2-1 [依题意知:函数f (x )为奇函数且周期为2,则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52 =f ⎝ ⎛⎭⎪⎫12+0+f ⎝ ⎛⎭⎪⎫-12+f (0)+f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+f (0)+f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12+f (0) =212-1+20-1=2-1.] 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.【答案】解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判断f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.【答案】解 (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ).又f (x +2)=f (x ),∴f (-x )=f (x ).又f (x )的定义域为R ,∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ;从而当1≤x ≤2时,-1≤x -2≤0,f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎪⎨⎪⎧ -x ,x ∈[-1,0],x ,x ∈0,1,-x +2,x ∈[1,2].[B 级 能力提升训练]11.(2019·河北邢台月考)已知f (x )是定义在R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则f (x )在[1,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数【答案】D [根据题意,∵ f (x +1)=-f (x ),∴f (x +2)=-f (x +1)= f (x ),∴函数的周期是2;又f (x )在定义域R 上是偶函数,在[-1,0]上是减函数,∴函数f (x )在[0,1]上是增函数,∴函数f (x )在[1,2]上是减函数,在[2,3]上是增函数,∴f (x )在[1,3]上是先减后增的函数.]12.(2019·山东省实验中学诊断)函数f (x )在[0,+∞)上单调递减,且f (x -2)的图象关于x =2对称,若f (-2)=1,则满足f (x -2) ≥1的x 取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-∞,0]∪[4,+∞)D .[0,4]【答案】D [因为y =f (x -2)的图象向左平移2个单位可得到y =f (x )的图象,所以由f (x -2)的图象关于x =2对称可知y =f (x )的图象关于y 轴对称,为偶函数,所以(-∞,0]上为增函数,且f (-2)=f (2)=1,所以f (x -2) ≥1只需-2≤x -2≤2,解得0≤x ≤4.]13.(2019·山东泰安阶段检测)偶函数f (x )在[0,+∞)单调递减,f (1)=0,不等式f (x )>0的解集为________.【答案】(-1,1) [f (x )在[0,+∞)上单调递减,且f (1)=0,则可知x ∈[0,1)时f (x )>0.由偶函数图象关于y 轴对称,可知x ∈(-1,0]时f (x )>0.综上可得x ∈(-1,1).]14.(2019·山东淄博月考)已知f (x )是定义域(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫1,53 [∵f (x )是定义域(-1,1)的奇函数, ∴-1<x <1,f (-x )=-f (x ).∵f (x )是减函数,∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∴⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3∴1<m <53.] 15.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期;(2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值. 【答案】(1)证明 由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x , 且f (-x )=-f (x ),知f (3+x )=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32+⎝ ⎛⎭⎪⎫32+x = -f ⎣⎢⎡⎦⎥⎤32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期.(2)解 因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)解 因为y =|f (x )|·g (x )是偶函数,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函数.故g (x )=x 2+ax +3为偶函数,即g (-x )=g (x )恒成立,于是(-x)2+a(-x)+3=x2+ax+3恒成立.于是2ax=0恒成立,所以a=0.。
2019-2020年高考数学 奇偶性与周期性练习
2019-2020年高考数学奇偶性与周期性练习1、如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(f(x))=0,f(g(x))=0的实根个数分别为m、n,则m+n=()A.18 B.16C.14 D.122、设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2)且当x ∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是.3、定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[﹣3,﹣1)时,f(x)=﹣(x+2)2,当x∈[﹣1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(xx)=()A.336 B.355 C.1676 D.xx4、已知偶函数f(x)满足f(x+1)=﹣,且当x∈[﹣1,0]时,f(x)=x2,若在区间[﹣1,3]内,函数g(x)=f(x)﹣log a(x+2)有4个零点,则实数a的取值范围是.5、已知定义在R上的奇函数满足,且时,,给出下列结论:①;②函数在上是增函数;③函数的图像关于直线x=1对称;④若,则关于x的方程在[-8,16]上的所有根之和为12.则其中正确的命题为_________。
6、定义在R上的函数,对都有,则下列命题正确的是()A.是偶函数B.是奇函数C.是偶函数D.是奇函数7、已知函数是定义在R上的偶函数,且在区间上为减函数,若+的取值范围是()A. B. C. D.8、若关于的函数()的最大值为,最小值为,且,则实数的值为 .9、已知是定义在上的奇函数,当>0 时, =1+,则= .10、下列函数中,既是奇函数又存在极值的函数是( )A.B.C. D.11、下列函数中,既是偶函数又在区间上单调递减的是()A. B. C. D.12、已知函数f(x)=是奇函数.(1)求t的值;(2)求f(x)的反函数f﹣1(x);(3)对于任意的m>0,解不等式:f﹣1(x)>log3.13、设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是________.14、已知函数,若存在非零实数,使得成立,则实数的取值范围是()A.B.C.D.15、已知函数是偶函数,且,则()A. B. C. D.16、若函数f(x) (x∈R)是奇函数,则()A.函数f(x2)是奇函数B.函数[f(x)]2是奇函数C.函数f(x)x2是奇函数D.函数f(x)+x2是奇函数17、给出下列四个命题:①中,是成立的充要条件;②当时,有;③已知是等差数列的前n项和,若,则;④若函数为上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为.18、已知函数是定义在R上的奇函数,当时,的值是()A.B.C.8 D.-819、已知函数是R上的偶函数,且,当时,,则函数的零点个数为()A.3 B.4 C.5 D.620、已知M={a| f(x)=2sinax在上是增函数},N={b|方程有实数解},设,且定义在R上的奇函数在内没有最小值,则的取值范围是 .1、A由图象知,f(x)=0有3个根,0,±,g(x)=0有3个根,其中一个为0,设与x轴另两个交点横坐标为±x0(0<x0<1).由f(g(x))=0,得g(x)=0或±,由图象可知g(x)所对每一个值都能有3个根,因而m=9;由g(f(x))=0,知f(x)=0或±x0,由图象可以看出f(x)=0有3个根,而f(x)=x0有4个根,f(x)=-x0只有2个根,加在一起共有9个根,即n=9,∴m+n=9+9=18,故选A.2、(,2)【考点】:根的存在性及根的个数判断.【专题】:函数的性质及应用.【分析】:由已知中可以得到函数f(x)是一个周期函数,且周期为4,将方程f(x)﹣log a x+2=0恰有3个不同的实数解,转化为函数f(x)的与函数y=﹣log a x+2的图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.解:∵对于任意的x∈R,都有f(x﹣2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[﹣2,0]时,f(x)=()x﹣1,且函数f(x)是定义在R上的偶函数,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=log a(x+2)在区间(﹣2,6]上有三个不同的交点,如下图所示:又f(﹣2)=f(2)=3,则对于函数y=log a(x+2),由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即log a4<3,且log a8>3,由此解得:<a<2,故答案为:(,2).3、A【考点】:数列与函数的综合.【专题】:函数的性质及应用;等差数列与等比数列.【分析】:直接利用函数的周期性,求出函数在一个周期内的和,然后求解即可.解:定义在R上的函数f(x)满足f(x+6)=f(x).可得函数的周期为:6,当x∈[﹣3,﹣1)时,f(x)=﹣(x+2)2,当x∈[﹣1,3)时,f(x)=x,f(1)=1,f(2)=2,f(3)=f(﹣3)=﹣1,f(4)=f(﹣2)=0,f(5)=f(﹣1)=﹣1,f(6)=f(0)=0,xx=6×335+5,f(1)+f(2)+f(3)+…+f(xx)=f(1)+f(2)+f(3)+f(4)+f(5)+335[f(1)+f(2)+…+f(6)]=1+2﹣1+0﹣1+335×(1+2﹣1+0﹣1+0)=336.故选:A.4、[5,+∞)【考点】:抽象函数及其应用;函数的零点与方程根的关系.综合题;函数的性质及应用.【分析】:根据f(x+1)=﹣,可得f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[﹣1,0]时,f(x)=x2,可得函数在[﹣1,3]上的解析式.根据题意可得函数y=f(x)的图象与y=log a(x+2有4个交点,即可得实数a的取值范围.解:函数f(x)满足f(x+1)=﹣,故有f(x+2)=f(x),故f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[﹣1,0]时,f(x)=x2,可得当x∈[0,1]时,f(x)=x2,故当x∈[﹣1,1]时,f(x)=x2 ,当x∈[1,3]时,f(x)=(x﹣2)2.由于函数g(x)=f(x)﹣log a(x+2)有4个零点,故函数y=f(x)的图象与y=log a(x+2)有4个交点,所以可得1≥log a(3+2),∴实数a的取值范围是[5,+∞).故答案为:[5,+∞).5、①④6、D7、D8、解析:,设:,因为是奇函数,所以函数的最大值与最小值互为相反数,所以,所以t=2.【思路点拨】函数f(x)可化为常数t与奇函数的和,而奇函数的最大值与最小值的和为0,所以,所以t=2.9、【知识点】函数奇偶性的性质.B4【思路点拨】根据是奇函数,故,而可直接代入已知函数中可求。
江苏专用2020版高考数学专题复习专题2函数概念与基本初等函数I第8练函数的奇偶性和周期性练习理
文档从网络中收集,已重新整理排版.word 版本可编借•欢迎下载支持.函数I 第8练函数的奇偶性和周期性练习理 训练目标 (1)函数奇偶性的概念:(2)函数周期性.训练题型(1)判泄函数的奇偶性:(2)函数奇偶性的应用(求函数值,求参数);(3)函数周 期性的应用. 解题策略 (1)判断函数的奇偶性首先要考虑函数定义域是否关于原点对称;(2)根据奇偶 性求参数,可先用特殊值法求出参数,然后验证:(3)理解并应用关于周期函数 的重要结论:如f(x)满足f(x+a) =-f(x),则f(x)的周期T=2 a .+ b+ c — ________ .2. (2016 •南京模拟)设fG)是宦义在R 上的周期为3的周期函数,如图表示该函数在区间 (一2,1]上的图象,则 f(2 014) 4-/(2 015)= _________ ・3. (2016 •镇江模拟)函数f(x)是周期为4的偶函数,当 曲[0,2]时,f(x)=x —l,则不等 式xf(x) >0在[―1, 3]上的解集为 _______________ •4. (2016 •扬州模拟)若定义在R 上的偶函数f(x)和奇函数满足f(£+g3=e”,则gCv) = ___________ ■5. 泄义在 R 上的函数 满足 X-.Y ) =-/(.?), f(x-2)=f(x+2),且当丄€ ( —1,0)时,=2—4,则 /(log :20) = __________ ・ □6. (2016 •苏北四市一模)已知f(x)是定义在R 上的奇函数,当*0时,f3=log :(2—x),那么f(0) + f(2)的值为 _________ •7. 若函数f(x)是左义在R 上的偶函数,且在区间[0, +8)上是单调增函数.如果实数t满足Ain t) +f(ln £) W2f(l),那么t 的取值范囤是 ______________ .8. 设是建义在R 上且周期为2的函数,在区间[一 1, 1]上,f3 =9. (2016 •南京、盐城一模)已知f3是左义在[-2, 2]±的奇函数,且当曲(0,2]时,=2乂一 1,又己知函数g(x) =x~—2x+zz?.如果对于任意的x£[ —2, 2],都存在加丘[—2, 2], 使得心=心,那么实数加的取值范围是 ____________________ .10. (2016 •南京、淮安、盐城二模)已知f3是圧义在R 上的奇函数,当0£A W1时,A.Y ) =女、当x>0时,fU+l)=f(x)+f(l).若直线尸加与函数y=f(.y)的图象恰有5个不同的公共点,则实数&的值为 _________ .11. (2015・课标全国I )若函数百匚?)为偶函数,则a= ________________________ .(江苏专用)2018版高考数学专题复习专2函数概念与基本初等加+2x+1其中吕,gR.若fg)=f§),则卄3b 的值为 _________________12・已知定义在R上的函数满足f⑴=1, —对任意曲R恒成立,则f xf(2 015)= _________ ・2為13.若函数f(0= 「八是奇函数,则实数&的值为___________ ・I 一才+m JV<014.(2017・山东乳山一中月考)定义在(一8,+8)上的偶函数f3满足f(x+l)= — f(£,且在[-1,0]上是增函数,下面是关于f(x)的判断:①f(x)的图象关于点彳£,0)对称:②f(x)的图象关于直线X=1对称;③fG")在[0,1]上是增函数;④f(2)=f(0).其中正确的是________ ・(把你认为正确的序号都填上)答案精析1. 02.33. (-1,0) U (1,3)4.|(e x -e ")5・一1解析 因为f (一£=-f(x),所以是奇函数.当 xW (0, 1)时,—-vE ( — 1,0),则 fCr) =_f(_x) = _2 ”_g.因为 fGr-2)=f(x+2),所以 f(x)=f(x+4),所以是周期为4的周期函数.而 4<log :20<5,所以 f(log s 20) =/(log :20-4)z 、 1 21 1=-(log :20-4)-5= -21og :20_5 = _1-6. —2解析 因为函数f(w)是左义在R 上的奇函数,所以f(0)=0,且A2) = -r(-2)=-log :4 =一2,所以 f(0)+f(2) = -2・7. 土 e]e 解析 /(In f)+f(ln £) =f(ln r)+f( —In t) =2/(ln t) =2/( In t|),因为 f(ln t) +Ain 2)W2f(l),所以 f( In t )S1),所以 lln t W],所以一lWln tWl,所以丄 te 8. -10解析 由题意知/•(》=¥,f(|)=f(-》=-^+l,从而字=一右+1,化简得3a+2b=—2.又 所以一a+l=容,所以&+3b=-10・b= — 2 心 .3a+2b= —2, a=2, 解得I —4.9.[—5, —2]解析由题意矢口,当—2,2]时,f(x)的值域为[—3,3].因为对任意的2,2], 都存在抡丘[-2, 2],使得=/U),所以此时£(冬)的值域要包含[一3, 31.又因为&3心=g(—2), ^(A*)3i n=^(l),所以g(l)W —3 且g(—2)23,解得一5WznW—2.10.2^2-2解析当1W2 时,令JV= t+1,则f(x) =/(t+l) =f(t) +f(l) = t s+l = (jr-l)3+b由题意作岀函数在[-2,2]上的图象,根据奇函数图象的对称性,若直线y=kx与函数卩= f(x)的图象恰有5个不同的公共点,当且仅当直线与区间(1,2]上的一段函数y= C Yy=kx^-1):4-1相切,联立方程一[y= x-1解得¥—4+2)*+2=0,令4 = (&+2尸一8=0,解得R=±2住一2,舍去负值,得A=2^2 —2.11. 1解析f(x)为偶函数,则ln(x+{T匚?)为奇函数,所以lnG+pa+A7) +ln(―X+Q Z+A7) =0,即ln(a+丘一¥) =0,所以a=l.12. 1解析由fd+2)=,一,f x得f(—1+2) = 一1 —,即f⑴ f(一1) = 1,而XI) =1,故f(一1)=1,又因为f(x+4)=一—=f(x),所以f(2 015) =f(504X4-1)= f(_l)=l・13.— 2解析因为f(0是奇函数,所以f(0)=0,当JV>O 时,一xVO,由f(-x) = -f(x)9文档从网络中收集,已重新整理排版.word版本可编借•欢迎下载支持. 得一(一x)'+a( —x) =—2-Y),则a= — 2:当x<0 时,一x>0,由X--Y) = -r(x),得(一£ = 一2 (—x) = —(一f+ax),得¥+2x=€-ax,则a=-2・所以a——2.14.①②④解析根据题意有彳x+扌)=一右一》,结合偶函数的条件,可知石+』=一£一』,所以函数图象关于点伶,0)对称,故①正确:式子还可以变形为f(x+2)=f(x)=f(—切,故②正确:根据对称性,可知函数在[0,1]上是减函数,故③错;由②可知f(2)=f(0),故④正确.故答案为①②④.。
【2020】人教版最新高中数学高考总复习函数的奇偶性习题及详解及参考答案
[解析] 首先由>0得,-2<x<2,其次令f(x)=log2,则f(x)+f(-x)=log2+log2=log21=0.故f(x)为奇函数,其图象关于原点对称,故选A.
(理)函数y=,x∈(-π,0)∪(0,π)的图象可能是下列图象中的( )
[答案] C
[解析] ∵y=是偶函数,排除A,
∴0<<,由>0得,-2<x<2,
由<得,x<-2或x>,∴<x<2.
三、解答题
15.(20xx·杭州外国语学校)已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(2)若当x=-1时函数y=g(x)取得极值,且方程g(x)+b=0有三个不同的实数解,求实数b的取值范围.
(理)(20xx·吉林长春质检)已知函数f(x)=lg为奇函数,则使不等式f(x)<-1成立的x的取值范围是________.
[答案] <x<2
[解析] ∵f(x)为奇函数,∴f(-x)+f(x)=0恒成立,∴lg+lg
=lg=0,
∴=1,
∵a≠0,∴=0,∴a=4,
∴f(x)=lg=lg,
由f(x)<-1得,lg<-1,
A.-1B.1
C.-2D.2
[答案] A
[解析] f(3)-f(4)=f(-2)-f(-1)=-f(2)+f(1)=-2+1=-1,故选A.
3.(20xx·河北唐山)已知f(x)与g(x)分别是定义在R上奇函数与偶函数,若f(x)+g(x)=log2(x2+x+2),则f(1)等于( )
天津市2020〖人教版〗高三数学复习试卷函数的奇偶性与周期性
天津市2020年〖人教版〗高三数学复习试卷函数的奇偶性与周期性1.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( ) A. -2 B. 0C. 1D. 2解析:∵函数f (x )为奇函数,∴f (-x )=-f (x ),∴f (-1)=-f (1),又x >0时,f (x )=x 2+1x,∴f (-1)=-f (1)=-2.故答案为A.答案:A2.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( ) A. ⎝ ⎛⎭⎪⎫13,23B. ⎣⎢⎡⎭⎪⎫13,23 C. ⎝ ⎛⎭⎪⎫12,23D. ⎣⎢⎡⎭⎪⎫12,23 解析:由f (2x -1)<f (13),得f (|2x -1|)<f (13), ∵f (x )在[0,+∞)上单调递增,∴|2x -1|<13,即-13<2x -1<13,解得13<x <23,故选A. 答案:A3.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=( )A. -5B. -1C. 3D. 4解析:∵f (x )=ax 3+b sin x +4, ①∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ②①+②得f (x )+f (-x )=8, ③又∵lg(log 210)=lg(1lg2)=lg(lg2)-1=-lg(lg2), ∴f (lg(log 210))=f (-lg(lg2))=5,又由③式知f (-lg(lg2))+f (lg(lg2))=8,∴5+f (lg(lg2))=8,∴f (lg(lg2))=3.故选C.答案:C4.设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f ( )=2a -3a +1,则实数a 的取值范围是________.解析:∵f ( )=f (1)=f (-2)=-f (2)<-1,∴2a -3a +1<-1,解得-1<a <23. 答案:(-1,23) 5.已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不相等的实数x 1、x 2,不等式(x 1-x 2)·[f (x 1)-f (x 2)]<0恒成立,则不等式f (1-x )<0的解集为________.解析:∵f (x +1)是定义在R 上的奇函数,关于(0,0)对称,向右平移1个单位得到f (x )的图象,关于(1,0)对称,即f (1)=0,又∵任取x 1,x 2∈R ,x 1≠x 2,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,∴f (x )在R 上单调递减.∵f (1-x )<0=f (1),∴1-x >1,∴x <0,∴不等式f (1-x )<0的解集为(-∞,0).答案:(-∞,0)。
2020届高三理数一轮讲义:2.3-函数的奇偶性与周期性(含答案)
由于f(1-x)=f(1+x),f(1)=2,
故令x=1,得f(0)=f(2)=0
令x=2,得f(3)=f(-1)=-f(1)=-2,
令x=3,得f(4)=f(-2)=-f(2)=0,
故f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,
解析当x∈[1,2]时,x-2∈[-1,0],2-x∈[0,1],
又f(x)在R上是以2为周期的偶函数,
∴f(x)=f(x-2)=f(2-x)=log2(2-x+1)=log2(3-x).
答案log2(3-x)
考点一 判断函数的奇偶性
【例1】判断下列函数的奇偶性:
(1)f(x)= + ;
(2)f(x)= ;
A.-50B.0C.2D.50
(2)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.
解析(1)法一∵f(x)在R上是奇函数,且f(1-x)=f(1+x).
∴f(x+1)=-f(x-1),即f(x+2)=-f(x).
解析因为f(x)是定义在[-2b,3+b]上的偶函数,
所以有-2b+3+b=0,解得b=3,
由函数f(x)在[-6,0]上为增函数,得f(x)在(0,6]上为减函数.故f(x-1)≥f(3)⇒f(|x-1|)≥f(3)⇒|x-1|≤3,故-2≤x≤4.
答案B
规律方法1.函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.
解析(1)∵f(x)是周期为4的奇函数,
∴f =-f =-f ,
又0≤x≤1时,f(x)=x(1+x),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练8 函数的奇偶性、周期性
【说明】 本试卷满分100分,考试时间90分钟.
一、选择题(每小题6分,共42分)
1.对于定义在R 上的任何奇函数,均有( )
A.f(x)-f(-x)>0
B.f(x)-f(-x)≤0
C.f(x)·f(-x)>0
D.f(x)·f(-x)≤0
答案:D
解析:∵f(-x)=-f(x),∴f(-x)f(x)=-f 2(x)≤0.
2.已知f(x)=a-122+x 是奇函数,那么实数a 的值等于( ) A.1 B.-1 C.0 D.±1 答案:A
解析:f(x)为奇函数⇒f(0)=0⇒a-1
220+=0⇒a=1. 3.若a>0,a ≠1,f(x)为偶函数,则g(x)=f(x)·log a (x+12+x )的图象( )
A.关于x 轴对称
B.关于y 轴对称
C.关于原点对称
D.关于直线y=x 对称
答案:C
解析:
∵g(-x)=f(-x)·log a (-x+12+x )=f(x)·log a (x+12+x )-1=-f(x)·log a (x+12+x )=-g (x),
∴g(x)为奇函数.
4.(2020湖北八校模拟,6)设函数f(x)是定义在R 上,周期为3的奇函数,若f(1)<1,
f(2)=
1
12+-a a ,则( ) A.a<21且a ≠-1 B.-1<a<0 C.a<-1或a>0 D.-1<a<2
答案:C
解析:由题意得,f(-2)=f(1-3)=f(1)<1,
∴-f(2)<1.即-112+-a a <1.∴1
3+a a >0,即3a(a+1)>0.∴a<-1或a>0.故选C. 5.已知f(x)是周期为2的偶函数,且在区间[0,1]是增函数,则f(-6.5),f(-1),f(0)的大小关系为( )
A.f(-6.5)<f(0)<f(-1)
B.f(-1)<f(-6.5)<f(0)
C.f(0)<f(-6.5)<f(-1)
D.f(-1)<f(0)<f(-6.5)
答案:C
解析:f(-6.5)=f(-3×2-0.5)=f(-0.5)=f(0.5),f(-1)=f(1).
∵f(x)在[0,1]单调递增,∴f(0)<f(0.5)<f(1)即f(0)<f(-6.5)<f(-1).
6.已知f(x)是R 上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是( )
A.{x|0<x<a}
B.{x|-a<x<0或x>a}
C.{x|-a<x<a}
D.{x|x<-a 或0<x<a}
答案:B
解析:利用图象法,画出符合条件的函数图象,如下图,由此可知,选项B 正确.
7.设函数f(x)(x ∈R )为奇函数,f(1)=
2
1,f(x+2)=f(x)+f(2),则f(5)等于( ) A.0 B.1 C.25 D.5 答案:C
解析:令x=-1,则f(1)=f(-1)+f(2),即f(2)=2f(1)=1;令x=3,则f(5)=f(3)+f(2)=[f(1)+f(2)]+f(2)=2
5. 二、填空题(每小题5分,共15分)
8.(2020全国大联考,14)已知f(x)为偶函数,g(x)是奇函数,且f(x)-g(x)=x 2+x-2,则
f(x),g(x)分别为___________________.
答案:x 2-2,-x
解析:∵f(x)-g(x)=x 2+x-2,∴f(x)+g(x)=x 2-x-2,故f(x)=x 2-2,g(x)=-x.
9.若φ(x)与g(x)都是奇函数,且f(x)=a φ(x)+bg(x)+2在(0,+∞)上有最大值5,则f(x)在(-∞,0)上有最____________值,该值等于______________.
答案:小 -1
解析:设h(x)=f(x)-2,
∴h(x)=a φ(x)+bg(x),
∵φ(x)与g(x)都是奇函数,
∴h(x)是奇函数,由题可知h(x)在(0,+∞)上的最大值为3;故h(x)在(-∞,0)上有最小值,该值为-3,即f(x)-2在(-∞,0)上有最小值为-3,∴f(x)的最小值为-1.
10.试构造一个函数f(x),x ∈D,使得对一切x ∈D 有|f(-x)|=|f(x)|恒成立,但是f(x)既不是奇函数又不是偶函数,则f(x)可以是______________.
答案:f(x)=⎩⎨⎧>≤).
1|(|),1|(|2x x x x (答案不唯一)
解析:f(x)的图象部分关于原点对称,部分关于y 轴对称,故可以用分段函数来构造.
三、解答题(11—13题每小题10分,14题13分,共43分)
11.是否存在实数a ,使得函数f(x)=log 2(x+22+x )-a 为奇函数,同时使函数g(x)= x(1
1-x a +a)为偶函数?证明你的结论. 证明:若f(x)是奇函数,则f(x)+f(-x)=0,即
log 2(x+22+x )+log 2(-x+22+x )-2a=0.
整理得log 2(x 2+2-x 2)-2a=0,∴a=2
1. 若g(x)为偶函数,则g(x)-g(-x)=0,即 x(
11-x a +a)+x(1
1--x a +a)=0. 化简,得x(-1+2a)=0,∴a=2
1. 综上,存在a=21满足条件. 1
2.设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x 1,x 2∈[0,21]都有f(x 1+x 2)=f(x 1)·f(x 2).
(1)设f(1)=2,求f(21),f(4
1); (2)证明f(x)是周期函数.
(1)解析:令x 1=x 2=
2
x . 则f(x)=f(2x +2x )=f 2(2
x )≥0. 再令x 1=x 2=21,∴f(1)=f 2(21). ∴f(2
1)=212)1(=f ; 令x 1=x 2=41,∴f(21)=f 2(4
1). ∴f(4
1)=412)21(=f . (2)证明:∵f(x)是偶函数,∴f(-x)=f(x).
又因f(x)的图象关于直线x=1对称,
∴f(x+2)=f(-x),
∴f(x+2)=f(x).
即f(x)是周期为2的周期函数.
13.如果偶函数f(x)在x ∈[0,+∞]上是增函数,且f(
21)=0,求不等式f(log a x)>0(0<a ≠1)的解集.
解析:∵f(21)=0,∴f(log a x)>f(2
1). ∵偶函数f(x)在x ∈[0,+∞]上是增函数, ∴f(|log a x|)>f(
21),∴|log a x|>21.
即log a x>21或log a x<-2
1. ①当0<a<1时,0<x<a 或x>
a a ; ②当a>1时,x>a 或0<x<a
a . 14.已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、
b ∈R 都满足f(a ·b)=af(b)+bf(a).
(1)求f(0)、f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论.
解析:(1)f(0)=f(0·0)=0·f(0)+0·f(0)=0,
由f(1)=f(1·1)=1·f(1)+1·f(1),得f(1)=0.
(2)f(x)是奇函数.
证明:因为f(1)=f [(-1)2]=-f(-1)-f(-1)=0,
所以f(-1)=0,f(-x)=f(-1·x)=-f(x)+xf(-1)=-f(x).因此,f(x)为奇函数.。