Lecture 15 Electrochemical sensors II

合集下载

传感器与检测技术英文书籍英语

传感器与检测技术英文书籍英语

传感器与检测技术英文书籍英语Sensors and Detection Technologies: A Comprehensive Guide.Introduction.Sensors and detection technologies play a crucial role in various scientific, industrial, and commercial applications. These technologies enable us to measure, monitor, and analyze physical, chemical, and biological parameters in real-time or over time. This guide provides a comprehensive overview of the different types of sensors, their working principles, applications, and advancements in sensing technologies.Types of Sensors.1. Physical Sensors:Pressure sensors: Measure force or pressure applied toan object.Temperature sensors: Detect changes in temperature and provide real-time temperature readings.Position sensors: Determine the position or displacement of an object.Velocity and acceleration sensors: Measure the speed and acceleration of moving objects.2. Chemical Sensors:Gas sensors: Detect and measure the presence and concentration of gases in the environment.Biosensors: Utilize biological recognition elements to detect specific molecules or analytes.Chemical arrays: Employ multiple sensors to provide a comprehensive analysis of chemical composition.3. Biological Sensors:Biosensors: Detect and measure biological substancesor organisms.Microfluidic devices: Enable precise control and manipulation of small fluid volumes for biological analysis.Lab-on-a-chip: Integrate multiple analytical functions into a single portable device.4. Optical Sensors:Optical fiber sensors: Utilize optical fibers to transmit light signals and detect changes in thesurrounding environment.Fiber Bragg grating (FBG) sensors: Measure strain, temperature, and other parameters based on the wavelength shift of reflected light.Surface plasmon resonance (SPR) sensors: Utilize theinteraction of light with metal nanoparticles to detect changes in refractive index caused by specific molecules.Working Principles.Sensors convert physical, chemical, or biological signals into electrical or optical signals. The working principles vary depending on the sensor type:1. Physical Sensors:Piezoelectric sensors: Generate an electrical charge when subjected to mechanical stress or vibration.Thermistors and thermocouples: Change their electrical resistance or generate voltage in response to temperature changes.Potentiometers: Measure position or displacement by varying resistance as a movable contact slides along a resistive element.2. Chemical Sensors:Electrochemical sensors: Utilize electrochemical reactions to generate electrical signals proportional to the analyte concentration.Optical sensors: Detect changes in light absorption, reflection, or fluorescence caused by the presence of specific molecules.3. Biological Sensors:Antibody-based sensors: Employ specific antibodies to bind and detect target molecules or organisms.Nucleic acid-based sensors: Utilize DNA or RNA sequences to detect and analyze specific genetic material.Applications.Sensors and detection technologies find applications in a wide range of fields, including:Environmental monitoring: Air quality, water quality, and soil analysis.Industrial automation: Process control, robotics, and quality assurance.Medical diagnostics: Blood analysis, disease detection, and patient monitoring.Agricultural technology: Crop monitoring, soilnutrient analysis, and pest detection.Aerospace and defense: Navigation, guidance, andtarget detection.Advancements in Sensing Technologies.Miniaturization and integration: Development of smaller, more integrated sensors with improved portability and cost-effectiveness.Enhanced sensitivity and selectivity: Advancements in materials science and signal processing techniques to achieve higher detection limits and reduced false positives.Wireless connectivity: Integration of sensors with wireless communication technologies for remote monitoring and data transmission.Artificial intelligence (AI): Utilization of AI algorithms to enhance sensor performance, analyze data in real-time, and make predictions or recommendations.Conclusion.Sensors and detection technologies are essential tools for scientific research, industrial processes, and various commercial applications. The different types of sensors, their working principles, and recent advancements enable us to gather valuable information, monitor processes, and make informed decisions. Continued research and development in sensing technologies hold the promise of further innovation and expanded capabilities in the future.。

化学中的电化学传感器应用

化学中的电化学传感器应用

化学中的电化学传感器应用电化学传感器在化学中的应用随着科技的不断发展,传感器技术也在不断革新,其中电化学传感器(Electrochemical sensors)是一种基于电化学方法测量物质的特殊传感器。

它通过电化学反应将目标成分转化为电流或电势信号,以此来实现测量分析的目的。

在化学领域中,电化学传感器广泛应用于分析化学,生物化学,环境化学以及工业化学领域。

下面将详细介绍电化学传感器在这些领域中的应用。

分析化学领域在分析化学领域,电化学传感器广泛应用于实现化合物的浓度测量。

在此领域中,最常使用的是分子印迹电化学传感器,利用分子印迹技术来构造传感器中的活性材料,以此来实现对目标分子的高选择性和灵敏度。

这种电化学传感器在药物检测、食品安全检测等领域中都发挥了重要的应用作用。

生物化学领域在生物化学领域中,电化学传感器的应用相对较少,但也有其独特的应用场景。

例如,在DNA检测中,可以利用化学和电化学反应相结合的方法进行检测。

此外,电化学传感器还可以用于生物传感器和医学传感器的制备,这些传感器被广泛用于免疫测定、DNA测序等领域。

环境化学领域在环境化学领域中,电化学传感器的应用范围更为广泛。

例如,在燃料电池、电化学台积木等方面都有广泛的应用。

此外,对于一些有害物质检测,电化学传感器也是不可或缺的工具。

例如,汞是一种常见的污染物,若对水资源进行监测,则可以使用电化学传感器来检测汞的浓度。

工业化学领域在工业化学领域,电化学传感器也有着很广泛的应用。

例如,它们可以用于评估金属的腐蚀状态,从而确定金属的使用寿命。

这种应用方法基于金属腐蚀时的电化学反应来进行。

此外,电化学传感器还可以被用于研究电化学反应过程,例如在铝电解、电沉积等方面都有着广泛的应用。

总的来说,电化学传感器在化学中的应用场景十分广泛。

由于其灵敏度和高选择性,它们已经成为分析化学、生物化学、环境化学以及工业化学中不可或缺的工具之一。

随着科技的不断进步,电化学传感器的技术也在不断完善,相信它们将在更广泛的领域中发挥更重要的作用。

电化学体系 英文

电化学体系 英文

电化学体系英文An electrochemical system is a system that involves the transfer of electrons between an electrode and an electrolyte. This transfer of electrons results in chemical reactions taking place at the electrode surface. Electrochemical systems are widely used in various applications such as energy storage, corrosion protection, sensors, and electroplating.In an electrochemical system, there are two main components: the electrode and the electrolyte. The electrode is the solid conductor where the electrontransfer takes place, while the electrolyte is the medium through which ions can move to maintain charge neutralityin the system.There are different types of electrochemical systems, including galvanic cells, electrolytic cells, and fuel cells. Galvanic cells, also known as voltaic cells, are devices that convert chemical energy into electrical energy through spontaneous redox reactions. Electrolytic cells, on the other hand, use electrical energy to drive non-spontaneous redox reactions. Fuel cells are electrochemicalcells that convert chemical energy from a fuel intoelectrical energy.The performance of an electrochemical system is often characterized by parameters such as the open-circuit voltage, short-circuit current, and power density. These parameters are influenced by factors such as the electrode material, electrolyte composition, and operating conditions.One key application of electrochemical systems is in energy storage, where batteries and supercapacitors play a crucial role. Batteries store energy in chemical form and can be recharged multiple times, making them ideal for portable electronics and electric vehicles. Supercapacitors, on the other hand, store energy electrostatically and can deliver high power outputs, making them suitable for applications requiring rapid energy release.Electrochemical systems are also used for corrosion protection, where sacrificial anodes are employed toprotect metal structures from corroding. By connecting a more reactive metal to the metal structure to be protected, the sacrificial anode corrodes instead of the protected metal, thus extending the lifespan of the structure.In addition to energy storage and corrosion protection, electrochemical systems are used in sensors for detecting various analytes such as glucose, pH, and heavy metals. By utilizing the specific redox reactions of the analyte of interest, electrochemical sensors can provide rapid and sensitive detection in a wide range of applications.Overall, electrochemical systems play a vital role in modern technology and have a wide range of applications in various fields. By understanding the principles of electron transfer and redox reactions, researchers and engineers can continue to develop innovative electrochemical systems for future advancements.电化学体系是涉及电极和电解质之间电子转移的系统。

Chemical Sensors

Chemical Sensors

Rct is charge transfer resistance Zw is warburg impedance
11
Ⅱ. 化學感測器常用之 非金屬薄膜 簡介

常用的非金屬薄膜包括有SiO2、 Si3N4、olysilicon、 silicon oxynitride、SiC、SiB、等,而影響薄膜的 重要參數包括有鍍膜的溫度、薄膜的內部應力與形 變、被覆的邊緣、對蝕刻液的抵抗、及針孔的生 成。特別是薄膜的應力與製程有十分的關係,需 特別注意。
D D
19
Ⅱ. Chemical Sensitive FET
(CHEMFET)
Unsaturated region : VD < VG -VT (VDsat) ID =µnWC0x(VG -VT -Eref - ?sol-mem VD/2)/L Satuurated region : VD > VG -VT (VDsat) ID =µnWC0x(VG - VT -Eref - ?sol-mem )²/2L 1. 3. 4. 6. Silicon substrate 2. insulator Chemically sensitive membrane Source 5. drain Insulating encapsulant
(1) (2) (3) (4)
4
І. 化學感測器之應用
臨床及生醫 研究 工業 農業 安全防衛 環保 機器人
藥物測試,醫療儀器之診斷與治療用 藥廠品管,發酵製程,廢水廢棄物監測 成熟度、儲藏、農藥與運輸過程之檢測 毒性物質檢測 空氣、水質污染 自動化檢測應用
5
І. 相關重要製造技術之比較
半導體製程
Chemical Sensors

电化学方法与原理 英文

电化学方法与原理 英文

电化学方法与原理英文Electrochemical Methods and PrinciplesElectrochemistry is a fundamental branch of chemistry that deals with the relationship between electrical and chemical phenomena. It encompasses the study of various processes, such as the generation of electricity from chemical reactions, the use of electrical energy to drive chemical transformations, and the behavior of materials in electrochemical systems. Electrochemical methods have a wide range of applications, from energy production and storage to corrosion protection and analytical techniques.One of the core principles of electrochemistry is the understanding of oxidation and reduction reactions, also known as redox reactions. In these reactions, electrons are transferred between chemical species, resulting in changes in their oxidation states. The driving force behind these electron transfers is the difference in the ability of the participating species to attract and release electrons, known as their reduction potential. By harnessing and controlling these redox processes, electrochemists can design and optimize various electrochemical devices and processes.Electrochemical cells are the fundamental building blocks of electrochemical systems. These cells consist of two electrodes, an anode and a cathode, immersed in an electrolyte solution. The anode is where oxidation occurs, and the cathode is where reduction takes place. The electrolyte provides the necessary ionic conduction between the two electrodes, allowing the flow of ions and the completion of the overall electrochemical reaction.One of the most widely recognized applications of electrochemistry is energy conversion and storage. Electrochemical cells, such as batteries and fuel cells, convert the chemical energy stored in fuels or reactants directly into electrical energy. Batteries, for example, use the principle of redox reactions to generate a flow of electrons, which can then be used to power various electronic devices. Fuel cells, on the other hand, generate electricity by combining fuel (such as hydrogen) and an oxidant (such as oxygen) in an electrochemical reaction.In addition to energy applications, electrochemical methods are also used in a variety of analytical techniques. Electroanalytical methods, such as potentiometry, voltammetry, and electrochemical sensors, utilize the principles of electrochemistry to detect and quantify the presence of specific chemical species in a sample. These techniques are widely used in fields like environmental monitoring, healthcare, and chemical analysis.Corrosion is another area where electrochemistry plays a crucial role. Corrosion is an electrochemical process that involves the deterioration of materials, usually metals, due to their interaction with the surrounding environment. Understanding the electrochemical principles underlying corrosion enables the development of effective strategies for corrosion prevention and mitigation, such as the use of protective coatings, cathodic protection, and the selection of corrosion-resistant materials.Electrochemistry also finds applications in the synthesis and processing of materials. Electrochemical techniques, such as electroplating and electrodeposition, are used to deposit thin filmsor coatings of various materials onto a substrate. These processes are employed in the production of electronic components, decorative finishes, and protective coatings.The field of electrochemistry is constantly evolving, with new developments and applications emerging as our understanding of the underlying principles expands. Researchers continue to explore innovative electrochemical technologies, such as energy storage systems, fuel cells, and electrochemical sensors, to address pressing global challenges related to energy, the environment, and healthcare.In conclusion, electrochemical methods and principles arefundamental to a wide range of scientific and technological fields. From energy conversion and storage to analytical techniques and material processing, the principles of electrochemistry underpin numerous important processes that shape our modern society. As we continue to push the boundaries of scientific knowledge, the importance of electrochemistry will only grow, making it a crucial area of study for scientists and engineers alike.。

热释电红外传感器讲稿(英语)

热释电红外传感器讲稿(英语)


Pyroelectric infrared sensor is a very potential applications of the thermal sensor.It can detect people or animals, the infrared transmitter and converted into an electrical signal output. As early as 1938, it was proposed detection using pyroelectric infrared radiation effect, but not taken seriously. Until the sixties, with the laser, infrared technology is developing rapidly, it has contributed to the pyroelectric effect and research on pyroelectric crystals application development. In recent years, along with the rapid development of integrated circuit technology, as well as the characteristics of the sensor depth study of the relevant application specific integrated circuit processing technology is also growing rapidly.

Pyroelectric
infrared sensors and thermocouples are based on the principle of thermoelectric infrared sensors. The difference is that pyroelectric infrared sensors’ thermoelectric coefficient is much higher than the thermocouple.

分子印迹电化学传感器

分子印迹电化学传感器

分子印迹电化学传感器郭秀春;王继磊;王海辉;陈小艳;李圩田;周文辉;武四新【摘要】分子印迹电化学传感器能够选择性识别并检测特定目标化合物,因其设计简单、灵敏度高、价格低廉、携带方便、易于微型化和自动化等优点,在临床诊断、环境监测、食品分析等方面越来越受到人们的关注。

本文作者主要论述分子印迹技术与电化学技术相结合构建分子印迹电化学传感器,包括分子印迹电化学传感器的种类,以及电化学方法制备分子印迹聚合物膜的常用单体等。

对分子印迹电化学传感器领域新出现的分子印迹聚合物‐纳米材料复合物以及纳米结构分子印迹聚合物也一并做了评述。

%Molecularly imprinted polymer‐base d electrochemical sensors are capable of selective recognition and detection of target molecules .And ,they have attracted considerable attention in clinical diagnostics ,environmental monitoring and food analysis fields due to their simplici‐ty ,high sens itivity ,low cost ,easy to carry ,possibility of easy miniaturization and automa‐tion .This review highlights the combining of molecular imprinting technology and electro ‐chemical sensors for construction molecularly imprinted polymer‐based electrochemica l sensors (MIP‐based electrochemical sensors ) ,including the types of MIP‐based electrochemical sen‐sors and monomers used for electrosynthesis of MIPs for MIP‐based electrochemical sensors . New emerging MIP/nanomaterials and nanostructured MIPs in MIP‐b ased electrochemical sen‐sors are also reviewed .【期刊名称】《化学研究》【年(卷),期】2016(000)001【总页数】11页(P1-11)【关键词】分子印迹技术;分子印迹聚合物;电化学传感器【作者】郭秀春;王继磊;王海辉;陈小艳;李圩田;周文辉;武四新【作者单位】河南大学中药研究所,河南开封 475004;河南大学化学化工学院,河南开封 475004;河南大学特种功能材料重点实验室,河南开封 475004;河南大学特种功能材料重点实验室,河南开封 475004;河南大学中药研究所,河南开封 475004;河南大学特种功能材料重点实验室,河南开封 475004;河南大学特种功能材料重点实验室,河南开封 475004【正文语种】中文【中图分类】O635分子印迹技术( Molecular Imprinting Technique,MIT)是指制备对某一特定的目标分子(模板分子)具有特异选择性的聚合物的过程,所制备的聚合物称为分子印迹聚合物( Molecularly Imprinted Polymer,MIP)\[1\].由于具有构效预定性( Predetermination)、特异识别性( Specific Recognition)和广泛实用性( Practicability)三大特点,分子印迹技术及分子印迹聚合物已经在化合物分离与富集、仿生传感器、人工酶催化剂、抗体模拟酶、药物手性拆分、药物控制释放、药物筛选等诸多领域得到应用,并显示出诱人的应用前景\[2\].分子印迹聚合物对目标化合物具有特异性识别能力,使得其可以作为传感器的敏感材料(识别元件)用于构建分子印迹传感器.分子印迹聚合物在富集并识别目标化合物之后可以通过光、电、热、质、磁等转化手段(换能器)转化为可以分析的电信号,并获得目标化合物的相关信息.相比于其他类型的传感器,电化学传感器因具有设计简单、灵敏度高、价格低廉、携带方便、易于微型化和自动化等优点,在临床诊断、环境监测、食品分析等方面越来越受到人们的关注\[3\].结合分子印迹技术和电化学传感器而来的分子印迹电化学传感器在生物及化学传感器领域获得了广泛的关注,成为国内外的研究热点.本文作者将对分子印迹电化学传感器进行综述.分子印迹聚合物的制备过程就是在模板分子存在的条件下,使功能单体和交联单体发生共聚,将模板分子被包埋在所形成的刚性聚合物材料内.采用一定的方法将模板分子从聚合物材料中洗脱出来,就会在模板分子所占据的空间位置和结构处留下来一个与模板分子在尺寸、形状和结构方面相匹配的三维孔洞.由于功能单体具有与模板分子官能团互补的功能性官能团,因此所合成的分子印迹聚合物能够特异性的与模板分子进行识别和结合(图1)\[4\].根据分子印迹聚合物与换能器整合方式的不同,可以将分子印迹传感器的制备方法分为间接法和直接法\[5\].间接法是先制备MIP膜或颗粒,然后将其整合至传感器的换能器上;直接法则是采用原位聚合法直接在换能器表面制备MIP膜.应该指出,间接法制备的MIP膜一般较厚,容易形成扩散壁垒,使得响应时间延长,同时识别元件与换能器的结合不好\[6\].针对以上问题,研究者提出了多种方法来提高分子印迹传感器的性能,包括旋涂\[7\],层层沉积\[8-9\],电化学聚合\[10\],接枝聚合\[11\]等.根据电化学检测技术的不同,电化学分子印迹传感器分为电容型传感器、电导型传感器、电流型传感器、电位型传感器和压电型传感器.2.1电容型传感器电容型传感器由一个场效应电容器组成,其内部装有分子印迹聚合物薄膜,并且该分子印迹聚合物薄膜必须是绝缘的.当待测分析物在分子印迹聚合物薄膜上结合时,电容型分子印迹电化学传感器的电容将发生变化,并且电容变化的大小与分析物的量存在定量关系,因此根据电容的改变可实现对分析物的定量检测.电容型化学传感器的优点是无须加入额外的试剂或标记,而且灵敏度高,操作简单,价格低廉.1994年MOSBACH等曾尝试制备分子印迹电容传感器,其敏感材料部分是苯丙氨酸的苯胺分子印迹聚合物膜,但是该试验并不成功,只部分获得了定性检测的效果.1999年,PANASYUK 等\[12\]改进了该传感器的制备方法,首次成功制备了分子印迹电容性传感器.作者首先利用羟基苯硫酚与金电极之间的金硫键作用在金电极表面自组装一层羟基苯硫酚膜,然后在苯丙氨酸(模板分子)存在条件下电化学聚合苯酚制备了分子印迹薄膜,最后再用烷基硫醇进行封闭,最终实现了对苯丙氨酸的检测.2.2电导型传感器电导型分子印迹传感器的基本原理是电导(率)的转换.在两个电导电极中间用一层分子印迹聚合物薄膜隔开,当待测分析物与分子印迹聚合物薄膜结合后分子印迹薄膜的电导率会发生变化.由于电导率的变化与分析物的量存在定量关系,从而实现分析物的检测.分子印迹电导传感器的分子印迹膜不需要经过复杂的固化程序,同时其检测方法简单、电导信号响应及平衡速度快.KRIZ等\[13\]以苄基三苯基氯化膦离子为模板制备分子印迹膜,利用电导法实现了苄基三苯基氯化膦的检测.在此基础上,柴春彦等\[14\]发明了一种检测氯霉素的电导型传感器(图2),其电极装置由两片丝网印刷电极平行设计组成,接线端子( 2)、电极连线( 3)与工作电极( 4)连成一体组成一条电极基体,电极基体则印刷在电极基片( 1)上,电极连线( 3)的表面覆盖一层绝缘体( 5),接线端子( 2)是裸露的电导材料薄膜,两片丝网刷电极中的一片的工作电极反应区上覆盖有氯霉素分子印迹膜( 6),而另一片中的电极为空白电极.2.3电流型传感器电流型分子印迹传感器是依据在固定电位条件下不同的待测分析物的浓度与响应电流之间存在一定的关系,据此来测定待测物的量.分子印迹电流传感器的关键是分子印迹膜内必须有一定的孔道,使待测分子(或探针分子)能够穿过分子印迹膜到达电极表面,进而发生氧化还原反应而产生电流.该类传感器可对电活性物质进行直接检测,也可对非电活性物质进行间接检测,即通过检测探针分子(例如铁氰化钾)的电化学信号实现对非电活性物质的检测.电流型传感器根据采用的检测手段的不同又可以分为差示脉冲伏安法、方波伏安法、循环伏安法、计时电流法等.KRIZ 等\[15\]最先研制成功了电流型分子印迹电化学传感器,该传感器采用竞争模式实现了吗啡的检测.该传感器对吗啡的响应电流随吗啡浓度的增大而增大,当电流达到恒定值时再加入吗啡的结构类似物可待因,可待因与吗啡竞争结合替代下来部分吗啡扩散到金电极表面发生电化学氧化并产生一个小的峰电流.研究表明,吗啡浓度在0.1~10 μg/mL内增加时,传感器的峰电流呈线性增大并且吗啡结构类似物对测定没有影响.2.4电位型传感器电位型分子印迹传感器是通过测量分子印迹膜结合待测分析物后电极电位变化的一类电化学传感器.这类传感器的特点是制备分子印迹膜时加入的模板分子不需要去除,同时待测分析物也不需要扩散并穿过分子印迹膜,因此待测分析物的大小不受限制.MURRAY等\[16\]最先实现了电位型分子印迹传感器的研制.他们制备了一系列的分子印迹聚合物,并制备了相应的离子选择性电极,利用电位法测定了铅离子.该传感器对铅离子具有很强的选择性,电位响应与活度的对数具有良好的线性关系.2.5压电型传感器压电型分子印迹传感器是利用石英晶体的压电特性,将分子印迹薄膜固定在石英晶体电极表面,分子印迹薄膜在结合待测分析物之后质量发生变化,导致石英晶体转化为石英晶体电极的谐振频率发生变化.由于其谐振频率变化量与待测物存在线性关系,因此通过计算机处理可以获得极低的待测物含量.HAUPT等\[17\]最先将分子印迹聚合物和石英晶体微天平结合,成功构建了压电型分子印迹传感器.作者以( S) -普萘洛尔为模板分子在石英晶体电极表面沉积制备了分子印迹膜,分子印迹膜结合模板分子之后发生质量增加及相应的频率降低,频率降低量与模板分子浓度在一定范围内呈线性,并且该分子印迹传感器能够区分( S) -普萘洛尔和( R) -普萘洛尔.作为一种特殊的原位聚合方法,电化学聚合法制备分子印迹聚合物薄膜具有以下诸多优点: 1)制备简单,在功能单体和模板分子的溶液中进行循环伏安扫描等操作就能实现; 2)能够在任何导电基底上获得厚度可控的分子印迹薄膜\[5\].因此,本文作者主要讨论通过电化学聚合法制备分子印迹膜,以及结合电化学检测技术构建电化学分子印迹传感器.3.1以吡咯为单体制备分子印迹聚合物膜吡咯是电化学聚合制备分子印迹聚合物薄膜时最常用的单体,很早就有人尝试利用电化学聚合法制备聚吡咯类分子印迹聚合物.例如电化学聚合制备的聚吡咯分子印迹能够吸附制备聚吡咯过程中所掺入的电解质阴离子\[18-19\],采用该方法可以实现氯离子\[18\]和三磷酸腺苷\[19\]的电位法检测.几年之后,HUTCHINS和BACHAS\[20\]采用同样的方法电化学合成了聚吡咯分子印迹膜,并采用伏安法实现了硝酸盐的检测,但得到的传感器不具有特异性吸附的特点,也能吸附其他的阴离子.需要指出的是,这些在分子印迹膜制备过程中添加的阴离子“模板分子”仍然留在分子印迹聚合物基体中并没有被除去\[21\].研究者更进一步发展了电化学聚合制备过氧化聚吡咯分子印迹膜,并实现了大量阴离子模板分子的检测.对于聚吡咯分子印迹聚合物识别体系,在电化学聚合制备分子印迹膜的过程中,聚吡咯基体中首先包埋相应的阴离子模板分子,随后采用过氧化而非采取传统的洗涤法来去除模板分子,最终在过氧化聚吡咯的形成过程中,在聚吡咯膜中留下与模板分子互补的纳米孔洞\[22\].过氧化过程实际上是通过复杂的机制来消除聚合物基体网络中的正电荷,而最终实现模板分子的释放与去除.与此同时,在聚吡咯基体网络中产生含氧基团使得其能够选择性识别模板分子.SPURLOCK等\[21\]在这一研究方向上进行了更进一步的研究,他们用电化学聚合方法制备了带电荷和中性模板分子(腺苷、肌苷以及三磷酸腺苷)的过氧化聚吡咯膜,但是遗憾的是所制备的聚吡咯对模板分子的选择性识别能力仍然较低.DEORE等\[23-24\]实现了过氧化聚吡咯的分子印迹膜的制备,并且所制备的过氧化聚吡咯分子印迹膜对L-谷氨酸有明显的手性选择性识别能力.从此以后,吡咯被大量用于各类化合物的分子印迹聚合物的制备,并与多种换能器结合实现了不同化合物甚至生物大分子的检测,具体见表1.3.2以邻苯二胺为单体制备分子印迹聚合物膜邻苯二胺( 1,2-苯二胺)也是电化学聚合制备分子印迹聚合物的常用单体,但是其文献报道量远少于吡咯.ZAMBONIN等\[10\]首先报道了利用邻苯二胺为单体制备分子印迹聚合物薄膜,并构建了仿生传感器.作者利用电化学聚合制备了葡萄糖分子印迹聚合物膜,并将其作为识别单元与石英晶体微天平结合实现了葡萄糖的检测.此后,研究者逐渐开始采用邻苯二胺均聚物\[38-47\]或者与其他单体共聚合\[48-55\]进行分子印迹聚合物膜的制备.在不同pH缓冲溶液中,利用循环伏安法均能成功制备聚邻苯二胺分子印迹膜,但是pH = 5.2的醋酸缓冲溶液仍是最常用的\[10,38,46-47\].聚邻苯二胺形成的分子印迹膜较为紧密并且具有一定的刚性,因此具有较好的稳定性,特别适合作为传感器的识别单元.另一方面,在pH=5.2的醋酸缓冲溶液中制得的聚邻苯二胺是不导电的,这一特征使得其很合适用于制备电容型分子印迹传感器\[39,41-42\].例如,CHENG 等\[39\]在2001年首次用聚邻苯二胺制得了葡萄糖印迹的电容传感器.需要指出的是,以聚邻苯二胺分子印迹膜为识别单元的电化学传感器一般都需要浸泡于待测物溶液中较长时间( 15 min以上)才能进行测试,这造成了基于邻苯二胺的分子印迹聚合物传感器的平衡时间较长,检测相对耗时.邻苯二胺与其他单体的共聚物同样可以用于分子印迹聚合物薄膜的制备.PENG等\[48\]首次用苯胺与邻苯二胺共聚制备了硫酸阿托品的分子印迹聚合物,并结合波传感器实现对阿托品的检测.间苯二酚也常常与邻苯二胺形成共聚物制备分子印迹聚合物.WEETALL和ROGERS\[49\]在石墨电极上电化学合成了等物质的量之比的间苯二酚与邻苯二胺的共聚物分子印迹膜,利用该分子印迹膜分别印迹了3种不同的分子(染料荧光素、罗丹明以及农药2,4-二氯苯氧乙酸),不过该分子印迹膜需要使用大量的甲醇冲洗以去除模板分子.印迹有染料的分子印迹膜可以通过经典的“再吸附实验”识别相应的染料,最后将识别的染料洗脱至甲醇溶液中并记录其荧光特性来检测相应的染料.2,4-二氯苯氧乙酸分子印迹膜修饰的电极可结合方波伏安法监测连续加入2,4-二氯苯氧乙酸溶液的伏安响应.3.3以酚类为单体制备分子印迹聚合物膜酚类单体是另外一种用于电化学制备分子印迹膜的常见单体(表3).PANASYUK 等\[56\]首次以苯酚为单体,通过电化学制备了分子印迹膜,实现了苯丙氨酸的印迹,并成功制备出第一个电容型分子印迹传感器.在此基础上,其他研究者成功制备出不同的聚酚类传感器,实现了抗生素rifamycin SV ( RSV)\[57\]、茶碱\[58\]以及甲基紫精\[59\]等的检测.BLANCO-LóPEZ等\[57\]认为RSV分子印迹膜的选择性是基于聚酚薄膜的尺寸排阻效应以及电荷分化差异.WILLNER课题组\[59\]则认为形成印迹位点的原因是聚酚膜与模板分子之间的π-π相互作用.除了单纯的酚类化合物,电化学制备分子印迹薄膜也常常选择含有氨基的酚类化合物\[60-62\],因为该类化合物聚合得到的薄膜的孔洞内含有功能化的基团,容易提高其与模板分子之间的选择性识别能力.3.4其他单体制备分子印迹聚合物薄膜大体上来说,能够在电化学条件下聚合并且具有一定的活性功能团的化合物都可以作为单体来制备分子印迹聚合物.除了上述吡咯、苯胺和多酚类化合物外,噻吩及其衍生物、苯磺酸及其衍生物等都可以作为单体,利用电化学聚合法来制备分子印迹膜,并进行分子印迹传感器的构建,但是该类化合物大多比较昂贵,亦或合成和制备较为复杂,因此在此不再祥述.单纯分子印迹聚合物膜作为传感器的识别元件,通常表现出吸附能力差和灵敏度不高的问题.研究人员发现只有改善分子印迹聚合物膜的吸附动力,缩短响应时间并彻底地去除模板分子才能成功地获得性能优良的分子印迹传感器\[66\].将纳米材料与分子印迹聚合物复合或者杂化用作传感器的识别单元,能够使传感器识别单元的表面积增大,提高分子印迹聚合物膜的导电性和电子传递能力,最终实现分子印迹电化学传感器灵敏度的显著提高.目前已有金、铂纳米颗粒、碳纳米管以及石墨烯等材料被应用于分子印迹电化学传感器(表4).金、铂纳米颗粒具有优良的电催化活性、生物相容性等优点,已经被大量应用于分子印迹电化学传感器的性能改进.KAN等\[67\]在茶碱的分子印迹聚合物薄膜中加入了金纳米颗粒,提高了分子印迹聚合物薄膜导电性.此实验中,作者在模板分子存在的条件下,先电化学聚合了邻苯二胺.然后通过恒电位法在分子印迹薄膜表面沉积了一层金纳米颗粒而使膜的导电性显著提高(大约30倍).与传统的分子印迹传感器相比,金纳米颗粒的加入使得分子印迹传感器的线性范围得到了增加,检测限得到了降低.ZHOU等\[68\]首先将铂纳米颗粒固定在玻碳电极上,然后使6-巯基烟酸和模板分子β-雌二醇在铂纳米颗粒表面自组装;然后利用循环伏安法使得自组装膜发生电化学聚合;最后通过恒电位法去除模板分子得到对β-雌二醇具有识别能力的分子印迹电化学传感器,其检测灵敏度明显高于没有铂纳米颗粒修饰的分子印迹传感器.碳纳米管是典型的一维纳米材料,碳纳米管较大的比表面积、较高的导电能力使其对电化学传感器具有明显的增敏效应.KAN等\[69\]将分子印迹聚合物与碳纳米管复合得到相应的复合材料并将其作为电极修饰材料,结合计时电流法实现了神经传递介质多巴胺的检测.石墨烯可以看作是将管状的碳纳米管剪切并铺展开来形成的二维纳米材料,石墨烯具有优异的导电、导热和力学性能.因为石墨烯的每个原子都在石墨烯片层的表面,因此石墨烯与吸附分子之间的相互反应以及电子传输非常灵敏\[70\].随着分子印迹聚合物与不同纳米材料复合体系研究的深入,部分研究人员也开始了多元复合体系的研究,比如分子印迹聚合物-石墨烯-金纳米颗粒复合体系\[71\]等,多元复合体系结合了不同纳米材料的特性,使得所制备的传感器的性能得到了进一步的提升.相对于平面结构的分子印迹膜,三维纳米结构的分子印迹聚合物作为传感器的识别单元可以获得较高的比表面积,并增加印迹位点数量和比例,以此来提高识别待测分析物的结合位点\[77\].基于以上考虑,很多研究者一直致力于纳米结构分子印迹膜的制备以及传感器的构建.HUANG等\[78\]以樟脑磺酸为虚拟模板分子,电化学聚合得到了聚吡咯分子印迹纳米线.该分子印迹纳米线直径约为100 nm,长度为几微米.研究者用法拉第阻抗谱研究了带电分子结合到聚吡咯分子印迹纳米线修饰电极表面时的界面变化.同时,当聚吡咯分子印迹纳米线传感器用于检测苯丙氨酸时表现出明显的手性选择能力,即当特定的对映异构体被识别时会引起电子传递阻抗降低.CHOONG等\[79\]首先在镀钛硅基底上生长直立碳纳米管阵列,然后以碳纳米管阵列为三维支架,采用电化学方法制备咖啡因的分子印迹聚吡咯纳米薄膜.所制备的分子印迹纳米膜的厚度可控且具有较高的比表面积,同时碳纳米管的高导电性使得分子印迹传感器的电化学信号得到增强.这个实验现象在检测大的生物分子,例如蛋白质等方面具有很好的应用前景.采用类似的方法,CAI等\[80\]在碳纳米管阵列的顶端,以蛋白质为模板制备了聚苯酚纳米壳层.作者利用阻抗可以监测聚苯酚纳米壳层对蛋白质的识别,除了能高灵敏度和高选择性地检测蛋白质外,该纳米传感器还能检测到蛋白质的构象变换.利用此分子印迹传感器,作者实现人乳头瘤病毒-E7衍生蛋白的高灵敏度的检测(检测限低于pg/L).MENAKER等\[81\]采用牺牲模板法合成了具有表面印迹位点的蛋白质印迹微米或者纳米线.研究者以聚碳酸酯微孔膜为牺牲模板,首先通过物理吸附将模板蛋白吸附付微孔滤膜的疏水面,然后将微孔滤膜固定于金电极表面,通过电化学聚合聚乙烯二氧噻吩以及聚苯乙烯磺酸制备分子印迹微米棒,最后用氯仿将微孔膜溶解掉.作者通过荧光吸附试验证明了所制备分子印迹材料的识别性能,分子印迹微米棒对模板蛋白的选择性吸附大约是对牛血清蛋白的吸附的两倍.反蛋白石结构是另外一种制备三维纳米结构分子印迹聚合物膜的方法,KAN等\[82\]首先将SiO2胶体晶体沉积在电极表面组装成致密的堆积层;然后在SiO2胶体晶体表面和空隙处电沉积聚吡咯分子印迹聚合物,去掉模板分子之后得到三维有序大孔结构的分子印迹聚合物膜;最终结合电化学方法实现了多巴胺的高灵敏检测.ZHOU等\[83\]首先以电沉积法在ITO导电膜上制备稀疏的氧化锌纳米棒阵列,然后以此纳米棒阵列为三维支架,通过电化学在氧化锌纳米棒阵列表面电沉积聚吡咯分子印迹纳米膜,制得聚吡咯纳米棒阵列修饰的ITO导电膜,将其作为传感器的识别元件结合差示脉冲法实现了肾上腺素的高灵敏度的检测.事实证明电化学与分子印迹技术相结合构建分子印迹电化学传感器非常具有吸引力,可以应用于不同物质特异性检测,并且通过杂交或杂化方法可以发展灵敏度更高的更复杂的电化学传感器.在这一方面,将电化学技术与纳米材料或纳米结构的分子印迹聚合物结合对发展新型的分子印迹电化学传感器至关重要.虽然已有部分报道,但这一领域尚未成熟,仍有待广大研究者继续推动分子印迹电化学传感器的发展,。

定电位电解型气体传感器

定电位电解型气体传感器

定电位电解型气体传感器定电位电解式传感器属于电化学能式传感器(Electrochemical Sensors )中离子电池类传感器,通常用于气体检测,对还原性气体效果更明显,可检测氢气(H 2)、氨气(NH 3)、肼(N 2H 4)、二氧化硫(SO 2)、一氧化氮(NO )、二氧化氮(NO 2)、一氧化碳(CO )和硫化氢(H 2S )等气体。

定电位电解式传感器是目前气体检测中最广泛使用的主流传感器,是一种可用于库仑分析的传感器。

由于定电位电解式传感器中产生电流,常被称为电流气体传感器或微型燃料电池。

用定电位电解型气体传感器检测不同气体时,有不同灵敏度。

按灵敏度从高到低的排序,依次是H 2S 、NO 、NO 2、SO 2和CO 。

响应时间一般为几秒至几十秒,一般小于1min 。

定电位电解型气体传感器的寿命较短,最短只有半年,2、3年寿命已属较长,少数CO 传感器可长达几年。

定电位电解式气体浓度传感器通过电极与被测气体发生电解反应,把化学能转换为电能,并产生电信号,其结构见图1。

在一个容器内,安装三个电极和两片透气膜,浸没在液体电解液中。

三个电极分别称为工作电极(传感电极)、参比电极(参考电极)和对电极,简称W 、R 和C 电极。

工作电极材料和电解质根据被测气体选择,电极材料通常是具有催化活性的金属,如金、铂和铑等贵金属。

一般情况下,电极结构是在透气憎水膜上涂覆高纯度粉末状的电极材料。

工作电极、对电极和液体电解液构成电解系统,被测气体在溶入电解液后,在电极发生电解,产生电流。

液体电解液吸收被测气体,使其溶解。

电解质本身不参与电化学反应,只起吸收被测气体,输送反应生成的离子作用。

透气膜,也称为疏水膜,用于覆盖并保护电极,滤除不需要的粒子,控制到达电极表面的气体量,防止液态电解质泄漏或燥结。

透气膜通常采用低孔隙率材料,如特氟隆,制成薄膜。

为控制到达电极表面的气体量,需要选择适当的薄膜孔隙尺寸。

孔隙尺寸应能够保证有足量的气体分子到达工作电极。

电化学吸附英文

电化学吸附英文

电化学吸附英文Electrochemical AdsorptionElectrochemical adsorption is a fundamental process in many important applications, such as energy storage, catalysis, and environmental remediation. This process involves the interaction between a solid surface and dissolved species, leading to the accumulation of the latter on the former. The driving force behind this phenomenon is the interplay between electrical and chemical forces, which can be harnessed to achieve desirable outcomes.At the heart of electrochemical adsorption is the concept of the electrical double layer, which describes the distribution of ions and charged species at the interface between a solid surface and a liquid electrolyte. This double layer, which can be several nanometers thick, is composed of an inner layer of specifically adsorbed ions and an outer layer of more diffusely distributed ions. The potential difference across this double layer, known as the surface potential, plays a crucial role in determining the extent and nature of the adsorption process.One of the key factors that influence electrochemical adsorption isthe surface charge of the solid material. Depending on the pH of the solution and the point of zero charge (PZC) of the solid, the surface can be positively or negatively charged. This surface charge, in turn, affects the adsorption of ions and molecules from the solution. For example, if the surface is positively charged, it will preferentially adsorb anions from the solution, while a negatively charged surface will attract cations.The strength of the adsorption interaction is also influenced by the chemical nature of the adsorbate and the adsorbent. Specific interactions, such as hydrogen bonding, ion-dipole interactions, and van der Waals forces, can all contribute to the overall adsorption energy. Additionally, the morphology and surface area of the adsorbent material can play a significant role in the adsorption capacity and kinetics.One of the key applications of electrochemical adsorption is in the field of energy storage. In electrochemical capacitors, also known as supercapacitors, the storage of energy is achieved through the reversible adsorption and desorption of ions at the electrode-electrolyte interface. The high surface area of the electrode materials, combined with the rapid kinetics of the adsorption process, allows for the development of high-power energy storage devices with long cycle life.Another important application of electrochemical adsorption is in the area of catalysis. Many catalytic processes, such as fuel cell reactions and electrochemical water splitting, involve the adsorption of reactants and intermediates on the catalyst surface. The controlled adsorption of these species can enhance the catalytic activity and selectivity, leading to improved efficiency and performance.Environmental remediation is yet another field where electrochemical adsorption plays a crucial role. The removal of heavy metals, organic pollutants, and other contaminants from water and wastewater can be achieved through the adsorption of these species onto electrode materials. The ability to tune the surface properties of the adsorbent, as well as the application of an external electric field, can enhance the selectivity and efficiency of the adsorption process.In addition to these well-established applications, electrochemical adsorption is also being explored in emerging fields, such as electrochemical sensors, energy harvesting, and biomedical applications. The versatility and tunability of this process make it a valuable tool in the development of innovative technologies.To further advance the understanding and application of electrochemical adsorption, ongoing research is focused on several key areas. These include the development of novel adsorbent materials with tailored surface properties, the investigation of thefundamental mechanisms governing the adsorption process, and the optimization of the operating conditions and system design for various applications.In conclusion, electrochemical adsorption is a complex and multifaceted phenomenon that underpins a wide range of important technologies. By harnessing the interplay between electrical and chemical forces, researchers and engineers can harness the power of this process to address pressing challenges in energy, environment, and beyond. As our understanding of electrochemical adsorption continues to deepen, we can expect to see even more innovative applications emerge in the years to come.。

Electrochemical sensors

Electrochemical sensors

专利名称:Electrochemical sensors发明人:グラント ロバート ブルース申请号:JP2006523667申请日:20040805公开号:JP2007502976A公开日:20070215专利内容由知识产权出版社提供专利附图:摘要:An organic contaminant molecule sensor is described for use in a low oxygen concentration monitored environment. The sensor comprises an electrochemical cell,which is formed from a measurement electrode coated with (or formed from) a catalyst having the ability to catalyse the dissociative adsorption of the organic contaminantmolecule, the electrode being positioned for exposure to the monitored environment, a reference electrode coated with (or comprised from) a catalyst selected for its ability to catalyse the dissociation of oxygen to oxygen anions, the reference electrode being positioned within a reference environment, and a solid state oxygen anion conductor disposed between and bridging the measurement and reference electrodes, wherein oxygen anion conduction occurs at or above a critical temperature, Tc. Sealing means areprovided for separating the reference environment from the monitored environment. Means are also provided for controlling and monitoring the temperature of the cell, and for controlling the electrical current (Ip) flowing between the reference and measurement electrodes. At temperatures (Tads) below Tc, organic contaminant molecules are adsorbed onto and dissociated at the surface of the measurement electrode leading to the build up of carbonaceous deposits at the surface thereof. At temperatures (Ttit) above Tc, an electrical current (Ip) is passed between the reference and measurement electrode thereby to control the number of oxygen anions passing from the reference electrode to the measurement electrode to oxidise the carbonaceous deposits formed at the surface thereof and the formation of carbon dioxide.申请人:ザ ビーオーシー グループ ピーエルシー地址:イギリス サリー ジーユー20 6エイチジェイウィンドルシャム チャートシィ ロード(番地なし)国籍:GB代理人:熊倉 禎男,大塚 文昭,西島 孝喜,須田 洋之更多信息请下载全文后查看。

电化学气体传感器电极的制备方法及其所制备电极

电化学气体传感器电极的制备方法及其所制备电极

电化学气体传感器电极的制备方法及其所制备电极下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!Certainly! Here's a structured demonstration article on the topic of "Preparation Methods of Electrodes for Electrochemical Gas Sensors and the Prepared Electrodes":电化学气体传感器电极的制备方法及其所制备电极。

Chemical and Electrochemical Biosensors

Chemical and Electrochemical Biosensors

Chemical and ElectrochemicalBiosensors化学和电化学生物传感器生物传感器是一种利用生物分子与信号转换元件相结合的技术,用于检测生物学分子的一种传感器。

其中,化学和电化学生物传感器是应用最为广泛的两种类型,下面将分别介绍这两种传感器的原理、特点和应用。

一、化学生物传感器化学生物传感器是一种利用化学反应原理来检测生物信号的传感器技术。

其核心原理是利用生物大分子与小分子的相互作用实现信号检测,通常将其作为“生物识别分子”,和检测目标分子进行相互作用,并通过化学反应将其转化成可以观测的信号输出。

其中,常用的化学反应方式包括:1. 充电反应:通过生成电流,实现对生物分子的检测,其优点是灵敏度高和检测速度快;2. 荧光反应:通过荧光标记物,将生物分子识别并转化成可以观测的荧光信号输出,其优点是稳定性好和检测结果准确。

目前,化学生物传感器主要应用于医药、生物化学、环境和食品检测领域。

通过利用其高灵敏度和准确性,可以实现对不同生物分子的检测和分析。

二、电化学生物传感器电化学生物传感器是一种通过电化学反应实现对生物分子检测的传感器技术。

其核心原理是利用电化学反应过程来实现对生物分子的检测。

在检测过程中,生物大分子与电极表面发生化学反应,导致电流的变化,从而输出检测结果。

与化学生物传感器相比,电化学生物传感器具有更高的检测灵敏度和更广的检测范围,可以实现对细胞、蛋白质、DNA序列、药物和环境污染物等生物分子的检测和分析。

其中,电化学生物传感器主要包括电化学阻抗传感器、电化学发光传感器和电化学生物传感器阵列等不同种类,可应用于医疗、生物科学、环境监测等领域。

结论化学和电化学生物传感器都是一种研究生物分子的传感器技术。

其中,化学生物传感器主要利用化学反应方式实现对生物大分子的检测,而电化学生物传感器则通过电化学反应实现生物大分子的检测。

这两种传感器技术的优势互补,能够实现对生物系统的全面分析和理解。

电化学传感器综述ppt课件

电化学传感器综述ppt课件
10
二、控制电位电解型(电流型)气体传感器
监测和控制大气环境中污染物的排放关系到人类社 会的可持续发展;
目前的气体检测手段:热导分析、磁式氧分析、电子捕 获分析、紫外吸收分析、光纤传感器、半导体气敏传感器、 化学发光式气体分析仪、电化学式传感器、化学分析法。
化学发光式气体分析仪:检测灵敏度高、准确性强,但 仪器体积大,不能用于现场检测,且价格昂贵;
以测得的电动势 E 值与相应的 lgaMn+值绘制工作曲线,即可
求得未知溶液中待测离子的浓度。
9
离子传感器研究较多的是玻璃电极,除测量PH的 电极外,引进玻璃的成分,已制成 Na+、K+、NH4+、 Ag+、Tl+、Li+、Rb+、Cs+等一系列一价阳离子的选 择性电极;
利用Ag2S压片可制成S2-离子选择性电极,已制成 F-、Cl-、Br-、I-、CN-、NO3-等阴离子选择电极
3
化学传感器的分类:
按检测物质种类可以分为:以pH传感器为代表的 各种离子传感器,检测气体的气体传感器以及利 用生物特性制成的生物传感器等等。 依据其原理可分为:① 电化学式;② 光学式; ③ 热学式;④质量式等。 电化学传感器是利用电化学原理,将被测组份的 浓度变化与电信号联系起来,从而提供被检测体 系中化学组份实时信息的一类器件。
19
特点:灵敏度高、选择性好、响应快、操作简便、样品需要量
少、可微型化、价格低廉等。
分类:电化学式和光学式;
生物电化学传感器:电位式、电流式和电导式;
研究和应用最多的是酶传感器。
1962年 Clark等人提出将酶作为与电极结合试剂,并通过检测其 酶催化反应所消耗的氧气来测定葡萄糖的含量。

电化学原理与应用的英文

电化学原理与应用的英文

Electrochemistry: Principles and Applications IntroductionElectrochemistry is a branch of chemistry that deals with the study of chemical processes involving the transfer of electrons between substances. It has both theoretical and practical aspects, with applications ranging from energy storage to corrosion prevention. This document provides an overview of the principles underlying electrochemistry and explores its various applications.1. Fundamentals of Electrochemistry1.1 Electrochemical Cells•Electrochemical cells are devices that convert chemical energy into electrical energy or vice versa.•They consist of two electrodes, an electrolyte, and a separator.•The movement of ions between the electrodes through the electrolyte allows for the flow of electrons, generating electrical current.1.2 Redox Reactions•Redox reactions involve the transfer of electrons between chemical species.•The species that loses electrons is oxidized, while the species that gains electrons is reduced.•The movement of electrons is facilitated by the presence of an electrode.1.3 Electrode Potentials•Electrode potentials measure the tendency of an electrode to gain or lose electrons.•The standard electrode potential is defined under standard conditions(1 mol/L, 298 K).•It is a measure of the driving force behind a redox reaction.2. Applications of Electrochemistry2.1 Batteries•Batteries are electrochemical devices that store and release electrical energy.•They consist of two or more electrochemical cells connected in series or parallel.•Common types of batteries include alkaline batteries, lithium-ion batteries, and lead-acid batteries.2.2 Corrosion Prevention•Corrosion is the degradation of metals due to chemical reactions with the environment.•Electrochemical methods such as cathodic protection are used to prevent corrosion.•By creating a sacrificial electrode, the metal to be protected acts as the cathode, preventing corrosion.2.3 Electroplating•Electroplating is a process that uses an electrical current to deposit a thin layer of metal onto a substrate.•It is used to enhance the appearance, corrosion resistance, and wear resistance of objects.•Common examples of electroplating include gold-plated jewelry and chrome-plated car parts.2.4 Sensors•Electrochemical sensors are widely used for the detection and measurement of analytes.•They work by utilizing the electrochemical properties of the analyte to produce a measurable signal.•Examples of electrochemical sensors include pH meters and glucose sensors.2.5 Fuel Cells•Fuel cells are electrochemical devices that convert the chemical energy of a fuel into electrical energy.•They have applications in transportation, stationary power generation, and portable electronics.•Different types of fuel cells include hydrogen fuel cells and methanol fuel cells.ConclusionElectrochemistry plays a vital role in various fields, including energy storage, corrosion prevention, and sensing. Understanding the principles of electrochemical reactions and their applications is crucial for developing innovative technologies and solving societal challenges. By harnessing the power of electrochemistry, we can create sustainable energy solutions and protect valuable assets from corrosion.。

信息融合技术Lecture2

信息融合技术Lecture2

Lecture 2: SensorsIntroduction•Sensor need measure physical property, environmental attributes, such as heat, light, sound, pressure, magnetism or motion in a consistent and predictable manner•Sensor element•Sensor Fusion System (distributed system of autonomous modules)•Sensors not only need to measure the physical property, but also need to perform additional functionsAdditional Functions•Compensation–Ability to detect and respond to changes in the environment through self‐diagnostic tests, self‐calibration and adaption •Information Processing–Ability to processes raw sensor measurements •Communication–Having standardized interface and protocol to transfer information between sensor and outside world•Integration–Be able to put the sensing and computation processes on a small silicon chip. Generally, this is implemented using microelectro‐mechanical system (MEMS) technologySmart Sensor•Smart sensor is beyond the traditional sensor, those additional functions are practically implementedu P stands fro micro-processorLogical Sensors•Definition–Any device which functions asa source of information for ainformation fusion node–Encompass both physicalsensors and any fusion nodewhose output is subsequentlyfed into another fusion nodeExample: S1, S2, S3, F1 are all logicalsensorsInterface File System•A system used for communicating information between a smart sensor and the outside worldImplementation: temporal firewall •No direct communication between the sensor and the outside worldInterface Types•Real‐time Service Interface–Real time, time‐critical situation •Diagnostic and Management Interface –Parameterization and calibration at start‐up,periodic collection of diagnostic information tosupport maintenance activities •Configuration and Planning Interface–Used to configure a smart sensor for a givenapplication. Includes the integration and set‐up of newly connected sensor modulesTiming•Reading (writing) information from (to) the interfaces, we need use possible communication and computational schedule.•Event Triggered–Initiated when a significant change of state occurs •Time Triggered–Initiated at pre‐determined times–Safety‐critical real‐time applications–Synchronization of all local clocks to a global clockSensor Observation Representation•Entity‐Name E–Name of the physical property measured•Spatial Location x–Position in space to which the measurements are refer •Time Instant t–When was measured•Measurement y–The measured value of the physical property •Uncertainty ∆y–The errors in yUncertainty ∆y •Random Errors (lack of repeatability, caused by measurement noise)•Systematic Errors (consistent and repeatable)–Calibration errors–Loading errors–Environment errors–Common Representation Format Errors •Spurious Readings–E.g. Sensor detects an obstacle, but actually there is noExamples of Uncertainty ∆y •Systematic Errors in a Tipping‐Bucket Rain Gauge (heavy rain, undercatchment)•Spurious Readings in Time‐of‐Fight Ultrasonic Sensor –Detected an obstacle which does not exist–Sensor receives a pulse emitted by second sensorSensor CharacteristicsWhen select a sensor for a single sensor application, we need to consider all of the sensor’s individual characteristics:•State–Internal system parameters or external (system’s geometric and/or dynamic relation to its task and environment)•Function–What the sensor measures•Performance–Accuracy, reliability, range, sensitivity, etc•Output–Analog, digital, frequency, coded•Energy Type–The type of energy transferred to the sensor. Thermal energy, electrical energy•General background information I •The variable interested, the true value is ѳ•The measurement •The task is inferring by estimating a posteriori probability•Note, the model can be multi ‐dimensional, continuous (probability density function)Sensor Model (math)),,(21T N T T y y y y K =Sensor Model。

电化学免疫传感器的应用课件课件

电化学免疫传感器的应用课件课件
G,Nitti C D , et al . Highly sensitive amperometric enzyme immunoassay for α-fetoprotein in human serum[ J ] . J Immunol Methods ,1996 ,193(1) :51-62.)
性的生物催化剂(如乳糖酶)来标记抗胰岛素抗体。与固定在电极
上的胰岛素特异性结合,乳糖酶催化电极上氧的电还原反应,从而
使电极上电位增加,其增加值与溶液中游离抗原(胰岛素)浓度有 比例关系。检测胰岛素,获得了很宽的线性范围(300 mV) (Direct electron transfer catalyzed by enzymes : application for biosensor development[J ] .Biosens Bioelectron ,2000 ,28(2) :84-89)
电极表面微环境的改变,宏观上则表现为电流、电压、电 导率等电化学信息的变化
第27页,幻灯片共32页
• Louis等在用巯基烷烃保护金电极减少杂蛋白的非特异吸附又不降低其 导电能力的同时,用含巯基的硅烷作偶联剂将链霉亲合素定向固定在金 电极表面的SiO2 层,使之能够与生物素化抗原精确结合,效果很好。
第9页,幻灯片共32页
用戊二醛交联法在铂或银电极上固定IgG抗体,电位差△E 与抗原浓度C之间存在着良好的线性关系,回收率高,使用仪器装置简单,可重 复使用(孙宝元 杨宝清主编.传感器及其应用手册.北京:机械工业出
版社,2004 :348)
第10页,幻灯片共32页
2.1.2 酶标记电位型免疫传感器
γ at the attomolar level [J ] . Anal Chem,2001 ,73 (3) :901-907)

电化学生物传感器PPT课件

电化学生物传感器PPT课件
• 酶电极电化学电极顶端紧贴一层酶膜
第9页/共21页
酶的固定化技术
惰性载体物理吸附法
离子载体交换法
物理T包e埋xt法
酶分子通过极性 键、氢键、疏水力 或π电子相互作用 等吸附于不溶性载 体上。
选用具有离子交
换剂的载体,在适 宜的pH下,使酶分 子与离子交换剂通 过离子键结合起来, 形成固定化酶。
将酶分子包埋 在凝胶的细微格 子里制成固定化。
第2页/共21页
二.电化学生物传感器的信号转换器
电 电化学参比电极 极
电位型电极
➢离子选择电 极
➢氧化还原电 极
第3页/共21页
电. 流型电极
➢氧电极
1、电位型电极
离子选择电极 离子选择电极是一类对特定的阳离子或阴离子呈选择性响应的电极,具有快速、 灵敏、可靠、价廉等优点。在生物医学领域常直接用它测定体液中的一些成分 (例如H+,K+,Na+,Ca2+等)。
目前生物传感器主要还处在实验室研究阶段,仍需要较长的一段时间才能实现产 业化。比如,大多数电化学酶传感器只是对单一组分中的污染物具有响应,而传感器 应用于监测实际样品中污染物仍有许多亟待解决的实际问题。
生物传感器是一项崭新的技术手段,它在发展中难免会遇到各种问题,但是它 的应用前景和自身优势毋庸置疑。可以预见,未来的电化学生物传感器将实现功能多 样化、微型化、智能化、集成化等特点。相信随着大量资金的涌入和多学科的融入, 这些问题都将迎刃而解。
1
2
Hale Waihona Puke 优点:酶活与性酶较电极酶相的比稳定
离析酶高 性增大
3
材料易于 获得
第17页/共21页
应用
细胞传感器可用于诊断早期癌症,用人类脐静脉内皮细胞通过三乙酸纤维素膜 固定在离子选择性电极上作为传感器,肿瘤细胞中VEGF刺激细胞使电极电位发生变 化从而测得VEGF浓度来诊断癌症。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Also, the equilibrium reaction can be quantified by salt-partitioning constant, Kp, as defined by
Thus, the concentration of the aqueous anion in the cation-selective membrane doped with anionic sites is negligible in the charge balance in the membrane phase [I+]M = [R-]M + [X-]M ⇌ [R-]M selectivity of anion-exchanger-based ISEs follows 16 > F ClO4- > SCN- > I- > NO3- >Br- > Cl- > HCO3- > SO42-
L. C. Clark Jr., Trans. Am. Soc. Artif. Intern. Organs, 1956, 2, 41
28
4. Modified electrodes
A. Chemical modification {chemical bonding).
B. Adsorption C. Electroadsorption D. Plasma(等离子体)
25
Vequiv.
C. Amperometric titrations with double hydrodynamic electrode
Idet generator A±n1e →B solution B+X → products Detector B±n2e → C (or A) N’= 0.035
Applied Electrochemistry
Dept. Chem. & Chem. Eng. 1
Lecture 14
Electrochemical sensors
Dept. Chem. & Chem. Eng. 2
Outline
1ቤተ መጻሕፍቲ ባይዱ
2 3 Introduction Potentiometric sensors Amperometric sensors Voltametric sensors
17
18
(4) Charged-ionophore-based ISEs
19
20
21
Outline
1
2 3 Introduction Potentiometric sensors Amperometric sensors Voltametric sensors
4
22
1. Introduction
When the information is obtained from measurement of current, that is in amperometric sensors, the role of the Ohm’s Law becomes immediately apparent.
c. Reduction/oxidation of the species that was accumulated at the electrode
5
An example of biochemical sensor
6
Electrochemical sensors
Electrochemical sensors is a subclass of chemical sensors in which electrode is used as a transduction elements
7
Outline
1
2 3 Introduction Potentiometric sensors Amperometric sensors Voltametric sensors
4
8
Miniaturization of potentiometric sensors. (A) Conventional ion-selective electrode (ISE) with reference electrode connected to the field-effect transistor amplifier. (B) The electrical connection between ISE and the amplifier is made shorter. (C) Electrical connection is eliminated and the ISE membrane is placed directly at the input of the amplifier, thus forming an ISFET (D)
unique for the analyte
Charge
activity in the sample solution of analyte I
11
Schematic view of the equilibrium between sample
12
Classification and Mechanism (1) Phase boundary potential izi (membrane) ⇌ izi (sample) Under equilibrium conditions
(3) Neutral-ionophore-based ISEs I+(Membrane) + L(membrane) ⇌ IL+(membrane) The formation constant, , is given by = aILM/(aIM aLM) the charge balance in the membrane phase RT = [I+]M + [IL+]M ⇌ [IL+]M [L]M = LT - [IL+]M ⇌ LT - RT aIL = ILM RT/ LM(LT - RT)
Forms of amperometric titration
24
B. Biamperometric titration R1 + O2 ⇌ O1 + R2 I i ii iii
Two redox electrodes Non-reference electrode App: a reversible system before or after the endpoint i Both 1 and 2 are rev. ii only 2 is rev. iii only 1 is rev. V
29
Examples of modifiers for amperometric sensors
30
Bard and Faulkner, 2001, pp. 584–585
Processes that can occur at a modified electrode. (1) heterogeneous reduction process; (2) successive transfer of electron between reduced molecules Q (5), until the transfer to A at the surface (3); (4) diffusion of A into the film and its reaction with Q; (6) direct penetration of A through the pinhole to the substrate electrode
Conceptual drawing of three electrode amperometric electrochemical sensor and potentiostat
23
2. Amperometric titrations
A. Simple amperometric titration i I ii iii Vequiv iv V Two electrodes: a redox indicator electrode & a reference electrode A fixed potential difference
31
5. Increase in sensitivity: pre-concentration techniques principle a. application of a pulse waveform and a.c. voltammetry b. utilization of a pre-concentration step that accumulates the electroactive species on the electrode surface i = nFAvA process a. Deposition or adsorption of the species on the electrode b. Change to an inert electrolyte medium
4
Contruction of chemical sensors
A transduction element covered with chemical or biochemical recognition layer Target analyte interact with the recognition layer and change the resulting from interactions to electrical signals
Membrane compositions and selectivity coefficients of ion-exchanger-based ISEs
相关文档
最新文档