Flexible part orienting using rotation direction and force measurements

合集下载

青年概率学者会议

青年概率学者会议

专题述评青年榔率学者会议南开大学青年概率学者会议于2018年11月5~9日在南开大学召开。

本次会议的主题是“离散结构上的概率模型、(奇异)随机偏微分方程、随机矩阵、SLE和随机地图”。

会议的组织者是南开大学向开南教授、马春华副教授、王龙敏副教授,清华大学吴昊教授,纽约大学与上海纽约大学Vladas Sidoravicius教授,巴黎六大施展教授。

学术委员会成员是巴黎十一大Jean-Frangois Le Gall教授(法国科学院院士),纽约大学与上海纽约大学Vladas Sidoravicius教授,巴黎六大施展教授,宾夕法利亚大学丁剑教授,清华大学吴昊教授和南开大学向开南教授。

本次会议吸引了来自法国冲国等的60位代表参加。

与会代表围绕会议主题举行了24场学术报告并进行讨论,汇聚了国内外概率青年才俊及2位资深概率学者的最新成果。

报告人当中有3名女青年概率学者,她们分别是清华大学丘成桐数学中心吴昊,北京交通大学朱湘禅和剑桥大学博士后、上海纽约大学访问学者Vittoria Silvestri教授。

此外,资深概率学者Francis Comets和Vladas Sidoravicius教授分别作了会议的开场学术报告和结束学术报告。

(1)离散结构上的概率模型。

该主题报告有9个。

上海纽约大学Jerome Casse报告了概率细胞自动机在统计物理(如8-顶点模型、平行的完全反对称简单排它过程、末达渗流等)中的应用。

北京大学数学科学学院张原报告了在楔子中的DLA(扩散极限聚合)模型的稳定化,且提出了若干值得进一步研究的漂亮的猜想。

上海纽约大学姜建平综述了随机场Ising模型相关性的指数衰减,且证明了当温度高且磁场强度弱时或者当磁场强度强而温度任意时,随机场Ising模型具有指数相关性衰减。

中国科学院数学研究所邱彦奇作了题为“点过程的Patterson-Sullivan构造和调和函数的重建"的报告,与Alexander Bufetov合作证明了经典的Patterson-SuUivan构造可以推广到点过程情形并利用其来重建复平面上单位圆盘、双曲空间中单位球内的调和函数。

韧性硬化材料裂纹扩展分形运动学-清华大学

韧性硬化材料裂纹扩展分形运动学-清华大学

CNAIS 2006 Symposium文题(不超过20字)*作者11,作者22,作者31……(1. 学校 系名,城市 邮编;2. 单位名称2,城市 邮编)文 摘: 包括目的、方法、结果、结论4部分,200-220字,信息具体。

关键词:关键词1(与分类号对应);关键词2;关键词3;… 中图分类号: 分类号1;分类号2*基金项目:基金项目类别(项目编号) 作者简介:第一作者的姓名(出生年-),性别(民族),籍贯,职称。

通讯联系人:姓名,职称,E-mail :……第一作者为研究生、博士后时,应当以作者中的导师为通讯联系人; 其他情况时,在作者简介后直接加E-mail ,不写通讯联系人。

当前,提高板料成形性能的新工艺的研发,成为全球板料冲压领域中处在前沿的一个热点课题,国内外的众多学者主要沿两个方向正在开展这项研究[1]。

这两个方向是:①控制和优化压边力曲线。

②多点位控制压边技术。

要提高板料在加工成覆盖件时的成形性能,必须对覆盖件拉深过程中的力学特征进行较为深刻的理论分析。

一般说来,任何一个非回转面的形状复杂的覆盖件,都是由多个直壁面或斜壁面与1/4左右的过渡圆柱面或圆锥面以及外凸曲面的底面组合而成的。

以图1所示的长方形盒形件的拉深工艺作为分析模型,用上限法来探讨一般的覆盖件拉深过程中的力学特征。

为此,将板坯的凸缘面分成两类区域:圆角区域与直边区域,前者如图1中的ABCD 区域,后者如图1中的ABHE 区域,且每个区域又可以分为凸缘部分与凹模的圆角部分。

文中用上限法对覆盖件拉深过程中的力学特征进行理论探讨,同时给出几点假设:①板厚δ在拉深过程中保持不变。

②等效应变速率按厚向异性的材料模型进行计算。

③计算动可容速度场时忽略接触面上的摩擦阻力。

事实上,假设①在主应力法中同样也被采用了[2]。

假如在拉深过程中,板坯上的圆角区域与直边区域的运动与变形是相互独立的,二者之间没有质点系的转移,即圆角区域中的质点按圆筒件的拉深模式进行运动与变形,而直边区域中的质点按平面应变拉深的模式进行运动与变形,则由上限法可导出如下结果。

晶体自范性和自生成模板法结合生长组装多级纳米结构_谢毅

晶体自范性和自生成模板法结合生长组装多级纳米结构_谢毅

570
中国科学技术大学学报
第 38 卷
acted as the suppo rt fo r the co nst ruction of rutile TiO 2 3D hollow nanostructures . F urthermo re , VOOH hollo w “ dandelions” w ere sy nthesized owi ng t o the planar sheet nature of the bui lding blo cks in the newphased VOOH and the in-si tu produced N 2 gas bubbles as t he templates t hat acted as the sheet-like nanouni t ssupport er . Also , tit anat e 3D t ubular hierarchit ect ures w ere successfully prepared undergoing t he self-produced template methodolog y coupled w it h precurso r tem plat ing approach based on the similar st rategy . T he appearance of tit anat e nanof lakes i s actually the o ut w ard em bodiment o f the internal crystal st ructure , w hile the sacri ficed t em plat ing ef fect of the int ermediate precurso r of T iO x Cl2 -2x ( EN ) y is w ell underst ood . Key words : crystal g ro w th ; self-limi tatio n prope rty ;self-produced t emplate st rategy ; t hree-dimensi onal hie ra rchi tectures ; cry st al st ruct ure

复合材料板弯曲行为分析的高阶多尺度方法

复合材料板弯曲行为分析的高阶多尺度方法

复合材料板弯曲行为分析的高阶多尺度方法王自强摘要复合材料具有良好的物理、力学性能,在航空航天和日常工业用品中已得到广泛应用, 它们经常被制备成板或者壳的形式。

因此,针对复合材料板的宏‐细观模型、性能预测、优化设计,以及复合材料板在各种物理和力学荷载作用下的弯曲行为分析已经成为一个十分重要的研究领域。

本文主要研究复合材料板静、动力弯曲行为分析的高阶多尺度方法,其结果将为复合材料板的设计和性能预测提供理论支持。

本文的第一部分研究周期性复合材料板在静力作用下弯曲行为分析的高阶双尺度方法。

首先,从三维的线弹性方程出发,在细观上定义三维的局部单胞函数,并利用它求出均匀化系数和定义出均匀化方程。

其次,利用Reissner-Mindlin位移模式求解均匀化方程后,把得到的局部单胞函数和均匀化解组装成复合材料板弯曲问题位移场的二阶双尺度逼近解。

然后,分析了该近似解在点点意义下的对原始方程的近似性和在能量模意义下的整体近似性。

最后,给出了典型算例,其数值结果说明了算法的有效性。

本文的第二部分研究周期性复合材料板在稳态热‐力耦合作用下弯曲行为分析的高阶双尺度方法。

首先,从三维的稳态热‐力耦合方程出发,在细观上定义能够反映温度增量对位移场影响的三维的局部单胞函数,并利用它求出均匀化系数和定义均匀化方程。

其次,对于均匀化的温度场采用积分投影近似,均匀化位移场采用Reissner-Mindlin位移模式求解。

然后,由它们组装出温度和位移场的高阶双尺度渐近展开式并给出计算温度场和位移场的二阶双尺度算法,进一步得到温度梯度、位移、应变和应力的二阶双尺度算法。

分析了二阶双尺度近似解在点点意义下对原始方程的近似性和在能量模意义下的整体的近似性。

最后,给出了数值算例,其数值结果表明算法的有效性。

本文的最后一部分研究周期性复合材料板在瞬态热‐力耦合作用下的弯曲行为分析的高阶双尺度方法。

首先,从三维的瞬态热‐力耦合方程出发,在细观上定义能够反映应变率对温度场影响以及温度增量对位移场影响的三维局部单胞函数,并利用它们求出均匀化系数和定义均匀化方程。

基于序贯设计和高斯过程模型的结构动力不确定性量化方法

基于序贯设计和高斯过程模型的结构动力不确定性量化方法

基于序贯设计和高斯过程模型的结构动力不确定性量化方法万华平;张梓楠;周家伟;任伟新
【期刊名称】《浙江大学学报(工学版)》
【年(卷),期】2024(58)3
【摘要】将直接基于有限元模型的蒙特卡罗方法用于结构动力不确定性量化较耗时,为此采用高斯过程模型取代耗时的有限元模型,提高不确定性量化的计算效率.提出基于序贯设计和高斯过程模型的结构动力不确定性量化方法,通过样本填充准则迭代,选择最优样本点建立自适应高斯过程模型,提升动力不确定性量化精度.在建立的自适应高斯过程模型框架下,动力特性统计矩的高维积分转化为一维积分,进而进行解析计算.采用2个数学函数来展示自适应高斯模型的拟合过程,高斯过程模型的拟合精度随着迭代次数增加而明显增加.将所提方法应用于柱面网壳的固有频率统计矩计算,计算精度与蒙特卡罗法的结果相当.与传统高斯过程模型对比,所提算法的计算效率优势明显,表明所提方法具有计算精度高和效率高的优势.
【总页数】8页(P529-536)
【作者】万华平;张梓楠;周家伟;任伟新
【作者单位】浙江大学建筑工程学院;浙江大学平衡建筑研究中心;浙江大学建筑设计研究院有限公司;深圳大学土木与交通工程学院
【正文语种】中文
【中图分类】TB114
【相关文献】
1.基于渗透系数序贯高斯模拟的水库渗漏量不确定性分析
2.基于Stochastic Kriging模型的不确定性序贯试验设计方法
3.基于序贯高斯条件模拟的土壤重金属含量预测与不确定性评价——以宜兴市土壤Hg为例
4.基于广义协同高斯过程模型的结构不确定性量化解析方法
5.基于高斯过程模型的定性定量因子混合补充试验设计方法
因版权原因,仅展示原文概要,查看原文内容请购买。

浙江大学朱利平小组研制出结构均一的嵌段共聚物自组装分离膜

浙江大学朱利平小组研制出结构均一的嵌段共聚物自组装分离膜
综上所述 ,在以下制备条件下可以达到最优效 果 :1 9/6(w/v)BHTTM 和 0.15 9/6(w/v)TMC,界 面 聚合 10 s,在 60℃下 热处 理 10 min.
3 结 论
采用 界面 聚合法 ,以 PSF中空纤 维 超 滤膜 为 基 膜,BHTTM 和 TMC分别为水相和油相单体 ,成功 制备 了 中空纤 维含 氟聚 酰胺 纳滤 膜.扫描 电镜 、原子 力 显微 镜 、红外 谱 图 和接 触 角 测 量 等结 果 均 证 明 了 含氟 聚酰胺 纳 滤功 能 层 已经 紧 紧覆 盖 在 基 膜 表 面. 当制 膜条 件为 1 9/6(w/v)BHTTM 和 0.15 (w/v) TMC,界 面聚合 10 s,在 60℃下 热 处理 10 rain时 , 所得纳滤膜具有最优分离性能.纳滤膜 对不 同无机 盐 的截 留率 大 小 均 为 Na2 SO4> MgSO4> NaCI ̄ MgC1。,为 带负 电纳 滤膜 .
2014,454:184~ 192.
[10] XuX X,Zhou C L,Zeng B R,et a1.Structure and proper— ties of polyamidoarnine/polyaerylonitrile composite nanofil—
参考 文献 : Ell Li Y,Su Y,Dong Y,et a1.Separation performance of
thinfilm com posite nanof iltration membrane through in— terfacial polym erization using different amine monomers
第 3期
任 翘楚 等 :界面 聚合法 中空纤 维含 氟聚酰胺 纳滤膜制备与表征

两自由度平板大幅运动的气动特性与稳定性的CFD研究

两自由度平板大幅运动的气动特性与稳定性的CFD研究

第34卷第2期2021年4月振动工程学报Journal of Vibration EngineeringVol.34No.2Apr.2021两自由度平板大幅运动的气动特性与稳定性的CFD研究祝志文1,颜爽1,王钦华1,李加武2(1.广东省高等学校结构与风洞重点实验室(汕头大学),广东汕头515063;2.长安大学公路学院,陕西西安710064)摘要:为研究两自由度薄平板大幅运动的气动特性,评价其气动稳定性,基于任意拉格朗日‐欧拉描述法的动网格技术,通过有限差分法求解描述任意流变区域不可压流动的控制方程,开展了不同折减风速下薄平板竖弯和扭转运动绕流场的CFD(Computational Fluid Dynamics)模拟。

研究认为,单自由度薄平板小幅运动的气动力系统是线性和稳定的,即使单自由度大幅竖弯运动也是线性和气动稳定的。

但单自由度大幅扭转运动的平板气动力系统出现非线性,并随折减风速的提高非线性变得显著,且平板将进入气动不稳定状态。

另外,大幅扭转耦合不同竖弯振幅运动的平板,气动力系统均为非线性并随折减风速的提高越加显著,而该非线性主要来自扭转自由度的大幅运动;对该两自由度耦合系统,当竖弯振幅较小和折减风速较高时,气动力系统是不稳定的;但当竖弯振幅较大时,气动力系统将是稳定的。

关键词:气动稳定性;薄平板;大幅运动;CFD;气动力非线性中图分类号:U448.21+3;V211.3文献标志码:A文章编号:1004-4523(2021)02-0271-12DOI:10.16385/ki.issn.1004-4523.2021.02.007引言桥梁跨径的不断增大使得结构的频率和阻尼不断降低,导致桥梁对自然风作用的敏感程度明显增加,因而可能引起桥梁主梁的大幅运动。

这些大幅运动,包括主梁的大幅涡激运动[1]和颤振[2],以及拉索的大幅振动[3‐4]。

对钝体外形的桥梁主梁,或主梁因大幅运动产生较大的相对攻角效应,桥梁主梁的气动力系统可能会因这种大幅运动而呈现显著的非线性[5‐6]。

大口径非球面加工中最接近参考球面的精确计算

大口径非球面加工中最接近参考球面的精确计算

第44卷第2期航天返回与遥感2023年4月SPACECRAFT RECOVERY & REMOTE SENSING91大口径非球面加工中最接近参考球面的精确计算张建华1,2栗孟娟2李春林2,*(1 北京空间机电研究所,北京 100094)(2 中国空间技术研究院,北京 100080)摘要摆臂轮廓测量技术要求将摆臂精准的装调至待检测非球面的最接近参考球面上,需要精确确定非球面的最接近参考球半径及球心位置,而常规的近似法、精确公式法以及最小二乘法不能满足计算的精度和效率等要求。

为了弥补现有算法的不足,文章介绍了一种分阶段逼近最接近参考球半径的计算方法,该算法在最小二乘法的基础上,通过精确线搜索技术以及牛顿迭代法,实现了最接近参考球半径求解的高精度、高效率,并且应用于大口径非球面计算时迭代效率有了较大提高。

计算实例结果显示,该算法满足摆臂测量时大口径非球面的最接近参考球半径的求解要求。

关键词最接近比较球摆臂测量牛顿迭代非球面最小二乘法空间光学中图分类号: TQ171文献标志码: A 文章编号: 1009-8518(2023)02-0091-10DOI: 10.3969/j.issn.1009-8518.2023.02.010Accurate Calculation of the Best-fit Reference Spherical Surface inLarge Diameter Aspheric MachiningZHANG Jianhua1,2 LI Mengjuan2 LI Chunlin2,*(1 Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China)(2 China Academy of Space Technology, Beijing 100080, China)Abstract The swing arm profile measurement technology requires the swing arm to be precisely mounted to the best-fit reference sphere of the aspheric surface to be detected, and the best-fit reference sphere radius and sphere center position of the aspheric surface need to be accurately determined, while the conventional approximation method, the exact formula method and the least squares method cannot satisfy the requirements of calculation accuracy and efficiency. In order to make up for the deficiencies of existing algorithms, the paper introduces a calculation method for approximating the best-fit reference spherical radius in stages. The algorithm achieves high accuracy and efficiency in the solution of the best-fit reference spherical radius based on the least squares method, the exact line search technique and the Newtonian iteration method, and the iteration efficiency is greatly improved when applied to the calculation of large-aperture aspheres. The results of the calculation example show that the algorithm satisfies the requirement of solving for the best-fit reference sphere radius for large-aperture aspheric surfaces during swing-arm measurements.Keywords best-fit reference sphere; the swing arm profile mersurement; newton iteration; aspherical; least s quare method; space optics收稿日期:2022-09-22基金项目:中国航天科技集团自主研发项目(20210297)引用格式:张建华, 栗孟娟, 李春林. 大口径非球面加工中最接近参考球面的精确计算[J]. 航天返回与遥感, 2023, 44(2): 91-100.ZHANG Jianhua, LI Mengjuan, LI Chunlin. Accurate Calculation of the Best-fit Reference Spherical Surface in92航天返回与遥感2023年第44卷0 引言非球面光学元件相比于球面光学元件,能够有效提升光学性能并减少所需光学元件数量,其中大口径非球面反射镜是空间观测和对地遥感等领域的重要光学元件[1-4],直接决定望远镜的观测性能。

多功能薄膜双晶绕射仪-成功大学

多功能薄膜双晶绕射仪-成功大学

國立成功大學貴重儀器使用中心
多功能X光薄膜繞射儀使用申請實驗記錄表
使用日期: 年月日使用者儀器專家使用者單位
使用者ID
預約序號
樣品組成
選用分析方式D/Max:低掠角薄膜繞射殘留應力分析極圖分析
ATX: Rocking Curve Reflectivity Reciprocal Space Map
D/Max
分析條件:
KV mA
1.殘留應力分析:高角度繞射位置2Theta hkl;: ,格子常數:a b c Apha: Beta Garma Young’s moudl: Mpa, Poission’ratio:
2.極圖分析:繞射位置2Theta
3.低掠角薄膜繞射:2Theta from to
入射角度:
掃瞄方式:
1. Step scan
( )degree/step ( )sec/step 2. Continuous scan
掃瞄速度:( ) /min
ATX
分析條件:
KV mA
1.Rocking Curve: 2Theta from to
請描繪磊晶層數,組成成份,及大約厚度(nm)
2.Reciprocal Space Map:2Theta from to
3.Reflectivity: 請描繪詳細結構圖.組成元素.組成密度(g/cm3)及鍍層大約厚度(nm):
實驗檔案名稱:
收費金額:
備註:
收費辦法及標準:
儀器使用每件600元/20分鐘,超過則累計.
電腦程式運算每件1000元/60分鐘, 超過則累計交件日期: 年月日。

拟均匀细分曲面方法进行曲面重构

拟均匀细分曲面方法进行曲面重构

拟均匀细分曲面方法进行曲面重构
赵宏庆;彭国华;叶正麟
【期刊名称】《机械科学与技术》
【年(卷),期】2004(023)011
【摘要】将最小内角之和最大的原则作为非均匀Catmull-Clark细分到均匀Catmull-Clark细分的过渡判定原则,在充分利用上述2种细分方法思想的基础上,提出了一种拟均匀细分方法,这种细分的方法比传统的单一细分方法有更好的灵活性,可以达到较好的曲面重构效果.
【总页数】4页(P1297-1300)
【作者】赵宏庆;彭国华;叶正麟
【作者单位】西北工业大学,数学与信息科学系,西安,710072;西北工业大学,数学与信息科学系,西安,710072;西北工业大学,数学与信息科学系,西安,710072
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于非均匀数据细分曲面重建的数据测量技术研究 [J], 王占东;周来水
2.形状可调的Loop细分曲面渐进插值方法 [J], 陈甜甜;闫迪;王伟;赵罡
3.非均匀C-C细分曲面的曲率分析 [J], 刘浩;廖文和;张湘玉
4.非均匀Doo-Sabin细分曲面的尖锐特征构造 [J], 张湘玉;马希青;李明
5.一种对称非均匀细分曲面算法 [J], 沈培强
因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于能量模型的曲面展开改进算法

一种基于能量模型的曲面展开改进算法

一种基于能量模型的曲面展开改进算法严国彪;刘斌【摘要】针对现有算法存在的问题,提出一种基于能量模型的自由曲面展开改进算法.算法的改进主要是对时间步长的调整.通过调整时间步长,避免展开过程中发散现象,同时也有效地提高曲面展开的精度,较好地解决展开过程中因迭代次数过多而引起的振荡现象,提高曲面展开的质量.算例结果表明,算法是有效的,可以满足实时交互设计的要求.【期刊名称】《华侨大学学报(自然科学版)》【年(卷),期】2011(032)002【总页数】5页(P135-139)【关键词】曲面展开;能量模型;时间步长;三角网格【作者】严国彪;刘斌【作者单位】华侨大学,机电及自动化学院,福建,泉州,362021;华侨大学,机电及自动化学院,福建,泉州,362021【正文语种】中文【中图分类】TP391.73D曲面展开技术广泛应用于飞机、汽车、船舶,以及服装和鞋类等设计和制造领域中.这些行业都需要得到设计产品的平面外形图.传统的方法是将最初的平面外形图手工进行反复缝合、修改,直至最终得到理想的外形图.许多应用于产业的CAD/CAM系统具有将立体曲面展开为平面的功能,大大方便了后继的设计和制造.曲面的展开问题,特别是复杂曲面的展开问题[1-2],一直是计算机辅助几何设计领域研究的热点和难点.合理地展开三维曲面是CAD&CG领域中众多技术得以实现的重要基础,国内外众多学者进行了不少相关的研究.文献[3-5]在曲面展开系统中采用了弹簧-质点模型对其曲面展开进行优化,但他们研究的侧重点不同.上述算法都未考虑到迭代优化中的发散问题,即如果参数选择不合理的话,则很容易产生发散,使迭代过程不收敛,导致展开计算失败.基于此,本文提出基于能量模型曲面展开的改进方法.1.1 能量模型的建立曲面展开前,先对曲面进行三角化,并由三角化网格建立一个弹簧质点系统.该系统的物理量与某些几何量是相对应的,如力、质量和弹性变形能是由网格节点间的距离和三角片的面积确定的.原始网格形状和展开后二维片形状之间的差别,可视为一种贮存在弹簧质点系统中的弹性变形能,通过释放变形能,提高曲面展开质量.由于能量是状态的单值函数,与过程无关,所以能量的关系式比较容易列出.在能量模型中,大多数基于物理的参数,如系统力、质量和弹性变形能等,均由其相关的几何量定义而得[6-7].研究中可将材料特性加入,由此,不同的材料特性将可得到不同的展开结果,有利于工程上的实际应用.弹簧质点系统的示意图,如图1所示.图1中,Pi为质点,质点 Pi和 Pj间的联接为弹簧.在曲面展开成平面的过程中,如果平面上 Pi和 Pj的间距大于对应的原始曲面上此两点的间距,则对 Pi和 Pj施以拉力(图1中P0和 P1点);反之,则施以推力(图1中 P0和 P6点).弹性变形能 E和弹性力f的计算式为上式中:C为弹簧弹性变形系数;|Pi Pj|是曲面展开后的平面上 Pi到 Pj的距离;dj为空间曲面上的Pi到 Pj的距离;是从 Pi指向 Pj的单位矢量,n为质点 Pi相邻的质点数.在曲面展开过程中,质点的运动可以用拉格朗日方程来描述,即式(3)中:M,D和K分别为系统的质量矩阵、阻尼矩阵和刚度矩阵;gq为局部自由度与全局自由度之差引起的系统内力,fq为系统外力.在弹簧系统中,gq和fq为零,而阻尼矩阵D可以忽略,所以拉格朗日方程可简化为当考虑质点运动中的时间间隔Δt很小时,质点 Pi的加速度可被认为是常量,则整个系统中的各个质点处于平衡.利用欧拉法可以求解式(4)的拉格朗日方程,即式(4)可变换为式(5)中:mi是节点 Pi的质量;ζ是曲面的面密度;fi(t)是作用在节点 Pi上的弹性力;Ak是包含节点Pi的所有三角形中第k个三角形的面积;¨q(t)是节点 Pi的加速度;˙q(t)是节点 Pi的速度;qi(t)是节点Pi在时间t的位置.这里,面密度ζ并非真正意义上的曲面面密度.在多数基于物理的模型中,ζ和C只是使变形更为有效的参数.因此,算法中取ζ=,C=0.5.通过适当地选择这两个参数,可使能量模型适用于不同材料特性的曲面.1.2 算法的改进为了得到精确的展开平面,需要进行能量算法的多次迭代.从式(5)的第3个式子可以看出,前一时刻的速度对后一时刻的速度是有很大影响的.当迭代次数较多时(一般复杂曲面要进行很多次的迭代),惯性作用会产生累积效应,导致的后果是在当前时刻得到的质点速度非常大.即使后一时刻加速度与前一时刻速度是反向的,质点的运动也不能立即反向,而是会继续向原来方向运动.这样就会导致越来越偏离平衡位置,网格边长的变形程度越来越厉害,最终的结果是在曲面展开中产生较大的振荡.曲面越复杂,这种副作用就越明显,以致得不到符合需要的展开平面.为了避免这种不利的副作用,采取忽略初速度的方法,对式(5)中的第3,4式进行调整,即采取忽略初速度的初衷是为了避免发散现象.若优化的时间Δt过小,曲面展平的优化速度太慢,迭代次数过多,展开时间过长,所得到的优化效果不明显;若优化的时间Δt过大,展平过程中会引起迭代振荡,得不到所需的展开平面.所以,如何取优化时间Δt是算法的关键.适当地选取优化时间,可避免初始时间步长取值不合适而浪费大量的计算时间或迭代发散的情况. Δt是随着迭代次数的增多而不断减小,其计算式为式(8)中:t0是初始优化时间;d t为迭代过程中每次优化时间的变化量;N为算法的当前迭代次数;M为Δt变化一次所需的迭代次数.在算法迭代的初期,为达到优化的高效率目的,适当选取较大的 t0值(这里取 t0为0.5~0.6).随着迭代次数的增加,质点离平衡点越来越近,此时,Δt应当取较小值,以防止振荡现象的产生.在算法中,为了防止Δt过小,甚至为负值的情况发生,就必须合理地选取d t,N和M.实验结果表明,若参数d t,N和M选取不当,使Δt变化缓慢,则容易发生展开震荡;或使Δt变化过快,导致展开精度不佳.1.3 评判准则不可展曲面的展开不可避免地会发生变形.角度误差、面积误差和边长误差都可以作为衡量展开精度的衡量标准.在这里,主要考虑面积误差和边长误差.在曲面展开过程中,原始曲面和展开平面的面积会有所不同,而三角形网格上的边长也会发生变化,其相对面积误差(eS)和相对形变误差(eL)[8-9]为式(9)中:S是曲面片展开前的实际面积;S′是曲面展开后所对应的的面积;L为曲线段在展开前的实际长度;L′是展开后曲线段所对应的长度.2.1 初始曲面的展开2.1.1 不含能量释放的展开无约束和有约束的三角片的展开,如图2,3所示.由图2可知,P1 P2是三角面片 T1和 T的共边.当三角面片 T1已经展开,而三角面片 T未展开.即 T的两个点P1和 P2的位置已经在二维平面确定(即P′1和P′2),而点 P3在二维平面的位置尚未确定时,以P′1和P′2为圆心的两个圆的交点来确定(圆的半径分别为 r1,3和 r2,3)点P′3的位置,r1,3和r2,3的长度即为它们在空间网格上的长度,所有点的第1次展开都是以无约束方法得到的.包含点 P3的三角面片有多个,由这些三角形面片展开的 P3的点位置也有多个.当曲面是可展曲面时,所求的这些点位置是一致的.当曲面是不可展曲面时,这些点位置有可能不一致.此时,会有层叠和裂缝的现象产生,影响曲面展开的精度,甚至曲面展开的获得.一般所展开的曲面大部分是不可展曲面,所以必须考虑带约束的三角片展开. 由图3可知,假设包含 P3点的三角片 T2已展开,这时 P3在由已展开 T2所决定的二维平面中的位置为P′3.若不采取有约束的展开方法,当继续展开 T时,由 T展开时所决定的 P3的位置为P″3.很明显,这两点的位置并不一致.为了使 P3在二维平面具有唯一性,可以取两点的平均位置作为 P3在二维平面的对应点来初步解决这个问题.但是,此方法肯定有相当大的误差,将会产生弹性能量,导致层叠或裂缝现象的发生,必须采取适当的方法来尽可能地减少这个误差.对此,可以采取能量释放方法来初步减少误差.2.1.2 含能量释放的方法在对三角片进行有约束的展开时,为了使展开点具有唯一性,可采取平衡位置的方法.这样所造成的后果是原始曲面的曲线长度与其展开后的长度存在很大的误差,使得面积误差和形状误差很大,不利于曲面的精确展开.通过释放在位置平均处理过程中产生的弹性能量,可以解决这个问题.曲面上所有网格化三角形根据上述无约束展开或约束展开方法展开为平面三角形后,得到曲面的初始展开平面网格;然后,用式(5)计算三角网格上的每个点的能量,通过释放能量来改善展开的平面.如果整张展开网格曲面有m个离散点,则所有离散点的展开变形能为展开变形能的大小反映曲面整体展开变形程度.为了减小展开的变形,需要能最大程度地减小变形能,释放变形能.2.2 能量展开算法能量展开算法主要有如下7个步骤.(1)建立3个集合V,A和F.V为包含所有尚未展开的曲面三角形的集合;A为有序活动集合,即从集合V中挑选出来的三角形集合,这些三角形是与已展开三角形共边而将要被展开的三角形;F为所有已展开到二维平面的三角形集合.对这3个集合进行初始化,把所有要展开的空间三角形添加到集合V中,置集合A和F为空.(2)从V集中选择展开基本三角形 T0.一般在曲面的对称中心或曲率较大的部位选择该三角面片,然后将其无约束展开在平面上任意位置,并将该基本三角形从V中删除,直接加入到 F中.(3)在V集中寻找与基本三角形 T0共边的所有三角形{Ti}.将这些三角形加入到 A 集中,并从V中减去.(4)判断A集是否为空.如果A集不为空,则从A集中取出下一个三角形 Ti,并按步骤(5)或步骤(6)的方法展开;如果A集为空,则判断V集是否为空;如果V集为空,则转到步骤(7)执行;否则,转到步骤(3)执行.(5)如果三角形的第3点还没有展开(其余两点已在展开集 F的某个三角形中),此时采用三角形无约束展开,并将三角形 Ti加入到展开集 F中;然后,从A中减去 Ti,转到步骤(4).(6)如果三角形 Ti的第3点在前面的三角形展开中已经展开,并形成平面三角形,则用三角形约束展开方法进行展开.处理后,将三角形 Ti加入到展开集F中,从A中减去,然后转到步骤(4).(7)分别计算面积误差eS和形变误差eL,以及所有离散点的展开变形能E(φ′),判断其值是否是在阀值内.若误差都小于阀值,则说明已得到优化的曲面展开;若误差大于阀值,则回到步骤(3)重新进行能量释放,直到超过迭代次数 N为止.算法已通过VC 6.0编程在微机上实现,图4是用能量模型所作的曲面展开示例.该曲面有189个顶点,306个三角形.当时间初始步长d t=0.6时,如果在迭代中不采取改变时间步长的方法,很容易出现发散;而采取改进算法后,面积误差为1.455%,形变误差为0.988%,基本符合精度要求.当时间初始步长d t=0.3时,如果在迭代中不采取改变时间步长的话,虽然不会出现发散的情况,但其面积误差为4.668%,形变误差为2.456%,展开质量不是很好.运用能量模型的展开算法,可以很好地解决一般的曲面展开问题,而且计算量较小,不需要解大规模线性方程组.绝大部分的曲面可以三角网格化,所以能量模型算法具有很强的通用性.在实验结果中发现,时间步长、弹性系数和面密度都直接影响到曲面展开的质量.改进算法主要研究时间步长对算法的影响,而下一阶段的目标是考虑以上3个参数的合理配取,以期达到更好的展开结果.【相关文献】[1]席平.三维曲面的几何展开[J].计算机学报,1997,20(4):315-322.[2]毛国栋,孙炳楠,徐浩祥.基于弹簧-质点系统的薄膜结构曲面展开算法[J].浙江大学学报:工学版,2005,39(8): 1238-1242.[3]王弘,王昌凌.基于能量模型的曲面展开通用算法[J].计算机辅助设计与图形学学报,2001,13(6):556-560.[4]梁伟文.基于弹性模型的三角网格曲面优化展开[J].塑性工程学报,2007,14(1):129-132.[5]雷军鹏.一种基于能量法的自由曲面展开算法[J].机械设计与制造,2007(4):28-30.[6]徐荣璋,刘晓毅,陈军.曲面展开方法的发展现状[J].模具技术,2002(5):15-18.[7]杨继新,刘健,肖正扬.可展面在平面上的展开及其在工程上的应用[J].机械科学与技术,2001,20(5):201-202.[8]SH IMADA T,TADA Y.Development of curved surface using finite elementmethod[M].New York:Sp ringer-Verlag,1989:23-30.[9]M ETAXASD N.Physics-based deformable models:Applications to computervision,graphics,and medical imaging[M].Boston:Kluwer Academic Publishers,1997.。

紧致超曲面上的谱(英文)

紧致超曲面上的谱(英文)

紧致超曲面上的谱(英文)
徐森林;张运涛
【期刊名称】《应用数学》
【年(卷),期】2000(13)4
【摘要】设 M是 Sn+1 ( 1 )上的紧致极小超曲面 ,M1 ,n- 1 是 S(n+1 ) ( 1 )上的Clifford极小超曲面 .若它们的谱相同 ,则它们是等距的 .对于 S(n+1 ) ( 1 )上的紧致常平均曲率超曲面和 H ( r) -环。

【总页数】6页(P54-59)
【关键词】LAPLACE算子;谱;紧致超曲面;紧致常平均曲率
【作者】徐森林;张运涛
【作者单位】中国科技大学数学系
【正文语种】中文
【中图分类】O186.11
【相关文献】
1.欧氏空间中紧致连通的外在对称子流形在一个超球面上 [J], 谢敬然
2.紧致极小超曲面上Laplace算子的谱(英文) [J], 徐森林;倪轶龙
3.球面上紧致子流形的等谱问题(英文) [J], 徐森林;张华明
4.关于Clifford极小超曲面上的谱(英文) [J], 徐森林;夏青岚
5.欧氏超曲面上的一类紧致梯度Ricci孤立子 [J], 王爱蕊; 马赛飞
因版权原因,仅展示原文概要,查看原文内容请购买。

球面各向同性弹性体的平衡问题

球面各向同性弹性体的平衡问题

球面各向同性弹性体的平衡问题
丁浩江;任永坚
【期刊名称】《应用数学和力学》
【年(卷),期】1991(12)2
【摘要】本文将位移和体积力同时进行分解,把含体积力的球面各向同性三维弹性理论平衡问题,化为一个二阶微分方程和一个四阶微分方程.利用球面函数的性质和级数展开方法,得到了相应于这两个方程齐次方程的级数解,可用于解决整球体和整球壳的平衡问题.最后,给出了旋转球的特解.
【总页数】8页(P141-148)
【关键词】球面各向同性;弹性;平衡;体积力
【作者】丁浩江;任永坚
【作者单位】浙江大学力学系
【正文语种】中文
【中图分类】O343
【相关文献】
1.横观各向同性层状弹性体系动态响应问题的求解 [J], 偶昌宝
2.SAR探头半球面各向同性校准问题的研究 [J], 代灿林;余纵瀛;赵竞
3.球面各向同性弹性体热应力问题 [J], 丁浩江;任永坚
4.横观各向同性层状弹性体振动解中的特征值问题 [J], 陈镕;薛松涛
因版权原因,仅展示原文概要,查看原文内容请购买。

有序畴界原子结构及其迁移特征的微观相场研究(英文)

有序畴界原子结构及其迁移特征的微观相场研究(英文)

有序畴界原子结构及其迁移特征的微观相场研究(英文)张明义;王永欣;陈铮;张静;卢艳丽;董卫平【期刊名称】《稀有金属材料与工程》【年(卷),期】2010(39)7【摘要】利用微观相场模型研究了DO22(Ni3V)相间有序畴界原子层次的结构及其迁移特征。

研究表明:界面的迁移性与界面结构有关。

界面的迁移过程中,V原子跃迁至最近邻的Ni格点处并与之交换,原子的跃迁行为具有位置选择性。

原子跃迁行为的位置选择性使得界面迁移前后界面结构保持不变。

界面迁移过程及其特征可以用过渡界面来表征,每一种可迁移界面都按照自有的原子跃迁模式进行迁移,并且在迁移的过程中只形成一种独特的过渡界面,界面迁移过程中的原子跃迁模式是诱导界面迁移的热力学和动力学最优化路径。

【总页数】5页(P1147-1151)【关键词】微观相场;界面迁移,位置选择性,有序畴界;DO22(Ni3V)相【作者】张明义;王永欣;陈铮;张静;卢艳丽;董卫平【作者单位】西北工业大学【正文语种】中文【中图分类】TG146.2【相关文献】1.微观相场模拟B2­FeAl金属间化合物有序畴界的形成和迁移 [J], 伍林;陈铮;庄厚川;黄勇兵;杨涛2.DO22相间反相畴界成分演化的微观相场模拟 [J], 张明义;杨坤;陈铮;王永欣;张嘉振3.DO22相间反相畴界成分演化的微观相场模拟 [J], 张明义;杨坤;陈铮;王永欣;张嘉振4.Ni_(75)Al_xV_(25-x)合金中有序畴界结构对界面迁移特征和溶质偏聚的影响(英文) [J], 张明义;陈铮;王永欣;马光;卢艳丽;范晓丽5.Ni-Al-V合金L1_2相间有序畴界面的微观相场模拟 [J], 张明义;王永欣;陈铮;张静;赵彦;甄辉辉因版权原因,仅展示原文概要,查看原文内容请购买。

平板边界层转捩的仿真

平板边界层转捩的仿真

平板边界层转捩的仿真
陈奕;高正红
【期刊名称】《计算机仿真》
【年(卷),期】2009(026)003
【摘要】对计算流体力学(CFD)的难点问题--零压力梯度平板边界层转捩进行了成功仿真.利用商业软件FLUENT的二次开发功能,一种符合现代CFD技术要求的先进转捩模型--Gamma-Theta被用于仿真中,并采用了设置来流粘性比的新方法来进行基于SST k-omega湍流模型的仿真.仿真结果表明,在不同的来流湍流水平下,Gamma-Theta转捩模型可以准确仿真包含自然转捩和bypass转捩现象的平板边界层流动,而设置来流粘性比的新方法对于成功的仿真也起到了关键作用.【总页数】5页(P77-81)
【作者】陈奕;高正红
【作者单位】西北工业大学航空学院,陕西,西安,710072;西北工业大学航空学院,陕西,西安,710072
【正文语种】中文
【中图分类】V211.3
【相关文献】
1.壁面温度分布的高超声速平板边界层稳定性分析及转捩预测 [J], Liu Lu;Cao Wei
2.展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究 [J], 李强; 赵磊;
陈苏宇; 江涛; 庄宇; 张扣立
3.温度对高速平板边界层转捩雷诺数的影响 [J], 刘智勇; 禹旻; 杨武兵
4.脉冲电弧等离子体激励控制超声速平板边界层转捩实验 [J], 唐冰亮;郭善广;宋国正;罗彦浩
5.纵掠平板速度和温度边界层湍流转捩区的积分方法 [J], 赵波;刘建;李开勇
因版权原因,仅展示原文概要,查看原文内容请购买。

功能梯度圆板和环板受周边力作用的弹性力学解

功能梯度圆板和环板受周边力作用的弹性力学解

功能梯度圆板和环板受周边力作用的弹性力学解
张莹;梅靖;陈鼎;杨博
【期刊名称】《应用数学和力学》
【年(卷),期】2018(39)5
【摘要】在推广后的England-Spencer板理论基础上,研究了功能梯度圆板和环板受周边力作用的三维弹性场.材料参数沿板厚方向可以任意连续变化,利用复变函数理论给出了求解该问题所需要的4个复势表达式,其中含有的待定常数利用板的柱面边界条件确定.当功能梯度环板的内径趋向于零时便退化到圆板问题的解答.通过算例分析,讨论了材料梯度、荷载类型及板厚跨比等因素对功能梯度圆环板静力响应的影响.
【总页数】10页(P538-547)
【关键词】功能梯度材料;圆环板;边界力;弹性力学解
【作者】张莹;梅靖;陈鼎;杨博
【作者单位】浙江理工大学土木工程系
【正文语种】中文
【中图分类】O343.1
【相关文献】
1.周边简支厚圆板受偏心集中力弯曲问题的Fourier级数解 [J], 蔡长安
2.功能梯度中厚圆/环板轴对称弯曲问题的解析解 [J], 王铁军;马连生;石朝锋
3.弹性支承功能梯度圆板轴对称弯曲问题精确解 [J], 郑磊;仲政
4.功能梯度板的柱面弯曲弹性力学解 [J], 杨云芳;杨博;陈伟球;丁皓江
5.功能梯度板柱面弯曲的弹性力学解 [J], 杨博;丁皓江;陈伟球
因版权原因,仅展示原文概要,查看原文内容请购买。

边界层转捩的数值模拟

边界层转捩的数值模拟

边界层转捩的数值模拟
杨琳;邹正平;宁方飞;陈懋章
【期刊名称】《航空动力学报》
【年(卷),期】2005(20)3
【摘要】在数值模拟中将Abu-Ghannam&Shaw(AGS)转捩模型引入到湍流模型中,以考虑流动中的层流和转捩现象,并在此基础上,分别对低雷诺数情况下的平板和涡轮叶栅流动进行了模拟,并与实验结果进行了比较,表明加入转捩模型可以较好地描述边界层的转捩过程。

同时,结果还表明AGS转捩模型对压力梯度变化较大情况下的模拟稍有偏差。

【总页数】6页(P355-360)
【关键词】航空、航天推进系统;边界层转捩;平板;涡轮;数值模拟
【作者】杨琳;邹正平;宁方飞;陈懋章
【作者单位】北京航空航天大学能源与动力工程学院
【正文语种】中文
【中图分类】V231.3
【相关文献】
1.高超声速飞行器前体边界层强制转捩数值模拟 [J], 周玲;阎超;孔维萱
2.超声速平板边界层旁路转捩直接数值模拟 [J], 朱海涛;单鹏
3.尾迹诱导下低压涡轮边界层转捩的数值模拟 [J], 向欢;杨荣菲;葛宁
4.高超声速尖锥边界层转捩数值模拟 [J], 宋博;李椿萱
5.零压力梯度平板边界层转捩的数值模拟 [J], 董平;黄洪雁;冯国泰
因版权原因,仅展示原文概要,查看原文内容请购买。

基于5次多项式的机械手姿态平滑规划算法

基于5次多项式的机械手姿态平滑规划算法

基于5次多项式的机械手姿态平滑规划算法
林仕高;刘晓麟;欧元贤
【期刊名称】《制造业自动化》
【年(卷),期】2013(35)21
【摘要】为实现笛卡尔空间下机械手姿态规划的角加速度限制和平滑调整,提出一种机械手姿态规划算法。

机械手末端姿态采用关于绕定轴旋转的方法替代传统的旋转矩阵法。

用5次多项式描述角度的插补方程,并推导姿态插补过程中的最大加速度的数学表达式;同时保证姿态角加速度连续,以实现姿态的平滑过渡。

仿真试验结果表明,提出的姿态规划算法使机械手末端姿态平滑调整并具有最大角加速度限制,有利于机械手关节运动平稳,减少机械本体的振动和磨损。

【总页数】3页(P16-17,24)
【作者】林仕高;刘晓麟;欧元贤
【作者单位】华南理工大学机械与汽车工程学院,广州510640;华南理工大学机械与汽车工程学院,广州510640;华南理工大学机械与汽车工程学院,广州510640
【正文语种】中文
【中图分类】TP241
【相关文献】
1.基于四元数和B样条的机械手平滑姿态规划器 [J], 刘松国;朱世强;王宣银;王会方
2.基于三次多项式曲线的轨迹平滑压缩算法 [J], 李浩;黄艳;马岩蔚
3.基于五次B样条的机械手关节空间平滑轨迹规划 [J], 李小霞;汪木兰;刘坤;蒋荣
4.一种基于多项式和Newton插值法的机械手轨迹规划方法 [J], 胡小平;彭涛;左富勇
5.基于遗传算法的机械手时间能耗最优平滑轨迹规划 [J], 游玮;孔民秀;肖永强因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Flexible Part Orienting Using Rotation Direction and ForceMeasurementsShawn Rusaw∗,Kamal Gupta†,Shahram Payandeh†March18,2001AbstractThis paper presents a novel sensor-basedflexible part orienting system based around the commonly available force/torque sensor.The system orients planar parts arriving on a conveyor belt via a sequence ofpushing operations with a force/torque sensor equipped fence.A method to use the raw force data from thesensor to infer the rotation direction of the part is presented.Algorithms utilising(i)only rotation directionand(ii)rotation direction plus force information are presented.These algorithms are shown tofind orientingplans with fewer steps than current sensorless orienting techniques,and for a number of specified part shapeclasses,current sensor-based techniques.Plans generated by our algorithms were tested and verified using aconveyor/robotic car testbed.1IntroductionA manufacturing process is typically comprised of several stages(i)taking bulk parts from unknown orienta-tion to known orientation(ii)transferring oriented parts to assembly site,keeping known orientation and(iii) assembling parts into completed item.Stage(i)is often done with a vibratory bowl feeder.Bowl feeders are a widely accepted method to orient parts,however they must be manually redesigned for each new part,a process which requires a certain degree of experience,if even possible[BPM82].A long term goal of the part orienting research community is the design of aflexible part feeder that can orient a large variety of parts without redesign for each new part.Theflexible feeder will take a computer model of the part and automatically reconfigure based on a knowledge of the part mechanics and the part’s interaction with its environment.Until recently,part orienting research has focused on orienting techniques that do not require sensors(see Section2.2).The main justifications for this being(i)current techniques like bowl feeders are sensorless and(ii)sensorless apparatus are simpler since they do not have the added complexity introduced by sensors,e.g.additional hardware and processing required.One sensor-based commercial system,the Adept FlexFeeder1,has been developed for the task of part feeding.The FlexFeeder consists of a conveyor belt,machine vision system and a robotic manipulator.The vision system is used to determine the orientation of a part travelling on the conveyor and the manipulator isused to orient the part based on this information.In some manufacturing environments,vision based feeders may not be suitable.In particular,if the camera view is somehow obstructed by additional machinery then another choice of sensor is prudent.Taylor,Mason and Goldberg[TMG87]consider the problem of sensor based part orienting as a“game with nature”,and present a framework that treats manipulation planning as a tree search in a task graph.Each node in the graph is a set of possible world states(stable orientations of the part)and each action and sensory event causes a transition from a set of possible initial world states to a set of possible resultant world states.The graphs has an AND/OR structure because the planner can guarantee a successful plan if any of its actions leads to the goal state(s),however it must ensure that all sensory outcomes are accounted for.The planner searches the graph to reach the goal state.The resulting path to the goal state in the search tree represents a plan,i.e. an orienting strategy that will orient a part“no matter what nature decides will be the outcomes of its actions.”Using this framework,Akella and Mason[AM99]used a simple diameter sensor along with a sequence of pushing operations during the orientation process to reduce the number of manipulation steps required over the sensorless case.In this paper,we use the commonly available6-axis force/torque sensor along with a sequence of pushing operations as the cornerstone of thefirst fully force-based orienting system.Firstly,we abstract the force/torque sensor into a rotation sensor by presenting a robust(despite noisy force measurements)method to determine the rotation direction(clockwise,denoted by or counterclockwise,denoted by during orientation.We presenttwo algorithms,one thatfinds optimal plans in exponential time and another thatfinds plans in polynomial time. Thefirst(optimal)planner is shown to reduce the number of orientation steps compared to the current optimal sensorless and sensor-based planners.The second planner runs in polynomial time as a function of the number of stable edges in the part,and appears to be thefirst sensor-based polynomial time algorithm.Secondly,we use the limit surface[GRP91]to model the frictional forces between the part and conveyor,and use this to determine the ideal forces we expect to be applied by the part on the fence(interchangeably called a“pusher”) during orientation.Our orienter then compares forces measured during orientation to these ideal forces and further reduces the number of orientation steps.Experimental results verify the utility of these techniques.Our planning framework is modelled after that of[TMG87,AM99]in that it uses an AND/OR search procedure and a sensor,but it is novel in several ways.First and foremost is the usage of a force/torque sensor as the basis for a complete orienting system,although our results using rotation direction could be used irrespective of what type of physical sensor(say tactile strip)is used to sense it.We present a robust method to measure rotation direction using this force/torque sensor,in effect abstracting the force/torque sensor into a rotation sensor.A key aspect in our work is that the rotation direction is a fundamentally different type of information(than for example diameter)from a planning point of view.Sensors used in part orienting systems in previous works[TMG87,AM99]provide direct,but partial,information about the state of the part during the orientation process—in an abstract sense these are‘state sensors’.Formally speaking,let X denote the set of possible states and D denote the set of sensor readings.The‘state sensor’function(or model)assumed in earlier works is of the form s D:X→D,meaning the sensor provides a direct measurement of some characteristicof the state.Two or more states can be distinguished using sensor data if s−1D is different(or non-overlappingintervals,if noise is taken into account)for these states.Branching in the diameter sensor-based planner in [AM99]is based on this notion of state distinguishability,or those stable states that can be distinguished using sensor data.Rotation direction,on the other hand,does not provide direct information about the state of the part,since all states can come to rest via clockwise or counterclockwise rotation.State uncertainty is instead reduced by inferring which states could(resp.could not)lead to clockwise or counterclockwise sensor readings during transition from a given set of initial states tofinal states;the sensor provides partial information about ‘state transition’—it is a‘state transition’sensor.Consequently,many of the concepts introduced in earlier works need to be generalised to deal with this class of‘state transition sensors’.Formally speaking,the rotation sensor function is sR:X×X→D,with D=,so given an initial state,x i and afinal state x f,(x i,x f)∈.In order to distinguish states on the basis of sensor data,we need to infer that givensRx f∈X and d∈D,the initial state must be x i.In other words,we need to reason on the combined X×D space.This is the fundamental difference that arises when using a‘state transition’sensor.Correspondingly, concepts such as the resting and action ranges used in[AM99]need to be generalised by augmenting them with associated sensor readings.This leads to the new concept of sensor augmented state distinguishability and the notions of the sensor resting ranges and sensor action ranges,generalisations of the resting and action ranges introduced in[AM99].We show a key property of the force/torque sensor:it allows a planner to reduces state uncertainty by at least one with each push-align operation,a characteristic lacking from the diameter sensor based planner.The worst case plan lengths(over specified subsets of the class of polygonal parts)determined by our approach are better than that with a diameter sensor(see Section6.6).In particular,when using rotation direction,our approach results in shorter(worst case)plans when all states result in identical diameter readings.When using rotation and force,our method results in shorter plans when the push-diameter function[AM99]is symmetric or quasi-symmetric.1.1Overview of Our Sensor-Based Part Orienting AlgorithmOur apparatus consists of a conveyor belt,aflat fence attached to a force/torque sensor which is placed across the conveyor belt and a simple robotic manipulator.Parts are oriented through a sequence of push-align operations, with a single push-align operation being shown in Figure1.Each push-align operation is followed by a sensor reading which determines which branch of a part-specific,pre-determined plan to follow.We explain the precise mechanics of these measurements in Section7.Figure2(a)shows an example plan using rotation direction.A node(ovals)corresponds to the set of stable states(stable orientations)that the part may be in at that stage,and the push-align operation corresponds to a link.Starting from the set of all unknown orientations,the part isfirst pushed into one of three possible stable states.If the manipulator performs a push-align operation corresponding to a rotation byθaction=63◦,the subsequent sensor readings reduce the number of uncertain stable states by at least one.A clockwise sensor measurement indicates the part is oriented,and a counterclockwise measurement indicates a further push-align operation throughθaction=63◦is required to orient the part.Figure2(b)shows a plan using rotation direction and force to further reduce the number of steps required to orient the part.We now explain how our algorithm derives a plan,given the part geometry and location of its centre of mass.Consider a part contacting the fence with initial angleθas shown in Figure1(c).Mason’s V oting Theorem[Mas86]dictates the rotation direction of the part and thus specifies which state the part will come to rest in.As mentioned earlier,measuring the rotation direction gives us partial information about how the part makes a transition to a stable state.We use the notion of distinguishable sensor augmented states to differentiate between possible sensor augmented states(as opposed to the notion of distinguishable states used in[AM99])to reduce state uncertainty during the orientation process.A sensor augmented state refers to a state and a sensor reading corresponding to transition to that state.We start by presenting the notion of the sensor resting ranges of a part.The sensor resting ranges are those intervals of initial orientationsθthat result in the samefinal state and sensor reading—a sensor resting range represents an equivalence class of initial orientations with respect tofinal state and sensor reading.Figure3 gives an example of a sensor resting range diagram.The sensor resting ranges are then used to construct the sensor action ranges of a part,the range of actionsθaction(see Figure1)that take an initial stable state to another stable state and sensor reading—an equivalence class of actions.Our optimal length planner operates by exhaustively searching the result of every possible sensor action range on every possible set of stable states, and is able to return the shortest orienting plan,if one exists,and exit with a failure if no solution exists. Our resulting plans have worst case length of n when using rotation direction or m+1when using rotation direction and force together(n refers to the number of stable states of the part and m is the size of the largestθaction =225◦θaction =0◦[1.0N,2.8N][1.0N,1.5N][1.6N,2.3N](A )(B )Figure 2:E XAMPLES OF ORIENTING PLANS .(A )SHOWS A PLAN USING ONLY ROTATION DIRECTION AND (B )GIVES A PLAN USING ROTATION DIRECTION AND FORCE .I N (A ),AFTER THE FIRST SENSOR READING ,ROTATION DIRECTION PROVIDES NO INFORMATION ABOUT THE STATE OF THE PART .H OWEVER ,EACH LEVEL OF THE PLAN REDUCES THE UNCERTAINTY BY ONE STATE ,BASED ON THE SENSOR READING .I N (B )THE ADDITION OF FORCE INFORMATION FURTHER REDUCES THE NUMBER OF PUSH -ALIGN OPERA -TIONS REQUIRED .A FTER THE FIRST PUSH -ALIGN OPERATION ,THE SENSOR DATA IS INDISTINGUISHABLE FOR ALL STATES .H OWEVER ,THE SENSOR DATA AFTER A ROTATION OF θaction =225◦IS DISTINGUISH -ABLE ,LEADING TO A FULLY ORIENTED PART .A CLOCKWISE SENSOR READING INDICATES A SINGLE STATE AND STATES WITH COUNTERCLOCKWISE SENSOR READINGS CAN BE FURTHER DISTINGUISHED BY THE FORCE.2.3Orienting With SensorsLynch,Maekawa and Tanie[LMT92]utilised the limit surface model[GRP91]of quasi-static motion to develop a closed loop system that localised the position of a part.They used a round roboticfingertip equipped with a tactile array to push a part from a bounded unknown orientation to a known orientation.Jia and Erdmann[JE96] developed a system to determine the orientation of a part by pushing with a round,tactile sensor equipped fingertip.By observing the motion of the contact point as the part is pushed,they are able to determine the final position of the part.Salvarinov and Payandeh[SP97]utilise a single joint,strain gauge equipped fence above a conveyor and detect the contact signature of a part interacting with the fence.The contact signature is used to determine orientation and orient the part.Rao and Goldberg[RG94]characterised orientability and recognisability of multiple parts by parallel jaw grasping and diameter sensing.Our paper is most closely related to the research of Akella and Mason[AM99]who showed that utilising diameter sensor data during the orientation process reduces the number of manipulation steps required over the sensorless case.Two key contributions of[AM99]were(i)parts with symmetric push functions can be fully oriented if the push-diameter function is asymmetric and(ii)multiple similarly shaped parts can have the same push or push-diamter functions,and thus orienting plans can be found to orient multiple parts.We discuss our work in the context of(i)and(ii)in Section6.6.3AssumptionsThe orienting techniques outlined in the remainder of this paper require the following assumptions:1.Parts are polyhedra which have constant polygonal cross-sections.Non-convex cross-sections are consideredby using their convex hull.2.The location of the part vertices and centre of mass are known.3.Motion is quasi-static(conveyor moves slowly).4.Coefficient of frictionµis constant over sliding support surface.5.Frictional interactions are described by Coulomb model.6.All pushes are perpendicular to the conveyor motion.7.The parts and fence are perfectly rigid.Two additional assumptions are required to determine the ideal forces using the limit surface model,which requires a known applied force direction and a known pressure distribution between the part and the sliding surface:8.There is zero friction between part and fence.We then know the forces are perpendicular to the fence.9.We use a constant,uniform distribution tofind the ideal forces,but account for variations in Section7.2.2. All angle arithmetic is done mod2π,and all index arithmetic is done mod n,where n is the number of stable states of the part.4DefinitionsThis section presents several definitions required for the development of our work.Section4.1introduces some background definitions and Section4.2introduces notions relating to sensor augmented state distinguishability. Sections4.3through4.5introduce the concepts of sensor resting and action ranges using only rotation direction data and Section4.6discusses incorporating force data with rotation direction.φfφi(a)(b)Figure5:(A)T HE RADIUS FUNCTION IS THE DISTANCE FROM THE CENTRE OF MASS TO THE SUPPORT LINE r AS A FUNCTION OF THE SUPPORT LINE ORIENTATIONφ.(B)N OTATION USED IN DESCRIBING THE PUSH FUNCTION:φi IS ORIENTATION OF THE SUPPORT LINE AT BEGINNING OF LINEAR NORMAL PUSH ANDφf IS ORIENTATION AT THE END.4.1The Radius,Push and Push-Sensor FunctionsThe radius function wasfirst used for part orienting by Goldberg[Gol93]in the context of orienting a polygonal shaped part through a series of parallel jaw grasps.Figure5(a)shows the construction method of the radius function.The support line is considered to be aflat pusher(the fence in our technique),φis the angle of orientation of the support line with respect to the part and r is the perpendicular distance from the centre of mass to the support line.Definition4.1The radius function of a polygon is a mapping f r:S1→R from the orientationφof the support line of a polygon to the perpendicular distance r from the polygon’s centre of mass to the support line.A part being pushed in a direction perpendicular to the fence(a linear normal push)tends to rotate towards local minima in the radius function.So,given the part orientation and push direction,the radius function allows us to determine the stable state and rotation direction of the part.This information is represented by the push and push-sensor functions.In the following definitionsφi is the orientation of the support line at the start of the push andφf is the orientation at the end(see Figure5(b)).Note that rather than a stationary fence and rotating part as is the case in our physical set-up,conceptually it is assumed that the part is stationary and the pusher rotates(of course in opposite direction but same magnitude).Definition4.2The push function of a part is a mapping f p:S1→S1from the initial fence orientationφi to thefinal fence orientationφf of a linear normal push. It is known that a part can only be oriented to symmetry in its push function by a sensorless planner[Gol93].A symmetric push function has a‘period’of T<2πsuch that f p(φ+T)=(f p(φ)+T)mod2π(note that periodicity here is along the ordinate axis,and not along the abscissa,the usual definition of a periodic function).Two stable states s i and s j corresponding tofinal fence orientationsφif andφjfare termed equivalent withrespect to a symmetric push function if|φif −φjf|mod T=0.We use s i.=s j to denote this.We define a setS e of equivalent states as a set with all members equivalent(i.e.for all s i,s j∈S e,s i .=s j)and define a set S nof non-equivalent states as a set containing no two states s i .=s j.Definition4.3The push-sensor function of a part is a mapping f ps:S1→D that takes the initial fence orientationφi to the domain D of the sensor at the end of a linear normal push. Definition4.4A part has a symmetric push-sensor function if there exists a period T,0<T<2π,such that f ps(φ)=f ps(φ+T)and f p(φf+T)=φf+T mod2πfor every stable orientationφf.Table1:S OME EXAMPLES OF THE PERIOD OF THE RADIUS,PUSH AND PUSH-SENSOR(ROTATION DI-RECTION)FUNCTIONS.p IS THE NUMBER OF PERIODS IN THE PUSH FUNCTION,AND INDICATES THE SYMMETRY OF THE PART.Radius function(not to scale)r360◦0◦φr360◦0◦φr360◦0◦φPush-sensorfunctionCWCCW0◦360◦φi0◦360◦CCWCWφiCCW0◦360◦CWφi14f ideal minimum possible forcemaximum possible force Measured Forcef c m f a mf b m f d m f 2ideal f 1ideal f 3ideal f 4ideal Figure 7:D ISTINGUISHABILITYOF FORCE MEASUREMENTS FOR CLOCKWISE ROTATION (A SIMILAR FIG -URE EXISTS FOR COUNTERCLOCKWISE ROTATION ).T HE FORCE VALUE THAT MATCHES THE LIMIT SUR -FACE MODEL ( f i ideal)FOR EACH STABLE STATE s i IS HIGHLIGHTED BY A VERTICAL LINE .T HE RANGE OF FORCES ARISES FROM SENSOR NOISE ,UNCERTAIN PHYSICAL CHARACTERISTICS AND DEVIATIONS FROM MODEL -BASED BEHAVIOUR .Definition 4.6An indistinguishable set of sensor augmented states is a set of indistinguishable sensor read-ings and a set of states which when transitioned to result in the indistinguishable set of sensor readings. The domain of rotation direction is binary,so when using only rotation direction,there are only two indistinguishable sets of sensor augmented states,one corresponding to clockwise,{s 1,···,s n }}and the other to counterclockwise,{s 1,···,s n }}.By convention,the size of an indistinguishable set of sensor augmented states is given by the number of states in the set.Since each of these sets contain all the stable states,they each have size=n .On the other hand,the domain of force data is the set of non-negative reals (alternately we may bound this domain above by a force larger than can possibly be measured).Force measurements for each state and rotation direction are closed subintervals of this domain.The size of these intervals is determined from sensor noise and measurement error as outlined in Section 7.2.2.Recall from Figure 4that a state may have different values of f ideal and f ideal ,so when combined with rotation direction,force data acts to split the indistinguishable sets of sensor augmented states (using rotation direction alone)into smaller subsets.Figure 7shows a set of force intervals for a hypothetical part.The figure corresponds to clockwise rotation and shows that force data splits the indistinguishable set of sensor augmented states for rotation direction alone,{s 1,s 2,s 3,s 4}}(size=4)into the smaller sets[f a m ,f b m ]},{s 1}}(size=1)and[f c m ,f d m ]},{s 2,s 3,s 4}}(size=3).Notice that the sensor measurements for states s 2and s 4are individually distinguishable,since indistinguishability isnot transitive,due to sensor noise [AM99].For a particular part,different indistinguishable sets of sensor augmented states can share states.This is ins js1s iθλ iρ iλ jρ j360◦0◦ψiψjFigure9:N OTATION FOR SENSOR RESTING RANGES.T HE TWO STATES s i AND s j USED IN THIS EXAMPLE ARE THE SAME STATES REFERRED TO IN F IGURE10.contrast to the indistinguishable sets of[AM99]which will never have the same states.4.3Sensor Resting RangesThe radius function can be used to determine the stable orientationψand rotation direction of a part contactingthe pusher at an angle ofθ(see Figure1(c)).Definition4.7A sensor resting range of a stable orientation is the set of initial orientations which lead to the same sensor reading while making a transition to that stable orientation.The sensor resting ranges are easily derived from the location of the maxima and minima of the part’s radius function.The sensor resting range diagram is used to represent this information.In Figure8,s1,s2and s3 represent the stable states of the part.The stable orientation of a sensor resting range is indicated by an×and the left and right limits of the sensor resting ranges are delimited by vertical bars|.Each range hasato signify the sensor reading for that range.Figure9shows the notation used to describe the sensor resting ranges.For a particular stable state s i,the stable orientation is denotedψi.Since any stable state s i may be reached via clockwise or counterclockwise rotation,each stable state has two associated sensor resting ranges.The left and right limits of the sensor resting ranges corresponding to clockwise rotation areλ i andρ i.Likewise,the left and right limits of the sensorresting ranges corresponding to counterclockwise rotation areλiandρi.Since the stable orientationψi is also a limit of its two sensor resting ranges,we have the following identities where i+1(resp.i−1)corresponds to the state directly to the right(resp.left)on the sensor resting range diagram:(a)ψi=λ i=ρ i(b)ρ i=λ i+1(c)λ i=ρ i−1(1) As well,since the angleφused in the push function f p(φ)(resp.the angleθof the sensor resting ranges) corresponds to clockwise rotation(resp.counterclockwise)of the part with respect to the pusher,we have the following identities valid at the stable orientations(n refers to the number of stable states).φi=2π−ψif p(2π−ψi)=2π−ψi for all i∈{1,···,n}(2)ˆρ i,j ˆψi,j ˆλ ss j 0◦360◦θaction Figure 10:N OTATIONFOR SENSOR ACTION RANGES .0◦CORRESPONDS TO MOVING THE PART UPSTREAMWITHOUT ROTATION .4.4Sensor Action RangesWe now use the sensor resting ranges to develop the concept of the sensor action range .Recall the definition of an action from Figure 1to be the counterclockwise angle θaction the part is rotated through after being pushed into alignment at a previous step.It is informative to note that θaction is the control variable of our subsequent search algorithms,and at each level of the search,each link of the search tree corresponds to a different possible push-align action.Definition 4.8A sensor action range is a contiguous interval of rotations that form an equivalence class of actions and sensor readings.That is,every action that belongs to a sensor action range results in the same stable state and sensor measurement for a given initial stable state. The sensor action ranges are constructed using the sensor resting ranges.Let the stable orientations for stable state s i and stable state s j be ψi and ψj respectively.Let the left and right limits of the clockwise sensor resting range for state s j be λ j and ρ j ,respectively.A counterclockwise rotation of the part through θaction =(ψj −ψi )(recalling mod2πarithmetic)will cause the part to go directly from stable state s i to stable state s j .In fact,since the sensor resting ranges indicate a range of initial orientations that lead to the same stable state and sensor value,rotation of stable state s i through a range of angles will lead to stable state s j and clockwise rotation.This range is specified by the open interval ((λ j −ψi ),(ρ j −ψi )).This range is an equivalence class of actions that leads to transition from stable state s i to stable state s j with clockwise rotation.In a similar manner,the counterclockwise sensor action ranges are determined by the interval ((λ j −ψi ),(ρ j −ψi )).Figure 10shows the notation used to describe the sensor action ranges for transition from s i to s j (corre-sponding to Figure 9).The action corresponding to direct transition from s i to s j is ˆψi,j .The left and right limits of the clockwise sensor action range are ˆλ i,j and ˆρ i,j and the counterclockwise sensor action range limits are ˆλ i,jand ˆρ i,j .Since the action ˆψi,j is also a limit of its two sensor action ranges,we have the following identities.(a)ˆψi,j =(ψj −ψi )=ˆλ i,j =ˆρ i,j (b)ˆλ i,j =(λ j−ψi )(c)ˆρ i,j =(ρ j −ψi )(3)It is important to note that rotation through (ψj −ψi ),(λ j −ψi ),and (ρ j −ψi ),the endpoints of thesensor action ranges,may result in several undesirable configurations.The first possible configuration occurs when a vertex of the part contacts the fence such that the force vector normal to the fence is directed through the centre of mass.The part will then not rotate until acted upon by an external force.In order to avoid this configuration,actions should be chosen from the middle of the sensor action range,thus ensuring rotation.The second configuration occurs when the part contacts the fence with a stable edge,in which case no valid state transition data is collected.This configuration is dealt with Section 5.2The utility of the action ranges lie in their division of a continuous set of actions [0◦,360◦)into groups of equivalent actions—actions that lead to the same stable state and sensor reading.From a planning point of view,this reduces the search space from a continuous space (infinite branching level)to a discrete search space (finite branching level).Figure 11shows the sensor action ranges for our example part.。

相关文档
最新文档