事业单位行程问题解题技巧

合集下载

行程问题的解题技巧和方法

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题指的是计算一个人或物体在一段时间内的移动距离问题。

这类问题中,我们通常会遇到很多不同的变量,包括起点和终点位置、速度、时间等等。

因此,解决这类问题需要一些特定的技巧和方法。

以下是一些解决行程问题的技巧和方法:
1. 确定问题所需的变量
在解决行程问题之前,我们需要先确定问题所涉及的所有变量。

例如,起点和终点位置、速度、时间等。

通过确定这些变量,我们可以更好地规划解题过程,避免出现遗漏或错误。

2. 使用单位转换
在行程问题中,我们通常需要涉及到不同的单位,例如英里、千米、小时、分钟等等。

为了更好地计算问题,我们需要将所有的单位转换成相同的单位。

例如,将小时转换成分钟、将英里转换成千米等等。

3. 利用公式计算
在行程问题中,有很多公式可以用来计算距离、速度和时间等。

例如,速度等于距离除以时间(v=d/t),距离等于速度乘以时间(d=v*t)等等。

通过利用这些公式,我们可以更快速地计算出所需的答案。

4. 注意时间和速度的关系
在行程问题中,时间和速度是密切相关的。

当速度增加时,时间会减少,距离也会相应地减少。

因此,在解决行程问题时,我们需要注意时间和速度的关系,并确保计算过程中这两个变量的一致性。

总之,解决行程问题需要一些具体的技巧和方法,包括确定变量、使用单位转换、利用公式计算、注意时间和速度的关系等等。

只有通过不断练习和实践,我们才能更好地掌握这些技巧和方法,并在实际问题中得到更好的应用。

行测答题技巧:比例思想速解行测行程工程问题

行测答题技巧:比例思想速解行测行程工程问题

行测答题技巧:比例思想速解行测行程工程问题行测答题技巧:比例思想速解行测行程工程问题在公务员考试行测中,根本上每年都有行程问题以及工程问题的题目,但是有的时候对于行程问题或工程问题的题目,我们无法做到一分钟一道题的速度,尤其是一些复杂的题目,今天将带大家来学习一种快速解决行程问题和工程问题的思想——比例思想。

在行程问题中,贯穿整个行程问题的公式:路程〔s〕=速度〔v〕×时间〔t〕,想必大家都非常熟悉了。

在s=vt中,存在着正反比的关系:1. 当s一定时,v和t成反比;2. 当v一定时,s和 t成正比;3. 当t一定时,s和v成正比。

【例1】某____从驻地乘车赶往训练基地,假如将车速进步1/9,就可比预定的时间提早20分钟赶到;假如将车速进步1/3,可比预定的时间提早多少分钟到?A.30B.40C.50D.60【答案】C【解析】由“车速进步1/9”可得,v1:v0=10:9,且从驻地赶往训练基地的路程是一定的,所以v和t成反比关系,因此,t1:t0=9:10,t1比t0少花一份时间,对应提早20分钟到达,所以按照原来的速度走完全程需要花t0=10×20=200分钟;由“车速进步1/3”可得,v2:v0=4:3,且从驻地赶往训练基地的路程是一定的,所以v和t成反比关系,因此,t2:t0=3:4,由于t0=200分钟,所以4份时间对应200分钟,即1份对应50分钟,t2比t0少花1份时间,所以可比预定的时间提早50分钟到。

因此,答案选C。

【例2】某植树队方案种植一批行道树,假设每天多种25%可提早9天完工,假设种植4000棵树之后每天多种1/3可提早5天完工,问:共有多少棵树?A.3600B.7200C.9000D.6000【答案】B【解析】此题是工程问题,在工程问题中,存在公式:工作总量〔W〕=工作效率〔P〕×工作时间〔t〕,在w=pt中,也存在着正反比的关系:1.当w一定时,p和t成反比;2.当p一定时,w和 t成正比;3.当t一定时,w和p成正比。

公考行程题型归纳

公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。

行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。

二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。

直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。

曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。

三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。

在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。

这种题型需要考生对速度的合成和分解有深入的理解。

四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。

在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。

这种题型需要考生对追及和相遇的条件有深入的理解。

五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。

在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。

这种题型需要考生对环形跑道的运动规律有深入的理解。

六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。

在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。

这种题型需要考生对往返运动的规律有深入的理解。

七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。

在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。

这种题型需要考生对火车过桥的运动规律有深入的理解。

八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。

数量关系之行程问题答题技巧

数量关系之行程问题答题技巧

数量关系之行程问题答题技巧资料来源:中政行测在线备考平台行程问题的重点在于三个量:路程、速度、时间,考来考去总是这三个点,那命题人如何增加难度呢?一是改变考查形式,比如直接求速度变成间接求解,二是增加因素,比如流水对船速的影响、车身长对路程的影响,等等。

但归根究底还是考一个公式:路程=速度*时间,命题就围绕这个公式展开,一般都是已知一个或多个运动过程,每个运动过程包含三个量:路程、速度、时间,与此同时,不同的运动过程间这三个量必然存在某个共通点,比如路程相同,或者相同时间。

因此,行程问题的基本解题思路就是:分析题干中的每一个运动过程,结合问题看未知量、找出已知量,如果有多个运动过程,找出彼此之间共通点,从一点延伸到面,列出数学表达式,思路一目了然。

1、行程问题之相遇问题答题技巧相遇问题是行程问题的一种考查形式,指两人(或两车等)从两地出发相向而行的行程问题,是研究“速度”、“相遇时间”和“两地距离”三者之间的数量关系的应用题。

三个量中比较难理解一点就是相遇时间,两人同时出发、同时到达某一点。

很明显,运动时间相同,这个时间就称为“相遇时间”,做题时要谨记这个等量关系,是隐含的已知条件。

尤其,近年来考题难度有所增加,单一的相遇问题很少考,综合题比较多,因此,做题时一定要思路清晰,抓准核心,当题中涉及相遇问题时,谨记“相遇时间相同”这一点,利用等量关系巧妙求解未知量,化未知为已知,结合其他已知条件解出最终答案。

2、行程问题之追击问题答题技巧追及问题指的是两人(物)在行进过程中同向而行,快行者从后面追上慢行者的行程问题。

它考虑的是两人(物)在相同时间内所行的路程差。

命题人一般会从三个角度命题,直线运动中有两个:“同地不同时出发型”和“同时不同地出发型”;还有一个是环形运动中的“同时同地出发型”,这里要注意一点,它的路程差是一个隐含的已知条件,与追上次数有关。

第一次追上,路程差是一个周长,第N次追上,路程差是n个周长,做题时如果不明白这一点,很难理清思路。

行程问题的解题技巧

行程问题的解题技巧

行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。

比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。

这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。

这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。

是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。

比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。

只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。

公考行程问题技巧

公考行程问题技巧

公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。

我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。

就像走进了一个迷宫,绕来绕去找不到出口。

首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。

比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。

这种简单题就像是走路碰到一块小石头,轻松就能跨过去。

那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。

两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。

比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。

对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。

后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。

比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。

对了,还有个事儿要说。

在解行程问题的时候,画图是个特别好的方法。

就像给你一堆乱线,你把它整理好画出来就清楚多了。

有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。

但是,我得承认,这个画图法虽然好用,但也有局限性。

行程问题的解题技巧和方法

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。

在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。

以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。

利用这个公式,我们可以很方便地求解各类行程问题。

2. 比例法:比例法是行程问题中常用的方法之一。

如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。

3. 假设法:假设法适用于一些无法确定具体数值的行程问题。

通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。

4. 方程法:方程法是行程问题中最常见的方法之一。

通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。

5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。

如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。

6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。

通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。

总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。

在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。

行程问题的解题技巧和方法

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。

解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。

例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。

2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。

因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。

3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。

当我们知道任意两项,都可以通过公式求出另一项。

因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。

4. 求平均速度
有些题目中,物体在行程中可能有多个速度。

此时,我们可以求出平均速度来解决问题。

平均速度的公式是:平均速度=总路程÷总时间。

在求解平均速度时,我们需要注意速度的单位应该统一。

总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总近年来国考行测数量关系中的行程问题层出不穷、花样百出,例如相遇追及、队伍行程、流水行船、往返相遇等等一系列行程问题,让许多考生很是头疼。

不要怕,今天拯救你,给大家汇总了数量关系当中的行程问题的公式,通过归纳、整理、例题让各位各位考生更加清晰的掌握这些公式,从而解决实际问题。

行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2)左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N 次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程以上就是数量关系之行程问题的汇总,接下来给大家分享一道例题,来帮助大家巩固!【真题演练】小张和小王两人错过末班公交车,小王以60米/分钟的速度步行回家,与此同时小张以80米/分钟的速度沿反方向回家。

3分钟后小张发现小王的身份证在自己包里,于是立即调头以180米/分钟的速度跑步追小王,但每跑1分钟休息1分钟,那么从两人分开到小张追上小王需要多长时间?(追上时,小王还没到家)A.14分钟B.20分钟C.17分钟D.11分钟【正确答案】A【解析】根据题意,两人分开3分钟后相距(80 + 60)x3 = 420米,此时小张开始追小王,每2分钟追180 - 60 x 2 = 60米,经过5次(10分钟)追赶,可以追上60 x 5 = 300米,最后还剩420 - 300= 120米,只需120/(180 - 60) = 1分钟,则追赶总时间为10 + 1 = 11分钟。

公务员行政职业能力测验辅导:解行程问题三个妙招

公务员行政职业能力测验辅导:解行程问题三个妙招

公务员行政职业能力测验辅导:解行程问题三个妙招行程问题是公职考试中最重要的题型,几乎每个级别的考试都会涉及到行程问题,而且题型多样,复杂多变,因此,对于广大考生而言,并不容易掌握。

那么,对于行程问题我们应该从什么样的角度切入呢?在行程问题中,最本质的就是速度、时间、路程三者之间的关系。

只要把这三者的关系牢牢抓住了,所有的问题都会迎刃而解,因为行程问题所有的内容都是从这个基础演化而来的。

相信大家对行程问题的基本公式:路程=速度×时间,已经在熟悉不过了,而行程问题之所以称为国考、省考中的数量常考点、易考点和难考点,往往有很多考生见到行程问题就头大脑晕、不知所措,或者干脆主动放弃,之所以会这样,就在于很多考生都没有把握行程问题的本质,但是,只要我们把握了行程问题的本质--路程=速度×时间,然后再加上一些基本公式和技巧,那么解决行程问题绝不是难事。

大家一定要记住这个本质公式:路程=速度×时间。

在记住这个公式的基础上,大家还要掌握下面的三种方法:1、比例法:运用比例法的目的是为了将繁琐的数值简化为简单的数值来进行分析计算,同时比例法的实质也是抓住了数学的核心思想“相对关系”。

2、画图法:通过画简单行程图,迅速理清各物体运动轨迹和之间的相互关系。

3、公式法:特定模型应用特定公式,秒杀题目。

但是一定要记住每个公式的运用前提和它的特征。

但是要大家切记,在做行程问题时我们要用比例不用方程,用份数不用分数。

也许有很多考生会问:为什么用这三种方法而不用方程呢?是因为我们在日常学习中,解决行程问题常采取列方程的方式,这种方法虽然简便易学,但是在国考分秒必争的时间里,列方程这种方法并不能很好的解决在短时间内达到解决行程问题的目的,因此,我们采用比例方法来达到快速解题的目的!下面我们就通过几个例题来训练一下:公务员考试频道为大家推出【2017年公务员考试考试课程!】考生可点击以下入口进入免费试听页面!足不出户就可以边听课边学习,为大家的梦想助力!★成功/失败的案例告诉我们,方法不对是导致失败的关键原因!在这里,我们将提供:6大优势课程+线上线下集训教学+协议签约!你准备好了吗?现在我们将给你一次成“公”上岸的机会↓【手机用户】→点击进入免费试听>>【电脑用户】→点击进入免费试听>>例1甲每分钟走80米,乙每分钟走72米,两人同时从A地出发到B地,乙比甲多用4分钟,AB两地的距离为多少米( )?A.320B.288C.1440D.2880【正确答案】D【思路点拨】思路一--方程法:设甲走了X分钟,则得出80X=72*(X+4),解出X=36,36*80=2880,选择D。

公务员考试中需要走过一段“行程”(一)

公务员考试中需要走过一段“行程”(一)

公务员考试中需要走过一“行程”(一)华图教育行程问题无论是在省考还是国考当中,都是会考到的,考察的范围很广,有基础行程问题、比例行程、火车过桥问题、扶梯问题、漂流瓶问题、多次相遇问题、环形运动问题等,而且每类行程问题都会有变形,所以这类题目是大部分考生最为头疼的一种题型,这类题目虽然复杂,也是有规律可循的,所以我们有必要好好研究下此类题目。

行程问题有个基础的核心公式就是s=vt,无论是上述的哪一种题型的考察,都离不开路程、时间、速度这个三个基础的等量关系,1.基础行程问题:解题核心抓住不变的量【例题1】有甲、乙、丙三人,甲每小时走80公里,乙每小时走70公里,丙每小时走60公里。

现在甲从A处出发,乙、丙两人从B处同时出发相向而行,在途中甲与乙相遇15分钟后,甲又与丙相遇。

求AB两地的距离。

( )A.315公里B.525公里C.465公里D.455公里此题都是从A到B,所以暗含的条件既是路程不变,所以我们按照这个条件来寻找等量关系。

设甲乙相遇时间是T,那么甲丙相遇时间就是T+1/4,利用相遇公式有(80+70)T=(80+60)(T+1/4)。

解得T=3.5,因此整个距离是525。

【例题2】小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。

小王到达B地后立即向回返,又骑了15分钟后与小张相遇。

那么A地与B地之间的距离是多少公里?( )A.144B.136C.132D.128此题,小张和小王的路程明显是不一样的,小王的速度为48,到达B地后,又折返,所以折返的路程应该为48*15/60=12公里,所以以后在遇到类似的题目,看到同时出发,在某处相遇,即代表时间是一样的,我们可以拿时间做等量关系列式子。

则小王的路程是S+12,小张的路程是S-12,速度分别是48和40,那么用时间相等列式应该表示成:,解得S=132。

2.扶梯问题:掌握基本的公式,扶梯级数=(人速+扶梯速度)×顺行运动所需时间或是扶梯的级数=(1+v梯/v人)×人走的阶数扶梯级数=(人速-扶梯速度)×逆行运动所需时间或是扶梯的级数=(1-v梯/v人)×人走的阶数还有一个知识点需要掌握,如果题目中表述“自动扶梯有多少级露在外面”“当该扶梯静止时,可看到的扶梯梯级数”指得都是扶梯的级数。

事业单位行测指导:解行程问题技巧.doc

事业单位行测指导:解行程问题技巧.doc

2018事业单位行测指导:解行程问题技巧行测考试中的行程问题是常考查的,对正反比例的考查成为最主要的考点,你知道这类题的解题技巧吗?本网带来了2018事业单位行测指导:解行程问题技巧,希望可以帮到大家。

2018事业单位行测指导:解行程问题技巧一、比例的核心利用份数之比代替实际量之比。

也就是说直接将比例看成份数,如:A:B=3:2,就直接把A看作3份,B看作2份。

二、正反比例存在M=A×B的关系,且有不变量1、若M不变,则A与B成反比;反比即用最小公倍数除以对应的数之比,如M一定,A1:A2:A3=3:2:1,则B1:B2:B3=2:3:6。

2、若A(B)不变,则M与B(A)成正比;正比即和之前的量的比例一致,如B一定,A1:A2:A3=3:2:1,则M1:M2:M3=3:2:1。

三、具体应用例1.甲乙二人从AB两地同时出发相向而行,甲的速度为60公里每小时,乙的速度为48公里每小时,两人在距离AB 中点48公里处相遇。

AB两地相距多少千米?A.156B.324C.432D.864分析:由于甲乙两人是同时出发的,所以到相遇时两人所用的时间是一样的,所以甲乙所走的路程和对应的速度成正比,由于V甲:V乙=60:48=5:4,所以S甲:S乙=5:4,一共走了9份,中点就是4.5份,所以甲比中点多走0.5份就对应了48公里,所以一共9份就对应864公里。

故答案为D。

例2.甲与乙同时从A地出发匀速跑向B地,跑完全程分别用了3小时和4小时,下午4点时,甲正好位于乙和B第之间的中点上,问两人是下午什么时候出发的?A.1点24分B.1点30分C.1点36分D.1点42分分析:甲与乙同时从A地出发匀速跑向B地,跑完全程分别用了3小时和4小时,由于跑完全程的路程相同,所以速度和时间成反比,T甲:T乙=3:4,所以V甲:V乙=4:3。

在同时出发的运动过程中,甲乙所用的时间相同,所以甲乙所走路程和速度成正比,由于V甲:V乙=4:3,所以S甲:S乙=4:3,即甲走了4份,乙走了3份,此时甲正好位于乙和B第之间的中点上,由于甲乙之间差1份路程,所以甲距离B地也差1份路程,进而可知总路程为5份,而甲走了其中的4份,也就意味着甲走了全程的4/5,那么时间也用了全程的4/5,即3×4/5=2.4小时,用了2.4小时后是4点,所以甲乙两人是1点36分出发的,故答案为C。

事业单位行测指导:解行程问题技巧.doc

事业单位行测指导:解行程问题技巧.doc

事业单位行测指导:解行程问题技巧2018事业单位行测指导:解行程问题技巧一、比例的核心利用份数之比代替实际量之比。

也就是说直接将比例看成份数,如:A:B=3:2,就直接把A看作3份,B看作2份。

二、正反比例存在M=A×B的关系,且有不变量1、若M不变,则A与B成反比;反比即用最小公倍数除以对应的数之比,如M一定,A1:A2:A3=3:2:1,则B1:B2:B3=2:3:6。

2、若A(B)不变,则M与B(A)成正比;正比即和之前的量的比例一致,如B一定,A1:A2:A3=3:2:1,则M1:M2:M3=3:2:1。

三、具体应用例1.甲乙二人从AB两地同时出发相向而行,甲的速度为60公里每小时,乙的速度为48公里每小时,两人在距离AB中点48公里处相遇。

AB两地相距多少千米?A.156B.324C.432D.864分析:由于甲乙两人是同时出发的,所以到相遇时两人所用的时间是一样的,所以甲乙所走的路程和对应的速度成正比,由于V甲:V乙=60:48=5:4,所以S甲:S乙=5:4,一共走了9份,中点就是4.5份,所以甲比中点多走0.5份就对应了48公里,所以一共9份就对应864公里。

故答案为D。

例2.甲与乙同时从A地出发匀速跑向B地,跑完全程分别用了3小时和4小时,下午4点时,甲正好位于乙和B第之间的中点上,问两人是下午什么时候出发的?A.1点24分B.1点30分C.1点36分D.1点42分分析:甲与乙同时从A地出发匀速跑向B地,跑完全程分别用了3小时和4小时,由于跑完全程的路程相同,所以速度和时间成反比,T甲:T乙=3:4,所以V甲:V乙=4:3。

在同时出发的运动过程中,甲乙所用的时间相同,所以甲乙所走路程和速度成正比,由于V甲:V乙=4:3,所以S甲:S乙=4:3,即甲走了4份,乙走了3份,此时甲正好位于乙和B第之间的中点上,由于甲乙之间差1份路程,所以甲距离B地也差1份路程,进而可知总路程为5份,而甲走了其中的4份,也就意味着甲走了全程的4/5,那么时间也用了全程的4/5,即3×4/5=2.4小时,用了2.4小时后是4点,所以甲乙两人是1点36分出发的,故答案为C。

行程问题技巧

行程问题技巧

行程问题技巧行程问题是研究速度、时间和路程三量之间关系的问题,这种题型是公务员考试题的重点考察内容。

行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意几点。

行程问题是研究速度、时间和路程三量之间关系的问题,这种题型是公务员考试题的重点考察内容。

行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意以下几点:1、尽可能采用作线段图的方法,正确反映数量之间变化关系,帮助分析思考。

2、行程问题常结合分数应用题,解答时要巧妙地假设单位“l”使问题简单化,有时还可以联系整数知识,把路程理解为若干份。

3、复杂行程问题经常运用到比例知识。

速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和。

时间成反比4、碰到综合性问题可先把综合问题分解成几个单一问题,然后逐个解决。

例1、甲、乙两辆汽车同时分别从A、B两站相对开出。

第一次在离A站90千米处相遇。

相遇后两车继续以原速前进,到达目的地后又立刻返回。

第二次相遇在离A站50千米处。

求A、B两站之间的路程。

A、150千米B、160千米C、180千米D、200千米解析:甲、乙两辆汽车同时从A、B两站相对开出到第二次相遇共行了3个全程。

由于两车合行一个全程时,甲车行90千米。

在两车两次相遇的三个全程中,甲车共行了90×3=270(千米),这时离A站正好有50千米,加上50即为两个全程270+50=320(千米)。

所以A、B两站之间的路程是320÷2=160(千米)。

答案选择B练习1、两辆汽车同时从东、西两站相对开出。

第一次在离西站45千米的地方相遇之后,两车继续以原来的速度前进。

各自到站后都立即返回,又在距中点东侧15千米处相遇。

两站相距多少千米?A、80千米B、100千米C、120千米D、140千米例2、甲、乙两辆汽车分别从A、B两地同时相对开出。

甲每小时行42千米,乙每小时行54千米。

行程问题的解题技巧和方法

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中的一类常见问题,它们通常涉及到时间、距离、速度等概念。

解决这类问题需要掌握一些技巧和方法,以下是其中的一些:
1. 画图法
我们可以通过画图的方式将问题模拟出来,明确各个变量的含义和关系。

比如在解决汽车行驶问题时,可以画出车辆行驶的路线图,标明起点、终点、途中的里程数等,以便更好地理解问题和推导答案。

2. 等量代换法
有时候问题中的某些变量可以用其他变量表示出来,这时候可以通过等量代换来简化计算。

比如在解决两车相遇问题时,可以将两车相遇的时间转化为两车之间的距离关系,然后用速度和时间的公式求解。

3. 速度图法
速度图是一种表示车速变化的图形,可以帮助我们更好地理解车辆行驶的过程。

在解决多车同时出发的问题时,可以通过画速度图来分析各车之间的关系,以便更好地推导答案。

4. 追及问题法
追及问题是一类特殊的行程问题,通常涉及到两个物体的相对运动。

在解决这类问题时,可以采用追及问题法,即通过两个物体的相对速度和相对距离来推导它们相遇的时间和地点。

5. 求平均速度
在解决行程问题时,有时需要求出多个车辆或物体的平均速度。

这时候可以通过平均速度的公式来计算,即平均速度=总路程/总时间。

以上是解决行程问题的一些常用技巧和方法,它们可以帮助我们更好地理解问题和推导答案。

当然,还有很多其他的方法和技巧,需要根据具体情况进行选择和应用。

行程问题解题技巧和思路

行程问题解题技巧和思路

行程问题解题技巧和思路
1. 哎呀呀,碰到行程问题别慌呀!你看,就像你要去一个好玩的地方,得先规划好路线一样。

比如说,从家到超市5 公里,你走路每小时3 公里,那算一下不就知道得走多久啦!解题时要抓住路程、速度和时间的关系,这可是关键哦!
2. 嘿,行程问题有时候挺绕人的,可咱不怕呀!比如说两辆车同时出发,一辆速度快,一辆速度慢,它们之间的距离变化不就是个有趣的事儿嘛。

就好像跑步比赛,谁跑得快,不就更容易领先嘛,这里面的窍门可得搞清楚咯!
3. 哇塞,行程问题的思路其实不难找呢!就像你找宝藏,得有线索呀。

比如知道了总路程和两人的速度比,那就能算出各自走的路程啦。

好比分蛋糕,按比例来嘛,这样一想是不是就简单多啦?
4. 哟呵,行程问题里还藏着好多小秘密呢!比如说相遇问题,两个人相向而行,就跟你和朋友约好见面,想想怎么才能碰面最快嘛。

这不就是实际生活中的事儿嘛,可有意思啦!
5. 哈哈,解决行程问题可得仔细着点!就像走路要一步一步稳着来。

比如给你一段路程,中间休息了一会儿,那时间可得单独算呀。

就好比做一件事,中间停了会儿,总得把时间分清楚不是?
6. 呀,行程问题也不是那么难搞嘛!比如说知道了速度和时间,那路程不就呼之欲出啦。

这就像你知道每天跑多少,跑了几天,一共跑了多远不就清楚啦,是不是很好理解呀?
7. 哼,行程问题可难不倒我!就像爬山,虽然过程有点累,但到了山顶就超有成就感。

遇到难题别怕,一点点分析,总能找到答案的!
我的观点结论就是:只要掌握好方法和思路,行程问题绝对能轻松拿下!。

行测行程问题解题方法

行测行程问题解题方法

行测行程问题解题方法
行测中的行程问题通常都是与时间、距离、速度等相关的运动问题,常见类型有相向出发、相遇、交错等。

针对这些问题,以下是一些解题方法:
1. 画图法
在解题时可以根据题目要求,绘制出相应的图形,以便更好地理解和解决问题。

比如相向而行问题,可以画出两人相向而行的图形,标上相对速度,根据两人之间的距离和时间来计算出两人相遇的时间点;而对于相遇问题,则需要画出两人的运动轨迹,通过交点来确定两人相遇的时间和位置。

2. 路程、速度、时间图
在解题时可以采用路程、速度、时间图的方法,将三者之间的关系用图形表现出来。

比如相向出发问题,可以将两人行程的路程距离、速度和时间用图表来表示,将两者之间的距离表示为一条线段,两人相遇的点为交点,从而计算出两人相遇的时间。

交错问题也可以用同样的方法解决。

3. 解方程法
对于一些比较复杂的行程问题,可以采用解方程的方法来求解。

首先需要根据问题中所给的条件列方程,然后化简、代入、消元,在数学上求解出问题的答案。

这种方法需要一定的数学基础和运算能力,但对于一些比较复杂的问题,是一种有效的解题方法。

综上所述,行测中的行程问题需要注意细节问题,例如要注意两人相遇的时间点还是距离、速度在题目中是否有单位等。

无论采用哪种方法解答,都需要对题目中所给出的条件进行仔细分析,清晰表达,逐步推导出正确的答案。

同时,练习过程中建议多做一些类似题目,加强理解和运算能力,提高解题效率。

2022年学会比例法快速解决行程问题-公务员联考行测解题技巧

2022年学会比例法快速解决行程问题-公务员联考行测解题技巧

学会比例法快速解决行程问题-2022公务员联考行测解题技巧学习比例法首先需要把握比例的性质。

一般而言我们使用最多的是比例的基本性质:路程=速度×时间,速度肯定则路程与时间成正比;时间肯定则路程与速度成正比;路程肯定则速度和时间成反比。

基本性质很简洁,但在实际应用中还需要敏捷应变。

下面我们来看几道题:【例1】小王每天以v千米/小时的速度骑车到单位上班,假如速度提高20%,则可以提前10分钟到单位;假如以原速度骑行2千米后再提速30%,也可以提前10分钟到达。

问小王家距离单位多少千米?A.5.4B.7.2C.8.5D.9.6答案:B【解析】第一步,本题考查行程问题,用比例法解题。

其次步,提速20%,则提速前和提速后的速度比为5∶6,那么提速前和提速后的时间比为6∶5,依据提前10分钟到达可知时间比例中的一份为10,则以v千米/小时的速度行驶到单位用的时间为6×10=60分钟=1小时,当以原速度行驶2千米再提速30%,提速前和提速后的速度比为10∶13,那么提速前和提速后的时间比为13∶10,依据提前10分钟到达可知时间比例中的3份为10,一份为10/3 ,则行驶2千米后以原来速度行驶需要的时间为13×(10/3) = 130/3,那么以原速度行驶2千米的时间为60- (130/3)=50/3 分= 5/18小时,原速度v=2÷(5/18) = 36/5千米/小时,小王家距离单位的路程为36/5 ×1=7.2千米。

因此,选择B选项。

【例2】早上8:00,甲、乙两车开头在A、B两地之间来回运货,两车先在A地装货后驶往B地卸货,然后返回A地再装货,如是重复。

13:35甲完成了第四次卸货,又过了2小时5分,乙完成了第五次装货。

已知两车匀称速行驶,每次装货或卸货需要20分钟,则甲的行驶速度是乙的多少倍?A.1.25B.1.4C.1.5D.1.6答案:B【解析】第一步,本题考查行程问题中的基本行程类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

事业单位行程问题解题技巧
行程问题无论在国考省考还是事业单位考试中,都有其举足轻重的作用,而且在考试中,属于必考专题,所以大家要想把理科答好,行程问题是我们学习的关键,也是我们拿高分的关键,所以怎么样学好行程问题,如何在事业单位考试中拿高分呢,接下来我们就来一起探讨下事业行程问题解题技巧。

一、行程问题常见题型
1.相遇问题
【例题1】一列火车于中午12时离开A地驶往B地,另一列火车则于40分钟后离开B 地驶往A地。

若两列火车以相同的速度匀速在同一路线上行驶,全程需要3个半小时。

问两列火车何时相遇?( )
A.13∶55
B.14∶00
C.14∶05
D.14∶10
【答案】C。

解析:一列火车行驶40分钟,相当于两列火车相向行驶20分钟;若两列火车同时12时出发,需要1小时45分钟相遇,所以现在两列火车应该在12时之后的1小时45分钟+20分钟=2小时5分钟相遇,即在14:05相遇。

2.追及问题
【例题2】小张同学坐在路边,手里拿着一个测速仪,小张先测得一辆车,以5米每秒的速度通过,5分钟之后,又有一辆车,以10米每秒的速度通过,问第二辆车要( )分钟可以追上第一辆车?
A.4
B.5
C.7
D.10
【答案】B。

解析:此题考查的知识点是行程-追及问题,其中追及的距离为小张先跑的5分钟的路程为5300=1500米,则追及时间=1500(10-5)=300秒,为5分钟。

二、行程问题常见解题方法
1.比例法
【例题3】甲乙两车分别从AB两汽车站同时出发,相向而行,两车相遇时,甲车已行驶了全路程的2/3少20公里,相遇后甲车再行9/8个小时到达B汽车站,乙车再行2个小时到达A汽车站,则AB两汽车站相距( )公里
A.150
B.180
C.210
D.240
2.特值法
【例题4】12.小王步行的速度比跑步慢50%,跑步的速度比骑车慢50%。

如果他骑车从A城去B城,再步行返回A城共需要2小时。

问小王跑步从A城到B城需要多少分钟?( )
A.45
B.48
C.56
D.60
【答案】B。

解析:由于小王步行速度比跑步慢50%,不妨假设小王步行的速度是1,那么跑步速度就是2,同理可得,他骑车的速度就是4。

另设从A城到B城的距离为x,根据时间=路程÷速度,可得x/4 + x/1=2,解得x=1.6。

所以小王跑步从A城到B城的时间为
1.6÷2=0.8小时=48分钟。

三、总结
行程问题,如果公式掌握好,基本题型练习熟练,基本方法能灵活掌握,对于我们行程问题来说就可以了,除此之外要多做题,以便我们能够在考场上快速的的把题目做完。

最后,中公教育辅导教师祝各位考生都能成功圆梦。

热门推荐:2016年行测答题技巧
更多精彩内容,请访问贵州事业单位考试网!。

相关文档
最新文档