高三数学课件:数学高考专题复习点的轨迹方程的求法
合集下载
高考数学总复习 第七章 第十一节轨迹方程的求法课件 理
第五页,共48页。
(2)求曲线轨迹方程应注意(zhù yì)的问题. ①要注意(zhù yì)一些隐含条件,若轨迹是曲线的一部分,应对方 程注明x的取值范围,或同时注明x,y的取值范围,保证轨迹的纯粹性; ②若轨迹有不同情况,应分别讨论,以保证它的完整性; ③曲线的轨迹和曲线方程是有区别的,求曲线的轨迹不仅要求出 方程,而且要指明曲线的位置、类型.
在直角坐标(zhí jiǎo zuò biāo)系中,如果某曲线C(看作满足 某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的 实数解建立了如下关系:
(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么这个方程叫做曲线的方程,这条曲线叫做方程的曲 线.
A. x2+y2=1
4
B. -xy22=1
4 C. x2+y2=1(x¹±2)
D. -yx422=1(x¹±2)
4
4
解析:依题意有 kPA·kPB=14,即x+y 2·x-y 2=14(x≠±2),整
理得x42-y2=1(x≠±2).故选 D.
答案:D
第十二页,共48页。
考点
用定义(dìngyì)法求点的轨迹方程
又因为R是弦AB的中点,依垂径定理: 在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2),
又|AR|=|PR|= x-42+y2,
所以有(x-4)2+y2=36-(x2+y2), 即x2+y2-4x-10=0, 因此点R在一个圆上,而当R在此圆上运动时,点Q即在所求的 轨迹上运动. 设Q(x,y),R(x1,y1),因为R是PQ的中点,
点M的轨迹.
(2)求曲线轨迹方程应注意(zhù yì)的问题. ①要注意(zhù yì)一些隐含条件,若轨迹是曲线的一部分,应对方 程注明x的取值范围,或同时注明x,y的取值范围,保证轨迹的纯粹性; ②若轨迹有不同情况,应分别讨论,以保证它的完整性; ③曲线的轨迹和曲线方程是有区别的,求曲线的轨迹不仅要求出 方程,而且要指明曲线的位置、类型.
在直角坐标(zhí jiǎo zuò biāo)系中,如果某曲线C(看作满足 某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的 实数解建立了如下关系:
(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么这个方程叫做曲线的方程,这条曲线叫做方程的曲 线.
A. x2+y2=1
4
B. -xy22=1
4 C. x2+y2=1(x¹±2)
D. -yx422=1(x¹±2)
4
4
解析:依题意有 kPA·kPB=14,即x+y 2·x-y 2=14(x≠±2),整
理得x42-y2=1(x≠±2).故选 D.
答案:D
第十二页,共48页。
考点
用定义(dìngyì)法求点的轨迹方程
又因为R是弦AB的中点,依垂径定理: 在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2),
又|AR|=|PR|= x-42+y2,
所以有(x-4)2+y2=36-(x2+y2), 即x2+y2-4x-10=0, 因此点R在一个圆上,而当R在此圆上运动时,点Q即在所求的 轨迹上运动. 设Q(x,y),R(x1,y1),因为R是PQ的中点,
点M的轨迹.
《轨迹方程的求法》课件
结合现代科技手段,如人工智能、大数据等,对 轨迹方程进行数据分析和挖掘,揭示隐藏的运动 规律和模式。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义
。
通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义
。
通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。
轨迹方程的求法 ppt课件
PPT课件
9
【分析】(1)根据题意,先找出等价条件,再根据
条件判定曲线类型,最后写出曲线方程. (1)|PA|+|PB|=10-|AB|=6. (2)|PA|-|PB|=1. (3)P点到A的距离比P点到直线x=1的距离多1,即P点
到A的距离等于P点到直线x=2的距离.
PPT课件
10
【解析】(1)根据题意,知|PA|+|PB|+|AB|=10,
为 一 定 点, M为 圆A上 的 一 个 动 点,线 段MB
的 中 垂 线 和 直 线AM的 交 点 为P, N为 垂 足,
-30
-20
求 动 点P的 轨 迹 方 程.
15
M
10
N
5
P
-10
A
B
10
-5
PPT课件
-10
13
【练习3】第3题
已 知 圆A的 方 程 为( x 3)2 y 2 64, B(3,0)为 一 定 点,
即|PA|+|PB|=6>4=|AB|,故P点的轨迹是椭圆,
且2a=6,2c=4,即a=3,c=2,b= 5, 因此其方程为 x2(yy≠2 0 1).
95
(2)设圆P的半径为r,则|PA|=r+1,|PB|=r,
因此|PA|-|PB|=1.
由双曲线的定义知,P点的轨迹为双曲线的右支,
且2a=1,2c=4,即a= 1,c=2,b= ,15
x2 y2 1 平方化简得:(x 1)2 y2 4 (x 3)2 y2 2
2.与圆x2+y2-4x=0外切,且与y轴相切的动圆圆心
的轨迹方程是__y2_=_8_x_(_x_>__0_)_或__y=__0_(x_<__0_)_.
高考数学总复习(整合考点+典例精析+深化理解)第七章
半径 r2=2,
又|OQ|=
x0+2 12+y202
=
14x20+21x0+14+413-43x20
=
116x20+12x0+1 =1+14x0,
故|OQ|=r2-r1,即两圆内切.
点评:根据题设条件,可以得出动点的轨迹是某种已知
曲线,则可以由该曲线的定义直接写出动点的轨迹方程.
线段AN上,且 M→P·B→N= 0.
(1)求动点P的轨迹方程; (2)试判断以PB为直径的圆与圆x2+y2=4的位置关系, 并说明理由.
自主解答:
解析:(1)由点 M 是 BN 的中点, 又M→P·B→N=0,可知 PM 垂直平分 BN, 所以|PN|=|PB|,又|PA|+|PN|=|AN|, 所以|PA|+|PB|=4>|AB|, 由椭圆定义知,点 P 的轨迹是以 A,B 为焦点的椭圆. 设椭圆方程为ax22+by22=1,其中 2a=4,2c=2, 可得 a2=4,b2=a2-c2=3. 可知动点 P 的轨迹方程为x42+y32=1.
化简得(x+1)2-y2=65.
即为所求的动点 M 的轨迹方程.
点评:利用题设条件建立动点坐标x与y的关系,再等价变 形得到轨迹方程F(x,y)=0.
变式探究
1.(2012·襄阳调研)平面内动点 P(x,y)与 A(-2,0),B(2,0) 两点连线的斜率之积为41,则动点 P 的轨迹方程为( )
变式探究
2 . 已 知 两 定 点 F1( - 1,0) 、 F2(1,0) , 且 |F1F2| 是 |PF1| 与 |PF2|的等差中项,则动点P的轨迹方程是________.
解析:由|F1F2|是|PF1|与|PF2|的等差中项知: |PF1|+|PF2|=4>|F1F2|, 故动点 P 的轨迹是以定点 F1(-1,0)、F2(1,0)为焦点, 长轴长为 4 的椭圆,故其方程为x42+y32=1. 答案:x42+y32=1
求点的轨迹方程的六种常见方法讲解
变式:外切改为相切呢?
相关点法
• 如果动点P(x,y)依赖于已知曲线上另一动点Q (u,v)(这种点叫相关动点)而运动,而Q点的坐标u、 v可以用动点P的坐标表示,则可利用点Q的轨迹方程, 间接地求得P点的轨迹方程.这种求轨迹方程的方法 叫做变量代换法或相关点法.此类问题的难度属中档 水平,可能在选择题或填空题出现,也可能在解答 题中出现,属于小题中较难的题目但属于大题中较 易的题目。
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
• 以下举一个例子说明:
6.几何法
【例8】已知圆的方程为x2 y2 6x 6y 14 0,求过点A(3, 5)的直线 交圆的弦的中点的轨迹.
解:圆的方程为(x 3)2 ( y 3)2 4,则圆心C的坐标为(3,3).
设过点A的直线交圆于P、Q两点,M (x, y)是PQ的中点,连CM,则CM PQ,故有:
五类参数:点坐标,斜率,比例,角度,长度等
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G
A
O
Bx
解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
高考数学复习考点知识专题讲解课件第63讲 求轨迹方程的常用方法
|PD|=|BD|,则点P的轨迹方程为( B )
2
2
A.x +(y-2) =20
[解析]
2
2
B.x +(y+2) =20
2
2
由椭圆方程x +
5
2
2
C.x +(y-2) =5
2
2
=1,得a =5,b =1,∴c=
2
2
−
2
2
D.x +(y+2) =5
=2,则A(0,-2),B(0,2)为
椭圆的两个焦点,∴|DA|+|DB|=2a=2 5 ,又|PD|=|BD|,∴|PA|=|PD|+|DA|=
2
1
线与曲线C的两个交点,A1A2的中点为E(x0,y0),可得൝ 2
2
= 41 ,
两式相减得出答案.
= 42 ,
增分微课(四)
解:因为|MI|+1=|MF|=|MH|+1,所以点M的轨迹是以F为焦点,x=-1为准线的抛
2
物线,所以曲线C的方程为y =4x.
设点A1(x1,y1),A2(x2,y2)为其中任意一条斜率为-2的直线与曲线C的两个交点,
0 = (,).
(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨
迹方程.
增分微课(四)
变式题
2 2
(1)设P为双曲线 -y =1上的动点,O为坐标原点,M为线段OP的中点,
4
则点M的轨迹方程是
2
2
A.x -4y =1
( A )
2
2
B.4y -x =1
2
《高三数学轨迹方程》PPT课件
说明:用交轨法求交点的轨迹方程时, 不一定非要求出交点坐标,只要能消 去参数,得到交点的两个坐标间的关 系即可。交轨法实际上是参数法中的 一种特殊情况。
六、点差法:
例6(2004年福建,22)如图,P是抛物线C:y 1 x 2
上一点,直线 l过点P且与抛物线C交于另一点Q。2 若直线 l 与过点P的切线垂直,求线段PQ中点M的
练习:(待定系数法题型)在 PMN 中,
tan PMN 1 , tan MNP 2 ,且 PMN
2
的面积为1,建立适当的坐标系,求以M,N为焦点, 且过点P的椭圆方程。
二、定义法题型: 例2 如图,某建筑工地要挖一个横截面为半圆的柱 形土坑,挖出的土只能沿AP、BP运到P处,其中 AP=100m,BP=150m,∠APB=600,问怎能样运 才能最省工?
2.要注意求得轨迹方程的完备性和纯粹性。在最后 的结果出来后,要注意挖去或补上一些点等。
【典型例题选讲】 一、直接法题型:
例1 已知直角坐标系中,点Q(2,0),圆C的方程
为 x 2 y 2 1 ,动点M到圆C的切线长与 MQ的
比等于常数( 0) ,求动点M的轨迹。
说明:求轨迹方程一般只要求出方程即可,求轨迹 却不仅要求出方程而且要说明轨迹是什么。
的结果出来后,要注意挖去或补上一些点等。
【作业】教材P131闯关训练。
然而作差求出曲线的轨迹方程。
二、注意事项:
1.直接法是基本方法;定义法要充分联想定义、灵 活动用定义;代入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等 参数并学会消参;交轨法要选择参数建立两曲线方 程再直接消参;几何法要挖掘几何属性、找到等量 关系。
六、点差法:
例6(2004年福建,22)如图,P是抛物线C:y 1 x 2
上一点,直线 l过点P且与抛物线C交于另一点Q。2 若直线 l 与过点P的切线垂直,求线段PQ中点M的
练习:(待定系数法题型)在 PMN 中,
tan PMN 1 , tan MNP 2 ,且 PMN
2
的面积为1,建立适当的坐标系,求以M,N为焦点, 且过点P的椭圆方程。
二、定义法题型: 例2 如图,某建筑工地要挖一个横截面为半圆的柱 形土坑,挖出的土只能沿AP、BP运到P处,其中 AP=100m,BP=150m,∠APB=600,问怎能样运 才能最省工?
2.要注意求得轨迹方程的完备性和纯粹性。在最后 的结果出来后,要注意挖去或补上一些点等。
【典型例题选讲】 一、直接法题型:
例1 已知直角坐标系中,点Q(2,0),圆C的方程
为 x 2 y 2 1 ,动点M到圆C的切线长与 MQ的
比等于常数( 0) ,求动点M的轨迹。
说明:求轨迹方程一般只要求出方程即可,求轨迹 却不仅要求出方程而且要说明轨迹是什么。
的结果出来后,要注意挖去或补上一些点等。
【作业】教材P131闯关训练。
然而作差求出曲线的轨迹方程。
二、注意事项:
1.直接法是基本方法;定义法要充分联想定义、灵 活动用定义;代入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等 参数并学会消参;交轨法要选择参数建立两曲线方 程再直接消参;几何法要挖掘几何属性、找到等量 关系。
高三数学轨迹方程课件
详细描述
双曲线有两个分支,且关于其主轴对称。此外,双曲线还有 渐近线的概念,即随着点无限远离主轴,其轨迹将无限接近 于两条直线。
抛物线
总结词
抛物线是一个平面截取一个圆锥面得到的几何图形,其轨迹方程通常表示为 y = ax^2 + bx + c,其中 a、b 和 c 是常数,且 a 不等于 0。
详细描述
物理学
描述物体在重力、电磁 场等作用下的运动轨迹
。
工程学
在机械、航空、航海等 领域用于计算和预测物
体运动轨迹。
经济学
在统计分析中用于研究 数据点分布和变化趋势
。
02
轨迹方程的求解方法
直接法
定义
直接法是指通过直接代入或消元法, 将几何条件转化为代数方程,从而得 到轨迹方程的方法。
适用范围
步骤
1. 根据题意,设动点坐标为$P(x, y)$ ;2. 代入已知的几何条件,得到代数 方程;3. 化简代数方程,得到轨迹方 程。
实例分析
通过具体实例,如行星运动轨迹、电磁波传播等,展示极坐标系下 轨迹方程的应用。
参数方程与轨迹方程的关系
参数方程的概念
01
参数方程是一种描述轨迹的方法,通过引入参数,将轨迹上的
点的坐标表示为参数的函数。
参数方程与轨迹方程的转化
02
将参数方程转化为轨迹方程是解决许多数学问题的关键步骤。
通过消去参数,可以将参数方程转化为轨迹方程。
高三数学轨迹方程课件
contents
目录
• 轨迹方程的基本概念 • 轨迹方程的求解方法 • 常见轨迹方程的解析 • 轨迹方程的实际应用 • 轨迹方程的拓展与提高
01
轨迹方程的基本概念
双曲线有两个分支,且关于其主轴对称。此外,双曲线还有 渐近线的概念,即随着点无限远离主轴,其轨迹将无限接近 于两条直线。
抛物线
总结词
抛物线是一个平面截取一个圆锥面得到的几何图形,其轨迹方程通常表示为 y = ax^2 + bx + c,其中 a、b 和 c 是常数,且 a 不等于 0。
详细描述
物理学
描述物体在重力、电磁 场等作用下的运动轨迹
。
工程学
在机械、航空、航海等 领域用于计算和预测物
体运动轨迹。
经济学
在统计分析中用于研究 数据点分布和变化趋势
。
02
轨迹方程的求解方法
直接法
定义
直接法是指通过直接代入或消元法, 将几何条件转化为代数方程,从而得 到轨迹方程的方法。
适用范围
步骤
1. 根据题意,设动点坐标为$P(x, y)$ ;2. 代入已知的几何条件,得到代数 方程;3. 化简代数方程,得到轨迹方 程。
实例分析
通过具体实例,如行星运动轨迹、电磁波传播等,展示极坐标系下 轨迹方程的应用。
参数方程与轨迹方程的关系
参数方程的概念
01
参数方程是一种描述轨迹的方法,通过引入参数,将轨迹上的
点的坐标表示为参数的函数。
参数方程与轨迹方程的转化
02
将参数方程转化为轨迹方程是解决许多数学问题的关键步骤。
通过消去参数,可以将参数方程转化为轨迹方程。
高三数学轨迹方程课件
contents
目录
• 轨迹方程的基本概念 • 轨迹方程的求解方法 • 常见轨迹方程的解析 • 轨迹方程的实际应用 • 轨迹方程的拓展与提高
01
轨迹方程的基本概念
【高中数学课件】轨迹方程的求法
抛物线:y2 = 8x
椭圆、双曲线方程分别为
x2
y2
+
=1
12+8 2 8+8 2
x2
12- 8
-
2
8
y2
2-
=1 8
由题设得
6= S=
1 2
|a-m|·|yp|
易知 |a-m| = 4,故可得|yp|=3
即yp= ±3,将它代入抛物线方程得
故所求P点坐标为
(
9 8
,3
)h 和(
9
x89 p,= -8 3 )
它与椭圆、双曲线的右顶点连 成的三角形的面积为6.
抛物线:y2 = 8x
椭圆、双曲线方程分别为
x2
y2
+
=1
12+8 2 8+8 2
x2
12- 8
-
2
8
y2
2-
=1 8
(2)分析:如图 椭圆、双曲线的右顶点距离为|a-m|,
P为抛物线上的一点, 三角形的高为|yp|,
由题设得
6= S=
1 2
|a-m|·|yhp|y源自P(x,y) • x•A
3
则点P到定点A(3,0)与定直线 n:x = -3 等距离。
故,点P的轨迹是以 A 为焦点,以 n 为准线的抛物线。
h
20
椭圆、双曲线方程分别为
x2
y2
+
=1
12+8 2 8+8 2
x2
12- 8
-
2
8
y2
2-
=1 8
a= 12+8 2= 4(3+2 2) =2 3+2 2
高中数学课件-求轨迹方程
④化简:把方程化成最简形式
⑤证明:证明以化简后方程的解为坐标的点都在曲线上 建系设点---列方程---化简---审查
3.求轨迹方程的常用方法(坐标法): ⑴直接法(直译法) ⑵定义法 ⑶相关点法(代入法) ⑷参数法 ⑸交轨法
例1.已知一曲线是与两定点O(0,0),A(3,0)距离之比为 1
的点的轨迹,求此曲线的方程 2
当 k 1时,点P轨迹方程为 x 1,轨迹为线段OA的中垂线
当k
1 时,点P轨迹方程为
(x
k22k21)2
y2
(k
4k 2 2 1)2
2k 2 轨迹为以点 ( k 2 1,0)
为圆心, 2k k2 1
为半径的圆
阿氏圆
.P
.
O
Ax
例2.已知圆 O:x2 y2 4 和定点A(6,0),点B为圆C上一
动点,求线段AB的中点P的轨迹方程
解法2:取OA的中点Q,连接OB,PQ,因为P为AB的中点
所以PQ为△OAB的中位线 PQ 1 OB 1
定
2 所以点P的轨迹为以Q为圆心,1为半径的圆
义
其方程为 (x 3)2 y2 1
解:(直译法) 设点P(x,y)为所求轨迹上任意一点,则
x2 y2 1 (x 1)2 y2 4 (x 3)2 y2 2
所求曲线的方程为(x 1)2 y2 4
y
M.(x,y)
.
(-1,0) O
A. (3,0)
x
例2.已知圆 O:x2 y2 4 和定点A(6,0),点B为圆C上一
轨迹方程指出轨迹的形状,位置等特征
1.轨迹和轨迹方程的概念:平面上一动点M按一定规则 运动形成的曲线叫做动点M的轨迹,在平面直角坐标系
高三数学轨迹问题的求法(中学课件201911)
a2
1 2
)的
距离之和
为定值2a.
2003年高考题20(本小题满分12分) 在某海滨城市附近海面有一台风.据监测,当前台风
中心位于城市O(如图)的东偏南θ (θ = arccos 2 )方向
10
300 km的海面P处,并以20 km/h的速度问西偏北450方向 移动。台风侵袭的范围为圆形区域,当前半径为60 km,并 以10 km/h的速度不断增大.问几小时后该城市开始受到 台风的侵袭? 解:以O为原点,正东方向为x轴正向, 建立直角坐标系
其中r(t)=10t+60 若在时刻t城市O 受到侵袭,则有
(0 m)2 (0 n)2 (10t 60)2
即:
30 2 10 2t)2 (210 2 10 2t)2 (10t 60)2
∴ t 2 36t 288 0
解得12≤t≤24
=k(0≤k≤1),由此有
C E
B
x
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak)
直线OF的方程为 2ax+(2k-1)y=0……………①
直线GE的方程为 -a(2k-1)x+y-2a=0…………②
从①②消去参数k,得点P(x,y)坐标满足方程 2a2x2+y2-2ay=0,
解:以BC所在的直线为x轴,BC中点为坐
标原点,建立如图所示的直角坐标系, B
则B(一a,0),C(a,0),设A(x,
y)则
由∴sci-nbC=-12
sinB= a
1 2
sinA
1
即|AB|-|AC|= 2 a(定值)
A C
由双曲线定义知轨迹方程为
高中数学复习课件-轨迹方程的求法
2.设动直线l垂直于x轴,且与椭圆x2 2 y2 4 交于A、B两点, P是l上满足PA PB 1的点,求点 P的轨迹方程.
y
A
O
x
B
题型二 用定义法求轨迹
例2.(1)与x2 y2 1及( x 6)2 y2 9都外切 的圆, 其圆心M的轨迹方程是____________.
(2)与圆x2 y2 1外切且与x轴相切的动圆 圆心O的轨迹方程是 ______________ .
P点的轨迹是直线。
练习3.
从双曲线x2 y2 1上一点Q引直线x y 2 的垂线,垂足为N .求线段QN的中点P的轨迹 方程.
作业:
1.如图,已知过点D(2, 0)的直线l与椭圆 x2 y2 1 2
交于不同的两点A、B,点M 是弦AB的中点.
(1)若OP OA OB,求点P的轨迹方程;
上述五个步骤可简记为: 建系设点;写出集合;列方程;化简;证明.
2.求轨迹方程的主要方法: (1)直接法 (2)定义法 (3)相关点法 (4)参数法
二.例题分析 题型一 用直接法求轨迹
例1.已知动点P到定点F(1, 0)和定直线 x 3的距离之和等于4,求动点P的轨迹 方程.
练习:
1.长为2a的线段AB的两个端点分别在x轴, y轴上滑动,求AB中点P的轨迹方程.
当 1 2 0 且 0 即 1,0 0,1 时,有
x2 9
y2
9(1 2 )
1, P点的轨迹是椭圆。
,即
当 0 时,方程为 x2 y2 9, P 的轨迹是圆。
当1 2 0 即 (, 1) (1, ) 时,方程为
x2
y2
9 9( 2 1) 1, P点的轨迹是双曲线。
当 1 2 0,即 1 时,方程为y=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1999,24t,14f)如图,给出定点A(a,0)(a>0)和直线L:x = -1. B 是直线L上的动点,∠BOA的平分线交AB于C,求点C的轨迹方程,并 讨论方程表示的曲线类型与a值的关系. 这是一九九九年的高考题(第 题 分 解题的关键是如何充 这是一九九九年的高考题 第24题,14分),解题的关键是如何充 分利用OC平分∠BOA.设出 平分∠ 设出B(-1,t),C(x,y)的坐标 有以下思路 的坐标,有以下思路 分利用 平分 设出 的坐标 有以下思路: 思路1:利用三角形的角平分线的性质,|BC|:|CA|=|OB|:|OA|,而将C 视为BA的内分点,λ= BC:CA=|BC|:|CA|,|OA|、|OB|均可用距离表 y 示,得出点C的轨迹的参数方程,消去参数即可. 思路2:利用角平分线的性质,点C到直线OA,OB 的距离相等,又点C在直线AB上,分别写出OB和 AB的直线方程(用B的坐标表示),消去参数即可. B O C A x
数学高考专题复习
主讲人: 主讲人:董生麟
圆锥曲线回顾
圆锥曲线的演示.gsp
例1:已知∆ABC底边BC的长为2a(a>0),又知tgBtgC=t(t≠0).(a,t均为常 数).求顶点A的轨迹. y [思路分析]:首先建立适当的坐标系,设出 A
动点A及定点B、C的坐标,如何将tgB、 tgC坐标化是本题的关键.由图易知∠B B 是直线AB的倾斜角,∠C是直线AC的倾斜 角的补角,因而tgB、tgC都可以用斜率 来表示.这样可直接写出顶点A的方程, 接下来的工作就是化简方程和判断轨迹 是何种曲线,必要时可进行讨论.
本节小结
1.当动点所满足的几何条件能直接用其坐标代入时,可用 直接法.(例1) 2.直接法的另一种形式称为定义法,即已知曲线的类型和 位置,可设出曲线方程,利用待定系数法求解.(例2) 3.当所求动点的运动很明显地依赖于一已知曲线上的动 点的运动时,可利用代入法,其关键是找出两动点的坐 标的关系,这要充分利用题中的几何条件.(例3) 4.当所求动点的运动受一些几何量(距离、角度、斜率、 坐标等)制约时,可考虑用参数法求解.(例4) 5.求得的轨迹方程要与动点的轨迹一一对应,否则要“多 退少补”,多余的点要剔除(用x,y的取值范围来制),不 足的点要补充. 6.注垂直 平分线为y轴.(哪一种更好呢?)由 M 题设可知曲线段C为抛物线的一部 分,L1为准线,N为焦点,很显然选择 标准方程y2=2px(p>0).下面的关键 是求出p的值,而ΔAMN为锐角三角 形及|BN|=6又起什么作用呢?请大 家认真思考. 本题答案:y2 =8x (1≤x≤4,y>0)
C
y
B x
A
例4:抛物线y2 =4x的焦点为F,准线与 x轴交于A,P是抛物线上除去 顶点外的动点,O为顶点.连接FP并延长至Q,使|FP| = |PQ|,OQ与AP 交于M,求点M的轨迹. [思路分析1]本题中的动点M是由两条动 y A M P F O
直线相交而得,而它们的运动又都依赖 于动点P ,因此选择P的坐标为参数,写 出两直线的方程,解方程组,得点M的轨 迹的参数方程,再化为普通方程,从而得 出M的轨迹.
1
2
N L2
x
例3:设AB是圆x2+y2=1的一条直径,以AB为直角边,B为直角顶点,逆 时针方向作等腰直角三角形ABC,当AB转动时,求点C的轨迹. [思路分析]本题中的动点C满足两个条 思路分析]
件:BC⊥BA,|BC|=|BA|,无论用哪一个都不 能直接得出点C的方程,因此要另辟他径. 仔细分析题意,点C的运动依赖于点B的运 动(A也是这样),因而可以用点C的坐标来 表示点B的坐标,又点B在已知曲线上运动, 其坐标满足曲线方程,从而得出点C的轨迹 方程.如何得出B和C的坐标的关系就成为 解题的关键.联想到复数知识,可以利用点 与复数的对应关系,复数与向量的对应关 系,来得出两点的坐标的关系. 本题答案:x2 +y2 =5
Q x
[思路分析2]既然M的运动依赖于P的运动,可否用例3的方
法,用M的坐标表示P的坐标,而P又在已知曲线上运动,代 入已知曲线得出M的方程.M和P是什么关系?回到图中仔 细分析,连接AQ会怎么样?点M与ΔAFQ是什么关系?
本题答案:y2 =8/3×(x +1/3).轨迹为以(-1/3,0)顶点,
开口向右的抛物线(除去顶点).
思路3:利用三角形中的边角关 系,tg∠AOC=|y|/x,tg∠BOD=|BD|:|OD|=|y|(1+a)/(a-x),又 ∠COA=∠COB=∠COD-∠BOD=π-∠COA-∠BOD,∴2∠COA=π∠BOD,tg(2∠COA)=-tg∠BOD.
谢谢各位老师的指导
最后祝您一帆风顺
求动点的轨迹方程的常用方法
• 直接法: 根据动点所满足的几何条件,直接 写出其坐标所满足的代数方程. • 代入法 (也称相关点法): 所求动点M的运动 依赖于一已知曲线上的一个动点M0的运动, 将M0的坐标用M的坐标表示,代入已知曲线, 所的方程即为所求. • 参数法:动点的运动依赖于某一参数(角度、 斜率、坐标等)的变化,可建立相应的参数 方程,再化为普通方程.
C
x
本题答案:轨迹方程为 x2/a2 +y2/ta2 =1 (x≠+-a)
.当0<t<1或t>1时,轨迹为椭圆;当t =1时,轨迹为圆;当t<0 时,轨迹为双曲线.
例2:已知直线L1⊥直线L2,垂足为M,点N ∈L2,(如图)以A,B为端点 的曲线段C上任意一点到L1的距离与到N的距离相等.若∆AMN为 锐角三角形,且|AM|=√17,|AN|=3,|BN|=6.建立适当的坐标系,求曲线 段C的方程. y B [思路分析]:坐标系的建立是本题的 A 突破口,由于L ⊥L ,故可选择它们 L1