数字信号第三章 离散傅里叶变换
数字信号处理DSP第三章3.2 DFT定义
易知,DFT的变换区间长度N不同, 表示对X(ejω)在区 间[0, 2π]上的采样间隔和采样点数不同, 所以DFT 的变换结果也不同。
jIm(z)
−2 WN −1 WN 0 WN k =0 − ( N −2 ) WN
X (ejω)
X (k )
o
Re[z] o π
W
− ( N −3) N
ω
DFT与序列傅里叶变换、Z变换的关系
例1 已知序列x(n)=δ(n),求它的N点DFT。 解
nk 0 X (k ) = ∑ δ (n)WN = WN =1 n=0 N −1
k=0, 1, …, N-1
对序列δ(n),不论对它进行多少点的DFT,所得结果 都是一个离散矩形序列。
本节将根据周期序列和有限长序列之间的关系, 由周 期序列的离散傅里叶级数表示,给出有限长序列的离散 频域表示,即离散傅里叶变换(DFT)。
一、预备知识 1、余数运算表达式 如果n=n1+mN, m为整数;则有
((n))N=n1, 0≤n1≤N-1
运算符(( ))N表示n被N除,商为m,余数为n1。 n1是((n))N的解, 或称作取余数,或说n对N取模值,简 称取模值,n模N,(n mod N) 。
周期延拓
长度为M的有限长序列x(n)的N点DFT,是有限长序
~
x(n)
N
~ x (n)
DFS
DFS[ ~ x (n) ]
~ X (k )
% (k ) R (k ) 取主值 X N
DFT[x(n)]N
注:以上定义中N长度没有限制!
有限长序列x(n)的N点DFT—即DFT正变换公式
X (k ) = DFT[ x(n)]N = ∑ xN (n)W , 0 ≤ k ≤ N − 1
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)
X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n
x ( n) z n
n
x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T
时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t
时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )
T T
X (e jT )e jnT d
取样定理
n
x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8
第3章 离散傅里叶变换(DFT)C
(3.4.9)
def 1 ' 1 ' X (k ) X a f k k X a kF f = T T NT T
p
k 0,1, 2,, N 1
由此可得: ' kF =TX (k ) T DFT[ x(n)] X a N
k 0,1, 2,, N 1
解:
1 1 Tp 0.1 s F 10
因此Tp min=0.1 s。因为要求Fs≥2fc,所以
Tmax
N min
1 1 0.2 103 s 2 f c 2 2500 2 f c 2 2500 500 F 10
第3章 离散傅里叶变换(DFT)
为使用DFT的快速算法FFT,希望N符合2的整数幂,为此 选用N =512点。 为使频率分辨率提高1倍,即F=5 Hz,要求:
说明了X(k)与Xa(jΩ)的关系. 为了符合一般的频谱描述习惯,以频率f为自变量
第3章 离散傅里叶变换(DFT)
令:
X a' ( f ) X a j X a j2πf 2 πf ' 2πf Xa ( f ) X X a a 2 πf
第3章 离散傅里叶变换(DFT)
x ( n) 如果 ~ 的周期预先不知道,可先截取M点进行DFT,即
(n) RM (n) xM (n) x X M (k ) DFT[ xM (n)]
再将截取长度扩大1倍,截取
0 k M 1
(3.4.18)
x (n)的频谱结构,只是在k=im 由此可见,XM(k)也能表示 ~ (i) ,表示 ~ x (n) 的i次谐波谱线,其幅度扩 时,X (im) mX
数字信号处理—原理、实现及应用(第4版)第3章 离散傅里叶变换及其快速算法 学习要点及习题答案
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
数字信号处理DFT
DFT[x(n)]
1 N
X1(k)
X 2 (k )
3.3 频率域采样
1、对于有限长(N点)序列x(n)
Z[x(n)]=X (Z)
取单位圆上的Z变换
X (e j ) FT[x(n)]
会引起x(n)周期延拓
频域一周内等间隔N点采样
~
~
X (k) DFS[x(n)]
X (k) DFT[x(n)]
00
tt
T TpTp / N
XXXaa(a((jjfjff)))
fs 2 fc
T (2 fc )1
N 1
X ( jf ) T xa (nT )e j2 fnT n0
令f kF
00
F fs2/fNsc
N 1
j 2 kn
X ( jkF) T xa (nT )e N
n0
N 1
j 2 kn
时域信号 频域信号
连续的 非周期的
周期的 离散的
三 离散时间、连续频率的序列傅里叶变换
x(nT) T
X e j 或 X (e jT )
---
-T 0 T 2T t
0
时域信号 频域信号
离散的 周期的 非周期的 连续的
---
s
2 T
四 离散时间、离散频率的离散傅里叶变换
x(nT)=x(n)
Tp
1 F
1
W k4 4
1 W4k
4 0
k 0 k 1, 2,3
x(n)的8点DFT为
X (k)
7
x(n)WNkn
3
j 2 kn
e8
n0
n0
x(n)的幅频特性特性曲线及其4点、8点、16点DFT.
数字信号处理之离散傅里叶变换
共轭对称性
对于实数输入信号,DFT 的结果X[k]满足共轭对称 性,即X[-k] = X[k]*。
离散傅里叶变换的矩阵表示
DFT可以表示为一个矩阵运算, 即X = W * x,其中X是DFT的输 出,x是输入信号,W是DFT的
权重矩阵。
权重矩阵W是一个复数矩阵,具 有特殊的结构,可以通过快速傅 里叶变换(FFT)算法进行高效
03
其他信号处理方法还包括短时 傅里叶变换、Wigner-Ville分 布等,可根据具体应用场景选 择合适的信号处理方法。
ቤተ መጻሕፍቲ ባይዱ 06
结论
离散傅里叶变换的重要性和应用价值
离散傅里叶变换(DFT)是数字信号处理领域 中的重要工具,它能够将信号从时域转换到频 域,从而揭示信号的频率成分和特征。
DFT在通信、雷达、声呐、图像处理、语音识 别等领域有着广泛的应用,是实现信号分析和 处理的关键技术之一。
图像压缩
通过对图像进行DFT变换,将图像从空间域变换到频域,可以提取出图像的主要频率成分 ,从而实现图像压缩。常见的图像压缩算法有JPEG和JPEG2000等。
05
离散傅里叶变换的局限性和改进方法
离散傅里叶变换的局限性
计算量大
离散傅里叶变换需要进行大量复杂的复数运算,对于大数据量信 号处理效率较低。
方式。
离散傅里叶变换的编程实现
01
编程语言如Python、C等提供了离散傅里叶变换的库函数,可 以直接调用进行计算。
02
编程实现时需要注意数据的输入输出、内存管理、异常处理等
问题,以保证程序的正确性和稳定性。
编程实现离散傅里叶变换时,可以根据实际需求选择不同的库
03
函数和算法,以达到最优的计算效果。
数字信号处理第三章chhy
( K,m,N均为整数 WNk WNk mN ) , k , m, N
X ( k mN (2) X(k)隐含的周期性 (周期为N) )
n 0
N 1
( x ( n )WN k mN ) n
X ( k mN ) x ( n )W
kn x(n )W X ( k ) DFT [ x ( n )] x ( n )WN
X ( k ) DFT [ x ( n )]
M-1 N 1
N 1
kn N
0 k N-1
X (k ) X ( z )
2 j k z e N
, ,
0 X( k ) ((kX X ((zzj)) )22 ,, k N-1 X k)(3.1.3) j X ) ( z j X e
3.1 离散傅立叶变换的定义及物理意义 3.1.2 DFT与傅里叶变换和Z变换的关系
设序列x(n)的长度为M, 其Z变换和N点DFT分别为:
X ( z ) ZT [[x (( n )] xxnnz n n X ( z ) ZT x n )] ( () )z
N 1 n 0
X (k )e
k 0
N 1 ~
j
2 nk N
一个域的离散造成另一个域的周期 延拓,因此离散傅里叶变换的时 域和频域都是离散的和周期的
引入
例1:连续时间、连续频率—傅里叶变换
例2:连续时间、离散频率—傅里叶级数
引入
例3:离散时间、连续频率—序列的傅里叶变换
例4: 离散时间、离散频率—序列的傅里叶级数
j
2π N
,将时域序列x(n)变换为频域序列X(k);
数字信号处理3
m 0,1,2,3
X [0] X [1] X [2] X [3]
W80 W81 W82 W83
-1 -1 -1 -1
X2[0]
X2[1] X2[2] X2[3]
X [4] X [5]
X [6]
X [7]
8点基2时间抽取FFT算法流图
x[0] x[0]
XX11[0] 11[0]
X1[0] X1[1] X1[2] X1[3]
X 1[ m ]
N / 2 1 r 0 mr x1[r ]WN / 2
X 2 [m ]
N / 2 1 r 0
mr x2 [r ]WN / 2
m 0,1 N 1 2
(2)合成
m X [m] X 1[m] WN X 2 [m]
X [ m N ] X 1[ m ] W X 2 [ m ] 2
X[4] X[5] X[6] X[7]
1
W80 W82
W80
1 1
W82 W83
1
3. 基2时间抽取FFT算法的计算复杂度
算法 直接计 算DFT 基2时 间抽取 FFT 复乘 次数 N2
N log 2 N 2
复乘次数
复加 次数 N(N-1)
18000 16000 14000 12000 10000 8000 6000 4000 2000 0
1. 基2频率抽取FFT算法原理
将频域序列X[m]分成两个长度为N/2的短序列X1、X2 合成 偶数点序列 X 1[ r ] X [2 r ]
N r 0,1, , 1 2 奇数点序列 X 2 [ r ] X [2r 1]
这两个频域短序列分别由N/2点时域序列x1、x2经过DFT计 算得到 N /21 N /2 1
数字信号处理程佩青第三版课件_第三章_离散傅里叶变换
• 证明:
– 已知
~ ~ ( n )e X (k ) x
n 0
N 1
jn
2 k N
k 0,1,2 N 1
• 两边同乘以
e
j
2 kr N
,并对一个周期求和
DFS的反变换-续
k 0 N 1
~ X ( k )e
j
2 kr N
( ~ ( n )e x
n 0 k 0
三、本章主要讨论
• 离散傅里叶变换的推导
• 离散傅里叶变换的有关性质
• 离散傅里叶变换逼近连续时间信号的问题
第二节 傅里叶变换的几种形式
• 傅里叶变换: 建立以时间t为自变量的“信号” 与 以 频 率 f 为 自 变 量 的 “ 频 率 函 数 ”(频 谱) 之 间 的 某 种 变 换 关 系 .
0 r n
n 0,1,2 N 1
rn
回顾DFS
• 设 x(n)为周 期 为 N 的 周 期 序 列 , 则 其 离 散 傅 里 叶 级 数 (DFS) 变 换 对 为 : • 正变换 2
N 1 N 1 j nk ~ nk X (k ) DFS [ ~(n)] ~(n)e N ~(n)WN x x x n 0 n 0
二、DFT定义
• 正变换
X (k ) DFT [ x(n)] x(n)e
n 0
N 1
j
2 nk N
x(n)W
n 0
N 1
nk N
• 反变换
1 x(n) IDFT [ X (k )] X (k )e N k 0
N 1
j
2 nk N
x(k )W
第3章--离散傅里叶变换(DFT)(用此参考课件上课)
x(n)
三. DFT的隐含周期性
DFT变换对中,x(n)与X(k)均为有限长序列,但由于 WNkn的周期性,使x(n) 和X(k)均具有隐含周期性,且周期
均为N。 对任意整数m,总有
1 使DFT具有特殊性质(如循环移位、循环卷积等)的根 本原因,也是学习DFT需要着重理解的性质! 2 不论原始有限长度序列的性质如何,只要对它做DFT 运算,即将它看做是周期为N的周期序列
xn
W kn 2N
n0
nN
N 1
N 1
x
n
W kn 2N
x n N W2kNnN
n0
n0
N1
k n N 1
kn kN
x n WN2 x n N WN2 WN 2
n0
n0
N 1
x
kn
n WN2
1 e jk
n0
2
X
k 2
,
0,
k 偶数 k 奇数
0 k 2N -1
证:利用周期序列的移位性质加以证明
DFS [x((n m)) N ] DFS [~x (n m)] WNmk X~(k)
可直接按IDFT{Y(k)}证明
再利用DFS和DFT关系
DFT[x((n m))N RN (n)] DFT[~x (n m)RN (n)] WNmk X~(k )RN (k ) WNmk X (k )
例题:
已知x(n)是长度为N的有限长度序列,X(k)=DFT[x(n)],
令 y n x n N R2N n ,试求Y(k)=DFT[y(n)]与X(k)之间的关系。
解:
2 N 1
2 N 1
Y k
y
n
第3章--离散傅里叶变换(DFT)
设x(n)是一种长度为M旳有限长序列, 则定义x(n)旳N点
离散傅里叶正变换为
N 1
j 2 nk
X (k ) DFT[x(n)] x(n)e N
N 1
x(n)WNnk
n0
n0
离散傅里叶逆变换为
离散傅里叶变换对
x(n)
IDFT[ X (k )]
1 N
N 1
j 2 nk
X (k )e N
3.2 离散傅里叶变换旳基本性质
1 线性性质 假如x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2。 y(n)=ax1(n)+bx2(n) 式中a、 b为常数, 即N=max[N1, N2],
则y(n)旳N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2[k], 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)旳N点DFT。 若N1<N2,则N=N2,那么需将x1(n)补上N2-N1个零值点后变
k 2 k f f s k
N
N
以上所讨论旳三种频率变量之间旳关系,在对模 拟信号进行数字处理以及利用模拟滤波器设计数 字滤波器乃至整个数字信号处理中十分主要,望 同学们高度注重。
第三章 离散傅里叶变换DFT
3.1.2 DFT旳隐含周期性------ DFT与 DFS旳关系
DFT变换对中,x(n)与X(k)均为有限长序列,但因为WknN旳周
第三章 离散傅里叶变换DFT
例2 : x(n) R8 (n),分别计算x(n)旳8点、16点DFT。
解: x(n)旳8点DFT为
X (k)
7 n0
R8 (n)W8k n
7 j2k n
(整理)离散傅里叶变换
第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。
数字信号处理第三章习题解答
(4)在频带宽度不变的情况下,将频率分辨率提高一倍的N值。
解:
(1)已知
(2)
(3)
(4)频带宽度不变就意味着采样间隔T不变,应该使记录时间扩大一倍为0.04s实现频率分辨率提高一倍(F变为原来的1/2)
18.我们希望利用 长度为N=50的FIR滤波器对一段很长的数据序列进行滤波处理,要求采用重叠保留法通过DFT来实现。所谓重叠保留法,就是对输入序列进行分段(本题设每段长度为M=100个采样点),但相邻两段必须重叠V个点,然后计算各段与 的L点(本题取L=128)循环卷积,得到输出序列 ,m表示第m段计算输出。最后,从 中取出B个,使每段取出的B个采样点连接得到滤波输出 。
————第三章————
离散傅里叶变换DFT
3.1 学习要点
3.1.1DFT的定义、DFT与Z变换(ZT)、傅里叶变换(FT)的关系及DFT的物理意义
1.DFT的定义
设序列 为有限长序列,长度为 ,则定义 的 点离散傅立叶变换为
(3.1)
的 点离散傅立叶逆变换为
(3.2)
其中, , 成为DFT变换区间长度。
学习DFT的性质时,应与傅里叶变换的性质对照学习,要搞清两者的主要区别。我们知道,傅里叶变换将整个时域作为变换区间,所以在其性质中,对称性以原点为对称点,序列的移动范围无任何限制。
然而,DFT是对有限长序列定义的一种变换,也就是说,DFT变换区间为 。这一点与傅立叶变换截然不同,由于 及 区间在DFT变换区间以外,所以讨论对称性时,不能再以原点作为对称点,而是以 点作为对称点。为了区别于无限长共轭对称序列,用 和 分别表示有限长(或圆周)共轭对称序列和共轭反对称序列。其定义为
即 隐含周期性,周期为 。
第三章 离散傅里叶变换(DFT)
− N
n
)*
W
n N
=
W
n N
+iN
3. 可约性 4. 正交性
W i⋅n N
= WNn / i
∑ ∑ 1
N
N −1
W
nk N
(WNmk
)
*
k =0
=
1 N
N −1
W (n−m)k N
k =0
=
⎧1, ⎩⎨0,
n − m = iN n − m ≠ iN
3.3 周期序列的离散傅里叶级数
z 可以看出,当0≤k≤N-1 时,X~(k) 是对X(z)在Z平面单 位圆上的N点等间隔采样,在此区间之外随着k的变 化,X~ (k ) 的值呈周期变化。
了。所以这种无穷长序列实际上只有N个序列值的信息是 有用的,因此周期序列与有限长序列有着本质的联系。
3.3 周期序列的离散傅里叶级数
z X~(k) ↔ ~x (n) 是一个周期序列的离散傅里叶 级数(DFS)变换对,这种对称关系可表示为:
∑ X
(k )
=
D F S [ x (n)]
=
N −1
x
10
X (k) =
|X(ejω)|
X (e jω ) ω= 2π k 10
=
− j 4π k
e 10
sin(π k / 2) sin(π k /10)
5
…
o
π
…
2π
3π
4π
ω
3.3 周期序列的离散傅里叶级数
例2 已知周期序列x (n),求X (k )。并讨论 X~ (k)与 X (e jω ) 的关系
将n和k互换,有 ∑ Nx (-k ) = N-1 X (n)WNkn n=0
第三章离散傅里叶变换
不变,F减小N增加,又因增加 因此,和N可按下面两式选择 例1 有一频谱分析用FFT处理器,抽样点数为2的幂,假定没有采用 任何 特殊的数据处理,已给条件为 ①频率分辨率 ②信号的最高频率 求:①最小记录长度 ②抽样点的最大间隔T ③在一个记录中最小点数N 解: ① ② ③ 取 (2)频域泄露(截短产生误差)
●任何有限长序列都可以表示成共轭对称分量和共轭反对称分量 之和,即 ………… ……….(3-2) 对(3-2)式n换成N-n,并取复共轭得 (3-3) 联立(3-2),(3-3)可得:
●任何序列也可以表示实部和虚部 (3-4) 其中 (3-5) (3-6) (3)DFT的共轭对称性 ●对(3-4)进行DFT得: (3-7) ① 对(3-5)进行DFT得: .(3-8) ② 对(3-6)进行DFT得 (3-9) 结论:由(3-7),(3-8),(3-9)可得 其中 ● 任何序列可以表示为共轭对称和共轭反对称分量: (3-10) (3-11) (3-12) ① 对(3-10)进行DFT得 ② 对(3-11)进行DFT得 ③ 对(3-12)进行DFT得 结论: 其中 ●是长度为N的实序列,且,则 ① 共轭对称,即
2 (a) n,m 3 1 0
(b) 1 2 3 n,m
-2 6 5
2 1 -3 N=4 (c) m
m 3 2 n=0 (d)
ቤተ መጻሕፍቲ ባይዱ
m 3 0 n=1 (e)
m 1 0 n=2 (f)
2 m 1 n=3 (g)
2 3 2 m 1 (h) 1
图4
4、复共轭序列的DFT
设是的复共轭序列,长度为N,则 (3-1) 且。 证明:根据DFT的唯一性,只要证明(3-1)式右边等于左边即可。 又由的隐含周期性有 。 同理可证 。
数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)
周期
2
s、fs N
分辨率
2
N
fs N
返回
回到本节
DFT和DFS之间的关系:
周期延拓
取主值
有限长序列
周期序列
主值区序列
有限长序列 x(n) n 0,1, 2, M 1
周期序列 xN (n) x(n mN ) x((n))N m 0 n0 N 1 n mN n0 ((n))N n0
四种傅立叶变换
离散傅立叶变换(DFT)实现了信号首次在频域 表示的离散化,使得频域也能够用计算机进行处理。 并且这种DFT变换可以有多种实用的快速算法。使信 号处理在时、频域的处理和转换均可离散化和快速 化。因而具有重要的理论意义和应用价值,是本课程 学习的一大重点。
本节主要介绍
3.1.1 DFT定义 3.1.2 DFT与ZT、FT、DFS的关系 3.1.3 DFT的矩阵表示
• X(k)为x(n)的傅立叶变换 X (e j ) 在区间 [0, 2 ]上的N
点等间隔采样。这就是DFT的物理意义。
j ImZ
2பைடு நூலகம்3
4
5 6
1 2
N
k=0 ReZ
7 (N-1)
DFT与z变换
X(ejω)
X(k)
0
o
2
0
N 1 k
DFT与DTFT变换
回到本节
变量
、f k
之间的某种变换关系.
• 所以“时间”或“频率”取连续还是离 散值,就形成各种不同形式的傅里叶变换 对。
3.1 离散傅里叶变换的定义及物理意义
时间域
t:连续
模拟域
离散傅里叶变换
第三章离散傅里叶变换离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。
但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。
近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。
§ 3-1 引言一.DFT是重要的变换1.分析有限长序列的有用工具。
2.在信号处理的理论上有重要意义。
3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。
二.DFT是现代信号处理桥梁DFT要解决两个问题:一是离散与量化,二是快速运算。
信号处理§ 3-2 傅氏变换的几种可能形式一.连续时间、连续频率的傅氏变换-傅氏变换对称性:时域连续,则频域非周期。
反之亦然。
二.连续时间、离散频率傅里叶变换-傅氏级数t时域信号频域信号连续的非周期的非周期的连续的⎰∞∞-Ω-=Ωdtet x j X tj )()(:*时域周期为Tp, 频域谱线间隔为2π/Tp三.离散时间、连续频率的傅氏变换--序列的傅氏变换时域信号频域信号连续的周期的非周期的离散的pT 0=Ω四.离散时间、离散频率的傅氏变换--DFTt0 T 2T1 2 N nNT 时域信号频域信号离散的非周期的周期的连续的-TT2Tt∑∞-∞=Ω-Ω=n Tjn T j e nT x e X )()(:正由上述分析可知,要想在时域和频域都是离散的,那么两域必须是周期的。
DFT 的简单推演:在一个周期内,可进行如下变换:视作n 的函数, 视作k 的函数,这样,§ 3-3 周期序列的DFS 一.周期序列DFS的引入 导出周期序列DFS 的传统方法是从连续的周期信号的复数傅氏级数开始的:时域信号频域信号离散的周期的周期的离散的)1()1(0-Ω-N N 002/2/:1~0,2:1~0:)(1)()()(Ω=∆Ω=ΩΩ-=⋅=Ω=ΩΩ-ΩΩ==⎰∑ΩΩ-ΩΩ∞-∞=Ω-Ωd d N k F k k N n d e eX nT x enT x e X s s T jn T j sn Tjn T j π从)()(2k N je X nT x π)())()(2k X n x nT x k Nj →→π对上式进行抽样,得:,代入 又由于所以求和可以在一个周期内进行,即这就是说,当在k=0,1,..., N-1求和与在k=N,...,2N-1求和所得的结果是一致的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。
这两个问题都是为了使计算机能够实时处理信号。
Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。
−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。
对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。
注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。
……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。
DFT z 二、与序列的DTFT和变换的关系:1()()N nn X z x n z−−==∑1()()N nk Nn X k x n W−==∑10()()N j j nn X e x n eωω−−==∑2()j kNX e ωπω==2()j kk NN z W e X z π−===4()(),()816DFT x n R n x n =例:已知序列求的点和点。
()DTFTx n 求的解:()()j j nn X ex n eωω∞−=−∞=∑()222222j j j j j j eee ee eωωωωωω−−−−−=⎛⎞−⎜⎟⎝⎠()()32sin 2sin /2j eωωω−=3j nn eω−==∑411j j e eωω−−−=−()8 8x n DFT N =求的点()()28j kX k X eωπω==3242sin 2812sin 28j k k ek πππ−⋅⎛⎞⋅⎜⎟⎝⎠=⎛⎞⋅⎜⎟⎝⎠38sin 2sin 8j k k ek πππ−⎛⎞⎜⎟⎝⎠=⎛⎞⎜⎟⎝⎠()16 16x n DFT N =求的点()()216j kX k X eωπω==322162sin 21612sin 216j k k ek πππ−⋅⎛⎞⋅⎜⎟⎝⎠=⎛⎞⋅⎜⎟⎝⎠316sin 4sin 16j k k ek πππ−⎛⎞⎜⎟⎝⎠=⎛⎞⎜⎟⎝⎠N=4点的DFT ?频率采样点数不同,DFT 的长度不同,DFT 的结果也不同。
1、求模(余数)运算如果整数则称n 1是n 对N 的模(余数),记作:或n 模N 等于n 111,,01n n m N n N m ≤≤−=+为整数()()1n n N=()()===925,9,25)1(:N n 例()()=−=−=94,9,4)2(N n 75三、DFT 的隐含周期性2、有限长序列x(n)和周期序列的关系)(~n x 周期序列是有限长序列x (n)的周期延拓。
)(~n x ()()Nx n =()()()N x n xn R n =%有限长序列x (n)是周期序列的主值序列。
)(~n x (())m x n mN xn ∞=−∞=+∑%⎩⎨⎧−≤≤=其它010)(~)(N n n x n x 或三、DFT 的隐含周期性如:nN-1x (n)0)(~n x ......nN-1定义从n=0 到(N-1)的第一个周期为主值序列或区间。
三、DFT 的隐含周期性()())()(~)()(~k R k X k X k X k X N N==周期序列是有限长序列X (k )的周期延拓。
)(~k X 有限长序列X(k)是周期序列的主值序列。
)(~k X 3、频域周期序列与有限长序列X (k)的关系)(~k X 三、DFT 的隐含周期性关于离散傅里叶变换(DFT):序列x(n)在时域是有限长的(长度为N),它的离散傅里叶变换X(k)也是离散、有限长的(长度也为N)。
n为时域变量,k为频域变量。
离散傅里叶变换与离散傅里叶级数没有本质区别,DFT实际上是离散傅里叶级数的主值,DFT也隐含有周期性。
离散傅里叶变换(DFT)具有唯一性。
DFT的物理意义:序列x(n)的Z变换在单位圆上的等角距取样。
1、线性,a b 为任意常数这里,序列长度及DFT 点数均为N若不等,分别为N 1,N 2,则需补零使两序列长度相等,均为N ,且12max[,]N N N ≥11()[()]X k DFT x n =22()[()]X k DFT x n =若1212[()()]()()DFT ax n bx n aX k bX k +=+则3.2 DFT 的基本性质(())()()N N m x n m R n x n +=序列x (n ),长度为N ,则x (n )的循环移位定义为:()(())()m N N x n x n m R n =+周期延拓取主值序列左移m 位()x n ()(())N xn x n =%()(())N xn m x n m +=+%循环移位过程:2、序列的循环移位一个有限长序列x (n )的循环移位序列x m (n )仍然是一个长度为N 的有限长序列。
从图中两虚线之间的主值序列的移位情况可以看出:当主值序列左移m个样本时,从右边会同时移进m个样本好像是刚向左边移出的那些样本又从右边循环移了进来因此取名“循环移位”。
显然,循环移位不同于线性移位循环移位的实质是将序列x(n)移位,移出主值区间的序列值又依次由另一侧进入主值区。
3、循环卷积和121[()(())]()NN Nmx m x n m R n−==−∑12()()()Y k X k X k=⋅若112()[()][()(())]()NN Nmy n IDFT Y k x m x n m R n−===−∑则12()()x n x n N设和都是点数为的有限长序列1212max(,)N N N N NN≥(若不等,分别为、点,则取,对序列补零使其为点)11[()]()DFT x n X k=22[()]()DFT x n X k=循环卷积过程:1)补零2)周期延拓3)翻褶,取主值序列4)循环移位5)相乘相加12()()x n x n=N112()[()(())]()NN Nmy n x m x n m R n−==−∑121[()(())]()NN Nmx m x n m R n−==−∑21()()x n x n=NN用 表示循环卷积和1524()(5)()()()x n n R n x n R n =−=例:已知序列,求两个序列的6点循环卷积和。
…-3 -2 -10 1 2 3 4 5 6 7…5 4 3 2 1 01 1 1 1 0 0…1 0 0 1 1 1 1 0 0 1 1……1 1 1 1 0 0 1 1 1 1 0…1 0 0 1 1 11 1 0 0 1 11 1 1 0 0 11 1 1 1 0 00 1 1 1 1 00 0 1 1 1 1n m ()1/x n m ()2/x n m ()()()266x m R n −()()()2661x m R n −()()()2662x m R n −()()()2663x m R n −()()()2664x m R n −()()()2665x m R n −()()26x m −()()26x m 8101214106()y n计算方法---用解析式计算♦此式可用矩阵表示为:1()()()()(())()NN N Nmy n x n h n x m h n m R n−=⎡⎤==−⎢⎥⎣⎦∑(0)(0)(1)(2)(1)(0)(1)(1)(0)(1)(2)(1)(2)(2)(1)(0)(3)(2)(2)(2)(3)(4)(1)(2)(1)(1)(2)(3)(0)(NNNNNy h h N h N h xy h h h N h xy h h h h xy N h N h N h N h N x Ny N h N h N h N h x−−⎡⎤⎡⎤⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−−−⎢⎥⎢⎥−−−−⎢⎥⎣⎦⎣⎦LLLM M M M M M MLL1)N⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−⎣⎦N例2、计算下面给出的两个长度为4的序列h (n )与x (n )的4点和8点循环卷积。
{}{}{}{}()(0),(1),(2),(3)1,2,3,4()(0),(1),(2),(3)1,1,1,1h n h h h h x n x x x x ====解:h (n )与x (n )的4点循环卷积矩阵形式为c c c c (0)1432110(1)2143110(2)3214110(3)4321110y y y y ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦循环卷积的计算方法c c c c c c c c (0)1110000432(1)1321000043(2)1632100004(3)110432100000904321000(4)0043210007(5)00043210(6)0400004321(7)0y y y y y y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦h (n )与x (n )的8点循环卷积矩阵形式为循环卷积的计算方法循环卷积定理时域循环卷积定理设和为长度分别为N 1和N 2的有限长序列,N ≥max (N 1,N 2)且,则)(1n x [])()(DFT 11k X n x =[])()(DFT 22k X n x =)(2n x N ()()k X k X n x n x DFT N 2121)]()([⋅=4、复共轭序列的DFT*****DFT[()()DF ()]()DFT[T[()])()]()(N N N x x n x n N n X N k x N X x n X k n k =⎧=−−⎨=⎩设的复共轭序列为,长度为若,则:11*()**()001**()[()]()()DFT[()]N N N k n N k n NNn n N kn NNn X N k x n Wx n Wx n W x n −−−−−==−=−====∑∑∑证明:5、DFT 的共轭对称性z序列的傅里叶变换的共轭对称性,其对称性是关于坐标原点的对称性。