功能高分子-概述

合集下载

功能高分子资料

功能高分子资料

1.功能高分子概述功能高分子材料是指那些具有独特物理特性(如光,电,磁灯)或化学特性(如反应,催化等)或生物特性(治疗,相容,生物降解等)的新型高分子材料主要研究目标和内容:新的制备方法研究,物理化学性能表征,结构与性能的关系研究,应用开发研究。

2高分子化学试剂与普通试剂相比优缺点优点:(1)简化操作过程。

高分子化的高分子反应试剂和催化剂在反应体系中仅能溶胀,不能溶解,这样有利于使其与小分子的原料和产物分离(2)有利于贵重试剂和催化剂的回收和再生(3)可以提高试剂的稳定性和安全性(4)所谓的固相合成工艺可以提高化学反应的机械化和自动化度(5)提高化学反应的选择性(6)可以提供在均相反应条件下难以达到的反应环境缺点:1增加试剂生产的成本2降低化学反应速度氧化还原型高分子试剂:含醌式结构的高分子试剂,含硫醇结构的高分子试剂,含吡啶结构的高分子试剂,含二茂铁结构高分子试剂,含多核杂环芳烃结构高分子试剂高分子氧化试剂:高分子过氧酸,高分子硒试剂高分子还原试剂:高分子锡还原剂,高分子磺酰肼反应试剂高分子卤化试剂:二卤化磷型,N-卤化酰亚胺型,三价碘型高分子酸碱催化剂的特点:1、网状结构2、难溶(水、酸、碱、有机溶剂)3、稳(热、机械、化学)4、含活性基团(-SO3 H、-COOH)提供-H或者-OH基团催化反应。

3反应型高分子应用特点反应型功能高分子材料是指具有化学活性,并且应用在化学反应过程中的功能高分子材料,包括高分子试剂和高分子催化剂。

应用特点:具有不溶性,多孔性,高选择性和化学稳定性,大大改进了化学反应的工艺过程,且可回收再用。

4复合型导电高分子材料定义:复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉等,通过分散复合等方法构成的复合材料。

结构:分散复合结构,层状复合结构,表面复合结构,梯度复合结构构成:高分子基体材料(连续相和粘结体作用),导电填充材料,助剂导电原理:渗流理论,隧道导电理论,PTC效应(热膨胀说,晶区破坏说)应用:复合型导电塑料,复合型导电橡胶,复合型导电涂料,导电粘合剂。

功能高分子名词解释

功能高分子名词解释

功能高分子名词解释功能高分子是指具有特定功能的高分子化合物。

高分子化合物是由重复单元组成的长链状分子,具有较高的分子量和相对较大的分子尺寸。

功能高分子通过在高分子结构中引入特定的官能团或化学基团,赋予了高分子材料特定的性能和功能。

功能高分子可以根据其特定的功能进行分类和解释。

以下是几种常见的功能高分子及其解释:1. 吸附剂,功能高分子可以具有吸附其他物质的能力,如吸附有害气体、重金属离子或有机污染物等。

这些高分子通常具有大的表面积和良好的吸附性能,可用于环境净化、废水处理等领域。

2. 催化剂,功能高分子可以具有催化反应的能力,促进化学反应的进行。

这些高分子通常具有特定的催化活性中心或催化剂团,可用于催化合成、催化加氢等化学过程。

3. 传感器,功能高分子可以具有感知和响应外部刺激的能力,如温度、湿度、光线等。

这些高分子通常通过结构上的改变或物理性质的变化来实现信号的转换和传递,可用于传感器、智能材料等领域。

4. 控释剂,功能高分子可以具有控制释放物质的能力,如药物、香料、肥料等。

这些高分子通常通过控制物质的扩散、溶解或降解速率来实现控制释放,可用于医药、食品、农业等领域。

5. 增韧剂,功能高分子可以具有增强材料韧性和耐冲击性的能力。

这些高分子通常通过在高分子基体中引入弹性体颗粒或交联结构来增加材料的韧性和延展性,可用于塑料、橡胶等领域。

6. 电子材料,功能高分子可以具有导电、光电或磁性等特殊电子性质。

这些高分子通常通过在高分子结构中引入共轭结构或特定的电子基团来实现,可用于电子器件、光电器件等领域。

以上只是功能高分子的一些常见例子,实际上功能高分子的种类和应用非常广泛。

它们在材料科学、化学工程、生物医学等领域都具有重要的应用价值,为我们的生活和科技进步做出了贡献。

简述功能高分子材料的特点

简述功能高分子材料的特点

简述功能高分子材料的特点
摘要:
一、功能高分子材料的定义与分类
二、功能高分子材料的特点
1.分子结构的多样性
2.功能的多样性
3.材料的可持续性
4.应用的广泛性
三、功能高分子材料的应用领域
四、我国在功能高分子材料研究与发展现状及前景
正文:
功能高分子材料是一类具有特殊功能和性质的高分子化合物。

它们在材料科学、化学、生物学等领域具有广泛的应用。

功能高分子材料的特点如下:
一、分子结构的多样性
功能高分子材料的分子结构丰富多样,可以分为线性、支链、交联等结构。

这种多样性使得功能高分子材料在物理、化学和生物性能方面表现出独特的特点。

二、功能的多样性
功能高分子材料具有多种功能,如导电、磁性、光学、生物活性等。

这使得功能高分子材料在电子、能源、医疗等领域具有广泛的应用前景。

三、材料的可持续性
功能高分子材料通常具有可降解、可再生和可回收的特点,这使得它们在环保和可持续发展方面具有重要价值。

例如,生物降解塑料可以减少环境污染,太阳能电池材料可以促进清洁能源的发展。

四、应用的广泛性
功能高分子材料在各个领域均有广泛应用,如电子信息、新能源、生物医药、环境保护等。

它们在电子产品、医疗器械、生物降解塑料、光学薄膜等方面发挥着重要作用。

功能高分子材料在我国的研究与发展已取得了显著成果。

在政策支持下,我国功能高分子材料产业呈现出快速发展的态势。

未来,我国将继续加大研发力度,推动功能高分子材料在更多领域中的应用,以满足国家经济和社会发展的需求。

总之,功能高分子材料具有独特的特点和广泛的应用前景。

功能高分子的分类及用途

功能高分子的分类及用途

(2)按物理功能分为导电性高分子,高介电性高分 子,高分子光电导体等 用途:以导电高分子材料为例 该材料兼有高分子材料的易加工性和金属的 导电性,与金属相比,导电高分子材料具有加工 性好,工艺简单,耐腐蚀,电阻率可调范围大, 价格低等优点。应用主要有:电磁波屏蔽,微波 吸收材料,隐身材料等。
(3)按复合功能分为高分子吸附剂,高分子絮凝剂, 高分子表面活性剂,高分子染料,高分子稳定剂 等 用途:以高分子吸附剂为例 ①吸水性高分子吸附剂具有吸水速度快的特点 ②吸油性高分子吸附剂少则可吸自重的几倍,多则 近百倍的吸油量,吸油速度快且保油能力强,在 工业的废液处理以及环境保护方面具有广泛的用 途。
功能高分子的分类及用途
靖江市斜桥中学 季鋆
一.何为功能高分子?
定义:具有传递、转换或储存物质、能量和信 息作用的高分子及其复合材料。 特点:具有化学反应活性、光敏性、导电性、 催化性、生物相容性、药理性等
二.功能高分子的分类
(1)按化学功能可分为离子交换树脂,螯合树脂, 感光性树脂,氧化还原树脂,高分子试剂等 用途:以离子交换膜为例 含有H+结构,能交换各种阳离子ቤተ መጻሕፍቲ ባይዱ叫阳离子 交换膜,含OH-能交换各种阴离子的称为阴离子交 换膜。它们主要用于水的处理,海水淡化,废水 处理,作电解隔膜和电池隔膜。

功能高分子

功能高分子

1.什么是功能高分子或功能高分子材料?功能高分子的特点有哪些?功能高分子材料:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)。

4.按照功能划分功能高分子材料可以分哪些类别?医药用高分子,分离用高分子,高分子化学反应试剂,高分子染料等5.按照性质和功能划分,功能高分子材料可以分为哪些类型?反应型高分子材料,光敏型高分子材料,电活性高分子材料,膜型高分子材料,吸附型高分子材料,高性能工程材料,高分子智能材料。

6.功能高分子材料的主要结构层次有哪些?a构成材料分子的元素组成 b材料分子中的官能团结构 c聚合物的链段结构 d高分子的微观构象结构 e材料的超分子结构和聚集态 f材料的宏观结构7.在功能高分子中官能团所起的作用有哪些?a官能团对材料性质起决定作用 b官能团与骨架的协同作用决定材料的性质 c官能团与聚合物骨架不能区分 d 官能团在材料中仅起辅助作用8.在功能高分子中常见高分子效应有哪几种?溶解度下降效应;高分子骨架的机械支持作用;高分子骨架的模板效应;高分子骨架的稳定作用;其他效应:不可吸附性;液晶中分子链直接参与液晶态的形成,稳定和支撑;高分子燃料中可利用其固定作用降低其有害性,还能减少染料的迁移性,提高着色牢度10.化学方法制备功能高分子时制备功能可聚合单体应该注意什么?可聚合基团的选择要根据在高分子化过程中使用的聚会方法,功能性小分子的结构特点、生成功能聚合物的使用条件和所需要的性能要求等多种因素综合考虑。

需考虑可聚合基团与功能化基团之间不要相互干扰,必要时对敏感基团加以保护。

11.对通用高分子材料的功能化可以采用哪些途径来实现?a化学功能化:利用接枝反应在主链上引入活性功能基,从而改变聚合物的物理化学性质,赋予其新的功能。

b物理方法:通过小分子功能化合物与聚合物的共混和复合来实现c功能高分子材料的多功能复合d在同一种分子中引入多种功能基1.医用高分子材料的分类方法有哪些?a按照材料的性质:生物惰性高分子材料和可生物降解高分子材料b按用途分:治疗用高分子材料,药用高分子材料,人造器官用高分子材料等c来源:天然高分子医用材料,合成高分子医用材料,含高分子的复合医用材料d按材料自身的功能和特点:生物相容性高分子材料,生物降解性,生物功能性·3.医用生物惰性高分子、生物降解高分子的要求各有哪些?生物惰性要求:a材料本身对机体无毒性,无刺激作用,无过敏反应,不致癌,不致畸 b 材料必须具有良好的组织相容性,不会对接触的集体组织引起炎症或排异反应 c良好的血液相容性,当材料与血液接触时不引起凝血而发生血栓,也不会引起溶血现象 d具有相当的化学稳定性,保证在使用的生物环境下不发生老化、分解而失去使用功能生物降解要求:a血液和组织相容性,一定物理机械性能 b生物环境下具有生物降解性,降解产物无毒无刺激,能被人体组织所代谢或排泄 c具有实际应用所需要的降解速度4.什么是生物惰性、生物降解性、生物相容性?生物降解性:材料仅有有限寿命,使用期过后材料可以被生物体分解吸收或排出生物相容性:包括血液相容性(材料在体内与血液接触后不发生凝血,溶血现象,不形成血栓)和组织相容性(材料与肌体组织接触过程个不发生不利性刺激反应,不发生炎症,不发生排斥反应,没有致癌致畸作用,不发生钙沉着)5.什么是药用高分子材料?药物缓释的目的是什么?根据药物作用机理可以把高分子靶向药物分为哪几种类定义:药用高分子材料包括高分子药物、高分子药物载体、靶向药物高分子导向材料、高分子药物制剂材料、高分子药物包装材料等。

功能材料概论10(功能高分子材料)

功能材料概论10(功能高分子材料)


其次,酶的固化在一定程度上提高了酶的稳定性,适应反应条件 的能力提高。
另外,酶的固化还使均相反应转变成多相反应。简化了反应步骤, 使酶促反应可以实现连续化、自动化 。

9.3定化方法有化学法和物理法两大类。
化学方法有:利用酶分子上的-SH、-OH、NH2、咪唑基等, 将酶通过化学键连接到合成的或天然的高分子载体上的共价键 结合法;作为载体的高分子必须含有能与上述基团反应的功能 基,如-F、-COCl、-SO2Cl、-NCO、-NCS、-CHO等。 用交联剂通过化学键将酶分子交联起来成为不溶性物质的交联 法。 物理方法有包埋法和吸附法。
1. 在有机合成中的应用 (1)光学纯氨基酸的合成 合成L—蛋氨酸,采用常规方法合成仅能获得外消旋体产物,而 采用从Aspergillus aryzae菌中提取的酰化氨基酸水解酶作为催化 剂,将此酶用物理吸附的方法固化在N,N-二乙基胺乙基葡聚糖 树脂上,再将这种固化有酶催化剂的树脂装入反应柱中,使N乙 酰基-D,L-蛋氨酸外消旋体通过反应柱进行脱乙酰基反应,在柱 的出口处将得到光学纯的L蛋氨酸。而且该反应柱可以连续反复 使用。
(3)复合功能 高分子吸附剂、高分子絮凝剂、高分子表面活性剂、高分子染料、高 分子稳定剂、高分子相溶剂、高分子功能膜和高分子功能电极等。 (4)生物、医用功能 抗血栓、控制药物释放和生物活性等 。
2. 从制造和结构的角度考虑:
结构型功能高分子 复合型功能高分子
3. 按照功能特性通常可分成以下几类:
9.3 固定化酶
9.3.1 固定化酶的优点

酶是一种分子量适中的蛋白质,由各种氨基酸连接而成,存在于 所有活细胞中,是生命过程中化学反应中的天然催化剂,在生物 体内进行的化学反应,几乎全部是由酶催化的。

功能高分子材料知识点

功能高分子材料知识点

第一章1、什么是功能高分子材料?与普通高分子材料的区别、什么是功能高分子材料?与普通高分子材料的区别? 功能高分子材料是指那些具有独特物理特性(如光,电,磁灯)或化学特性(如反应,催化等)或生物特性(治疗,相容,生物降解等)的新型高分子材料。

区别:区别:常规高分子材料由于其分子量巨大,分子内缺少活性官能团,通常表现为难以形成完整晶体,难溶于常规溶剂,没有明显熔点,不导电,并呈现化学惰性等共同特性。

功能高分子材料带有特殊物理化学性质和功能,其性能和特征都大大超出了常规高分子。

第二章1、高分子试剂与普通试剂相比的优缺点。

、高分子试剂与普通试剂相比的优缺点。

优点:a) 简化操作过程。

b) 有利于贵重试剂和催化剂的回收和再生。

c) 可提高实际的稳定性和安全性。

d) 所谓的固相合成工艺可以提高化学反应的机械化和自动化程度。

e) 提高化学反应的选择性。

f) 可以提供在均相反应条件下难以达到的反应环境。

缺点:a) 增加实试剂生产的成本。

b) 降低化学反应速度。

2、常用试剂的辨认(种类、判断官能团)、常用试剂的辨认(种类、判断官能团)。

高分子氧化剂(高分子过氧酸):稳定性好,贮存、运输、使用方便高分子还原剂(高分子锡还原试剂):稳定性好、无气味、低毒性、还原某些羰基化合物、选择性还原二醛中的一个、定量的将卤代烃中的卤素转变为氢优点:选择性高,可再生。

3、常用的氧化还原试剂,卤代试剂,酰基化试剂分别有哪些、常用的氧化还原试剂,卤代试剂,酰基化试剂分别有哪些?常用的氧化还原试剂:醌型,硫醇型,吡啶型二茂铁型,多核芳香杂环型。

卤代试剂:二卤化磷型,N-卤代酰亚胺型,三价碘型。

酰基化试剂(分别使氨基,羧基和羟基生成酰胺,酸酐和酯类化合物):高分子活性酯和高分子酸酐。

4、高分子氧化还原试剂——特点:能够在不同情况下表现出不同的反应活性。

——特点、高分子氧化还原试剂——特点:高分子氧化还原试剂具有可逆的氧化还原特性醌型硫醇型吡啶型二茂铁型多核芳香杂环型第三章1、复合型导电高分子材料的定义、构成,与本征型的区别。

功能高分子材料知识点

功能高分子材料知识点

功能高分子材料知识点功能高分子材料是一类具有特定功能或应用价值的高分子材料。

它们在现代科技、工程和生活中扮演着重要角色。

本文将介绍功能高分子材料的定义、分类以及常见的知识点。

一、定义功能高分子材料是指那些具有特殊功能或特定应用价值的高分子材料。

传统的高分子材料主要用于作为结构材料,具有良好的力学性能和化学稳定性。

而功能高分子材料则在此基础上引入了其他特殊功能,如光、电、热、磁、生物等功能,以满足不同领域的需求。

二、分类功能高分子材料可以根据其特殊功能和应用领域进行分类。

以下是常见的功能高分子材料分类:1. 光功能高分子材料:如荧光材料、光存储材料、光敏高分子材料等。

这些材料在光学器件、显示器件和光催化等方面具有重要应用。

2. 电功能高分子材料:如导电高分子材料、电致变色材料、电解质材料等。

这些材料可用于电子器件、储能装置和可穿戴设备等领域。

3. 热功能高分子材料:如热敏高分子材料、热稳定材料等。

这些材料在火焰阻燃、温度传感和热能转化等方面具有重要应用。

4. 磁功能高分子材料:如磁性高分子材料、磁性流体材料等。

这些材料在信息存储、医学诊断和磁性传感等方面有广泛应用。

5. 生物功能高分子材料:如生物降解材料、生物传感材料等。

这些材料在医学领域、环境保护和食品包装等方面具有重要应用。

三、知识点功能高分子材料的研究领域非常广泛,以下是其中一些常见的知识点:1. 结构与性能关系:功能高分子材料的特殊功能与其结构密切相关。

研究材料的分子结构和宏观性能之间的关系,可以指导材料的合成和应用。

2. 合成方法:功能高分子材料的合成涉及到多种方法,如化学合成、物理改性和生物合成等。

不同的合成方法会对材料的性能产生不同影响。

3. 表征技术:了解功能高分子材料的结构和性能需要借助于各种表征技术,如光谱分析、热分析和电子显微镜等。

掌握这些表征技术对于研究功能高分子材料至关重要。

4. 应用领域:功能高分子材料在各个领域都有广泛应用。

功能高分子材料

功能高分子材料

第一章绪论性能:材料对外部作用的抵抗特性。

高性能高分子材料:对外部作用有特别强的抵抗能力的高分子材料。

功能高分子材料:是指当有外部刺激时,能通过化学或物理的方法做出响应的高分子材料。

(具有特殊物理化学性质的的材料)通用(常规)高分子材料:应用面广、量大,价格较低。

eg:纤维、塑料、橡胶、涂料、粘合剂。

特种高分子材料:功能高分子材料属于特种高分子材料最早的功能高分子是合成的酚醛型离子交换树脂。

一般采用按其性质、功能或实际用途对功能高分子材料进行分类:1. 反应型高分子材料(包括高分子试剂、高分子催化剂等;)2. 光敏型高分子(包括光稳定剂、光刻胶、光致变色材料等。

)3. 电性能高分子材料(包括导电聚合物、能量转换型聚合物、电致发光和电致变色材料以及其他电敏感性材料等。

)4. 高分子分离材料(包括各种分离膜、缓释膜和其他半透性,膜材料、离子交换树脂、高分子螯合剂、高分子絮凝剂等。

)5. 高分子吸附材料(高分子吸附性树脂、高吸水性高分子、高吸油性高分子等。

)6. 高分子智能材料(高分子记忆材料、信息存储材料和光、磁、pH、压力感应材料等。

)7. 医药用高分子材料(医用高分子材料、药用高分子材料和医药用辅助材料等。

)8. 高性能工程材料(高分子液晶材料,耐高温高分子材料、高强高模量高分子材料、阻燃性高分子材料和功能纤维材料、生物降解高分子等。

)!!!功能高分子材料的制备策略功能型小分子材料的高分子化、已有高分子材料的功能化、多功能材料的复合。

功能型小分子材料的高分子化的实现途径:①化学键连接的化学方法,如共聚、均聚等(举例1:丙烯酸,可用于制备离子交换树脂、高吸水性树脂等。

举例2:含双键的环氧丙烯酸酯,广泛用于制备功能性粘合剂。

)②物理方法,如共混、吸附、包埋等。

(维生素C微胶囊)(1)带有功能型基团可聚合单体的聚合法——包括两步骤。

(a)在功能性小分子中引入可聚合基团,或在含有可聚合基团单体中引入功能性基团;(b)进行均聚或共聚反应生成功能聚合物。

功能高分子

功能高分子

一绪论1 功能高分子的基本概念(1)功能高分子:在天然或合成高分子的主链或支链上引入某种功能的官能团,使其显示出在光、电、磁、声、热、化学、生物、医学等方面的特殊功能的高分子。

(2)功能高分子材料学:以功能高分子材料为研究对象,探讨其结构组成、制备方法、功能特性的科学。

研究功能高分子材料的功能基团、分子组成和材料结构与性能之间的联系(3)高分子的发展方向:通用高分子的高性能化和高分子的多功能化2功能高分子的分类按其性质、功能或实际用途反应性高分子材料;光敏型高分子;电性能高分子材料;高分子分离材料;高分子吸附材料;高分子智能材料;医药用高分子材料;高性能工程材料。

二化学功能高分子材料1 高分子试剂和固相合成(1)高分子试剂①高分子试剂研究的主要内容:通过功能基化的方法把有机合成反应中的试剂、反应底物键合到聚合物上,然后用这种聚合物承载的试剂或反应底物进行合成反应。

②高分子试剂制备方法:通过小分子化学试剂的功能化方法制备,经过高分子化的化学反应试剂,保持原有试剂性能外,还具有一些其他功能。

③与相应小分子试剂相比,高分子试剂的特点:易于分离回收,操作过程简便;稳定性和安全性好,毒臭燃爆性降低;可利用高分子效应,提高反应选择性;可利用高分子效应,控制反应微环境;由于骨架的空阻,反应活性往往降低;由于制备复杂,试剂成本往往增加;耐热性差,不利于高温反应。

④主要包括:氧化-还原树脂;高分子氧化剂;高分子还原剂;高分子传递性试剂;其它:高分子缩合剂、高分子农药/药物等。

(2)高分子载体上的固相合成概念:高分子载体上的固相合成:采用不溶于反应体系的低交联度高分子材料作为载体,将反应试剂通过与高分子上活性基的反应固定于其上。

反应过程中中间产物始终与载体相连,从而使有机合成在固相上进行。

反应完成后再将产物从载体上脱下。

特点:分离纯化步骤简化;反应总产率高;合成方法可程序化、自动化进行;可进行分子设计,合成有特定序列的高分子。

功能高分子材料介绍

功能高分子材料介绍

功能高分子材料介绍功能高分子材料是一类具有特殊性能和功能的材料,它们在各个领域中发挥着重要作用。

本文将从几个方面介绍功能高分子材料的特点和应用。

一、超强韧性功能高分子材料具有超强的韧性,能够承受较大的外力而不易断裂。

这种特性使其在建筑、航空航天等领域中得到广泛应用。

例如,在建筑领域中,高分子材料可以用于制造高强度的悬挂索,能够承受大风和地震等自然灾害的冲击。

二、耐磨性功能高分子材料具有出色的耐磨性,能够在摩擦和磨损环境下保持长期的使用寿命。

这种特性使其在汽车制造、运动器材等领域中得到广泛应用。

例如,在汽车制造领域中,高分子材料可以用于制造车身外壳,能够有效减少车身表面的划痕和磨损。

三、导电性功能高分子材料具有良好的导电性,能够传导电流和热量。

这种特性使其在电子、光电子等领域中得到广泛应用。

例如,在电子领域中,高分子材料可以用于制造柔性显示屏,能够实现屏幕的弯曲和折叠。

四、阻燃性功能高分子材料具有良好的阻燃性,能够在火灾发生时有效阻止燃烧蔓延。

这种特性使其在建筑、交通等领域中得到广泛应用。

例如,在建筑领域中,高分子材料可以用于制造防火墙,能够有效隔离火势的蔓延。

五、环保性功能高分子材料具有良好的环保性,能够降低对环境的污染。

这种特性使其在环保领域中得到广泛应用。

例如,在环保领域中,高分子材料可以用于制造可降解塑料袋,能够减少对自然环境的破坏。

功能高分子材料具有超强韧性、耐磨性、导电性、阻燃性和环保性等特点,并在建筑、汽车制造、电子、环保等领域中发挥着重要作用。

随着科技的不断进步和创新,功能高分子材料的应用领域将会更加广泛,为人类的生活和产业发展带来更多的便利和创新。

功能高分子概述

功能高分子概述

功能高分子的定义性能:材料对外部作用的抵抗特性。

功能:指从外部向材料输入信号时,材料内部发生质和量的变化而产生输出的特性。

功能高分子是指当有外部刺激时,能通过化学或物理的方法做出响应的高分子材料。

4.4.1 功能高分子概述功能高分子的分类反应型高分子材料 导电高分子材料高分子功能膜材料 医用高分子材料……4.4.1 功能高分子概述功能高分子的特点用量小、品种多专一性强可设计性强4.4.1 功能高分子概述功能高分子的合成策略功能性小分子单体聚合高分子材料的功能化改性多功能材料的复合4.4.1 功能高分子概述功能性小分子单体的高分子化CH 2CHOCH 2OCCH 3CH 3OCH 2CH CH 2O+ CH 2CH COOHCH 2CHOHCH 2OCCH 3CH 3O CH 2CH CH 2OCH 2CH COO例:将含有环氧基团的低分子量双酚A 与丙烯酸反应,得到含双键的环氧丙烯酸酯,这种单体在制备功能性粘合剂方面有广泛的应用。

4.4.1 功能高分子概述C H C H []RC H C H []C H C H []C H C H []C H C H []C H C H []C H C H[]O HC H C H O O C H CO O HO C O R O C O R O P O H O H OC H C H OOC HR已有高分子材料的功能化4.4.1 功能高分子概述PS功能高分子的合成新方法离子型活性聚合阴离子活性聚合阳离子活性聚合活性离子型开环聚合基团转移聚合(GTP)活性自由基聚合引发-转移-终止法(iniferter法)TEMPO引发体系可逆加成-断裂链转移自由基聚合(RAFT)原子转移自由基聚合(ATRP)4.4.1 功能高分子概述N O高分子试剂CH CHCH OCH ClCH CHClKHCO CH CHCHOH O , HCH CHCOOHO小分子过氧酸是常用的强氧化剂,在有机合成中是重要的试剂。

什么是功能高分子材料

什么是功能高分子材料

什么是功能高分子材料功能高分子材料是一类具有特殊功能和性能的高分子材料,它们在各个领域都有着广泛的应用。

功能高分子材料通常具有特定的结构和性能,可以通过调整其分子结构和组成来实现特定的功能。

在材料科学领域,功能高分子材料已经成为一个研究热点,其在能源、医药、电子、环保等领域的应用也越来越广泛。

首先,功能高分子材料在能源领域具有重要的应用价值。

例如,聚合物电解质是一种重要的功能高分子材料,它被广泛应用于锂离子电池和燃料电池中,可以提高电池的性能和安全性。

另外,光敏高分子材料在太阳能电池中也有着重要的应用,可以将太阳能高效地转化为电能。

其次,功能高分子材料在医药领域也具有重要的应用前景。

例如,生物可降解高分子材料可以用于制备缝合线和修复材料,可以在人体内逐渐降解,避免二次手术。

另外,聚合物药物传递系统也是功能高分子材料的重要应用之一,可以实现药物的缓释和靶向输送,提高药物的疗效并减少副作用。

此外,功能高分子材料在电子领域也有着重要的应用。

例如,导电高分子材料可以用于制备柔性电子产品,如柔性显示屏、柔性电路板等,可以实现电子产品的轻薄化和柔性化。

另外,光电功能高分子材料也可以用于制备光电器件,如光电传感器、光电开关等,可以实现光信号的转换和控制。

最后,功能高分子材料在环保领域也有着重要的应用。

例如,吸附高分子材料可以用于水处理和废气治理,可以有效去除水中的有机污染物和废气中的有害气体。

另外,生物降解高分子材料也可以用于替代传统塑料制品,减少对环境的污染。

总的来说,功能高分子材料具有多样的结构和性能,可以通过合理设计和调控来实现特定的功能。

它们在能源、医药、电子、环保等领域都有着重要的应用价值,对于推动科技进步和改善人类生活质量起着重要作用。

随着材料科学的不断发展,相信功能高分子材料的应用前景会更加广阔。

功能高分子

功能高分子

第一章1.什么是功能高分子或功能高分子材料?功能高分子的特点有哪些?与常规的聚合物的相比具有明显不同的物理化学性质,并且有某些特殊功能的聚合物大分子都应该属于功能高分子材料。

2.试述功能高分子、特种高分子、精细高分子之间的区别和联系。

特种高分子:具有高强度、耐冲击、耐高温、特优电绝缘性能或兼而有之的一类高分子。

精细高分子:包括高分子化的精细化学品,和有特殊性能的功能高分子材料。

3.功能高分子材料应具有哪些功能?4.按照功能划分功能高分子材料可以分哪些类别?医药用高分子,分离用高分子,高分子化学反应试剂,高分子染料等5.按照性质和功能划分,功能高分子材料可以分为哪些类型?反应性高分子、光敏高分子、电活性高分子、膜型高分子材料、吸附性高分子、高性能功能材料、高分子智能材料6.功能高分子材料的主要结构层次有哪些?构成材料分子的元素、材料分子中的官能团、聚合物的连段结构、高分子的微观构象结构、材料的超分子结构和聚集态、材料的宏观结构7.在功能高分子中官能团所起的作用有哪些?(1)性质主要依赖于结构中的官能团、(2)性质取决于聚合物的骨架与官能团协同作用、(3)官能团与聚合物骨架不区分、(4)官能团在聚合物中仅起辅助作用8.在功能高分子中常见高分子效应有哪几种?溶解度下降效应;高分子骨架的机械支持作用;高分子骨架的模板效应;高分子骨架的稳定作用;其他效应:不可吸附性;液晶中分子链直接参与液晶态的形成,稳定和支撑;高分子燃料中可利用其固定作用降低其有害性,还能减少染料的迁移性,提高着色牢度9.举一例说明从已知结构和功能的化合物设计功能的高分子。

10.化学方法制备功能高分子时制备功能可聚合单体应该注意什么?可聚合基团的选择要根据在高分子化过程中使用的聚会方法,功能性小分子的结构特点、生成功能聚合物的使用条件和所需要的性能要求等多种因素综合考虑。

需考虑可聚合基团与功能化基团之间不要相互干扰,必要时对敏感基团加以保护。

第九章 功能高分子

第九章 功能高分子

如聚丙烯酰胺侧链上的硫代缩胺基脲汞在光作用下 形成汞的有色络合物。
R N N
CH2 CH CONH Hg
S
C
N
NH R
R CH2 CH CONH Hg S C N N N H N R
八、电子聚合物
1、聚苯胺
在酸性条件和过氧化物存在下苯胺聚合成
O NH2 H+
n
PAn
聚苯胺具有较高的导电性
NH2
2、药物载体
药物载体含四类基团:药(D)、悬臂(S)、输 送基团(T)、使高分子溶解的基团(E)。
高分子链
S E E D D
T T
如聚乙烯醇和阿司匹林结合:
CH2 CH O O C O C O CH3 CH2 CH OH
n
m
七、光致变色高分子
对光进行传输、吸收、储存、转换的一类高分子材 料。 在高分子链上存在光色基团、当吸收一定波长的 光后发生颜色变化。
H3C OH
CH3
硫醇类
2 R SH R S S R + 2H+ + 2e-
CH2
CH
CH2CH NHCO( C H2)4CHCH 2CH2 SH SH
CH2SH
应用实例
头发中含有胱氨酸,与半胱氨酸存在以下相互转变:
HOOC CH NH2 CH2 S S CH2 CH NH2 COOH
胱氨酸
2HOOC CH NH2 CH2SH
CH2 CH CH2 CH N(CH2CH2OH)3
CH2Cl CH2 CH CH2 CH CH2 CH
CH2N+(CH2CH2OH)3Cl-
CH2
CH
两性离子
CH2 CH CH2 CH CH2 CH N(CH3)3 Cl

功能高分子名词解释

功能高分子名词解释

名词解释高性能高分子:对外力有特别强的抵抗能力的高分子材料。

功能高分子:是指当有外部刺激时,能通过化学或物理的方法做出相应的高分子材料。

特种高分子材料:带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料的范畴。

通用高分子材料:应用面广量大,价格较低。

根据其性质和用途可分为五个大类:化学纤维、塑料、橡胶、油漆涂料、粘合剂。

阳离子交换树脂:能解离出阳离子、并能与外来阳离子进行交换的树脂。

阴离子交换树脂:能解离出阴离子、并能与外来阴离子进行交换的树脂。

分离膜:能以特定形式限制和传递流体物质的分隔两相或两部分的界面。

膜在生产和研究中的使用技术被称为膜技术。

如果在高浓度水溶液一侧加压,使高浓度水溶液侧与低浓度水溶液侧的压差大于渗透压,则高浓度水溶液中的水将通过半透膜流向低浓度水溶液侧,这一过程就称为反渗透。

用于实施反渗透操作的膜为反渗透膜。

反渗透膜大部分为不对称膜,孔径小于0.5nm,可截留溶质分子。

超滤技术的核心部件是超滤膜,分离截留的原理为筛分,小于孔径的微粒随溶剂一起透过膜上的微孔,而大于孔径的微粒则被截留。

导电高分子是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。

这些带电粒子可以是正、负离子,也可以是电子或空穴,统称为载流子。

这种因添加了电子受体或电子给体而提高电导率的方法称为掺杂。

掺杂的方法可分为化学法和物理法两大类,前者有气相掺杂、液相掺杂、电化学掺杂、光引发掺杂等,后者有离子注入法等。

电导率发生突变的导电填料浓度称为“渗滤阈值”光致抗蚀,是指高分子材料经过光照后,分子结构从线型可溶性转变为网状不可溶性,从而产生了对溶剂的抗蚀能力。

光致诱蚀,当高分子材料受光照辐射后,感光部分发生光分解反应,从而变为可溶性。

医用高分子材料则是生物医用材料中的重要组成部分,主要用于人工器官、外科修复、理疗康复、诊断检查、患疾治疗等医疗领域。

功能高分子

功能高分子

医用功能高分子一功能高分子的简介在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。

一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。

二功能高分子的分类功能高分子材料从功能上大致可分为四类:第一类是化学功能,包括离子交换、催化、光聚合、光分解、光降解等;第二类是物理功能,包括导电、热电、压电、超导、磁化、光弹性等;第三类是介于化学、物理之间的功能,包括吸附、膜分离、高吸水、表面活性等;第四类是生理功能,包括生理组织适应性,血液适应性等。

用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。

20年来,用于这方面的高分子材料有聚氯乙烯、天然橡胶、聚乙烯、聚酰胺、聚丙烯、聚苯乙烯、硅橡胶、聚酯、聚四氟乙烯、聚甲基丙烯酸甲酯和聚氨酯等。

三医用功能高分子医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。

它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。

医用高分子材料是生物材料的重要组成部分,是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。

1,性能要求医用高分子材料多用于人体,直接关系到人的生命和健康,一般对其性能的要求是:①安全性:必须无毒或副作用极少。

这就要求聚合物纯度高,生产环境非常清洁,聚合助剂的残留少,杂质含量为ppm级,确保无病、无毒传播条件。

功能高分子材料

功能高分子材料

功能高分子材料简介
功能高分子材料主要指那些能对物质、能量和信息具有传递转换或贮存作用的高分子材料。

它分为两大类,即结构型功能高分子和复合型功能高分子。

功能高分子按其不同的功能分为:
(1)具有化学活性的功能高分子,如高分子试剂、高分子催化剂、固定酶、离子交换树脂等;
(2)具有光学性能的功能高分子,如感光树脂、光刻胶、液晶高分子等;
(3)具有电学性能的功能高分子,如导电高分子、热电高分子、光电高分子等;
(4)具有导磁性能的高分子,如磁性塑料、磁性橡胶等;
(5)具有声学性能的功能高分子,如声电换能高分子,吸噪声防震高分子等;
(6)具有热响应性能的功能高分子,如形状记忆高分子等;
(7)具有医疗作用的功能高分子,如高分子医药、高分子人工脏器等。

功能高分子材料于20世纪60年代末开始得到发展。

目前已达到实用化的功能高分子有:离子交换树脂、分离功能膜、光刻胶、感光树脂、高分子缓释药物、人工脏器等等。

高分子敏感元件、高导电高分子、高分辨能力分离膜、高感光性高分子、高分子太阳能电池等功能高分子材料,即将达到实用化阶段。

功能高分子

功能高分子
功能高分子
——有传递作用的高分子及其 复合材料
产生与引进
定义与分类 功 能 高 分 子
应用
图片展示
发展与前景
产生与引进
功能高分子材料是上世纪60年代发展起来的新
兴领域,是高分子材料渗透到电子、生物、能 源等领域后开发涌现出的新材料。近年来,功 能高分子材料的年增长率一般都在10%以上, 其中高分子分离膜和生物医用高分子的增长率 高达50%。
物质、能量和信息作用的高分子及其复合材料, 或具体地指在原有力学性能的基础上,还具有 化学反应活性、光敏性、导电性、催化性、生 物相容性、药理性、选择分离性、能量转换性、 磁性等功能的高分子及其复合材料。
功能高分子是指具有某些特定 功能的高分子材料。 它们之所以具有特定的功能, 是由于在其大分子链中结合了 特定的功能基团,或大分子与 具有特定功能的其他材料进行 了复合,或者二者兼而有之。
殊化学和物理变化的聚合物,它能够对光 进行传输、吸收、贮存、转换的作用,在 功能高分子领域占有重要的地位。高传输 高分子材料如高分子光纤,今后的发展重 点是开发低光损耗,长距离光传输的光线 制品;同时,有机高分子的光成像技术主 要用于印刷制版、电子信息和影像领域, 其中光导高分子在光照时能引起电阻率的 明显下降,已取代硒鼓,成为复印机,激 光打印中关键材料。
定义与分类
高分子材料:macromolecular
material,以 高分子化合物为基础的材料。高分子材料是由 相对分子质量较高的化合物构成的材料,包括 橡胶、塑料、纤维、涂料、胶粘剂和高分子基 复合材料,高分子是生命存在的形式。所有的 生命体都可以看作是高分子的集合。
定义与分类
功能高分子材料一般指具有传递、转换或贮存
产生与引进
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 概述1.1 液晶的基本概念物质在自然界中通常以固态、液态和气态形式存在,即常说的三相态。

在外界条件发生变化时(如压力或温度发生变化),物质可以在三种相态之间进行转换,即发生所谓的相变。

大多数物质发生相变时直接从一种相态转变为另一种相态,中间没有过渡态生成。

例如冰受热后从有序的固态晶体直接转变成分子呈无序状态的液态。

而某些物质的受热熔融或被溶解后,虽然失去了固态物质的大部分特性,外观呈液态物质的流动性,但可能仍然保留着晶态物质分子的有序排列,从而在物理性质上表现为各向异性,形成一种兼有晶体和液体部分性质的过渡中间相态,这种中间相态被称为液晶态,处于这种状态下的物质称为液晶(liquid crystals)。

其主要特征是其聚集状态在一定程度上既类似于晶体,分子呈有序排列;又类似于液体,有一定的流动性。

液晶现象是1888年奥地利植物学家莱尼茨尔(F. Reinitzer)在研究胆甾醇苯甲酯时首先观察到的现象。

他发现,当该化合物被加热时,在145℃和179℃时有两个敏锐的“熔点”。

在145℃时,晶体转变为混浊的各向异性的液体,继续加热至179℃时,体系又进一步转变为透明的各向同性的液体。

研究发现,处于145℃和179℃之间的液体部分保留了晶体物质分子的有序排列,因此被称为“流动的晶体”、“结晶的液体”。

1889年,德国科学家将处于这种状态的物质命名为“液晶”(liquid crystals,LC)。

研究表明,液晶是介于晶态和液态之间的一种热力学稳定的相态,它既具有晶态的各向异性,又具有液态的流动性。

小分子液晶的这种神奇状态,引起了人们的浓厚兴趣。

现已发现许多物质具有液晶特性(主要是一些有机化合物)。

形成液晶的物质通常具有刚性的分子结构。

导致液晶形成的刚性结构部分称为致晶单元。

分子的长度和宽度的比例R>>l,呈棒状或近似棒状的构象。

同时,还须具有在液态下维持分子的某种有序排列所必需的凝聚力。

这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。

按照液晶的形成条件不同,可将其主要分为热致性和溶致性两大类。

热致性液晶是依靠温度的变化,在某一温度范围形成的液晶态物质。

液晶态物质从浑浊的各向异性的液体转变为透明的各向同性的液体的过程是热力学一级转变过程,相应的转变温度称为清亮点,记为Tcl。

不同的物质,其清亮点的高低和熔点至清亮点之间的温度范围是不同的。

溶致性液晶则是依靠溶剂的溶解分散,在一定浓度范围形成的液晶态物质。

除了这两类液晶物质外,人们还发现了在外力场(压力、流动场、电场、磁场和光场等)作用下形成的液晶。

例如聚乙烯在某一压力下可出现液晶态,是一种压致型液晶。

聚对苯二甲酰对氨基苯甲酰肼在施加流动场后可呈现液晶态,因此属于流致型液晶。

根据分子排列的形式和有序性的不同,液晶有三种结构类型:近晶型、向列型和胆甾型。

(见图12—1)。

近晶型向列型胆甾型图12—1 液晶结构示意图(1)近晶型液晶(smectic liquid crystals,S)近晶型液晶是所有液晶中最接近结晶结构的一类,因此得名。

在这类液晶中,棒状分子互相平行排列成层状结构。

分子的长轴垂直于层状结构平面。

层内分子排列具有二维有序性。

但这些层状结构并不是严格刚性的,分子可在本层内运动,但不能来往于各层之间。

因此,层状结构之间可以相互滑移,而垂直于层片方向的流动却很困难。

这种结构决定了近晶型液晶的粘度具有各向异性。

但在通常情况下,层片的取向是无规的,因此,宏观上表现为在各个方向上都非常粘滞。

根据晶型的细微差别,近晶型液晶还可以再分成9个小类。

按发现年代的先后依次计为SA、SB 、 (I)近晶型液晶结构上的差别对于非线性光学特性有一定影响。

(2)向列型液晶nematic liquid crystals,N)在向列型液晶中,棒状分子只维持一维有序。

它们互相平行排列,但重心排列则是无序的。

在外力作用下,棒状分子容易沿流动方向取向,并可在取向方向互相穿越。

因此,向列型液晶的宏观粘度一般都比较小,是三种结构类型的液晶中流动性最好的一种。

(3)胆甾型液晶(Cholesteric liquid crystals,Ch)在属于胆甾型液晶的物质中,有许多是胆甾醇的衍生物,因此得名。

但实际上,许多胆甾型液晶的分子结构与胆甾醇结构毫无关系。

但它们都有导致相同光学性能和其他特性的共同结构。

在这类液晶中,分子是长而扁平的。

它们依靠端基的作用,平行排列成层状结构,长轴与层片平面平行。

层内分子排列与向列型类似,而相邻两层间,分子长轴的取向依次规则地扭转一定的角度,层层累加而形成螺旋结构。

分子长轴方向在扭转了36 °以后回到原来的方向。

两个取向相同的分子层之间的距离称为螺距,是表征胆甾型液晶的重要参数。

由于扭转分子层的作用,照射在其上的光将发生偏振旋转,使得胆甾型液晶通常具有彩虹般的漂亮颜色,并有极高的旋光能力。

构成上面三种液晶的分子其刚性部分均呈长棒型。

现在发现,除了长棒型结构的液晶分子外,还有一类液晶是由刚性部分呈盘型的分子形成。

在形成的液晶中多个盘型结构叠在一起,形成柱状结构。

这些柱状结构再进行一定有序排列形成类似于近晶型液晶。

这一类液晶通常记为D。

这类盘状液晶根据其结构上的细微不同又可分为4类,其中Dhd型液晶表示层平面内柱与柱之间呈六边形排列,分子的刚性部分在柱内排列无序;而Dho型液晶分子的刚性部分在柱内的排列是有序的。

Drd型液晶分子在层平面内柱与柱之间呈正交型排列。

Dt型液晶所形成的柱结构不与层平面垂直,而是倾斜成一定角度。

盘状分子形成的柱状结构如果仅构成一维有序排列,也可以形成向列型液晶,通常用Nd来表示。

1.2 高分子液晶及其分类某些液晶分子可连接成大分子,或者可通过官能团的化学反应连接到高分子骨架上。

这些高分子化的液晶在一定条件下仍可能保持液晶的特征,就形成高分子液晶。

高分子液晶的结构比较复杂,因此分类方法很多,常见的可归纳如下:按液晶的形成条件,与小分子液晶一样,可分为溶致性液晶、热致性液晶、压致型液晶、流致型液晶等等。

按致晶单元与高分子的连接方式,可分为主链型液晶和侧链型液晶。

主链型液晶和侧链型液晶中根据致晶单元的连接方式不同又有许多种类型。

表12—1列举了其中的一些类型。

根据高分子链中致晶单元排列形式和有序性的不同,高分子液晶可分为近晶型、向列型和胆甾型等。

至今为止大部分高分子液晶属于向列型液晶。

主链型液晶大多数为高强度、高模量的材料,侧链型液晶则大多数为功能性材料。

按形成高分子液晶的单体结构,可分为两亲型和非两亲型两类。

两亲型单体是指兼具亲水和亲油和亲有机溶剂)作用的分子。

非两亲型单体则是一些几何形状不对称的刚性或半刚性的棒状或盘状分子。

表12—2列出了各类高分子液晶的分子构型。

实际上,由两亲型单体聚合而得的高分子液晶数量极少,绝大多数是由非两亲型单体聚合得到的,其中以盘状分子聚合的高分子液晶也极为少见。

两亲型高分子液晶是溶致性液晶,非两亲型液晶大部分是热致性液晶。

与小分子液晶相比,高分子液晶具有下列特殊性:①热稳定性大幅度提高;②热致性高分子液晶有较大的相区间温度;③粘度大,流动行为与—般溶液显著不同。

从结构上分析,除了致晶单元、取代基、末端基的影响外,高分子链的性质、连接基团的性质均对高分子液晶的相行为产生影响。

1.3 高分子液晶的热力学本质液晶是一种不同寻常的相态。

只有当分子比较僵硬、长径比较大和分子间有较强吸引力时,这种相态才会出现。

众所周知,高分子物质有两个经典的相态,固态和液态。

固态为晶态,液态则包括流动态和玻璃态两种。

晶态是具有三维有序结构的相态。

当它被加热熔融时,熔融熵ΔSf由三部分的贡献所组成,即:ΔSf = ΔSP + ΔS + ΔSc (12—1)其中,ΔSP为位置无序熵,ΔS 为取向无序熵,ΔSc为构象无序熵。

这样,在晶态和液态之间就会有三个中介相态,取向有序、位置无序的称为液晶;位置有序、取向无序的称为塑晶;位置有序、取向有序而构象无序的称为构象无序晶。

这些中介相既有某种程度的如晶体那样的长程有序,又有某种程序的如液体那样的运动性。

而当冷却至玻璃化温度以下时,它们又未能形成三维有序晶体,而只保持了三维以下的有序性,因此得到了三个相应的玻璃态:液晶玻璃、塑晶玻璃和构象无序晶玻璃。

研究认为,塑晶在高分子中不多见,构象无序晶极不稳定,而只有液晶十分常见。

液晶的取向有序性带来了材料的高强度和高模量特性,因此具有很大的实际应用前景。

对液晶取向程度的研究发现,用光学法测定的取向度约为8 %~9 %,而从熔融熵数据计算仅为5%~1 %。

这种差别的本质可能在于各种方法对取向的理解不同。

前者反映了分子链排列的一致性,后者则反映了液晶和熔体间构象的相似性。

或者说,在液晶态分子链保持了取向的一致,可是链所实现的构象已与熔体十分接近。

1.4 高分子液晶的表征热台偏光显微镜法(POM法)示差扫描量热计法(DSC法)X射线衍射法核磁共振光谱法介电松弛谱法相容性判别法光学双折射法2 高分子液晶的分子结构特征2.1 高分子液晶的化学结构液晶是某些物质在从固态向液态转换时形成的一种具有特殊性质的中间相态或过渡相态。

显然过渡态的形成与分子结构有着内在联系。

液晶态的形成是物质的外在表现形式,而这种物质的分子结构则是液晶形成的内在因素。

毫无疑问,分子结构在液晶的形成过程中起着主要作用,同时液晶的分子结构也决定着液晶的相结构和物理化学性质。

研究表明,能够形成液晶的物质通常在分子结构中具有刚性部分,称为致晶单元。

从外形上看,致晶单元通常呈现近似棒状或片状的形态,这样有利于分子的有序堆砌。

这是液晶分子在液态下维持某种有序排列所必须的结构因素。

在高分子液晶中这些致晶单元被柔性链以各种方式连接在一起在常见的液晶中,致晶单元通常由苯环、脂肪环、芳香杂环等通过一刚性连接单元(X,又称中心桥键)连接组成。

构成这个刚性连接单元常见的化学结构包括亚氨基(-C=N-)、反式偶氮基(-N=N-)、氧化偶氮(-NO=N-)、酯基(-COO-)和反式乙烯基(-C=C-)等。

在致晶单元的端部通常还有一个柔软、易弯曲的基团R,这个端基单元是各种极性的或非极性的基团,对形成的液晶具有一定稳定作用,因此也是构成液晶分子不可缺少的结构因素。

常见的R包括—R’、—OR’、—COOR’、—CN、—OOCR’、—COR’、—CH=CH —COOR’、—Cl、—Br、—NO2等。

对于高分子液晶来讲,致晶单元如果处在高分子主链上,即成为主链型高分子液晶。

而如果致晶单元是通过一段柔性链作为侧基与高分子主链相连,形成梳状结构,则称为侧链型高分子液晶。

主链型高分子液晶和侧链型高分子液晶不仅在液晶形态上有差别,在物理化学性质方面往往表现出相当大的差异。

相关文档
最新文档