七年级数学上册第1章有理数1.6有理数的乘方第1课时有理数的乘方教案新版湘教版

合集下载

2023-2024学年湘教版数学七年级上册 1.6 有理数的乘方

2023-2024学年湘教版数学七年级上册  1.6 有理数的乘方

要 8 000 000 000 000 美元基建投资. 将 8 000 000 000 000
用科学记数法表示为 8×10n,则 n 的值为( C )
A. 10
B. 11
C. 12
D. 13
典例精析
例1 下列各数的书写形式是否是科学记数法的形式?
(1) 1.5×103;
(2) 29×104;
(3) 0.32×103;
3
=
2 3
2 3
2 3
=
8 27
.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 1. 负数的奇次幂是负数,负数的偶次幂是正数.
2. 正数的任何正整数次幂都是正数, 0 的任何正整数次幂都是 0.
练一练
你能迅速的判断下列各幂的正负吗?
165, 254, ( 7)9, ( 3)6, ( 1)101,
(3)一组数列:1,-4,9,-16,25,……
则第 n 个数可表示为_(_-_1_)_n_-1___n_2_或__(_-_1_)_n_+_1__n__2 _
1. 填空: (1) -(-3)2 = -9 ;
(3) (-5)3 = -125 ;
(2) -32 = -9 ; (4) 0.13 = 0.001 ;
思考 如何表示前面出 现的 186 亿,10 亿亿, 12.5 亿亿 这样的大数呢?
用科学记数法表示数 合作探究 回顾有理数的乘方,计算: 101 =_1_0_, 102 =_1_0_0_,103 =_1_0_0_0___,104 =_1_0_0_0_0__, 106 =_1_0_0_0_0_0_0__,1010 =_1_0_0_0_0_0_0_0_0_0_0__,…… 讨论: (1) 指数与运算结果中的 0 的个数有什么关系? (2) 指数与运算结果的数位有什么关系

湘教版数学七年级上册1.6《有理数的乘方》说课稿1

湘教版数学七年级上册1.6《有理数的乘方》说课稿1

湘教版数学七年级上册1.6《有理数的乘方》说课稿1一. 教材分析《有理数的乘方》是湘教版数学七年级上册第1章第6节的内容。

本节内容是在学生已经掌握了有理数的加减乘除、相反数、绝对值等概念的基础上进行讲解的。

有理数的乘方是数学中一个非常重要的概念,它不仅在生活中有着广泛的应用,而且也是学习更高年级数学的基础。

本节内容主要包括有理数的乘方定义、乘方的运算规则、乘方的性质等。

学生需要理解乘方的概念,掌握乘方的运算规则,了解乘方的性质,并能够运用乘方解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除、相反数、绝对值等概念有一定的了解。

但是,学生对乘方的理解可能还存在一定的困难,因为乘方是一个比较抽象的概念。

此外,学生可能对乘方的运算规则和性质不够熟悉,需要通过实例进行讲解和练习。

三. 说教学目标1.知识与技能目标:学生能够理解有理数的乘方概念,掌握有理数的乘方运算规则,了解有理数的乘方性质。

2.过程与方法目标:通过实例讲解和练习,培养学生运用乘方解决实际问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的逻辑思维能力。

四. 说教学重难点1.教学重点:有理数的乘方概念,乘方的运算规则,乘方的性质。

2.教学难点:乘方的运算规则和性质的理解和运用。

五. 说教学方法与手段1.教学方法:采用讲授法、实例讲解法、练习法、小组讨论法等。

2.教学手段:黑板、粉笔、多媒体课件等。

六. 说教学过程1.引入新课:通过生活中的实例,如计算面积、体积等,引出乘方的概念。

2.讲解乘方:讲解乘方的定义,通过示例演示乘方的运算过程,让学生理解乘方的意义。

3.乘方的运算规则:讲解乘方的运算规则,如乘方的乘法、除法、幂的乘方等,并通过实例进行演示和练习。

4.乘方的性质:讲解乘方的性质,如乘方的零次幂、乘方的正负性等,并通过实例进行演示和练习。

5.运用乘方解决实际问题:通过实例,让学生运用乘方解决实际问题,如计算物理中的速度、路程等。

七年级数学上册第1章有理数1.5有理数的乘法和除法1.5.1有理数的乘法第2课时乘法的运算律课件新版湘教版

七年级数学上册第1章有理数1.5有理数的乘法和除法1.5.1有理数的乘法第2课时乘法的运算律课件新版湘教版

2019/5/25
最新中小学教学课件
23
谢谢欣赏!
2019/5/25
最新中小学教学课件
24
A.abc>0 C.abc=0
B.abc<0 D.无法确定
1. 计算-2×-13×114×(-3)×(-91)所得的正确结果
为( C )
91 A. 7 C.13
B.-13 546
D. 42
2. 计算:18+152×(-24)+12×12-13×32的正确结果是 (B)
6. 下列说法中正确的是( B ) A.几个有理数相乘,当负因数有奇数个时,积为 负 B.几个有理数相乘,当积为负数时,负因数有奇数 个 C.几个有理数相乘,当正因数有奇数个时,积为负 D.几个有理数相乘,当因数有奇数个时,积为负
7. 已知 a,b,c 的位置在数轴上如图所示,则 abc 与 0 的关系是( A )
(2)用规律计算:
21+1 × 13-1 × 14+1 × 15-1 ×…× 20118+1
×20119-1.
解:原式=
1 (1)(1) 1009 个
=-1.
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。

七年级数学上册 第1章 有理数 1.6.2《科学计数法》导学案(新版)湘教版

七年级数学上册 第1章 有理数 1.6.2《科学计数法》导学案(新版)湘教版

科学计数法一、学习目标:1.知道科学记数法,会用科学记数法表示数;2.经历用科学记数法表示大数的过程,体验科学记数法表示数的优越性;二、学习重难点:1、会用科学记数法表示数2、会根据科学记数法表示的数求出原数.三、预习感知1、由乘方的意义知道:101=________,102=________,103=________,104=________,105=________,…2、10 的n次幂等于10 … O ,那么在l 后面有多少个0 ?反过来,把数表示成乘方的形式,100 =__________,1000 =___________ , 10000=___________,100000 = ______________,…3、数10 …在l 后面有n个0 .怎样用乘方表示这个数?利用10 的乘方可表示些大数.如:150000000=1.5×__________=1.5×____________。

4、议一议:①上面所说的数1.5×108怎样读?②把数150000000写1.5×108的形式,有什么优点?5、把一个绝对值大于10 的数记做_____________的形式,其中a是整数数位只有一位的数,这种记数法叫做____________.四、合作探究探究一:有理数乘方的意义阅读教材P41“议一议〞之前的内容,寻找规律,完成下面内容:在小学我们就学过,2×2可以简记为22,2×2×2可以简记为23,那么2×2×2×2可以简记为,2×2×2×2×2可以简记为。

类似地,〔-2〕×〔-2〕= ;〔-2〕×〔-2〕×〔-2〕= ;〔-2〕×〔-2〕×〔-2〕×〔-2〕= ;〔-2〕×〔-2〕×〔-2〕×〔-2〕×〔-2〕= 。

湘教版七年级上有理数的运算教案

湘教版七年级上有理数的运算教案

第二讲有理数的运算一、引学1、有理数的运算包括、、、、等五种。

2、有理数的加法法则:同号两数相加,;异号两数相加,;互为相反数的两数相加;一个数与0相加,。

3、有理数的减法法则:减去一个数,等于。

4、有理数的乘法法则:异号两数相乘,并把;同号两数相乘,并把;任何数与0相乘,。

5、有理数的除法法则:除以一个数(非零数),等于。

6、有理数的乘方法则:求n个相同的因数的的运算,叫做乘方。

正数的任何正整数之幂都是;负数的奇次幂是,负数的偶次幂是;0的任何次幂都是。

7、有理数的混合运算:先算,再算,最后算,如果用括号,就。

8、运算律:加法交换律:a b+=;加法结合律:()++=。

a b c乘法交换律:a b⨯=;乘法结合律:()a b c⨯⨯=。

乘法对加法的分配律:()⨯+=。

a b c9、倒数:的两个数互为倒数。

0 倒数。

10、科学记数法:把一个绝对值大于10的数记成的形式(其中1≤a<10,n为正整数),这种记数方法叫做科学记数法。

二、引思1、2的倒数是( ) A. 12 B. 12- C. 2 D.﹣2 2、计算:12-+的结果是( )A .1-B .1C .3-D .33. 2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23 4、下列等式成立是( ) A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 5、根据我国第六次人口普查公布的数据,登记的全国人口数量约为1340 000 000人,这个数据用科学记数法表示为( )A.134×107人B.13.4×108 人C.1.34×109人D.1.34×1010人6、为改善湘潭河东地区路网结构,优化环境,增强城市功能,湖南湘潭市河东风光带于2010年7月18日正式开工,总投资为880000000元,用科学计数法表示这一数字为_________元.7、如图,是一个数值转换机.若输入数为3,则输出数是__ ____.8、规定一种新的运算:ba b a 11+=⊗,则=⊗21__ __.三、引练:1、计算:⑴.(6)(3)-+- ⑵.8(13)+-⑶.813-+ ⑷.(7)4(3)(4)5-++-+-+2、计算⑴.7(3)-- ⑵.(8)(13)---⑶.(8)(3)75---+- ⑷.48145-+-+( )2-13、计算:⑴.(7)(3)-⨯- ⑵.(7)3-⨯⑶.(4)(18)(25)-⨯-⨯- ⑷.15724()3612-⨯-+4、计算:⑴.(9)(3)-÷- ⑵.(9)3-÷⑶.1233-÷⨯ ⑷.2411()()()3152-⨯-÷-⨯-5、计算:⑴.3(2)- ⑵.2(3)- ⑶.221(5)()5-⨯-6、计算: ⑴.122(2)()2-÷⨯-÷- ⑵.94(81)(16)49-÷⨯÷- ⑶.2111()()32305⎡⎤-÷⨯-⎢⎥⎣⎦⑷.221(3)323-⨯-⨯四、引伸:1、为了推进全民医疗保险工作,截至2011年5月31日,今年中央财政已累计下拨医疗卫生补助金1346亿元.这个金额用科学记数法表示为 元.2、按下面程序计算:输入3x =,则输出的答案是__ _ .3、对任意实数a b 、,都有2a b a b ⊗=-,例如,232327⊗=-=,那么21________⊗=. 4、 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.5、填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .6、已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 7、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4 8、计算:⑴.(13599)(246100)+++⋅⋅⋅+-+++⋅⋅⋅+⑵.211⨯+321⨯+431⨯+…+120102011⨯。

新沪科版七年级上册数学教学课件 第1章 有理数 1.6 有理数的乘方 第1课时 有理数的乘方

新沪科版七年级上册数学教学课件 第1章 有理数 1.6 有理数的乘方 第1课时 有理数的乘方
这种求n个相同因数 的积的运算,叫作乘方。
乘方的结果叫作幂。
在an中,a叫作底数,n叫作a的幂的指数, 简称指数。 an 读作a的n次方,也可以读作a的n次幂。
底数
an
指数
幂(乘方的结果叫作幂)
a n 读作a的n次方; a n 看作是a的n次方的结果时,也可读作
a的n次幂.
在幂56中,底数是 5 ,指数是 6 ;
【教材P43 练习 第1题】
1. 举出用乘方计算的实例.
【教材P44 练习 第2题】
2. 填空:
(1)在 74 中,底数是___7__,指数是__4___;
(2)在
1 2
5中,底数是___12__,指数是__5___.
【教材P44 练习 第3题】
3. 计算: (1)(-1.5)2;2.25 (2)4×(-2)3; -32
1.6 有理数的乘方
第1课时 有理数的乘方
沪科版七年级上册
试一试:将一张纸按下列要求对折。 对折2次可裁成4张,即2×2张; 对折3次可裁成8张,即2×2×2张.
问题: 若对折10次可裁成几张?请用一个算式表示
(不用算出结果)
若对折100次,算式中有几个2相乘?
对折10次裁成的张数用以下算式计算 2×2×2×2×2×2×2×2×2×2 是一个有10个2相乘的乘积式;
例1 计算: (1)(-4)3 ;
用计算器 (2)(-2)4.怎么算呢?
解:(1)(-4)3=(-4)×(-4)×(-4)= -64 .
(2)(-2)4= (-2)×(-2)×(-2)×(-2) = 16 .
非0有理数的乘方结果符号:正数的任何 次乘方都取正号;负数的奇次乘方取负号, 负数的偶次乘方取正号.

人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)

人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)
举例:计算一个正方体的体积,边长为a,则体积为a^3。
2.教学难点
(1)零指数幂的理解:理解零指数幂的意义,掌握a^0 = 1(a ≠ 0)的规律。
难点解析:学生可能会对零指数幂的意义产生疑问,需要通过实例和图示等方法解释零指数幂的含义。
(2)负整数指数幂的计算:掌握负整数指数幂的计算方法,理解其与正整数指数幂的关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、运算法则及其在实际中的应用。通过实践活动和小组讨论,我们加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我深刻体会到有理数乘方这一知识点的教学既要注重概念的理解,又要关注运算技能的培养。以下是我对这次教学的几点反思:
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题,如计算不同形状的体积和面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算来演示有理数乘方的实际应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
1.关于概念教学:在讲解有理数乘方的概念时,我尽量使用简洁明了的语言,并通过生活实例帮助学生理解。从学生的反馈来看,大部分同学能够较好地掌握乘方的定义,但仍有部分同学对零指数幂和负整数指数幂的概念理解不够透彻。在今后的教学中,我需要更加关注这部分学生的理解情况,通过设计更具针对性的问题,引导他们深入思考。
4.提高学生方法,提高运算速度和准确性,培养良好的数学运算习惯。
5.培养学生的数学应用意识:通过实例分析,使学生认识到数学知识在生活中的广泛应用,激发他们学习数学的兴趣,增强数学应用意识。

2024秋季新教材湘教版七年级上册数学1.5.3 有理数的乘除混合运算课件

2024秋季新教材湘教版七年级上册数学1.5.3 有理数的乘除混合运算课件

复习导入
1. 叙述有理数的乘法法则. 异号两数相乘得负数,并且把绝对值相乘; 任何数与 0 相乘,都得 0; 同号两数相乘得正数,并且把绝对值相乘 2. 叙述有理数的除法法则. 同号两数相除得正数, 异号两数相除得负数,并且把它们的绝对值相除; 0 除以任何一个不等于 0 的数都得 0. (除以一个不等于零的数等于乘上这个数的倒数)
典例精析
例1 计算:(1) (-5)×6÷(-3); (2) (-56)÷(-2)÷(-8).
解 (1) (-5)×6÷(-3)=(-30)÷(-3)=10.
(2) (-56)÷(-2)÷(-8) =28÷(-8)
= 7.
2
典例精析
例2
计算:(1) (-10)÷[(-5)×(-2)];
2
24
3 4
1 4

解 (1) 原式= (-10)÷10 ······ 先算括号内
=-1.
(2)
原式=
24
4 3
1 4
······ 除法转化为乘法
24
4 3
1 4
······ 乘法结合律
24
1 3
=-8.
3
15 7
5 3
25 14

4
3 5
4 9
8 15
6 7
.
(3)
原式=
×(-4)
=
8 7
.
(4)18 ÷6×(-2) = 3×(-2)= -6.
2. 计算:
(1)
1 2
1 3
3 4

(2)(3.5)
1 8
1 7

(3)
24
1 6
13

2022年人教版七年级数学上册第一章有理数教案 乘方(第1课时)

2022年人教版七年级数学上册第一章有理数教案  乘方(第1课时)

第一章有理数1.5 有理数的乘方1.5.1 乘方第1课时一、教学目标【知识与技能】1.正确理解乘方、幂、指数、底数等概念.2.会进行有理数乘方的运算.【过程与方法】通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.【情感态度与价值观】培养探索精神,体验小组交流、合作学习的重要性.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正确理解乘方的意义,掌握乘方运算法则.【教学难点】正确理解乘方、底数、指数的概念,并合理运算.五、课前准备教师:课件、直尺、计算器等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8844米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?(出示课件2)(二)探索新知1.师生互动,探究乘方的意义教师问1:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的面积为2×2×2=8(cm2).观察式子2×2,2×2×2有何共同特点?学生回答:都是相同因数的乘法.教师问2:为了简便,我们可以将它们记作什么,读作什么?学生回答:2×2记作22,读作2的平方;2×2×2记作23,读作2的立方.教师问3:某种细胞每30分钟便由一个分裂成两个,经过3小时这种细胞由1个能分裂成多少个?(出示课件4)分裂方式如下所示:(出示课件5)学生讨论后回答:2×6=12.教师问4:这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?(出示课件6)师生共同解答如下:一次:2个两次:2×2个三次:2×2×2个四次:2×2×2×2个六次:2×2×2×2×2×2个教师问5:请比较细胞分裂四次后的个数式子:2×2×2×2和细胞分裂六次后的个数式子: 2×2×2×2×2×2. 这两个式子有什么相同点?(出示课件7)学生回答:它们都是乘法,并且它们各自的因数都相同.教师问6:这样的运算能像平方、立方那样简写吗?学生回答:2×2×2×2记作24,2×2×2×2×2×2记作26.教师问7:24读作2的4次方(幂),26读作2的6次方(幂).同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?学生回答:(-2)×(-2)×(-2)×(-2)记作(-2)2,读作负2的四次方(幂).(-25)×(-25)×(-25)×(-25)×(-25)记作(-25)5,读作负五分之二的五次方(幂).教师问8:a·a·a·a·a·a可以记作什么?读作什么?学生回答:a·a·a·a·a·a可以记作a6,读作a的六次方(幂)教师问9:进一步提出:a·a·…·a,(n个a相乘)(n为正整数)呢?学生回答:可以记作a n,读作a的n次方.教师讲解:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说a可以取任意有理数.总结点拨:(出示课件8)一般地,n个相同的因数a相乘,记作a n,读作“a的n次幂(或a的n次方)”,即教师讲解:求n个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.总结点拨:(出示课件9)这种求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂.一个数可以看作这个数本身的一次方,例如,8就是81,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.例1:计算:(出示课件11)2)3.(1)(–4)3;(2)(–2)4;(3)(-3师生共同解答如下:解:(1)(–4)3=(–4)×(–4)×(–4)=–64;(2)(–2)4 =(–2)×(–2)×(–2)×(–2)=16;(3).322228333327⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭教师问10:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?师生共同解答如下:(出示课件12)负数的奇次幂是负数,负数的偶次幂是正数.正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.例2:用计算器计算(–8)5和(–3)6.(出示课件14)师生共同解答如下:开启计算器后按照下列步骤进行:8 5显示:(-8)^ 5-32768 即(-8)5=-327683 6显示:(-3)^ 6729 即(-3)6=7298 5 =显示:-327683 6显示:729所以(-8)5=-32768 (-3)6=729 例3:计算:(出示课件16)(1)22 -3-3⨯()()(2)–23×(–32)(3)64÷(–2)5(4)(–4)3÷(–1)200+2×(–3)4师生共同解答如下:解:(1)22(-3)(-)329(-)6;3=⨯=-⨯(2)–23×(–32)= –8×(–9)=72;(3)64÷(–2)5=64÷(–32)= –2;(4)(–4)3÷(–1)200+2×(–3)4= –64÷1+2×81=98教师问11:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?(出示课件17)学生回答:先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算.(三)课堂练习(出示课件19-23)1.计算(–3)2等于()A.5 B.–5C.9 D.–92.计算(–1)2017的结果是()A. –1B. 1C. 2017D. –20173.下列说法中正确的是( )A. 23表示2×3的积B. 任何一个有理数的偶次幂是正数C. -32与(-3)2互为相反数D.一个数的平方是94 ,这个数一定是 32 4.在 – |–3|3,– (–3)3, (–3)3 , –33中,最大的数是( )A.– |–3|3B.– (–3)3C. (–3)3D. –335.对任意实数a,下列各式不一定成立的是( )A. a 2= (–a)2B. a 3= (–a)3C. |a| = |–a|D. a 2 ≥06.填空:(1)–(–3)2= ______ ; (2)–32= ___________ ;(3)(–5)3= _______ ; (4)0.13= ___________ ;(5)(–1)9= ________ ; (6)(–1)12= _________;(7)(–1)2n =_________ ; (8)(–1)2n+1=________;(9)(–1)n =____________. .7.计算:(-6)2×(31-21) . 8.厚度是0.1毫米的纸,将它对折1次后,厚度为0.2毫米.(1)对折3次后,厚度为多少毫米?(2)对折7次后,厚度为多少毫米?(3)用计算器计算对折30次后纸的厚度.参考答案:1.C2.A3.C4.B5.B6.(1)-9;(2)-9;(3)-125;(4)0.001;(5)-1;(6)1;(7)1;(8)-1;(9)-1(当n 为奇数时),1(当n 为偶数时)7.解:(-6)2×(31-21)=36×21-36×31=18-12=6 8.(1)0.8毫米;(2)12.8毫米;(3)0.1×230=0.1×1073741824=107374182.4(毫米)107374182.4毫米=107374.1824米.教师补充:107374.1824米>8848.86米(珠穆朗玛峰高度)(四)课堂小结今天我们学了哪些内容:1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题.(五)课前预习预习下节课(1.5.1)43页到44页的相关内容。

湘教版七年级数学上册的教学计划(通用12篇)

湘教版七年级数学上册的教学计划(通用12篇)

湘教版七年级数学上册的教学计划(通用12篇)湘教版七年级数学上册的教学计划篇1一、基本情况分析七年级两个班学生的总体情况如下:1班学生:33人,其中男生18人,女生15人。

2班学生42人,其中女生20人,男生21人;通过小学的升学成绩来看,学生的数学成绩参差不齐,分数高的,有90分以上的分数低的,还不过30分,总体上看,学生的数学成绩较差,在学生的数学知识上看,小学学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩较差,但仍有部分学生对数学严重丧失信心,谈数学而色变,因此要给这部分学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活。

二、教材分析走进数学世界:这部分内容是以通俗易懂的语言、丰富有趣的数学问题、数学家的生平史料等内容,让学生在极其轻松的氛围中,与数学交朋友,学会做一些简单的数学问题,使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识,使学生对数学产生一定的兴趣,获得学好数学的自信心,产生继续学习的欲望。

这部分内容在小学数学和中学数学的联系中起到承上启下的作用,这为学生以后初中数学各部分的内容作了一个有益的铺垫。

有理数:这部分的主要内容是有理数的概念及其加减法、乘除法、和乘方运算,并配合有理数的运算学习有效数字和近似数的基本知识,以及使用计算器作简单的有理数运算。

1.5.1有理数的乘方(第一课时)(教学设计)七年级数学上册(人教版)

1.5.1有理数的乘方(第一课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第一课时),内容包括:有理数的乘方、幂、底数、指数的概念及意义、有理数的乘方运算.2.内容解析《有理数的乘方》是义务教育课程标准实验教科书新人教版《数学》七年级上册第一章的内容,有理数的乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和八年级数学开方、整数指数幂的基础,起到承前启后、铺路架桥的作用.基于以上分析,确定本节课的教学重点为:理解并掌握有理数的乘方、幂、底数、指数的概念及意义.二、目标和目标解析1.目标(1)理解并掌握有理数的乘方、幂、底数、指数的概念及意义.(转化思想)(2)能够正确进行有理数的乘方运算.(运算能力)2.目标解析通过自主学习理解有理数乘方的乘方、底数、指数、幂的概念.通过探究掌握乘方运算的符号法则并能正确进行乘方运算.通过现实情境及题组练习让学生经历探索乘方意义及乘方符号法则的过程,发展学生的合情推理能力和演绎推理能力,体会由特殊到一般的数学思想及转化的数学思想.让学生体会在具体的情景中从数学角度去发现和解决问题,在与他人合作交流的过程中,较好地理解他人的思考方法和结论.在乘方运算中增强学生的数感,感悟乘方符号的简捷美;让学生在经历发现问题、探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,增强学生学好数学的自信心.三、教学问题诊断分析七年级学生思维比较活跃,喜欢发表自己的见解而且具备小组合作学习的经验,从知识体系上来说,学生已经学习了有理数的加、减、乘、除运算,对有理数运算法则及特点已经有了初步认识,具备了学习本节课的必要条件.但是学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象.所以在本节课的教学中应予以简单明白,深入浅出的分析.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘方运算的符号法则.四、教学过程设计(一)情境引入某种细胞每过30分钟便由1个分裂成2个. 经过5时,这种细胞由1个能分裂成多少个?(二)自学导航边长为2cm 的正方形的面积是2×2=4(cm 2);棱长为2cm 的正方体的体积2×2×2=8(cm 3).2×2记作22,读作“2的平方”(或“2的二次方”);2×2×2记作23,读作“2的立方”(或“2的三次方”).2×2×2×2×2×2×2×2×2×2记作_____,读作___________.(-2)×(-2)×(-2)×(-2)记作_____,读作___________.(-52)×( -52)×(-52)×(-52)×(-52)记作______,读作___________. 【归纳】一般地,n 个相同的因数a 相乘,记作a n ,读作“a 的n 次幂(或a 的n 次方)”,即乘方的定义:这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素:一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.【迁移应用】1.(-5)3的底数是 ,指数是 ,(-7)6表示6个 相乘,读作 ,也读作-7的 .2.(−32)5表示 个 相乘,读作 的 次方,也读作 的 次幂,其中-32叫做 ,6叫做 .(三)合作探究探究1:(-2)4与-24一样吗?为什么?(-2)4表示4个-2相乘,即:(-2)×(-2)×(-2)×(-2)-24表示4个2相乘的相反数,即:-2×2×2×2(-2)4与-24互为相反数.【归纳】负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来. 探究2:432⎪⎭⎫ ⎝⎛与324一样吗?为什么? 32×32×32×32记作432⎪⎭⎫ ⎝⎛;32222⨯⨯⨯记作324. 432⎪⎭⎫ ⎝⎛与324是不相同的. 【归纳】分数的乘方,在书写时一定要把整个分数(连同负号)用小括号括起来.(四)考点解析例1.下列对于-34的叙述正确的是( )A.读作“-3的4次幂”B.底数是-3,指数是4C.表示4个3相乘的积的相反数D.表示4个-3相乘的积【迁移应用】1.填空:2.-35的4次幂记为( )A.-345B.-(35)4C.-(−35)4D. (−35)4例2.计算:(1)34=__________=_____; (2)(-3)4=____________________=_____;(3)53=________=_____; (4)(-5)3=_______________=_____;(5)(34)3=_________=_____; (6)(−34)3=_________________=_____;(7)-34=___________=_____; (8)(-1)2034=__________________=_____.【迁移应用】1.下列各数:-(-2),(-2)2,-22,(-2)3,其中负数的个数为( )A.1B.2C.3D.42.下列各组数中,其值相等的是( )A.23和32B.-32和(-3)2C.-23和(-2)3D. (−23)3和-233 3.计算:(1)63; (2)-53; (3)(-4)4; (4)06; (5)(-2)7; (6)(-0.3)3; (7)(-12)5. 解:(1)原式=6×6×6=216;(2)原式=-5×5×5=-125;(3)原式=(-4)×(-4)×(-4)×(-4)=256;(4)原式=0;(5)原式=(-2)×(-2)×(-2)×(-2)×(-2)×(-2)×(-2)= -128;(6)原式=(-0.3)×(-0.3)×(-0.3)=-0.027;(7)原式= (-12)×(-12)×(-12)×(-12)×(-12)=-132.(五)自学导航不计算下列各式,你能确定其结果的符号吗?从计算结果中,你能得到什么规律?⑴(-2)51; ⑴(-2)50; ⑴250; ⑴251;⑴(-1)2012; ⑴(-1)2013; ⑴02012; ⑴12013.【归纳】(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(六)考点解析例3.(1)比较各组中两个数的大小:⑴12_____21; ⑴23_____32; ⑴34____43; ⑴45____54.(2)将上题的结果进行归纳,比较n n+1与(n+1)n (n 为正整数)的大小.(3)根据归纳的结论,比较999998与998999的大小.解:(2)当n <3时,n n+1<(n+1)n ;当n≥3时,n n+1>(n+1)n .(3)999998<998999【迁移应用】1.比较大小:(1)(32)2_____(32)3; (2)(12)4_____(13)4.2.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则( )A.a>b>cB.b>c>aC.b>a>cD.c>a>b3.将下列各数用“<”号连接起来:(1)23,(23)2,(23)3,(23)4; (2)15,25,35,45.解:(1)23=5481, (23)2=49=3681,(23)3=827=2481,(23)4=1681;所以 (23)4<(23)3<(23)2<23.(2)15=1,25=32,35=243,45=1024;所以15<25<35<45.例4.计算:(1)2233(-)(-)⨯ (2)-23×(-32) (3)64÷(-2)5(4)(-4)3÷(-1)200+2×(-3)4 22236;33解:(1)(-)(-)=9(-)⨯⨯=-(2)-23×(-32)=-8×(-9)=72;(3)64÷(-2)5=64÷(-32)=-2;(4)(-4)3÷(-1)200+2×(-3)4=-64÷1+2×81=98思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?【运算顺序】先算乘方,后算乘除;如果遇到括号就先进行括号里的运算.【迁移应用】计算:(1)−23÷49×(−23)2; (2)−32÷23×(1−13)2; (3)(−1)9×(−2)2017×(−12)2016.(1)解原式 =−8÷49×49 =−8×94×49=-8; (2)解原式=−9×32×49=−6;(3)解原式=(−1)×(−2)×[(−2)2016×(−12)2016]=2×[(−2)×(−12)]2016=2×12016=2×1=2. 例 5.你喜欢吃拉面吗?拉面馆的师傅.用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出______根细面条;(2)若拉出128根细面条,则捏合的次数是多少?解:(1)根据题意得4×2=8故第三次后可以拉出8根细面条;(2)由于27=128,因此若拉出128根细面条,则捏合的次数是7.【迁移应用】当你把纸对折一次时,就得到2层,当对折两次时,就得到4层,照这样折下去.(1)当对折3次时,层数是多少;(2)如果纸的厚度是0.1mm ,求对折8次时,总厚度是多少mm ?(1)解:因为23=8,所以对折3次时,层数是8;(2)解:28×0.1=256×0.1=25.6(mm ),所以总厚度是25.6mm .例6.已知(a -7)2+|b+6|=0,求(-a -b)100的值.解:因为(a -7)2不小于0,|b+6|不小于0,(a -7)2+|b+6|=0,所以(a -7)2=0,|b+6|=0.所以a=7,b=-6.当a=7,b=-6时,原式=[-7-(-6)]100=(-1)100=1.【迁移应用】1.若|x+2|+(y -3)2=0,则x -y 的值为( )A.-5B.5C.1D.-12.若|a -1|+(a -b -2)2=0,则下列式子正确的是( )A.a=1,b=1B.a+b=1C.a+b=0D.a -b=03.|a -4|与(b+5)2互为相反数,则b a 的值为_______.例7.(1)根据已知条件填空:⑴已知(-1.2)2=1.44,计算:(-120)2=_______,(-0.012)2=________.⑴已知(-3)3=-27,计算:(-30)3=________,(-0.3)3=________.(2)观察上述计算结果我们可以看出:⑴当底数的小数点向左(或右)每移动位,它的二次幂的小数点向左(或右)移动_____位; ⑴当底数的小数点向左(或右)每移动一位,它的三次幂的小数点向左(或右)移动_____位.【迁移应用】1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,猜想:32025的个位上的数是_____.2.给出下列两组算式:(4×5)2与42×52; [(-13)×9]3与(-13)3×93. (1)每组的结果相等吗?(2)想一想:当n 是正整数时,(a·b)n =______.(3)用你发现的规律计算:(-0.125)20×820.解:(1)相等.(3)(-0.125)20×820=(-0.125×8)20=(-1)20=1.(七)小结梳理五、教学反思。

七年级数学上册《有理数的乘方》第一课时教学设计

七年级数学上册《有理数的乘方》第一课时教学设计

义务教育课程标准实验教科书七年级数学上册第一章:《有理数的乘方》第一课时教学设计一、教材分析:有理数的乘方是人教版七年级上册数学第一章的内容,在有了小学平方、立方基础之上,让学生通过探究学会乘方的意义和概念,熟练掌握有理数乘方的运算。

有理数的乘方是一种特殊(积中的每一个因数都相同)的乘法。

乘方贯穿初中数学的始终,对整个初中学习十分重要。

通过这一节课的学习,培养学生的探索精神和观察、分析、归纳能力,并向学生渗透细心的重要性,使学生充分体会数学与现实生活的紧密联系,渗透数学的简洁美、神奇美。

二、教学目标(一)知识技能目标:1、正确理解乘方、幂、指数、底数等概念。

2、感悟探索乘方的意义,会书写乘方算式,确定乘方的结果的符号。

3、能快速、准确地进行有理数的乘方运算。

(二)过程与方法:1、通过对乘方意义的探索,培养学生观察、比较、分析、归纳及概括能力。

2、通过乘方运算的运用,培养学生的逻辑思维能力。

(三)情感目标1、通过创设问题情境,激发学生学习数学的兴趣。

通过乘方的故事,向学生展示数学与生活的紧密联系,数学源于生活,高于生活。

2、向学生渗透探索、归纳的数学思想及数学的简洁美。

3、培养学生协作精神,体验数学的探索与创造的快乐。

三、教学重点:正确理解乘方的意义,掌握乘方的运算方法。

四、教学难点:有理数乘方运算中符号的确定。

五、教学方法:(1)创设问题情境,从生活实践入手,体现生活中的数学。

(2)探索归纳,学生总结结论。

(3)精讲多练,提高学生运用知识的能力。

(4)运用闯关比赛形式,激发学生的学习兴趣,及时反馈提高。

六、教学准备:多媒体课件七、设计思想:通过人体细胞分裂创设问题情境,激发学生的学习兴趣,对新知识的探究,以生活中的实例拉面和珠穆朗玛问题作为探究内容,使学生感悟生活中的数学,体现数学与现实生活的密切关系,自然地将学生的思维带入到整个教学过程中来。

学生通过观察、探究、思考及与同学们交流合作,充分调动他们的学习积极性,参与到课堂教学中,进一步提高学生的逻辑推理能力与抽象概括能力。

1.6有理数的乘方1.6.1认识乘方(课件)湘教版数学七年级上册

1.6有理数的乘方1.6.1认识乘方(课件)湘教版数学七年级上册

新知探究 知识点1 有理数的乘方
新知探究 知识点1 有理数的乘方
例1 计算:
(1) 07 ; (2) 16 ;
(3) 34 ; (4)43 .
解:(1) 07=0×0×0×0×0×0×0 =0 .
(2) 16=1×1×1×1×1×1 =1 .
(3) 34=3×3×3×3 =81 . (4) 43=4×4×4 =64 .
随堂练习
1.关于式子(-5)4,下列说法错误的是( C )
A.表示 (-5)×(-5)×(-5)×(-5) B. -5 是底数,4 是指数 C.-5 是底数,4 是幂 D.4 是指数,(-5)4 是幂
随堂练习
2.下列式子正确的是( B )
A.(-6)×(-6)×(-6)×(-6)=-64 B.(-2)3=(-2)×(-2)×(-2) C. -54=(-5)×(-5)×(-5)×(-5)
D.25×
25×
2 5
=
23 5
随堂练习
3.计算(-3)2的结果是( D )
A. -6
B. 6
C. -9
D. 9
4. -23等于( D )
A. 6
B. -6
C. 8
D. -8
5. 若(a+3)2+|b-4|=0,则ab的值为__8__1___.
随堂练习
6. 判断下列各等式是否成立,并说明理由.
(1) 32 = 2 × 3 = 6; 不成立, 32 = 3×3 = 9
n 个5
a×a×a×a×a= a5 a×a×···×a= an
n 个a
观察左边的 式子,你有 什么发现?
它们都是乘法,并且它 们各自的因数都相同.
新知探究 知识点1 有理数的乘方

怀化市师院附中七年级数学上册第1章有理数1.7有理数的混合运算教案新版湘教版

怀化市师院附中七年级数学上册第1章有理数1.7有理数的混合运算教案新版湘教版

1.7有理数的混合运算【知识与技能】了解有理数的混合运算顺序,在运算过程中能合理使用运算律简化运算.【过程与方法】通过适量的有理数的混合运算,掌握混合运算的顺序,获得运用运算律简化运算的经验.【情感态度】让学生在练习中体验成功感,培养学生的兴趣和合作交流的意识.【教学重点】有理数的混合运算.【教学难点】有理数混合运算中的符号确定以及运算中的顺序问题.一、情景导入,初步认知1.请同学们回顾学过的加、减、乘、除四则运算的法则是如何叙述的?2.请同学们观察下列各题,各包含了哪几种运算?这种运算应该怎么进行?(1)-3+[-5×(1-0.6)];(2)17-16÷(-2)3×3.【教学说明】复习回顾小学四则运算法则“先算乘法,再算加法,如果有括号,先算括号里面的.”为有理数四则运算的法则的学习铺设台阶;同时引入本节课的学习课题:有理数的混和运算.二、思考探究,获取新知1.上面算式中,含有有理数的加、减、乘、除、乘方多种运算,我们称为有理数的混合运算.那有理数混合运算的顺序是什么?组织学生讨论:在小学里所学的混合运算顺序是什么?这些运算顺序在有理数的混合运算中是否适用?【归纳结论】先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里的运算.【教学说明】培养学生的观察能力,类比能力,概括能力,语言表达能力.2.计算下列各题:(1)-3+[-5×(1-0.6)]解:-3+[-5×(1-0.6)](先算括号)=-3+[-5×0.4](再算乘除) =-3+(-2)(后算加减) =-5(2)17-16÷(-2)3×3解:17-16÷(-2)3×3(先算乘方) =17-16÷(-8)×3(再算乘除) =17-(-2)×3=17-(-6)(后算加减) =23【教学说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循观察、思考、动笔、检查的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯. 三、运用新知,深化理解1.教材P47例3.2.计算(-2×5)3=( B )A.1000B.-1000C.30D.-30 3.计算51×(-5)÷(-51)×5=( B ) A.1 B.25 C.-5 D.354.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( B )A.甲刚好亏盈平衡;B.甲盈利1元;C.甲盈利9元;5.计算:7.对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.解:(1)4-(-6)÷3×10(2)(10-6+4)×3(3)(10-4)×3-(-6)【教学说明】培养与提高学生解决问题的能力,同时加强学生对已学知识的进一步掌握和巩固.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.7”中第2、3、4题.本节课引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习.在教学活动中发挥了平等、民主,保护了学生的自尊,体现了学生是学习的主人,教师是组织者、引导者的理念.从本节课的效果来看,在突破难点,发挥游戏的功能上还需继续探索和改进.同时发现要想使游戏发挥更大的正面效果,取得理想的效果,需要教师挖掘教材,创设情境.另外学生的活动往往易放难收,时间上总是把握不当,需要在今后教学中加以注意.课程改革的实施不仅仅是使用新教材,更重要的是要有新观念,新教法和新的课堂环境,这些都需要教师在教学实践中不断总结经验,不断创新进取.如何教好数学的概念概念是人脑对客观事物本质属性的一种反映形式,是人们在长期实践活动中智慧的结晶,也是整个教学过程所积累的主要知识点。

2024年秋新湘教版七年级上册数学课件 1.6 有理数的乘方

2024年秋新湘教版七年级上册数学课件 1.6 有理数的乘方

感悟新知
2. 科学记数法中的 a 和 n:
知4-讲
(1)将原数的小数点移到最高数位的数字的后面即可得到 a的取值 .
(2)确定 n 的两种方法:
①根据原数的整数位数来确定 n, n 等于原数的整数位数减
1. 例如 2 025是一个四位整数,用科学记数法表示为 2.025×
10 3,其中 n=4 - 1=3;
感悟新知
例2
知2-练
解题秘方:先确定幂的符号,再计算幂的绝对值 .
感悟新知
解:(- 5) 4=+(5× 5× 5× 5) =625. - 54 = -(5× 5× 5× 5) = - 625.
知2-练
感悟新知
知2-练
感悟新知
2-1.下列运算结果正确的是( C ) A. -24=16 B.(-2) 4=-16 C. -(-24)=16 D. -(-2) 4=16
第一章 有理数
1.6 有理数的乘方
学习目标
1 课时讲解 2 课时流程
乘方的相关定义及意义 乘方的运算法则 用科学记数法表示数
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 乘方的相关定义及意义
知1-讲
感悟新知
知1-讲
特别地, a 2 读作“ a 的平方”, a 3 读作“ a 的立方” . 一个数 a可以看作 a 1,通常将指数 1 省略不写,只写作 a. 2. 乘方的意义:an 表示 n 个相同因数 a 的积,其中相同的因 数是底数,因数的个数n是指数,因此,可以把相同因数的 乘法转化为乘方或把乘方转化为乘法 .
感悟新知
知1-讲
特别提醒 1. 有理数的乘方可以看作是一种特殊的乘法
运算 . 2. 乘方具有双重意义,它不仅表示一种运

2024年新湘教版七年级上册数学课件 1.5.1 第1课时 有理数的乘法

2024年新湘教版七年级上册数学课件 1.5.1 第1课时 有理数的乘法

提示:假设有理数的乘法满足乘法对加法的分配律,
(1) 3×(-5)+3×5=
.
(2) (-5)×(-3)+(-5)×3=
.
合作探究 (1) 3×(-5) 应当规定为多少?
分析:(1) 3×(-5)+3×5=3×[(-5)+5]=3×0=0. 而 3×(-5) 与 3×5 互为相反数, 3×(-5)=-(3×5).
总结 有理数相乘, 可以先确定_积__的__符__号___, 再确定__积__的_ 绝对_值____.
(+)×(+) → (+) (-)×(-) → (+) (-)×(+) → (-) (+)×(-) → (-)
练一练 1. 计算:
(1) (-2.5)×4; (2) (-5)×(-7); (3) (-5)×0;
1. 如果两个数的和为 0,那么这两个数 互为相反数 .
2. 小学学过的乘法对加法的分配律是什么? a×(b+c)=a×b+a×c
由前面的学习我们知道,正数的加减法可 以扩充到有理数的加减法,那么乘法是不 是也可以扩充呢?
1 有理数的乘法运算
合作探究 为了满足有理数的乘法对加法的分配律, (1) 3×(-5) 应当规定为多少? (2) (-5)×(-3) 应当规定为多少?
负数×正数 负数×负数
(3)
2 3
5 7
负数×负数
积是负数
积是正数
积是正数
-8
1
10
21
典例精析
例2 计算:
(1) 3×(-2);
(2) (-8)×5;
(3) 0×(-6.18);
(4)
7 13
0.
解: (1) 3×(-2)=-(3×2)=-6.
(2) (-8)×5=-(8×5)=-40.

郸城县第五中学七年级数学上册 第1章 有理数1.6 有理数的乘方第1课时 有理数的乘方教案湘教版

郸城县第五中学七年级数学上册 第1章 有理数1.6 有理数的乘方第1课时 有理数的乘方教案湘教版

1.6 有理数的乘方【知识与技能】使学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算. 【过程与方法】领会重要的类比思想、归纳思想,逐步形成数感、符号感. 【情感态度】认识数学与生活是密切联系的,感受数学的严谨性,让学生对数学充满好奇心,形成主动学习态度,培养科学探索精神.鼓励猜想,倡导参与,学会与人合作,学会欣赏数学和感悟数学. 【教学重点】理解有理数乘方的意义和表示,会进行乘方运算. 【教学难点】1.准确进行有理数的乘方运算,特别是负数的乘方运算.2.(-a)n与-a n的区别.一、情景导入,初步认知如果我们把一张足够大且厚度为0.1毫米的纸,连续对折30次.请大家猜想一下:它的厚度能超过珠穆朗玛峰吗?【教学说明】由生动、有趣的问题开始,激发学生学习兴趣,激起学生的好奇心,营造和谐主动探索的氛围. 二、思考探究,获取新知1.在小学学过2×2×2可以简记作23,那么23,32各表示什么意义? 2.(-2)×(-2)×(-2)×(-2)×(-2)可以简记作什么?可以简写成什么形式?【归纳结论】一般地,a 是有理数,n 是正整数,则把简计为a n,我们把a n读作a 的n 次方,也读作a 的n 次幂.求n 个相同因数的乘积的运算叫做乘方.在an 中,a 叫做底数,n 叫做指数.即:特别的,a2通常读作a的平方,a3通常读作a的立方.【教学说明】帮助他们在自主探索和合作交流的过程中获得广泛的数学活动经验,真正理解和掌握基本的数学知识、数学思想和方法.3.议一议:(-2)4与-24的含义相同吗?它们的结果相同吗?(-2)3与-23的含义与结果也相同吗?【教学说明】让学生通过比较加深理解,掌握乘方的意义.4.计算(1)102,103,104(2)(-10)2,(-10)3,(-10)45.根据上面的计算说一说:正数的任何正整数次幂都是什么数?负数的奇数次幂是什么数?负数的偶数次幂是什么数?0的任何正整数次幂是什么数?【归纳结论】正数的任何正整数次幂都是正数;负数的奇数次幂是负数;负数的偶数次幂是正数;0的任何正整数次幂都是0.6.回顾有理数的乘方运算,算一算:102,103,104 (1010)请学生讨论回答:(1)1021表示什么?(2)指数与运算结果中的0的个数有什么关系?(3)与运算结果的数位有什么关系?【归纳结论】10的n次幂就是1后面有n个0.三、运用新知,深化理解1.教材P42例1、例22.下列说法正确的是( D )A.一个数的平方一定大于这个数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的平方不能是负数3.蟑螂的生命力很旺盛,它繁衍后代的方法为下一代的数目永远是上一代数目的5倍也就是说,如果蟑螂始祖(第一代)有5只,则下一代(第二代)就有25只,依次类推,推算蟑螂第10代有( C )A.58B.59C.510D.5114.(-3)·(-3)·(-3)用幂的形式可表示为 .答案:(-3)35.如果(x-1)2+|b+1|=0,那么x2003+b2004= .解:因为(x-1)2≥0,|b+1|≥0,(x-1)2+|b+1|=0, 所以(x-1)2=0, |b+1|=0, 所以x=1,b=-1, 所以x2003+x2004=1+1=2.7.请你把32,(-2)2,0,|-21|,-101,(-1)10这六个数按从小到大的顺序排列,并用“<”连接.答案:略【教学说明】进一步巩固学生新学的知识,使知识条理化. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.6”中第1、2、6题.本节课我低估了学生的学习能力,总是担心学生达不到我预想的程度,因此,上课时我过多地限制了学生的活动,对学生的思维压制太多,没有真正地让学生去自主学习,以致于学生的主观能动性没有完全发挥出来.二是灌输式教学仍在作祟,且教学有急于求成之嫌.三是我的普通话水平有限,口头表达能力欠火候,说话不够紧凑,语言不够精炼准确,这些都直接影响到教学的效果.第五章一元一次方程1 认识一元一次方程第1课时认识一元一次方程【知识与技能】1.理解一元一次方程,方程的解等概念.2. 会根据具体问题列一元一次方程.【过程与方法】通过实际问题建立方程模型,归纳一元一次方程的概念,培养学生的认知能力和归纳概括能力.【情感态度】结合本课教学特点,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣. 【教学重点】建立一元一次方程的概念,会根据具体问题列出一元一次方程.【教学难点】根据具体问题中的等量关系,列出一元一次方程.一、情境导入,初步认识教材第130页最上方的彩图如果设小彬的年龄为x岁,那么“乘2再减5”就是_________,因此可以得到方程:__________________.【教学说明】学生根据两人的对话找出相等关系,列出方程,初步体会根据实际问题建立方程模型的思想.二、思考探究,获取新知1.列方程问题1 (1)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm.大约几周后树苗长高到1m?如果设周后树苗长高到1m,那么可以得到方程:__________________.(2)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每小时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km,可以得到方程:__________________.(3)根据第六次全国人口普查统计表数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:__________________.(4)某长方形操场上的面积是5850m 2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m ,那么长为(x +25)m ,由此可以得到方程__________________.【教学说明】 学生根据题意,找出相等关系列出方程,进一步体会方程建模思想. 【归纳结论】 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种常用方法.2.一元一次方程及方程的解问题2 (1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程? (2)方程2x -5=21,40+5x =100,x (1+147.30%)=8930有什么共同点?【教学说明】 学生通过观察,与同伴进行交流,找出这些方程的共同点,归纳一元一次方程的概念.【归纳结论】 在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解. 三、运用新知,深化理解1.下列各式中,是一元一次方程的有________(填序号) . (1)833x=+;(2)8x -;(3)1=2x +2;(4)5x 2=20;(5)x +y =8. 2.如果3x n –1=2是关于x 的一元一次方程,那么n =________.3.x =2________方程4x –1=3的解.(填“是”或“不是”)4.小刚准备用自己节省零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他有260元.设x 个月后小刚有260元,则可列出计算月数的方程为( )A.30x +50=260B.30x – 50=260C.x – 50=260D.x +50=260【教学说明】 学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)(3) 2. 2 3.不是 4.A 四、师生互动,课堂小结1.师生共同回顾一元一次方程,方程的解的概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.1.1 走进数学世界(30分钟50分)一、选择题(每小题4分,共12分)1.如图,将四个长为16cm,宽为2cm的长方形平放在桌面上,若夹角都是直角,则桌面被盖住的面积是( )A.72cm2B.128cm2C.20cm2D.112cm22.已知第一组数据a1,a2,a3,a4,a5,a6的平均数为8,则第二组数据a1+10,a2-10,a3+10,a4-10,a5+10,a6-10的平均数为( )A.6B.8C.10D.123.如图中三个小圆周长之和与大圆周长比较,较长的是( )A.三个小圆周长之和B.大圆周长C.一样长D.不能确定二、填空题(每小题4分,共12分)4.(泉州中考)某校初一年段举行科技创新比赛活动,各班选送的学生数分别为3,2,2,6,6,5,则这组数据的平均数是________.5.“五一”期间,小明全家登山旅游,走一条12千米的山路,又沿原路返回,上山的时候速度是每小时2千米,下山的时候速度是每小时6千米,他们上山、下山的平均速度是每小时________千米.6.(2012·娄底中考)如图,下面的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共________个.三、解答题(共26分)7.(8分)在14×5的正方形网格中,每个小正方形的边长都是1,求图中阴影图形的面积.8.(8分)某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米40元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?【拓展延伸】9.(10分)某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210 度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量.(2)依此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?答案解析1.【解析】选 D.桌面被盖住的面积,就是图中这个组合图形的面积:四个长方形的面积之和减去重叠部分的4个边长为2cm的小正方形的面积,即16×2×4-2×2×4=128-16=112(cm2).2.【解析】选 B.第二组数据的总和等于第一组数据,数据的个数不变,所以第二组数据的平均数与第一组数据的平均数相同.3.【解析】选C.如图,设大圆的直径为d,三个小圆的直径依次为d',d″,d‴,则大圆周长为πd;三个小圆周长之和为πd'+πd″+πd‴=π(d'+d″+d‴).因为d=d'+d″+d‴,所以三个小圆周长之和与大圆周长一样长.4.【解析】这组数据的平均数为(3+2+2+6+6+5)÷6=4.答案:45.【解析】(12+12)÷(12÷2+12÷6)=24÷8=3(千米/小时).答案:36.【解析】观察图形可知,将“”看作一组,循环出现.2012÷4=503,即共有“”503个.答案:5037.【解析】将不规则的图形转化为规则的图形进行计算.阴影正好拼成35个完整的小正方形和一个等腰直角三角形,它们的面积和为1×1×35+×1×1=35.5.8.【解析】想象:把楼梯横的台阶向上与最高处拉平,竖的台阶左边的向左,右边的向右拉直构成一个长方形,长、宽分别为6.4米、3.8米,所以地毯的长度为6.4+3.8+3.8=14(米),地毯的面积为14×3=42(平方米),所以买地毯至少需要42×40=1680(元).答:买地毯至少需要1680元.【归纳整合】台阶问题中的转化思想台阶问题解题过程渗透着转化思想,除此之外,很多问题通过由陌生向熟悉、由复杂向简单的转化后,得以顺利解决.例如,(1)已知台阶的长和高,计算台阶的总长时,常把求台阶总长这一复杂问题转化为我们熟悉的求长方形的长和宽问题.(2)已知台阶的长和高,计算台阶上所铺地毯的面积时,常把求台阶多个面的面积和这一繁琐过程转化为求一个长方形面积的简单过程.9.【解析】(1)用电量为210度时,需要交纳210×0.52=109.2(元);用电量为350度时,需要交纳210×0.52+(350-210)×(0.52+0.05)=189(元),所以小华家5月份的用电量在第二档.所以,小华家5月份超出第一档的用电量为(138.84-210×0.52)÷(0.52+0.05)=52(度),所以小华家5月份的用电总量为52+210=262(度).(2)由(1)得,当a小于109.2时,小华家的用电量在第一档;当a大于或等于109.2而小于或等于189时,小华家的用电量在第二档;当a大于189时,小华家的用电量在第三档.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册:
1.6 有理数的乘方
【知识与技能】
使学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算.
【过程与方法】
领会重要的类比思想、归纳思想,逐步形成数感、符号感.
【情感态度】
认识数学与生活是密切联系的,感受数学的严谨性,让学生对数学充满好奇心,形成主动学习态度,培养科学探索精神.鼓励猜想,倡导参与,学会与人合作,学会欣赏数学和感悟数学.
【教学重点】
理解有理数乘方的意义和表示,会进行乘方运算.
【教学难点】
1.准确进行有理数的乘方运算,特别是负数的乘方运算.
2.(-a)n 与-a n 的区别.
一、情景导入,初步认知
如果我们把一张足够大且厚度为0.1毫米的纸,连续对折30次.请大家猜想一下:它的厚度能超过珠穆朗玛峰吗?
【教学说明】由生动、有趣的问题开始,激发学生学习兴趣,激起学生的好奇心,营造和谐主动探索的氛围.
二、思考探究,获取新知
1.在小学学过2×2×2可以简记作23,那么23,3
2各表示什么意义? 2.(-2)×(-2)×(-2)×(-2)×(-2)可以简记作什么?可以简写成什么形式?
【归纳结论】一般地,a 是有理数,n 是正整数,则把
简计为a n
,我们把a n 读作a 的n 次方,也读作a 的n 次幂.
求n 个相同因数的乘积的运算叫做乘方.在an 中,a 叫做底数,n 叫做指数.即:
特别的,a2通常读作a的平方,a3通常读作a的立方.
【教学说明】帮助他们在自主探索和合作交流的过程中获得广泛的数学活动经验,真正理解和掌握基本的数学知识、数学思想和方法.
3.议一议:(-2)4与-24的含义相同吗?它们的结果相同吗?(-2)3与-23的含义与结果也相同吗?
【教学说明】让学生通过比较加深理解,掌握乘方的意义.
4.计算(1)102,103,104
(2)(-10)2,(-10)3,(-10)4
5.根据上面的计算说一说:正数的任何正整数次幂都是什么数?负数的奇数次幂是什么数?负数的偶数次幂是什么数?0的任何正整数次幂是什么数?
【归纳结论】正数的任何正整数次幂都是正数;负数的奇数次幂是负数;负数的偶数次幂是正数;0的任何正整数次幂都是0.
6.回顾有理数的乘方运算,算一算:
102,103,104 (1010)
请学生讨论回答:
(1)1021表示什么?
(2)指数与运算结果中的0的个数有什么关系?
(3)与运算结果的数位有什么关系?
【归纳结论】10的n次幂就是1后面有n个0.
三、运用新知,深化理解
1.教材P42例1、例2
2.下列说法正确的是( D )
A.一个数的平方一定大于这个数
B.一个数的平方一定大于这个数的相反数
C.一个数的平方只能是正数
D.一个数的平方不能是负数
3.蟑螂的生命力很旺盛,它繁衍后代的方法为下一代的数目永远是上一代数目的5倍也就是说,如果蟑螂始祖(第一代)有5只,则下一代(第二代)就有25只,依次类推,推算蟑螂第10代有( C )
A.58
B.59
C.510
D.511
4.(-3)·(-3)·(-3)用幂的形式可表示为 .
答案:(-3)3
5.如果(x-1)2+|b+1|=0,那么x
2003+b 2004= . 解:因为(x-1)2≥0,|b+1|≥0,(x-1)2+|b+1|=0,
所以(x-1)2=0,
|b+1|=0,
所以x=1,b=-1,
所以x 2003+x 2004=1+1=2.
7.请你把32,(-2)2,0,|-
21|,-10
1,(-1)10这六个数按从小到大的顺序排列,并用“<”连接.
答案:略
【教学说明】进一步巩固学生新学的知识,使知识条理化.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
布置作业:教材“习题1.6”中第1、2、6题.
本节课我低估了学生的学习能力,总是担心学生达不到我预想的程度,因此,上课时我过多地限制了学生的活动,对学生的思维压制太多,没有真正地让学生去自主学习,以致于学生的主观能动性没有完全发挥出来.二是灌输式教学仍在作祟,且教学有急于求成之嫌.三是我的普通话水平有限,口头表达能力欠火候,说话不够紧凑,语言不够精炼准确,这些都直接影响到教学的效果.。

相关文档
最新文档