2020-2021学年河南省中考数学模拟试卷(一)及答案解析
河南省中考模拟数学考试试卷(三)
河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
2024年河南省中考数学模拟试卷临考试题
2024年河南省中考数学模拟试卷临考试题一、单选题1.下列式子的化简结果得5的是( )A .(5)-+B .(5)--C .(5)+-D .5--2.如图是某个几何体的左视图,则这个几何体不可能是( )A .B .C .D .3.华为Mate20系列搭载了麒麟980芯片,这个被华为称之为全球首个7纳米工艺的AI 芯片,拥有8个全球第一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A .7710-⨯B .0.710⨯-8C .8710-⨯D .9710-⨯ 4.将一副三角板按如图放置,其中45B C ∠==︒∠,60D ∠=︒,30E ∠=︒,如果150CAD ∠=︒,则4∠=( )A .75︒B .80︒C .60︒D .65︒5.如图,已知直线12y x =+与221y x =--相交于点()1,1P -,则关于x 的不等式12y y >的解集在数轴上表示正确的是()A.B.C.D.6.如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有()A.1种B.2种C.4种D.无数种7.若关于x的一元二次方程220-+=没有实数根,则k的值可以是()x x kA.2 B.1 C.0 D.1-8.甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,下列说法:①甲、乙两种物质的溶解度都随着温度的升高而增大;②当温度升高至t℃时,甲的溶解度2比乙的溶解度小;③当温度为0℃时,甲、乙的溶解度都小于20g;④当温度为30℃时,甲、乙的溶解度相同.其中正确结论的序号是()A.①②B.①③C.①③④D.②④9.如图,点),A a 是反比例函数k y x=的图象与O e 的一个交点,图中阴影部分的面积为4π,则反比例函数的解析式为( )A .2y x =B .yC .4y x =D .y =10.如图,在ABC V 中,90C ∠=︒,4cm BC =,5cm AB =,点 P 从点A 出发,沿AC 向点C 以1cm/s 的速度运动,同时点 Q 从点C 出发,沿CB 向点B 以2cm/s 的速度运动(当点 Q 运动到点 B 时,点 P ,Q 同时停止运动).在运动过程中,四边形PABQ 的面积最小为( )A .215cm 2B .29cm 2C .2154cmD .29cm 4二、填空题11.如果水位上升10米记作10+米,那么水位下降6米记作米.12.不等式组210353x x x x ≥-⎧⎨+>⎩的整数解个数为. 13.某居民小区共有300户家庭,有关部门对该小区的自来水管网系统进行改造,为此该部门通过随机抽样,调查了其中20户家庭,统计了这20户家庭的月用水量,如下表:根据上述数据,估计该小区300户家庭的月总用水量约为m 3.14.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为.15.如图所示,在ABC V 中,45A B ∠=∠=︒,16AB =,EF 是ABC V 的中位线,D 是边AB 上一点,2AD =,P 是线段DB 上的一个动点,连接EP ,DF 相交于点O .若DOP △是直角三角形,则OE 的长是.三、解答题16.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简. 过程如图所示:(1)接力中,自己负责的一步出现错误的同学是_________;(2)请你书写正确的化简过程,并在“1-,0,1”中选择一个合适的数代入求值.17.某校举行“汉字听写大赛”,九年级A ,B 两班学生的成绩情况如下:【信息一】九A 班40名学生成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左到右第4组成绩如下:【信息三】九年级A,B两班各40名学生成绩的平均数、中位数、众数、优秀率(135分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)九A班40名学生成绩的中位数为______分;(2)求从A,B两班共80人中随机抽取一人成绩为优秀的概率;(3)请你选择适合的统计量,尽量从多个角度,综合阐述哪个班级的整体水平较高.18.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠BAC,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形(尺规作图,保留痕迹);(2)判断并证明:直线DE与⊙O的位置关系;(3)若AB =10,BC =8,求CE 的长.19.水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每5min 记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表中的一组数据.(1)探究:根据上表中的数据,请判断()110k y k t ≠=和 2y k t b =+(20k ≠,2k 为常数)哪个解析式能准确的反映水量y 与时间t 的函数关系?求出该解析式并写出漏记的a 值;(2)应用:①兴趣小组用100mL 量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水1600mL ,请估算这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用天数.20.桔槔俗称“吊杆”“称杆”(如图1),是我国古代农用工具,始见于《墨子•备城门》,是一种利用杠杆原理的取水机械.如图2所示的是桔槔示意图,OM 是垂直于水平地面的支撑杆,3OM =米,AB 是杠杆,且6AB =米,:2:1OA OB =.当点A 位于最高点时,127AOM ∠=︒.(1)求点A 位于最高点时到地面的距离;(2)当点A 从最高点逆时针旋转54.5︒到达最低点1A 时,求此时水桶B 上升的高度.(参考数据:sin370.6sin17.50.3tan370.8︒≈︒≈︒≈,,)21.为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用900元购进乒乓球若干盒,第二次又用900元购进该款乒乓球,但这次每盒的进价是第一次进价的1.2倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于510元,则每盒乒乓球的售价至少是多少元?22.如图,小静和小林在玩沙包游戏,沙包(看成点)抛出后,在空中的运动轨迹可看作抛物线的一部分,小静和小林分别站在点O 和点A 处,测得OA 距离为6m ,若以点O 为原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,小林在距离地面1m 的B 处将沙包抛出,其运动轨迹为抛物线1C :()232y a x =-+的一部分,小静恰在点()0,C c 处接住,然后跳起将沙包回传,其运动轨迹为抛物线2C :21188n y x x c =-+++的一部分.(1)抛物线1C 的最高点坐标为______;(2)求a ,c 的值;(3)小林在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,若小林成功接到小静的回传沙包,则n 的整数值可为______.23.问题探究:将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现,题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,ABC V 是边长为1的等边三角形,P 为ABC 内部一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值.问题解决:如图2,将BPA △绕点B 逆时针旋转60︒至BP A ''△,连接PP '、A C ',记A C '与AB 交于点D ,易知1BA BA BC '===,120A BC A BA ABC ''∠=∠+∠=︒,由BP BP '=,60P BP '∠=︒,可知P BP '△为等边三角形,有PB P P '=.故PA PB PC PAPP PC AC ++=++'≥''',因此,当A '、P '、P 、C 共线时,PA PB PC ++有最小值是______. 学以致用:如图3,P 是边长为3的正方形ABCD 内一点,Q 为边BC 上一点,连接PA 、PD 、PO ,求PA PD PQ ++的最小值.。
2020年河南省中考数学一模试卷(附答案详解)
2020年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最大的数是()A. −12B. 14C. 0D. −22.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A. 268×103B. 26.8×104C. 2.68×105D. 0.268×1063.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.4.下列计算正确的是()A. a3+a3=a6B. (x−3)2=x2−9C. a3⋅a3=a6D. √2+√3=√55.下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10−x对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A. k>−1B. k<−1C. k≥−1且k≠0D. k>−1且k≠07.在▱ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A. AB=ADB. OA=OBC. AC=BDD. DC⊥BC8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A. 12B. 15C. 110D. 1259.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD=40°B. ∠ACD=70°C. 点D为△ABC的外心D. ∠ACB=90°10.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D−C−B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.若x=√2−1,则x2+2x+1=______.12. 已知反比例函数y =m−2x,当x >0时,y 随x 增大而减小,则m 的取值范围是______.13. 不等式组{3x −5>15x −a ≤12有2个整数解,则实数a 的取值范围是______.14. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =√3,分别以点A ,B 为圆心,AC ,BC 的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是______.15. 如图,在菱形ABCD 中,∠A =60°,AB =3,点M 为AB 边上一点,AM =2,点N 为AD 边上的一动点,沿MN 将△AMN 翻折,点A 落在点P 处,当点P 在菱形的对角线上时,AN 的长度为______.三、计算题(本大题共1小题,共8.0分) 16. 先化简,再求值:x 2+4x+4x+1÷(3x+1−x +1),其中x =sin30°+2−1+√4.四、解答题(本大题共7小题,共67.0分)17. 如图,△ABC 内接于圆O ,且AB =AC ,延长BC 到点D ,使CD =CA ,连接AD 交圆O 于点E . (1)求证:△ABE≌△CDE ; (2)填空:①当∠ABC 的度数为______时,四边形AOCE 是菱形. ②若AE =√3,AB =2√2,则DE 的长为______.18.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有______名留守学生,B类型留守学生所在扇形的圆心角的度数为______;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)20.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=k(x<0)的图象经过AO的中点C,交AB于点D.若x点D的坐标为(−4,n),且AD=3.(1)求反比例函数y=k的表达式;x(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0< a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是______三角形;∠ADB的度数为______.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为______.23.如图,抛物线y=ax2+bx+c与x轴交于点A(−1,0),点B(3,0),与y轴交于点C,且过点D(2,−3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.答案和解析1.【答案】B【解析】解:−2<−12<0<14,则最大的数是14,故选:B.比较确定出最大的数即可.此题考查了有理数大小比较,熟练掌握运算法则是解本题的关键.2.【答案】C【解析】解:将26.8万用科学记数法表示为:2.68×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】【分析】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选C.4.【答案】C【解析】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x−3)2=x2−6x+9,故此选项错误;C、a3⋅a3=a6,正确;D、√2+√3无法合并,故此选项错误.故选:C.5.【答案】B【解析】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10−x=10,则总人数为:5+15+10=30,=14岁,故该组数据的众数为14岁,中位数为:14+142即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.【答案】D【解析】解:∵x的方程kx2+2x−1=0有两个不相等的实数根,∴k≠0且△=4−4k×(−1)>0,解得k>−1,∴k的取值范围为k>−1且k≠0.故选:D.根据△的意义得到k≠0且△=4−4k×(−1)>0,然后求出两不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.【解析】【分析】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.根据有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,对各选项分析判断后利用排除法求解.【解答】解:A、AB=AD,则▱ABCD是菱形,不能判定是矩形,故本选项错误;B、OA=OB,根据平行四边形的对角线互相平分,AC=BD,对角线相等的平行四边形是矩形可得▱ABCD是矩形,故本选项正确;C、AC=BD,根据对角线相等的平行四边形是矩形,故本选项正确;D、DC⊥BC,则∠BCD=90°,根据有一个角是直角的平行四边形是矩形可得▱ABCD 是矩形,故本选项正确.故选A.8.【答案】B【解析】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是525=15;故选:B.根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD=180°−40°2=70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.由题意可知直线MN是线段BC的垂直平分线,故BD=CD,∠B=∠BCD,故可得出∠CDA 的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.本题考查的是作图−基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.【答案】A【解析】【分析】本题为动点问题的函数图象探究题,考查了二次函数图象和锐角三角函数函数的应用,解答关键是分析动点到达临界点前后图形的变化.根据题意找到临界点,E、F分别同时到达D、C,画出一般图形利用锐角三角函数表示y即可.【解答】解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°,∵E、F两点的速度均为1cm/s,∴当0≤x≤2时,y=12⋅AE⋅DF⋅sin∠CDB=√34x2,当2≤x≤4时,y=12⋅AE⋅BF⋅sin∠B=−√34x2+√3x,由图象可知A正确,故选:A.11.【答案】2【解析】解:原式=(x+1)2,当x=√2−1时,原式=(√2)2=2.首先把所求的式子化成=(x+1)2的形式,然后代入求值.本题考查了二次根式的化简求值,正确对所求式子进行变形是关键.12.【答案】m>2【解析】【分析】本题考查了反比例函数的性质,根据反比例函数的性质找出m−2>0是解题的关键.,当x>0时,y随x增大而减小,可得出m−2>0,解之即可根据反比例函数y=m−2x得出m的取值范围.【解答】,当x>0时,y随x增大而减小,解:∵反比例函数y=m−2x∴m−2>0,解得:m>2.故答案为m>2.13.【答案】8≤a<13【解析】解:解不等式3x−5>1,得:x>2,,解不等式5x−a≤12,得:x≤a+125∵不等式组有2个整数解,∴其整数解为3和4,<5,则4≤a+125解得:8≤a<13,故答案为:8≤a<13.首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.本题考查解一元一次不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.【答案】5π12−√32【解析】【分析】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形可知阴影部分的面积是扇形ACE与扇形BCD的面积之和与Rt△ABC的面积之差.【解答】解:∵在Rt△ABC,∠C=90°,∠A=30°,AC=√3,∴∠B=60°,BC=tan30°×AC=1,阴影部分的面积S=S扇形ACE +S扇形BCD−S△ACB=30π×(√3)2360+60π×12360−12×1×√3=5π12−√32,故答案为:5π12−√32.15.【答案】2或5−√13【解析】【分析】分两种情况:①当点P在菱形对角线AC上时,由折叠的性质得:AN=PN,AM=PM,证出∠AMN=∠ANM=60°,得出AN=AM=2;②当点P在菱形对角线BD上时,设AN=x,由折叠的性质得:PM=AM=2,PN= AN=x,∠MPN=∠A=60°,求出BM=AB−AM=1,证明△PDN∽△MBP,得出DNBP=PD BM =PNPM,求出PD=12x,由比例式3−x3−12x=x2,求出x的值即可.本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.【解答】解:分两种情况:①当点P在菱形对角线AC上时,如图1所示::由折叠的性质得:AN=PN,AM=PM,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°−30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB−AM=1,∵四边形ABCD是菱形,∴∠ADC=180°−60°=120°,∠PDN=∠MBP=12∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴DNBP =PDBM=PNPM,即3−xBP=PD1=x2,∴PD=12x,∴3−x3−12x=12x解得:x=5−√13或x=5+√13(不合题意舍去),∴AN=5−√13,综上所述,AN的长为2或5−√13;故答案为:2或5−√13.16.【答案】解:当x=sin30°+2−1+√4时,∴x=12+12+2=3原式=(x+2)2x+1÷4−x2x+1=−x+2x−2=−5【解析】根据分式的运算法则以及实数的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【答案】60°5√33【解析】解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°−120°−30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=√3,AB=CD=2√2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴DCDA =CEAB,即√2DE+√3=√32√2,解得DE=5√33,故答案为:5√33.(1)根据AAS证明两三角形全等;(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得▱AOCE,由OA=OC 可得结论;②由△ABE≌△CDE知AE=CE=√3,AB=CD=2√2,证△DCE∽△DAB得DCDA =CEAB,据此求解即可.本题是圆的综合题,考查了等腰三角形的性质、等边三角形的性质和判定、三角形相似和全等的性质和判定、四点共圆的性质、菱形的判定等知识,难度适中,正确判断圆中角的关系是关键.18.【答案】(1)10,144 ;(2)10−2−4−2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【解析】解:(1)2÷20%=10(人),4×100%×360°=144°,10故答案为:10,144;(2)见答案;(3)见答案.(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.【答案】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC⋅tan60°=50√3≈87(米),在Rt△ADE中,∵DE=AE⋅tan37°≈50×0.75=37.5(米),∴AB=CE=CD−DE≈50√3−37.5≈49(米).答:甲、乙两楼的高度分别为87米,49米.【解析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)∵AD=3,D(−4,n),∴A(−4,n+3),∵点C是OA的中点,∴C(−2,n+3),2∵点C,D(−4,n)在双曲线y=kx上,∴{k=−2×n+3 2k=−4n,∴{k=−4n=1,∴反比例函数解析式为y=−4x;②由①知,n=1,∴C(−2,2),D(−4,1),设直线CD的解析式为y=ax+b,∴{−2a+b=2−4a+b=1,∴{a=1 2b=3,∴直线CD的解析式为y=12x+3;(3)如图,由(2)知,直线CD的解析式为y=12x+3,设点E(m,12m+3),由(2)知,C(−2,2),D(−4,1),∴−4<m<−2,∵EF//y轴交双曲线y=−4x于F,∴F(m,−4m),∴EF=12m+3+4m,∴S△OEF=12(12m+3+4m)×(−m)=−12(12m2+3m+4)=−14(m+3)2+14,∵−4<m<−2,∴m=−3时,S△OEF最大,最大值为14.【解析】(1)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;(2)由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.21.【答案】解:(1)根据题意得,y=250−10(x−25)=−10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x−20−a)(−10x+500)=−10x2+(10a+700)x−500a−10000(30≤x ≤38)对称轴为x=35+12a,且0<a≤6,则30<35+12a≤38,则当x=35+12a时,w取得最大值,∴(35+12a−20−a)[−10×(35+12a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.【解析】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x−20−a)(−10x+ 500)=−10x2+(10a+700)x−500a−10000(30≤x≤38),求得对称轴为x=35+1 2a,则30<35+12a≤38,故当x=35+12a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2.22.【答案】等边30°7+√3或7−√3【解析】解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC =30°,∴∠ABD =∠ABC −∠DBC =15°, 在△ABD 和△ABD′中,{AB =AB∠ABD =∠ABD′BD =BD′∴△ABD≌△ABD′,∴∠ABD =∠ABD′=15°,∠ADB =∠AD′B , ∴∠D′BC =∠ABD′+∠ABC =60°, ∵BD =BD′,BD =BC , ∴BD′=BC ,∴△D′BC 是等边三角形,②∵△D′BC 是等边三角形, ∴D′B =D′C ,∠BD′C =60°, 在△AD′B 和△AD′C 中,{AD =AD′D′B =D′C AB =AC∴△AD′B≌△AD′C , ∴∠AD′B =∠AD′C , ∴∠AD′B =12∠BD′C =30°, ∴∠ADB =30°.【问题解决】解:∵∠DBC <∠ABC , ∴60°<α≤120°,如图3中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,∵AB =AC , ∴∠ABC =∠ACB , ∵∠BAC =α,∴∠ABC =12(180°−α)=90°−12α,∴∠ABD=∠ABC−∠DBC=90°−12α−β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°−12α−β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°−12α−β+90°−12α=180°−(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3−1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=√3,∵△BCD′是等边三角形,∴BD′=BC=7,∴BD=BD′=7,∴BE=BD−DE=7−√3;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°−α)=90°−12α,∴∠ABD=∠DBC−∠ABC=β−(90°−12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β−(90°−12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC−∠ABD′=90°−12α−[β−(90°−12α)]=180°−(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=√3,∴BE=BD+DE=7+√3,故答案为:7+√3或7−√3.【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.【问题解决】当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).【拓展应用】第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′= BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.【答案】解:(1)函数的表达式为:y =a(x +1)(x −3),将点D 坐标代入上式并解得:a =1,故抛物线的表达式为:y =x 2−2x −3…①;(2)设直线PD 与y 轴交于点G ,设点P(m,m 2−2m −3),将点P 、D 的坐标代入一次函数表达式:y =sx +t 并解得:直线PD 的表达式为:y =mx −3−2m ,则OG =3+2m ,S △POD =12×OG(x D −x P )=12(3+2m)(2−m)=−m 2+12m +3, ∵−1<0,故S △POD 有最大值,当m =14时,其最大值为4916;(3)∵OB =OC =3,∴∠OCB =∠OBC =45°,∵∠ABC =∠OBE ,故△OBE 与△ABC 相似时,分为两种情况:①当∠ACB =∠BOQ 时,AB =4,BC =3√2,AC =√10,过点A 作AH ⊥BC 与点H ,S△ABC=12×AH×BC=12AB×OC,解得:AH=2√2,则sin∠ACB=AHAC =√5,则tan∠ACB=2,则直线OQ的表达式为:y=−2x…②,联立①②并解得:x=±√3(舍去负值),故点Q(√3,−2√3)②∠BAC=∠BOQ时,tan∠BAC=OCOA =31=3=tan∠BOQ,则直线OQ的表达式为:y=−3x…③,联立①③并解得:x=−1+√132,故点Q(−1+√132,1−√132);综上,点Q(√3,−2√3)或(−1+√132,1−√132).【解析】(1)函数的表达式为:y=a(x+1)(x−3),将点D坐标代入上式,即可求解;(2)S△POD=12×OG(x D−x P)=12(3+2m)(2−m)=−m2+12m+3,即可求解;(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2020年河南省普通高中招生考试数学模拟试卷含答案解析-2020年河南高中试卷数学
2020年河南省普通高中招生考试数学模拟试卷一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×10104.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣46.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣27.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=______.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是______.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为______.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为______.13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为______.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是______.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是______.(结果保留根号)三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?22.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?2020年河南省普通高中招生考试数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<3,故在﹣2,0,3,这四个数中,最大的数是3,故选:B.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.【解答】解:1 460 000 000=1.46×109.故选C.4.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=÷2=36°,∵l∥BE,∴∠1=36°,故选:B.5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4【考点】解二元一次方程组;解一元一次不等式组.【分析】理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.【解答】解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.6.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【考点】规律型:图形的变化类.【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.7.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.【考点】动点问题的函数图象.【分析】根据图象计算0秒、2秒、6秒的时候,矩形在第二象限内的面积为S,即可分析出矩形OABC的初始位置.【解答】解:由图象可以看出在0秒时,S=0,在2秒时,S=,在6秒时,S=;由题意知,矩形OABC绕原点0以每秒15°的速度逆时针旋转,6秒逆时针旋转90°,S=,不难发现B和D都符合,但在2秒时,S=,即矩形OABC绕原点0逆时针旋转30°时,S=,则只有D符合条件.故选:D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=﹣2.【考点】负整数指数幂;零指数幂.【分析】首先根据有理数的乘方的运算方法,求出(﹣1)2020的值是多少;然后根据零指数幂的运算方法,求出(π﹣3.14)0的值是多少;最后根据负整数指数幂的运算方法,求出()﹣2的值是多少;再从左向右依次计算,求出算式(﹣1)2020+(π﹣3.14)0﹣()﹣2的值是多少即可.【解答】解:(﹣1)2020+(π﹣3.14)0﹣()﹣2=1+1﹣4=2﹣4=﹣2.故答案为:﹣2.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是③.【考点】二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a<0,b<0,c>0,再结合图象判断各结论.【解答】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①a<0,正确;②abc>0,正确;③当x=1时,y=a+b+c<0,错误;④抛物线与x轴有两个不同的交点,b2﹣4ac>0,正确.故不正确的序号是③.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】利用列表法找出点P的所有坐标,再根据反比例函数图象上点的坐标特征找出符合题意的点的个数,由此即可得出结论.【解答】解:∵点P在双曲线y=的图象上,∴xy=6.利用列表法找出所用点P的坐标,如下表所示.其中满足xy=6的点有:(1,6)、(2,3)、(3,2)、(6,1).∴点P落在双曲线y=上的概率为:=.故答案为:.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为5﹣.【考点】实数与数轴.【分析】先根据勾股定理计算出斜边的长,进而得到A的坐标,再根据A点表示的数,可得B点表示的数.【解答】解:∵直角三角形中较长的直角边是较短的直角边长度的2倍,∴斜边的长==,∴A点表示的数为﹣1,∵C所表示的数为2,点A与点B关于点C对称,∴点B表示的数为5﹣,故答案为:5﹣.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是4.【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(﹣a,d),代入双曲线得到k1=ab,k2=﹣ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.【解答】解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(﹣a,d),代入得:k1=ab,k2=﹣ad,∵S△AOB=2,∴(b+d)•2a﹣ab﹣ad=2,∴ab+ad=4,∴k1﹣k2=4,故选:4.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是.(结果保留根号)【考点】菱形的性质;相似三角形的判定与性质.【分析】设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH,根据菱形邻角互补求出∠ABC=60°,再求出点B到CD的距离以及点G到CE的距离;然后根据阴影部分的面积=S△BDH+S△FDH,根据三角形的面积公式列式进行计算即可得解.【解答】解:如图,设BF交CE于点H,∵菱形ECGF的边CE∥GF,∴△BCH∽△BGF,∴,即,解得CH=,所以,DH=CD﹣CH=2﹣,∵∠A=120°,∴∠ECG=∠ABC=180°﹣120°=60°,∴点B到CD的距离为2×,点G到CE的距离为4×,∴阴影部分的面积=S△BDH+S△FDH,=,=.故答案为:三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.【考点】分式的化简求值.【分析】通分计算括号里面的加法,再算除法,由此顺序化简,进一步代入求得答案即可.【解答】解:原式=•=x+1,∵x+2=,∴x=﹣2,则原式=x+1=﹣1.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)通过证明△BCD∽△BAC,利用相似比得到结论;(2)连结DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切.【解答】(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC,∴,即BC2=BA•BD;(2)解:DE与⊙O相切.理由如下:连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,从而可以求出被调查的居民数;(2)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,可以求得选B和选C的人数以及B、D所占的百分比,从而可以将统计图补充完整;(3)由C所占的百分比可以求得图2中“C”层次所在扇形的圆心角的度数;(4)根据条形统计图和扇形统计图,估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【解答】解:(1)由条形统计图和扇形统计图可知A有90人占调查总数的30%,∴本次被抽查的居民有:90÷30%=300(人),即本次被抽查的居民有300人;(2)由条形统计图和扇形统计图可得,选B的人数有:300﹣(30%+20%)×300﹣30=120(人),选C的人数有:300×20%=60人,B所占的百分比为:120÷300=40%,D所占的百分比为:30÷300=10%,∴补全的图1和图2如右图所示,(3)由题意可得,图2中“C”层次所在扇形的圆心角的度数是:360°×20%=72°,即图2中“C”层次所在扇形的圆心角的度数是72°;(4)由题意可得,该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有:4000×(30%+40%)=2800(人),即该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x 的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A 射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)【考点】解直角三角形的应用.【分析】(1)在直角△ACT中,根据三角函数的定义,若AT=3x,则CT=5x,在直角△ABT 中利用三角函数即可列方程求解;(2)求出正常人作出反应过程中电动车行驶的路程,加上刹车距离,然后与BT的长进行比较即可.【解答】解:(1)根据题意及图知:∠ACT=31°,∠ABT=22°∵AT⊥MN∴∠A TC=90°在Rt△ACT中,∠ACT=31°∴tan31°=可设AT=3x,则CT=5x在Rt△ABT中,∠ABT=22°∴tan22°=即:解得:∴,∴;(2),,∴该车大灯的设计不能满足最小安全距离的要求.21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【考点】一次函数的应用.【分析】(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)由图象可知,当8<t≤13时,渔船和渔政船相遇,利用“两点法”求渔政船的函数关系式,再与这个时间段,渔船的函数关系式联立,可求相遇时,离港口的距离,再求两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【解答】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)设渔政船离港口的距离s 与渔政船离开港口的时间t 之间的函数关系式为s=kt +b (k ≠0),则,解得.所以s=45t ﹣360;联立,解得.所以渔船离黄岩岛的距离为150﹣90=60(海里);(3)s 渔=﹣30t +390,s 渔政=45t ﹣360,分两种情况:①s 渔﹣s 渔政=30,﹣30t +390﹣(45t ﹣360)=30,解得t=(或9.6); ②s 渔政﹣s 渔=30,45t ﹣360﹣(﹣30t +390)=30,解得t=(或10.4).所以,当渔船离开港口9.6小时或10.4小时时,两船相距30海里.22.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0)、B (0,6),点P 为BC 边上的动点(点P 不与点点B 、C 重合),经过点O 、P 折叠该纸片,得点B ′和折痕OP .设BP=t .(1)如图1,当∠BOP=30°时,求点P 的坐标;(2)如图2,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得点C ′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(3)在(2)的条件下,当点C ′恰好落在边OA 上时如图3,求点P 的坐标(直接写出结果即可).【考点】几何变换综合题.【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB ′P 、△QC ′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB ′P ≌△OBP ,△QC ′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,在△PC′E和△OC′B′中,∴△PC′E≌△OC′B′,∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.2020年9月19日。
2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份) 解析版
2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)一、选择题(每小题3分,共30分)1.(3分)﹣的相反数为()A.B.﹣C.D.2.(3分)2020年5月22日,第十三届全国人民代表大会第三次会议顺利召开,李克强总理在政府工作报告中指出,2019年国内生产总值达到99.1万亿,增长6.1%,将99.1万亿用科学记数法表示是()A.9.91×104B.9.91×108C.99.1×1012D.9.91×1013 3.(3分)下列运算正确的是()A.2+3=5B.(a3)2=a5C.a3•a2=a6D.34.(3分)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是()A.B.C.D.5.(3分)将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°6.(3分)以下情形,适合采用抽样调查的是()A.疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况B.北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况C.某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性D.疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测7.(3分)一元二次方程(x+3)(x+6)=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数y=图象恰好经过点A,则k的值为()A.﹣2B.2C.D.﹣9.(3分)如图,在矩形ABCD中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若BE=2,则矩形ABCD的面积为()A.B.12C.12D.810.(3分)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为个单位长度/秒,则2021秒时,点P的坐标是()A.(2021,)B.C.D.(2021,0)二、填空题(每小题3分,共15分)11.(3分)(﹣2)﹣1﹣﹣2cos60°=.12.(3分)不等式组的整数解的和为.13.(3分)某社团中有两名男生和三名女生,暑假将至,该社团将派两位同学作为代表参加市级比赛,恰好选中一男一女的概率是.14.(3分)如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为.15.(3分)如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF 的长为.三、解答题(本大题共8个小题,满分16分)16.(8分)先化简,再求值:,其中x=+1.17.(8分)某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?18.(10分)如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.(1)求证:点D为线段BC的中点.(2)若AB=3,点E是半圆上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆中点时,DE=.19.(10分)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)20.(9分)如图,平面直角坐标系中,点A(0,2),点B(3,﹣2),以AB为边在y轴右侧作正方形ABCD,反比例函数y=(x>0)恰好经过点D.(1)求D点坐标及反比例函数解析式;(2)在x轴上有两点E,F,其中点E使得ED+EA的值最小,点F使得|FD﹣F A|的值最大,求线段EF的长.21.(10分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣的相反数为()A.B.﹣C.D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数为.故选:D.2.(3分)2020年5月22日,第十三届全国人民代表大会第三次会议顺利召开,李克强总理在政府工作报告中指出,2019年国内生产总值达到99.1万亿,增长6.1%,将99.1万亿用科学记数法表示是()A.9.91×104B.9.91×108C.99.1×1012D.9.91×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将99.1万亿用科学记数法表示是9.91×1013.故选:D.3.(3分)下列运算正确的是()A.2+3=5B.(a3)2=a5C.a3•a2=a6D.3【分析】根据二次根式的加减法对A进行判断;根据幂的乘方法则对B进行判断;根据同底数幂的乘法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、2与3不能合并,所以A选项错误;B、原式=a6,所以B选项错误;C、原式=a5,所以C选项错误;D、原式==,所以D选项正确.故选:D.4.(3分)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的视图,注意圆柱内的长方体的放置.【解答】解:其主视图是,故选:B.5.(3分)将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°【分析】直接利用平行线的性质得出∠AEG的度数,再利用三角形外角的性质得出答案.【解答】解:由题意可得:∠F=45°,∠A=60°,∵DF∥AC,∴∠AEG=∠F=45°,∴∠AGF=∠AEG+∠A=45°+60°=105°.故选:A.6.(3分)以下情形,适合采用抽样调查的是()A.疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况B.北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况C.某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性D.疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况,人数众多,应采用抽样调查,故此选项符合题意;B、北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况,意义重大,人数不多,应采用全面调查,故此选项不合题意;C、某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性,意义重大,应采用全面调查,故此选项不合题意;D、疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测,意义重大,应采用全面调查,故此选项不合题意;故选:A.7.(3分)一元二次方程(x+3)(x+6)=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化为一般形式,再求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【解答】解:(x+3)(x+6)=x+1,x2+8x+17=0,这里a=1,b=8,c=17,∵b2﹣4ac=82﹣4×1×17=﹣4<0,∴没有实数根.故选:D.8.(3分)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数y=图象恰好经过点A,则k的值为()A.﹣2B.2C.D.﹣【分析】作AD⊥OB于D,根据30°角的直角三角形的性质得出OA=OB,然后通过证得△AOD∽△BOA,求得△AOD的面积,然后根据反比例函数xsk的几何意义即可求得k的值.【解答】解:作AD⊥OB于D,∵Rt△OAB中,∠ABO=30°,∴OA=OB,∵∠ADO=∠OAB=90°,∠AOD=∠BOA,∴△AOD∽△BOA,∴=()2=,∴S△AOD=S△BOA=×2=,∵S△AOD=|k|,∴|k|=,∵反比例函数y=图象在二、四象限,∴k=﹣,故选:D.9.(3分)如图,在矩形ABCD中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若BE=2,则矩形ABCD的面积为()A.B.12C.12D.8【分析】求出AB,BC即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,由作图可知,AE平分∠BAC,∴∠BAE=∠BAC=30°,∴AB=BE,BC=AB,∵BE=2,∴AB=2,BC=6,∴矩形ABCD的面积=12.故选:B.10.(3分)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为个单位长度/秒,则2021秒时,点P的坐标是()A.(2021,)B.C.D.(2021,0)【分析】设第n秒运动到P n(n为自然数)点,根据点P的运动规律找出部分P n点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论.【解答】解:设第n秒运动到P n(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(,0),P4n+3(,﹣),P4n+4(,0),∵2021=4×505+1,∴P2021为(,),故选:B.二、填空题(每小题3分,共15分)11.(3分)(﹣2)﹣1﹣﹣2cos60°=﹣4.5.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解(﹣2)﹣1﹣﹣2cos60°=﹣0.5﹣3﹣2×=﹣3.5﹣1=﹣4.5.故答案为:﹣4.5.12.(3分)不等式组的整数解的和为﹣3.【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:,解不等式①得:x≥﹣3,解不等式②得:x<3,所以不等式组的解集为:﹣3≤x<3.不等式组的整数解有﹣3,﹣2,﹣1,0,1,2,所以数解的和为﹣3.13.(3分)某社团中有两名男生和三名女生,暑假将至,该社团将派两位同学作为代表参加市级比赛,恰好选中一男一女的概率是.【分析】列表得出所有等可能的情况数,找出恰好选出一男一女的情况数,即可求出所求的概率.【解答】解:列表如下:男男女女女男﹣﹣﹣(男,男)(女,男)(女,男)(女,男)男(男,男)﹣﹣﹣(女,男)(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)(女,女)﹣﹣﹣所有等可能的情况有20种,其中恰好一男一女的情况有12种,∴恰好选中一男一女的概率是=,故答案为:.14.(3分)如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为.【分析】过点O作OE⊥AC,交AC于D,连接OC,BC,证明弓形OC的面积=弓形BC的面积,这样图中阴影部分的面积=△OBC的面积.【解答】解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=×2×=.故答案为:15.(3分)如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF 的长为3+3或3﹣3.【分析】由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再证出FN=EN=3,即可得出结果;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN =∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:3+3或3﹣3.三、解答题(本大题共8个小题,满分16分)16.(8分)先化简,再求值:,其中x=+1.【分析】先把括号内通分,再把除法运算化为乘法运算,约分后得到原式=x2﹣x,然后把x的值代入计算即可.【解答】解:原式=•=•=x(x﹣1)=x2﹣x,当x=+1时,原式=(+1)2﹣(+1)=2+.17.(8分)某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?【分析】(1)利用扇形统计图,用1分别减去A、B、C组的百分比可得到a的值;(2)根据中位数和众数的定义求解;(3)利用样本估计总体,把1200乘以样本中七、八年级的优秀率即可.【解答】解:(1)a%=1﹣10%﹣20%﹣×100%=40%,则a=40;b==93;c=96;(2)八年级掌握得更好.理由如下:因为七八年级的平均数、中位数相同,而八年级的众数比七年级高,说明八年级高分的同学更多;八年级方差比七年级小,说明八年级两极分化差距小.(3)1200×=780,所以参加此次调查活动成绩优秀的学生人数约为780名.18.(10分)如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.(1)求证:点D为线段BC的中点.(2)若AB=3,点E是半圆上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆中点时,DE=.【分析】(1)连接DO,根据切线的性质得到∠ODC=90°,根据圆周角定理求出∠DAO,根据等腰三角形的判定定理得到DA=DC,根据等边三角形的性质得到DB=DA,等量代换证明结论;(2)①根据直角三角形的性质求出AD,根据矩形的四个角都是直角得到∠EAF=60°,根据余弦的定义计算,求出AE;②作AG⊥DE,根据圆心角、弧、弦之间的关系得到AE=EF,根据圆周角定理得到∠ADE=∠FDE=45°,根据等腰直角三角形的性质求出AE,解直角三角形得到答案.【解答】(1)证明:如图1,连接DO,∵BC与⊙O相切于点D,∴∠ODC=90°,∵∠C=30°,∴∠DOC=60°,由圆周角定理得,∠DAO=∠DOC=30°,∴DA=DC,∵∠BAC=90°,∴∠B=60°,∠BAD=60°,∴DB=DA,∴DB=DC,即点D为线段BC的中点;(2)解:①在Rt△ABC中,∠BAC=90°,∠C=30°,则BC=2AB=6,∵BD=DC,∴AD=BC=3,∴AF===2,当四边形DAEF为矩形时,∠DAE=90°,∵∠DAC=30°,∴∠EAF=60°,∴AE=AF•cos∠EAF=;②如图2,过点A作AG⊥DE于G,∵点E为半圆中点,∴=,∴AE=EF,∠ADE=∠FDE=45°,∴AG=DG=AD=,∵AF=2,∴AE=EF=,由圆周角定理得,∠AED=∠AFD=60°,∴EG=AE•cos∠AED=×=,∴DE=DG+EG=,故答案为:①;②.19.(10分)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)【分析】设AC为xm,根据等腰直角三角形的性质得到BC=AC=x,根据正切的定义列出方程,解方程即可得到答案.【解答】解:设AC为xm,则CD=(x+120)m,在Rt△ACB中,∠ABC=45°,∴BC=AC=x,∴CE=x+20,在Rt△DCE中,tan∠DEC=,即≈1.346,解得,x≈269.0,∴CD=x+120=389.0≈389,答:中原福塔CD的总高度约为389m.20.(9分)如图,平面直角坐标系中,点A(0,2),点B(3,﹣2),以AB为边在y轴右侧作正方形ABCD,反比例函数y=(x>0)恰好经过点D.(1)求D点坐标及反比例函数解析式;(2)在x轴上有两点E,F,其中点E使得ED+EA的值最小,点F使得|FD﹣F A|的值最大,求线段EF的长.【分析】(1)作DM⊥y轴于M,BN⊥y轴于N,通过证得△ANB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线的解析式.(2)利用轴对称求最短路线得出A点关于x轴对称点的性质,进而得出DA′的解析式,可得点E坐标,延长DA交x轴于F,此时|FD﹣F A|的值最大,求出直线AD的解析式可得点F坐标,由此即可解决问题.【解答】解:(1)作DM⊥y轴于M,BN⊥y轴于N,∵点A(0,2),点B(3,﹣2),∴OA=2,ON=2,∴AN=4,BN=3,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠NAB+∠DAM=90°,∵∠NAB+∠ABN=90°,∴∠DAM=∠ABN,在△ANB和△DMA中,∴△ANB≌△DMA(AAS),∴AM=BN=3,DM=AN=4,∴OM=5,∴D(4,5),∵反比例函数y=(x>0)恰好经过点D.∴k=4×5=20,∴双曲线为y=;(2)如图2所示:作A点关于x轴对称点A′,连接DA′,交x轴于点E,此时ED+EA 的值最小,∵A(0,2),∴A′(0,﹣2),设直线DA′的解析式为:y=ax+b,把A(0,﹣2),D(4,5)代入得,解得:,故直线DA′解析式为:y=x﹣2,当y=0则x=,故E点坐标为:(,0),延长DA交x轴于F,此时|FD﹣F A|的值最大,设直线AD的解析式为y=mx+n,把A(0,2),D(4,5)代入得,解得,∴直线AD的解析式为y=x+2,当y=0则x=﹣,∴F(﹣,0),∴EF=+=.21.(10分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.【分析】(1)根据题意和表格中的数据,可以列出相应的二元一次方程组,从而可以求得普通口罩和N95口罩的销售单价;(2)根据题意,可以得到利润与购进普通口罩数量的函数关系式,再根据普通口罩的数量不低于N95口罩数量的4倍.可以求得普通口罩数量的取值范围,再根据一次函数的性质,即可解答本题.【解答】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,,解得,,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)设购买普通口罩x个,获得的利润为w元,w=(2﹣1)x+(10﹣6)×(1000﹣x)=﹣3x+4000,∴w随x的增大而减小,∵普通口罩的数量不低于N95口罩数量的4倍.∴x≥4×(1000﹣x),解得,x≥200,∴当x=200时,w取得最大值,此时w=3400,100﹣x=800,答:为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩200个,N95口罩800个,最大利润是3400元.。
河南省2024届九年级下学期中考模拟数学试卷(一)及答案
2024年河南省中考数学复习模拟试卷(一)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.(共10题;共30分)1.(3分)绝对值小于4的所有整数的和是( )A.4B.8C.0D.17 2.(3分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.C.D.1 3.(3分)根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将3260000用科学记数法表示,下列选项正确的是( )A.3.26×105B.3.26×106C.32.6×105D.0.326×1074.(3分)如图,为的直径,弦于点E,于点F,,则为( )A.B.C.D.5.(3分)已知分式,,其中,则与的关系是( )A.B.C.D.6.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是( )A.B.C.D.7.(3分)关于的一元二次方程的根的情况,下列说法正确的是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.与的值有关,无法确定8.(3分)一个不透明的袋子中放入三个除标号外其余均相同的小球,三个小球的标号分别是2,1,-1,随机从这个袋子中一次取出两个小球,取出的两个小球上数BK字之积为负数的概率是( )A.B.C.D.9.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=3 10.(3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分)(共5题;共15分)11.(3分)下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系 .12.(3分)已知关于x,y的方程组给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数③a=1时,方程组的解也是方程的解;④和之间的数量关系是.其中正确的是 (填序号)13.(3分)某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是 .14.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交边BC于点D,E,F分别是AD,AC上的点,连接CE,EF.若AB=10,BC=6,AC=8,则CE+EF的最小值是 .15.(3分)如图,正方形网格中的△ABC,若小方格的边长都为1,则△ABC是 三角形.三、解答题(本大题共8个小题,共75分)(共8题;共75分)16.(10分)回答下列问题.(1)(5分)计算:.(2)(5分)解方程:.17.(9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998根据以上信息,解答下列问题:(1)(3分)这个班共有男生 人,共有女生 人;(2)(3分)补全初二1班体育模拟测试成绩分析表;(3)(3分)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.18.(9分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.19.(9分)如图,等腰Rt的直角顶点A在反比例函数的图象上.(1)(3分)已知,求此反比例函数的解析式;(2)(3分)先将点A绕原点O逆时针旋转90°,得到点E,再将点E向右平移1个单位得到点F,若点F恰好在正比例函数的图象上,求正比例函数的表达式.20.(9分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.21.(9分)一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东行为正,向西行为负,行驶里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)(3分)将最后一名乘客送到目的地,出租车在该商场的哪边?离商场有多远?(2)(3分)如果出租车每行驶100 km的油耗为10L,1L汽油的售价为7.2元,那么出租车在这天上午消耗汽油的金额是多少元?22.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)(5分)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)(5分)足球第一次落地点C距守门员多少米?23.(10分)如图,在菱形ABCD中,,将边AB绕点A逆时针旋转至,记旋转角为.过点D作于点F,过点B作BE⊥直线于点E,连接EF.【探索发现】(1)(3分)填空:当时,_ °;的值是_ ;(2)(3分)【验证猜想】当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(4分)【拓展应用】在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段EF的长.答案1.C2.C3.B4.C5.B6.C7.C8.C9.D10.D11.d-c=b-a12.①②③13.160°14.4.815.直角16.(1)解:原式(2)解:,.17.(1)20;25(2)解:甲的平均分为×(5+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)解:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.18.解:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上)线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.19.(1)解:如图,作AC⊥OB于C,∵△AOB是等腰直角三角形,OA=2,∴AC=OC=2,∴A(2,2),∵直角顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)解:∵A(2,2),∴将点A绕原点O逆时针旋转90°,得到点E(-2,2),再将点E向右平移1个单位得到点F(-1,2),∵点F恰好在正比例函数y=mx的图象上,∴2=-m,解得m=-2,∴正比例函数的表达式为y=-2x.20.解:由题意可知,,,设,∵,,,∴,,解得,经检验x=120是方程的解的长为.21.(1)解:9-8-5+6-8+9-3-7-5+10=(9+6+9+10)-(8+5+8+3+7+5)=34-36=-2(km).答:将最后一名乘客送到目的地,出租车在该商场的西边,离商场2 km;(2)解:|+9|+|-8|+|-5|+|+6|+|-8|+|+9|+|-3|+|-7|+|-5|+|+10|=70(km),×10×7.2= 50.4 (元).答:出租车在这天上午消耗汽油的金额是50.4元.22.(1)解:以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)解:令y=0,则﹣x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.23.(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图,连接BD,∵,∴,,∴,∴,∵,∴,∴,即,∴,,∴,又∵,∴,∴.(3)解:的长为或.。
河南省中考数学真题模拟题分类卷4 图形的性质
河南省中考数学真题模拟题分类卷4 图形的性质姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分)已知在△ABC中,∠A与∠C的度数比是5:7,且∠B比∠A大10°,那么∠B为()A . 40°B . 50°C . 60°D . 70°2. (2分)(2018·苏州) 如图,在△ABC中,延长BC至D,使得CD= BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A . 3B . 4C . 2D . 33. (2分)(2019·广西模拟) 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A . 2B .C .D .4. (2分) (2020八下·莲湖期末) 如图,在四边形中,,对角线、相交于点O,于点E,于点F,连接、,若,则下列结论不一定正确的是()A .B .C . 为直角三角形D . 四边形是平行四边形5. (2分)(2019·海南模拟) 如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠AOC 的度数是()A . 70°B . 110°C . 140°D . 160°6. (2分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A . 45°B . 22.5°C . 67.5°7. (2分)(2013·梧州) 如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A . 10B . 12C . 15D . 208. (2分) (2020九上·永嘉期中) 如图,把一个量角器与一块30°(∠CAB=30° )角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有点P恰好是量角器的半圆弧中点,连结CP。
中考数学综合模拟测试(含答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(时间:100分钟满分:93分)一、选择题:本题共9小题,每小题3分,共27分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2021丽水市中考)实数2-的倒数是()A. 2B. 2- C. 12D.12-2.(2021安徽省中考)《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为()A. 89.9×106B. 8.99×107C. 8.99×108D. 0.899×1093.(2021佛山南海区二模)如图,下列条件不能判断直线a∥b的是()A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°4.(2021佛山南海区二模)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.5. (2021自贡市中考)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A. 16,15B. 11,15C. 8,8.5D. 8,96.(2021惠州市一模)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2 D.(a+b)2=a2+b27.(2021佛山南海区二模)下列四个不等式的解集在数轴上表示如图所示的是()A.B.C.D.8. (2021安徽省中考)某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A. 23cmB. 24cmC. 25cmD. 26cm9. (2021遂宁市中考)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为()A. 12cm2B. 9cm2C. 6cm2D. 3cm2二、填空题:本题共6小题,每小题4分,共24分.10.(2021南山区一模)因式分解:4a3﹣16a2+16a=.11.若使二次根式有意义,则x的取值范围是.12.(2021南海区二模)若+|a+b|+(c+1)2=0,则b+c的值为.13.(2021禅城区一模)一个多边形的内角和为900°,则这个多边形的边数为7.14.如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为.15.(2021南海区二模)如图,△ABC中,AB=AC,以点B为圆心,任意长为半径画弧交AB、BC于N、M两点,大于MN的长度为半径作弧,射线BP交AC于点D,则AD:DC=.三、解答题(一):共18分.解答应写出文字说明、证明过程或演算步骤.16.(2021深圳光明区二模)先化简,再求值:(﹣a+1)÷,其中a是4的平方根.17. (2021自贡市中考)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.18. (2021丽水市中考)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成如下两幅不完整的统计图表,请根据图信息解答下列问题:抽取的学生视力情况统计表(1)求所抽取的学生总人数;(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.四、解答题(二):共24分.解答应写出文字说明、证明过程或演算步骤.19.(2021乐山市中考) 如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径. 20.(2021遂宁市中考)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.21. (2021遂宁市中考)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?参考答案一、选择题:本题共9小题,每小题3分,共27分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2021丽水市中考)实数的倒数是( )A. 2B.C.D. 【分析】直接利用倒数的定义分析得出答案.【解答】解:实数-2的倒数是. 故选:D .2.(2021安徽省中考)《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为( )A. 89.9×106B. 8.99×107C. 8.99×108D. 0.899×109 【分析】将8990万还原为89900000后,直接利用科学记数法的定义即可求解.【解答】解:8990万=89900000=,故选B .3.(2021佛山南海区二模)如图,下列条件不能判断直线a ∥b 的是( )A .∠1=∠4B .∠3=∠5C .∠2+∠5=180°D .∠2+∠4=180°【分析】要判断直线a ∥b ,则要找出它们的同位角、内错角相等,同旁内角互补.【解答】解:A 、能判断,a ∥b ,两直线平行.B 、能判断,a ∥b ,两直线平行.C 、能判断,a ∥b ,两直线平行.D 、不能.故选:D .4.(2021佛山南海区二模)下列图形中,既是中心对称图形,又是轴对称图形的是( )2-2-1212-12-A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、既是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.5. (2021自贡市中考)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A. 16,15B. 11,15C. 8,8.5D. 8,9【分析】根据众数和中位数的意义与表格直接求解即可.【解答】解:这50名学生这一周在校的体育锻炼时间是8小时的人数最多,故众数为8;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间分别是8,9,故中位数是(8+9)÷2=8.5.故选:C.6.(2021惠州市一模)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2 D.(a+b)2=a2+b2【分析】利用合并同类项对A进行判断;根据积的乘方和幂的乘方对B进行判断;根据多项式乘多项式可对C进行判断;根据完全平方公式对D进行判断.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.7.(2021佛山南海区二模)下列四个不等式的解集在数轴上表示如图所示的是()A.B.C.D.【分析】分别解不等式,进而利用图形得出答案.【解答】解:A、<2,不合题意;B、≤8,符合题意;C、>3,不合题意;D、≥2,不合题意.故选:B.8. (2021安徽省中考)某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A. 23cmB. 24cmC. 25cmD. 26cm分析】设,分别将和代入求出一次函数解析式,把代入即可求解.【解答】解:设,分别将和代入可得:,解得,∴,当时,,故选:B.9. (2021遂宁市中考)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A. 12cm 2B. 9cm 2C. 6cm 2D. 3cm 2【分析】由三角形的中位线定理可得DE =BC ,DE ∥BC ,可证△ADE ∽△ABC ,利用相似三角形的性质,即可求解. 【解答】解:∵点D ,E 分别是边AB ,AC 的中点,∴DE =BC ,DE ∥BC , ∴△ADE ∽△ABC ,∴, ∵S △ADE =3,∴S △ABC =12,∴四边形BDEC 的面积=12-3=9(cm 2),故选:B .二、填空题:本题共6小题,每小题4分,共24分.10.(2021南山区一模)因式分解:4a 3﹣16a 2+16a = .【分析】直接提取公因式4a ,再利用公式法分解因式即可.【解答】解:4a 3﹣16a 2+16a=4a (a 2﹣4a +4)=4a (a ﹣2)2.故答案为:4a (a ﹣2)2.11.若使二次根式有意义,则x的取值范围是 .【解答】解:∵二次根式有意义, ∴2x ﹣4≥0,解得x≥2.121221()4ADE ABC S DE S BC ∆∆==故答案为:x≥2.12.(2021南海区二模)若+|a+b|+(c+1)2=0,则b+c的值为.【分析】先根据非负数的性质得a、b、c的值,再代入计算可得答案.【解答】解:∵+|a+b|+(c+1)2=0,∴,解得:a=1,b=﹣1,∴b+c=﹣7+(﹣1)=﹣2.故答案为:﹣8.13.(2021禅城区一模)一个多边形的内角和为900°,则这个多边形的边数为7.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.14.如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为.【分析】要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.【解答】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(﹣4,0),D(﹣1,4),∴DF=CE=4,OF=1,AF=OA﹣OF=3,在Rt△ADF中,AD=,∴OE=EF﹣OF=5﹣1=4,∴C(4,4)∴k=4×4=16故答案为:16.15.(2021南海区二模)如图,△ABC中,AB=AC,以点B为圆心,任意长为半径画弧交AB、BC于N、M两点,大于MN的长度为半径作弧,射线BP交AC于点D,则AD:DC=.【分析】先证明△ABC∽△BCD,所以,化简得,设,则1+=x,解得x =,即得到答案.【解答】解:由作图可知,BD为∠ABC的平分线,∴∠ABD=∠CBD,∵∠A=36°,∴∠ABC=∠ACB=72°,∴∠ABD=∠CBD=36°,∴BC﹣BD=AD∴△ABC∽△BCD,∴,∴,∴,设,∴1+=x,∴x+1=x2∴x3﹣x﹣1=0,解得x7=,x2=(舍去),∴AD:DC=.故答案为.三、解答题(一):共18分.解答应写出文字说明、证明过程或演算步骤.16.(2021深圳光明区二模)先化简,再求值:(﹣a+1)÷,其中a是4的平方根.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由平方根的概念得出a的值,选择使分式有意义的a的值代入计算即可.解:原式=[﹣]•=•=•=﹣,∵a是4的平方根,∴a=±2,又a=2时分式无意义,∴当a=﹣2时,原式=﹣=0.17. (2021自贡市中考)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.【分析】由矩形的性质和已知得到DF=BE,AB∥CD,故四边形DEBF是平行四边形,即可得到答案.【解答】∵四边形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE=BF.18. (2021丽水市中考)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成如下两幅不完整的统计图表,请根据图信息解答下列问题:抽取的学生视力情况统计表(1)求所抽取的学生总人数;(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.【分析】(1)根据检查结果正常的人数除以所占百分比即可求出抽查的总人数;(2)首先求出近视程度为中度和重度的人数所占样本问题的百分比,再依据样本估计总体求解即可; (3)可以从不同角度分析后提出建议即可.【解答】解:(1)(人).∴所抽取的学生总人数为200人.(2)(人).∴该校学生中,近视程度为中度和重度的总人数有810人.(3)本题可有下面两个不同层次的回答,A 层次:没有结合图表数据直接提出建议,如:加强科学用眼知识的宣传.B 层次:利用图表中的数据提出合理化建议.如:该校学生近视程度为中度及以上占比为,说明该校学生近视程度较为严重,建议学校要加强电子产品进校园及使用的管控.四、解答题(二):共24分.解答应写出文字说明、证明过程或演算步骤.19.(2021乐山市中考) 如图,已知点是以为直径的圆上一点,是延长线上一点,过点作的垂线交的延长线于点,连结,且.(1)求证:是的切线;(2)若,,求的半径.8844%200÷=1800(144%11%)810⨯--=45%C AB D AB D BD AC E CD CD ED=CD O tan 2DCE ∠=1BD =O【分析】(1)连接、,根据已知条件证明,即可得解;(2)由(1)可得,得到,令,根据正切的定义列式求解即可;【解答】解:(1)证明:连结、.∵,,∴,.,,∴,,,∴,即是的切线.(2)由(1)知,,又,,∴,即.令,.即,即.∵,即,,解得或OC BC90E OAC∠+∠=︒90ECD OCA∠+∠=︒DCB DAC△∽△2DC DA DB=⋅AO r=OC BCOC OA=DC DE=OCA OAC∠=∠E DCE∠=∠∴的半径为20.(2021遂宁市中考)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF 与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.【分析】(1,则可得到AE=CF;(2)连接BF,DE,得到OE= OF,又AO=CO,所以四边形AECF是平行四边形,则根据EF⊥BD可得四边形BFDE是菱形.【解答】证明:(1)∵是平行四边形∴OA=OC,BE∥DF∴∠E=∠F在△AOE和△COF中∴∴AE=CF(2)当EF⊥BD时,四边形BFDE是菱形,理由如下:如图:连结BF,DE∵是平行四边形∴OB=OD∴四边形平行四边形∵EF⊥BD,∴是菱形21. (2021遂宁市中考)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M的值,从而得到答案.【解答】(1)由题意列方程得:(x+40-30)(300-10x)=3360解得:x1=2,x2=18∵要尽可能减少库存,∴x2=18不合题意,故舍去∴T恤的销售单价应提高2元;(2)设利润为M元,由题意可得:M=(x+40-30)(300-10x)=-10x2+200x+3000∴当x=10时,M最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.。
2020-2021学年河南省郑州市中考数学第二次模拟试题及答案解析
最新河南省中考数学二模试卷一、选择题(本题共8小题,每小题3分,共24分)1.在实数﹣2、0、﹣5、3中,最小的实数是()A.﹣2B.0 C.﹣5 D.32.下列计算正确的是()A.3x2﹣4x2=﹣1 B.3x+x=3x2C.4x•x=4x2D.﹣4x6÷2x2=﹣2x33.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.0.14×1064.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变5.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.6.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为()A.40°B.50°C.80°D.100°7.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF 的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°8.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C. D.二、填空题(本题共7小题,每小题3分,共21分)9.计算:|﹣4|﹣()﹣2= .10.若正多边形的一个内角等于120°,则这个正多边形的边数是.11.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数为.12.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A 的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .14.如图矩形ABCD中,AD=1,CD=,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为.15.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为.三、解答题(本题共小题,共75分)16.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.17.为推广阳光体育“大课间”活动,我县某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.18.如图,AB是⊙O直径,点P是AB下方的半圆上不与点A,B重合的一个动点,点C为AP中点,延长CO交⊙O于点D,连接AD,过点D作⊙O的切线交PB的廷长线于点E,连CE.(1)求证:△DAC≌△ECP;(2)填空:①当∠DAP= 时,四边形DEPC为正方形;②在点P运动过程中,若⊙O半径为5,tan∠DCE=,则AD= .19.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)20.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A、B两种型号的空气净化器,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周4台5台7100元第二周6台10台12600元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A,B两种型号的空气净化器的销售单价;(2)若商场准备用不多于17200元的金额再采购这两种型号的空气净化器共30台,超市销售完这30台空气净化器能否实现利润为6200元的目标,若能,请给出相应的采购方案;若不能,请说明理由.22.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF 与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.23.如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.在实数﹣2、0、﹣5、3中,最小的实数是()A.﹣2B.0 C.﹣5 D.3【考点】实数大小比较.【分析】先根据实数的大小比较法则比较大小,即可得出选项.【解答】解:﹣5<﹣2<0<3,最小的实数是﹣5,故选C.2.下列计算正确的是()A.3x2﹣4x2=﹣1 B.3x+x=3x2C.4x•x=4x2D.﹣4x6÷2x2=﹣2x3【考点】整式的除法;合并同类项;单项式乘单项式.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用单项式除以单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣x2,错误;B、原式=4x,错误;C、原式=4x2,正确;D、原式=﹣2x4,错误,故选C3.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.0.14×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:140000=1.4×105,故选:B.4.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.5.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【考点】平行线分线段成比例.【分析】求出AB,由平行线分线段成比例定理得出比例式,即可解答本题.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,BC=5,∴;故选D.6.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为()A.40°B.50°C.80°D.100°【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°,故选C.7.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF 的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°【考点】轴对称-最短路线问题.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.8.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C. D.【考点】动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A二、填空题(本题共7小题,每小题3分,共21分)9.计算:|﹣4|﹣()﹣2= ﹣.【考点】实数的运算;负整数指数幂.【分析】分别根据负整数指数幂的计算法则、绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4﹣﹣4=﹣.故答案为:﹣.10.若正多边形的一个内角等于120°,则这个正多边形的边数是 6 .【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;解法二:设所求正n边形边数为n,∵正n边形的每个内角都等于120°,∴正n边形的每个外角都等于180°﹣120°=60°.又因为多边形的外角和为360°,即60°•n=360°,∴n=6.故答案为:6.11.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数为8 .【考点】概率公式.【分析】设黄球的个数为x个,根据概率公式得到=,然后解方程即可.【解答】解:设黄球的个数为x个,根据题意得:=,解得x=8,经检验:x=8是原分式方程的解,故答案为8.12.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为 5 .【考点】一次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A 的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】首先根据点A在双曲线y=(x>0)上,设A点坐标为(a,),再利用含30°直角三角形的性质算出OA=2a,再利用菱形的性质进而得到B点坐标,即可求出k的值.【解答】解:因为点A在双曲线y=(x>0)上,设A点坐标为(a,),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,),可得:k=,故答案为:14.如图矩形ABCD中,AD=1,CD=,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为﹣.【考点】扇形面积的计算;矩形的性质;旋转的性质.【分析】根据勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可得到结论.【解答】解:在矩形ABCD中,∵AD=1,CD=,∵AC=2,tan∠CAB==,∴∠CAB=30°,∵线段AC、AB分别绕点A顺时针旋转90°至AE、AF,∴∠CAE=∠BAF=90°,∴∠BAG=60°,∵AG=AB=,∴阴影部分面积=S△ABC+S扇形ABG﹣S△ACG=××1+﹣××2=﹣,故答案为:﹣.15.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为.【考点】翻折变换(折叠问题).【分析】由题意得:DF=DB,得到点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD 交⊙D于点F,此时AF值最小,由点D是边BC的中点,得到CD=BD=3;而AC=4,由勾股定理得到AD=5,求得线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,根据相似三角形的性质即可得到结论.【解答】解:由题意得:DF=DB,∴点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD交⊙D于点F,此时AF值最小,∵点D是边BC的中点,∴CD=BD=3;而AC=4,由勾股定理得:AD2=AC2+CD2∴AD=5,而FD=3,∴FA=5﹣3=2,即线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,∵∠ACB=90°,∴FH∥AC,∴△DFH∽△ADC,∴,∴HF=,DH=,∴BH=,∴BF==,故答案为:.三、解答题(本题共小题,共75分)16.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.【考点】分式的化简求值;一元二次方程的解.【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.17.为推广阳光体育“大课间”活动,我县某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用A类人数除以它所占百分比即可得到调查的总人数;(2)用总人数分别减去A、C、D类人数即可得到B类人数,再计算B类所占百分比,然后补全统计图;(3)用A表示男生,B表示女生,先画树状图展示所有20种等可能的结果数,再找出到同性别学生的结果数,然后根据概率公式求解.【解答】解:(1)15÷10%=150(名),答;在这项调查中,共调查了150名学生;(2)本项调查中喜欢“立定跳远”的学生人数=150﹣15﹣60﹣30=45(人),它所占百分比=×100%=30%,画图如下:(3)用A表示男生,B表示女生,画图如下:共有20种等可能的结果数,其中同性别学生的结果数是8,所有P(刚好抽到同性别学生)=.18.如图,AB是⊙O直径,点P是AB下方的半圆上不与点A,B重合的一个动点,点C为AP中点,延长CO交⊙O于点D,连接AD,过点D作⊙O的切线交PB的廷长线于点E,连CE.(1)求证:△DAC≌△ECP;(2)填空:①当∠DAP= 45°时,四边形DEPC为正方形;②在点P运动过程中,若⊙O半径为5,tan∠DCE=,则AD= 4.【考点】圆的综合题.【分析】(1)先由切线的性质得到∠CDE=90°,再利用垂径定理的推理得到DC⊥AP,接着根据圆周角定理得到∠APB=90°,于是可判断四边形DEPC为矩形,所以DC=EP,然后根据“SAS”判断△DAC≌△ECP;(2)①利用四边形DEPC为矩形得到DE=PC=AC,则根据正方形的判定方法得DC=CP时,四边形DEPC为正方形,则DC=CP=AC,于是得到此时△ACD为等腰直角三角形,所以∠DAP=45°;②先证明∠ADC=∠DCE,再在Rt△ACD中利用正切得到tan∠ADC==,则设AC=x,DC=2x,利用勾股定理得到AD=x,然后在Rt△AOC中利用勾股定理得到x2+(2x﹣5)2=52,再解方程求出x即可得到AD的长.【解答】(1)证明:∵DE为切线,∴OD⊥DE,∴∠CDE=90°,∵点C为AP的中点,∴DC⊥AP,∴∠DCA=∠DCP=90°,∵AB是⊙O直径,∴∠APB=90°,∴四边形DEPC为矩形,∴DC=EP,在△DAC和△ECP中,∴△DAC≌△ECP;(2)解:①∵四边形DEPC为矩形,∵DE=PC=AC,∵当DC=CP时,四边形DEPC为正方形,此时DC=CP=AC,∴△ACD为等腰直角三角形,∴∠DAP=45°;②∵DE=AC,DE∥AC,∴四边形ACED为平行四边形,∴AD∥CE,∴∠ADC=∠DCE,在Rt△ACD中,tan∠ADC==tan∠DCE=,设AC=x,则DC=2x,∴AD==x,在Rt△AOC中,AO=5,OC=CD﹣OD=2x﹣5,∴x2+(2x﹣5)2=52,解得x1=0(舍去),x2=4,∴AD=4.故答案为45°,4.19.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==220.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.21.郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A、B两种型号的空气净化器,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周4台5台7100元第二周6台10台12600元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A,B两种型号的空气净化器的销售单价;(2)若商场准备用不多于17200元的金额再采购这两种型号的空气净化器共30台,超市销售完这30台空气净化器能否实现利润为6200元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设A型号空气净化器单价为x元,B型号空气净化器单价y元,根据4台A型号,5台B型号的销售收入为7100元,6台A型号10台B型号的销售收入为12600元,列方程组求解;(2)设采购A种型号空气净化器a台,则采购B种型号空气净化器(30﹣a)台,根据金额不多余17200元,列不等式求解;【解答】解:(1)设A型号空气净化器单价为x元,B型号空气净化器单价y元,则,解得:,答:A型号空气净化器单价为800元,B型号空气净化器单价780元;(2)设A型空气净化器采购a台,采购B种型号空气净化器(30﹣a)台.则600a+560(30﹣a)≤17200,解得:a≤10,200a+220(30﹣a)≥6200,解得:a≤20,则最多能采购A型号空气净化器10台,即可实现目标.22.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF 与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.【考点】四边形综合题.【分析】(1)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得∠HAD=90°,即可求得AG⊥GD,AG=GD;(2)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等边三角形,即可证得AG⊥GD,AG=DG;(3)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan.【解答】(1)AG⊥DG,AG=DG,证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=∠ACD=45°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°,即∠HAD=90°,∴AG⊥GD,AG=GD;(2)AG⊥GD,AG=DG;证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=60°,∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=60°;∴AG⊥HD,∠HAG=∠DAG=30°,∴tan∠DAG=tan30°==,∴AG=DG.(3)DG=AGtan;证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣,∠ACD=90°﹣,∴∠ABC=∠ACD,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=,∴tan∠DAG=tan=,∴DG=AGtan.23.如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.【考点】二次函数综合题.【分析】1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P 与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1在x 轴上,B1O1∥y轴,根据B1纵坐标为1,求出B1横坐标即可解决问题.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值.(3)“落点”的个数有4个,如图1,图2,图3,图4所示.如图3,图4中,B1O1=BO=1,则x2﹣x﹣1=1,解得x=,∵A1O1=,∴图3中,OA1=OO1+A1O1,图4中OA1═OO1+O1A1=∴点A1坐标为(,0)或().2016年10月16日。
2023年河南省中考数学模拟试卷(经典三)
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分 共30分)下列各小题均有四个选项 其中只有一个是正确的。
1.2023-的相反数是( ) A .12023B .2023C .12023-D .32022.2023年国内生产总值增长5.5%左右 城镇新增就业1200万人以上 请将数“1200万”用科学记数法表示为( ) A .80.1210⨯ B .61.210⨯C .71.210⨯D .61210⨯3.如图 几何体的左视图是( ).A .B .C .D .4.如图 小宁连续两周居家记录的体温情况折线统计图 下列从图中获得的信息正确的是( )A .这两周体温的众数为36.6℃B .第一周体温的中位数为37.1℃C .第二周平均体温高于第一周平均体温D .第一周的体温比第二周的体温更加平稳5.今年 郑凯12岁 他爸39岁.x 年后郑凯年龄是他爸的一半 则x 是( ) A .10B .12C .14D .156.(本题3分)设a 是一个不为零的实数 下列式子中 一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32a a> 7.如图 已知AB 为O 的直径 点C E 在O 上 且30AEC ∠=︒ 过点C 作O 的切线交BA 的延长线于点D 连接BC .若3AD = 则弦BC 的长为( )A .3B .3C .23D .338.方程组3827x y x y +=⎧⎨-=⎩的解为( )A .321x y ⎧=⎪⎨⎪=-⎩B .31x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .131x y ⎧=⎪⎨⎪=-⎩9.如图 在平面直角坐标系中 点A 、B 分别在x 轴负半轴和y 轴正半轴上 :1:2OC BC = 连接AC 过点O 作OP AB ∥交AC 的延长线于P 若(1,1)P 则AB 的长为( )A .22B .2C .2D .310.如图1 在平行四边形ABCD 中 =60B ∠︒ 2BC AB =;动点P 以每秒1个单位的速度从点A 出发沿线段AB 运动到点B 同时动点Q 以每秒4个单位的速度从点B 出发 沿折线B C D --运动到点D .图2是点P 、Q 运动时BPQ 的面积S 随运动时间t 变化关系的图象 则a 的值是( )A.43B.63C.83D.103二、填空题(本题有6小题每题4分共24分)11.因式分解:225a-=__.12.某班的班主任布置劳动作业要求学生从做饭、洗衣服、拖地这三项任务中任选一项完成甲和乙两位同学选择不同任务的概率是________.13.(3分)如图Rt△ABC中∠ACB=90°线段CO为斜边AB的中线.分别以点A和点O 为圆心大于的长为半径作弧两弧交于P Q两点作过P、Q两点的直线恰过点C交AB于点D若AD=1 则BC的长是.14.(3分)如图在▱ABCD中E为BC的中点以E为圆心CE长为半径画弧交对角线BD 于点F若∠BAD=116°∠BDC=39°BC=4 则扇形CEF的面积为.15.(3分)如图在Rt△ABC中∠ACB=90°∠ABC=30°AB=4E为斜边AB的中点点P是射线BC上的一个动点连接AP、PE将△AEP沿着边PE折叠折叠后得到△EP A′当折叠后△EP A′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一则此时BP的长为.三、解答题(本大题共8个小题共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm24.0g”是指该枚古钱币的直径为48.1mm厚度为2.4mm质量为24.0g).根据图中信息解决下列问题.(1)这5枚古钱币所标直径数据的平均数是所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出为判断密封盒上所标古钱币的质量是否有错桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识判断哪枚古钱币所标的质量与实际质量差异较大并计算该枚古钱币的实际质量约为多少克.18.(9分)如图直线y=kx+b与双曲线相交于A(﹣3 1)B两点与x轴相交于点C(﹣4 0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA OB求△AOB的面积;(3)直接写出当x<0时关于x的不等式的解集.19.(9分)宝轮寺塔为供奉舍利由尼姑道秀主持建筑始建于隋文帝仁寿元年(601年)故又称仁寿建塔位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度如图在A处测得宝轮寺塔塔基C的仰角为15°沿水平地面前进23米到达B处测得宝轮寺塔塔顶E的仰角∠EBD为53°测得塔基C的仰角∠CBD为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差请提出一条减小误差的合理化建议.(结果精确到0.1米参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个且A型音频放大器的数量不少于B型音频放大器数量的2倍请给出最省钱的购买方案并说明理由.21.(9分)某跳台滑雪运动员进行比赛起跳后飞行的路线是抛物线的一部分(如图中实线部分所示)落地点在着陆坡(如图中虚线部分所示)上已知标准台的高度OA为66m当运动员在距标准台水平距离25m处达到最高最高点距地面76m建立如图所示的平面直角坐标系并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离y(m)是运动员距地面的高度.(1)求抛物线的表达式;(2)已知着陆坡上有一基准点K且K到标准台的水平距离为75m高度为21m.判断该运动员的落地点能否超过K点并说明理由.22.(10分)如图△ABC为⊙O的内接三角形其中AB为⊙O的直径且AC=3 BC=4.(1)尺规作图:分别以B、C为圆心大于长为半径画弧在BC的两侧分别相交于P、Q两点画直线PQ交BC于点D交劣弧于点E连接CE;(2)追根溯源:由所学知识可知点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中AB=AC∠BAC=α点P为线段CA延长线上一动点连接PB将线段PB绕点P逆时针旋转旋转角为α得到线段PD连接DB DC.(1)如图1 当α=60°时;P A与DC的数量关系为;∠DCP的度数为;(2)如图2 当α=120°时请问(1)中P A与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时若请直接写出点D到CP的距离.。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2021年中考数学模拟试卷附答案解析 (2)
2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。
河南省新乡市数学初二上学期试卷及答案指导(2025年)
2025年河南省新乡市数学初二上学期模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?选项:A、16厘米B、24厘米C、32厘米D、40厘米2、小明有12个苹果,他每天吃掉2个苹果,几天后小明剩下5个苹果?选项:A、4天B、5天C、6天D、7天3、(1)下列各数中,绝对值最小的是:A、-3B、-2.5C、-24、(2)一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的面积是:A、40平方厘米B、32平方厘米C、48平方厘米D、64平方厘米5、已知直角三角形ABC中,∠C是直角,AB=5cm,AC=3cm,那么BC的长度是()A. 4cmB. 6cmC. 7cmD. 8cm6、一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是()A. 15cmB. 18cmC. 24cmD. 30cm7、已知等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,求该三角形的周长。
8、下列各数中,是正有理数的是:A、-5B、0C、2/39、在等腰三角形ABC中,AB=AC,点D是底边BC的中点,如果∠BAC=60°,则∠BDC的度数是:A. 30°B. 45°C. 60°D. 90°二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是______cm。
2、在直角坐标系中,点A(3, -4)关于原点对称的点的坐标是 ______ 。
3、已知 |a| = 3,|b| = 2,且 a < b,则 a - b = _______.4、下列各式中,能用平方差公式分解因式的是 ( )A.x2+y2B.−x2+y2C.x2−2xy+y2D.x2+2xy+y25、若直线(y=mx+b)经过点 (3, 4),并且与 y 轴交于点 (0, -2),则该直线的斜率 m 为 ________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省中考数学模拟试卷(一)一、选择题1.﹣5的相反数是()A.﹣5 B.5 C.﹣D.2.2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103B.63.10×102C.0.6310×104D.6.310×1043.在数轴上表示不等式3x+1≥4的解集,正确的是()A.B.C.D.4.下列四个图形中是三棱柱的表面展开图的是()A.B.C.D.5.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b26.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°7.如图,点P为⊙O外一点,连结OP交⊙O于点Q,且PQ=OQ,经过点P的直线l1,l2,都与⊙O相交,则l1与l2所成的锐角α的取值范围是()A.0°<α<30°B.0°<α<45°C.0°<α<60°D.0°<α<90°8.如图,一根长为5米的竹竿AB斜立于墙MN的右侧,底端B与墙角N 的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C. D.二、填空题9.方程=3的解是x= .10.若关于x的一元二次方程x2﹣mx+1=0有实数根,则m的取值范围是.11.如图,四边形ABCD是⊙O的内接四边形,若∠B=130°,则∠AOC的大小为.12.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC 的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.13.如图,直线l与双曲线交于A、C两点,将直线l绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是.14.如图,在平面直角坐标系中,菱形ABCD的三个顶点A,B,D均在抛物线y=ax2﹣4ax+3(a <0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则点D的坐标为.三、解答题(本大题共10小题,共78分)15.先化简,再求值:+÷x,其中x=.16.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4.这6个球除所标数字以外没有任何其它区别,从甲、乙两袋中各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.17.某市政工程队承担着1200米长的道路维修任务.为了减少对交通的影响,在维修了240米后通过增加人数和设备提高了工程进度,工作效率是原来的4倍,结果共用了6小时就完成了任务.求原来每小时维修多少米?18.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE ∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.19.某商场门前的台阶截面如图所示,已知每级台阶的宽度(图中CD)均为0.3m,高度(图中的BE)均为0.2m.现将此台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角∠A为9°,计算从斜坡的起点A到台阶前点B的距离.(精确到0.1m)(参考数据:sin9°≈0.16;cos9°≈0.99;tan9°≈0.16)20.为促进学生全面发展,某校七年级开展了拓展课活动,每名同学都要选一门拓展课,校学生会为了解七年级选拓展课情况,随机对部分学生进行了调查,并将调查结果制成如图所示的统计图.请根据上述统计图,完成以下问题:(1)求这次随机调查的学生数;(2)请把条形统计图补充完整;(3)该校七年级共有950名学生,请估计该年级选花式跳绳这门拓展课的学生人数.21.甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题:(1)求乙车所行路程y与时间x之间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程)22.操作:小明准备制作棱长为1cm的正方形纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点,你认为小明的发现是否正确?请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅为38.2%,请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计,即方案三,请直接写出方案三的利用率.23.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB= ,PD= .(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.24.如图,已知二次函数的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.﹣5的相反数是()A.﹣5 B.5 C.﹣D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.2.2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103B.63.10×102C.0.6310×104D.6.310×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6310用科学记数法表示为6.31×103.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.在数轴上表示不等式3x+1≥4的解集,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,3x≥4﹣1,合并同类项得,3x≥3,把x的系数化为1得,x≥1.在数轴上表示为:.故选D.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.4.下列四个图形中是三棱柱的表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】利用棱柱及其表面展开图的特点解题.【解答】解:A、是三棱柱的平面展开图;B、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱,故此选项错误;C、围成三棱柱时,缺少一个底面,故不能围成三棱柱,故此选项错误;D、围成三棱柱时,没有底面,故不能围成三棱柱,故此选项错误.故选:A.【点评】本题考查棱柱和棱锥的结构特征,棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.5.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b2【考点】因式分解﹣运用公式法.【分析】直接利用乘法公式分解因式,进而判断得出答案.【解答】解:A、4a2+4a+1=(2a+1)2,正确;B、a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C、a2﹣2a﹣1无法运用公式分解因式,故此选项错误;D、(a﹣b)(a+b)=a2﹣b2,是多项式乘法,故此选项错误;故选:A.【点评】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.6.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.如图,点P为⊙O外一点,连结OP交⊙O于点Q,且PQ=OQ,经过点P的直线l1,l2,都与⊙O相交,则l1与l2所成的锐角α的取值范围是()A.0°<α<30°B.0°<α<45°C.0°<α<60°D.0°<α<90°【考点】直线与圆的位置关系.【分析】根据切线的性质和直角三角形的性质求出∠OPA,解答即可.【解答】解:当直线l1,l2,都与⊙O相切时,切点分别为A、B,连接OA,则OA⊥l1,∵OA=OQ=PQ,∴∠OPA=30°,∴l1与l2所成的锐角α小于60°,故选:C.【点评】本题考查的是直线和圆的三种位置关系,掌握切线的性质、直角三角形的性质是解题的关键.8.如图,一根长为5米的竹竿AB斜立于墙MN的右侧,底端B与墙角N 的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】在直角三角形ABN中,利用勾股定理求出AN的长,进而表示出A点下滑时AN与NB 的长,确定出y与x的关系式,即可做出判断.【解答】解:在Rt△ABN中,AB=5米,NB=3米,根据勾股定理得:AN==4米,若A下滑x米,AN=(4﹣x)米,根据勾股定理得:NB==3+y,整理得:y=﹣3,当x=0时,y=0;当x=4时,y=2,且不是直线变化的,故选A.【点评】此题考查了动点问题的函数图象,解决本题的关键是读懂图意,列出y与x的函数解析式.二、填空题9.方程=3的解是x= 6 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.若关于x的一元二次方程x2﹣mx+1=0有实数根,则m的取值范围是m≥2或m≤﹣2 .【考点】根的判别式.【分析】一元二次方程有实数根,则△≥0,建立关于m的不等式,求出m的取值范围.【解答】解:由题意知,△=m2﹣4≥0,解得m≥2或m≤﹣2.故答案为m≥2或m≤﹣2.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,四边形ABCD是⊙O的内接四边形,若∠B=130°,则∠AOC的大小为100°.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质求出∠D的度数,根据圆周角定理计算即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°,∴∠D=180°﹣130°=50°,由圆周角定理得,∠AOC=2∠D=100°,故答案为:100°.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC 的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为100 °.【考点】作图—基本作图.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,故答案是:100.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB 平分线是解答此题的关键.13.如图,直线l与双曲线交于A、C两点,将直线l绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是平行四边形.【考点】反比例函数综合题.【专题】压轴题.【分析】由于直线l与双曲线都是关于原点的中心对称图形,根据对称性可得OA=OC,OB=OD,由此即可判定四边形ABCD一定是平行四边形.【解答】解:∵直线l与双曲线是关于原点的中心对称图形,而AC,BD是四边形ABCD的对角线,根据对称性可得:OA=OC,OB=OD,∴四边形ABCD的对角线互相平分,故四边形ABCD的形状一定是平行四边形.故填空答案:平行四边形.【点评】此题综合考查了反比例函数,正比例函数等多个知识点,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.14.如图,在平面直角坐标系中,菱形ABCD的三个顶点A,B,D均在抛物线y=ax2﹣4ax+3(a <0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则点D的坐标为(4,3).【考点】菱形的性质;二次函数的性质.【分析】需先求出点B的坐标和抛物线的对称轴,再根据点B与点D关于抛物线的对称轴对称即可求出点D的坐标.【解答】解:∵y=ax2﹣4ax+3的对称轴是x=﹣=2,与y轴的交点坐标是(0,3),∴点B的坐标是(0,3),∵菱形ABCD的三个顶点在二次函数y=ax2﹣4ax+3(a<0)的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,∴点B与点D关于直线x=2对称,∴点D的坐标为(4,3).故答案为:(4,3).【点评】本题主要考查了二次函数的性质与菱形的性质,得出二次函数图象的对称轴是解题关键.三、解答题(本大题共10小题,共78分)15.先化简,再求值:+÷x,其中x=.【考点】分式的化简求值.【专题】计算题.【分析】这是个分式除法与加法混合运算题,运算顺序是先乘除后加减,加法时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式=+•=+1=,当x=时,原式==﹣2.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.16.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4.这6个球除所标数字以外没有任何其它区别,从甲、乙两袋中各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果与摸出的两个球上数字之和是6的情况,利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,摸出的两个球上数字之和是6的有2种情况,∴摸出的两个球上数字之和是6的概率为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.某市政工程队承担着1200米长的道路维修任务.为了减少对交通的影响,在维修了240米后通过增加人数和设备提高了工程进度,工作效率是原来的4倍,结果共用了6小时就完成了任务.求原来每小时维修多少米?【考点】分式方程的应用.【分析】设原来每小时维修x米,则后来每小时维修4x米,等量关系是:原来维修240米所用时间+后来维修(1200﹣240)米所用时间=6小时,依此列出方程求解即可.【解答】解:设原来每小时维修x米.根据题意得+=6,解得x=80,经检验,x=80是原方程的解,且符合题意.答:原来每小时维修80米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.18.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE ∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.【考点】矩形的判定与性质;勾股定理.【分析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.【解答】解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4.∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.【点评】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.19.某商场门前的台阶截面如图所示,已知每级台阶的宽度(图中CD)均为0.3m,高度(图中的BE)均为0.2m.现将此台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角∠A为9°,计算从斜坡的起点A到台阶前点B的距离.(精确到0.1m)(参考数据:sin9°≈0.16;cos9°≈0.99;tan9°≈0.16)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过C作CF⊥AB,交AB的延长线于点F,根据正切的概念求出AF的长,结合图形计算即可.【解答】解:过C作CF⊥AB,交AB的延长线于点F.由题意得,CF=0.80m,BF=0.90m,在Rt△CAF中,tanA=,∴AF===5,∴AB=AF﹣BF=5﹣0.9=4.1m,答:从斜坡的起点A到台阶前点B的距离为4.1m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.20.为促进学生全面发展,某校七年级开展了拓展课活动,每名同学都要选一门拓展课,校学生会为了解七年级选拓展课情况,随机对部分学生进行了调查,并将调查结果制成如图所示的统计图.请根据上述统计图,完成以下问题:(1)求这次随机调查的学生数;(2)请把条形统计图补充完整;(3)该校七年级共有950名学生,请估计该年级选花式跳绳这门拓展课的学生人数.【考点】条形统计图;用样本估计总体.【分析】(1)总人数=花样跳绳人数÷花样跳绳人数占总人数百分比,计算可得;(2)剪纸、其他项目人数=总人数乘以其占总人数的百分比;(3)将样本中花式跳绳所占百分比乘以950即可得.【解答】解:(1)=100(人),答:这次随机调查的学生数为100人;(2)剪纸项目的人数为:100×24%=24(人),其他项目的人数为:100×28%=28(人),补全统计图如图:(3)950×16%=152(人).答:估计该年级选花式跳绳这门拓展课的学生人数约为152人.【点评】本题考查了条形统计图和扇形统计图以及读懂统计图,掌握各部分占总体的百分比以及扇形统计图中各部分所占的圆心角的正确计算方法.能够根据样本正确估计总体.21.甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题:(1)求乙车所行路程y与时间x之间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程)【考点】一次函数的应用.【分析】(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得,交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.【解答】解:(1)设乙车所行路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得,解得,∴y与x的函数关系式为y=60x﹣120;(2)由图可得,交点F表示第二次相遇,而F点横坐标为6,此时y=60×6﹣120=240,∴F点坐标为(6,240),∴两车在途中第二次相遇时,它们距出发地的路程为240千米;(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得,解得,∴y与x的函数关系式为y=120x﹣480,∴当x=4.5时,y=120×4.5﹣480=60.∴点B的纵坐标为60,∵AB表示因故停车检修,∴交点P的纵坐标为60,把y=60代入y=60x﹣120中,有60=60x﹣120,解得x=3,∴交点P的坐标为(3,60),∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.22.操作:小明准备制作棱长为1cm的正方形纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点,你认为小明的发现是否正确?请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅为38.2%,请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计,即方案三,请直接写出方案三的利用率.【考点】圆的综合题.【分析】(1)连接AC、BC、AB,由AC=BC=,AB=,根据勾股定理的逆定理,即可求得∠BAC=90°,又由90°的圆周角所对的弦是直径,则可证得AB为该圆的直径;(2)首先证得△ADE≌△EHF与△ADE∽△ACB,即可求得AD与BC的长,求得△ABC的面积,即可求得该方案纸片利用率;(3)利用方案(2)的方法,分析求解即可求得答案.【解答】解:发现:(1)小明的这个发现正确.理由:解法一:如图1,连接AC、BC、AB,∵AC=BC=,AB=2∴AC2+BC2=AB2,∴∠BCA=90°,∴AB为该圆的直径.解法二:如图2,连接AC、BC、AB.易证△AMC≌△BNC,∴∠ACM=∠CBN.又∵∠BCN+∠CBN=90°,∴∠BCN+∠ACM=90°,即∠BCA=90°,∴AB为该圆的直径.(2)如图3,∵DE=FH,DE∥FH,∴∠AED=∠EFH,∵∠ADE=∠EHF=90°,∴△ADE≌△EHF(ASA),∴AD=EH=1.∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,∴BC=8,∴S△ACB=16.∴该方案纸片利用率=×100%=×100%=37.5%;探究:(3)如图4,过点C作CD⊥EF于D,过点G作GH∥AC,交BC于点H,设AP=a,∵PQ∥EK,∴△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形,∴=,∴AQ=2a,PQ=a,∴EQ=5a,∵EC:ED=QE:QK,∴EC=a,则PG=5a+a=a,GL=a,∴GH=a,∵,解得:GB=a,∴AB=a,AC=a,∴S△ABC=×AB×AC=a2,S展开图面积=6×5a2=30a2,∴该方案纸片利用率=×100%=×100%=49.86%.【点评】此题是圆的综合题,主要考查了全等三角形的性质和判定,相似三角形的性质和判定,勾股定理,勾股定理的逆定理,圆周角的性质,解本题的关键是用相似和全等,勾股定理表示线段.23.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB= 8﹣2t ,PD= t .(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【考点】相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质.【专题】代数几何综合题;压轴题.【分析】(1)根据题意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA==,则可求得QB与PD的值;(2)易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ 是平行四边形,即可求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD=BQ,列方程即可求得答案;(3)设E是AC的中点,连接ME.当t=4时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF,由△PMN∽△PQC.利用相似三角形的对应边成比例,即可求得答案.【解答】解:(1)根据题意得:CQ=2t,PA=t,∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA==,∴PD=t.故答案为:(1)8﹣2t,t.(2)不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD=t,∴BD=AB﹣AD=10﹣t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=,解得:t=.当t=时,PD==,BD=10﹣×=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=t,BD=10﹣t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即t=10﹣t,解得:t=当PD=BQ,t=时,即=8﹣,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x=代入y=﹣2x+6得y=﹣2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2单位长度.【点评】此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.24.如图,已知二次函数的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.。