包涵体纯化全过程(3)
包涵体纯化蛋白复性的方法操作流程
包涵体纯化蛋白复性的方法操作流程返回:包涵体复性常见问题分析与解决包涵体的纯化和复性总结包涵体折叠复性的方法应具备以下几个特点:较高的活性蛋白质回收率;复性产物易于与错误折叠蛋白质分离;折叠复性后能够得到较高浓度的蛋白;折叠复性方法易于放大等。
蛋白复性的过程通常分为以下几个步骤:包涵体的洗涤包涵体在溶解之前需要进行洗涤,包涵体中主要含有重组蛋白,但也有一些杂质,如一些外膜蛋白、质粒DNA等,这些杂质会与包涵体粘连在一起,可以通过洗涤去除大多数杂质,但无法将杂蛋白去除干净。
包涵体的洗涤通常选用浓度较低的变性剂,如2M尿素在50mM Tris,pH7。
0—8。
5,1mM EDTA中洗涤包涵体。
此外可以用温和去垢剂TritonX—100洗涤去除膜碎片和膜蛋白。
同时,因为去垢剂的洗涤能力会随溶液离子强度升高而加强,所以在洗涤包涵体时可加入低浓度的尿素或高浓度的NaCl,使包涵体的纯度达到50%以上。
包涵体的溶解变性剂如尿素、盐酸胍,主要是通过离子间的相互作用,打断包涵体蛋白分子间的各种化学键,使多肽延伸.盐酸胍是较尿素强的变性剂,它能溶解尿素不溶的包涵体.SDS、正十六烷基三甲基铵氯化物、Sarkosyl等也可以破坏蛋白内的疏水键,溶解一些包涵体蛋白质。
另外,从某些含有半胱氨酸的蛋白质中分离出的包涵体,通常含有一些链间形成的二硫键和链内的非活性二硫键,这就还需加入还原剂,如巯基乙醇、二硫基苏糖醇(DTT)、二硫赤藓糖醇、半胱氨酸等。
这种还原性试剂能够同半胱氨酸形成各种二硫化物中间体,也会被复性用的二硫化物置换试剂所取代。
二硫键的形成和断裂是可逆的,直到最有利的蛋白二硫键形成,这个平衡才会被破坏。
常用变性剂对比尿素较盐酸胍慢而弱,溶解度为用尿素溶解具有不电离,呈中性,成(8-10M)70-90%本低,蛋白质复性后除去不会造成大量蛋白质沉淀溶解的包涵体可选用多种色谱法纯化盐酸胍(6-8M)溶解能力达95%以上,且溶解作用快而不造成重组蛋白质的共价修饰成本高、在酸性条件下易产生沉淀、复性后除去可能造成大量蛋白质沉淀对蛋白质离子交换色谱有干扰包涵体的复性复性是指通过去除变性剂使目标蛋白从完全伸展的变性状态恢复到正常的折叠结构,同时去除还原剂确保二硫键正常形成。
(整理)包涵体的分离纯化.
包涵体的纯化和复性总结(二)关于包涵体的纯化是一个令人头疼的问题,包涵体的复性已经成为生物制药的瓶颈,关于包涵体的处理一般包括这么几步:菌体的破碎、包涵体的洗涤、溶解、复性以及纯化,内容比较庞杂一、菌体的裂解1、怎样裂解细菌?细胞的破碎方法1.高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。
此法适用于动物内脏组织、植物肉质种子等。
2.玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3.超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG 频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施,时间以及超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮,如果不放心可以在显微镜下观察。
对超声波及热敏感的蛋白和核酸应慎用。
4.反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5.化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好,我用的浓度一般为1mg/ml。
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
包含体纯化步骤(精)
同样采用Ni-NTA His结合树脂亲和纯化重组目的蛋白,1、200mL菌液离心收集大量诱导的菌体,并用1×PBS缓冲液洗涤两次。
2、将保存的菌体沉淀用总体积为20mL的1×Bind Buffer (300mM NaCl,50MmNaH2PO4; 10mM imidazote,pH8.0)重悬,在冰浴中超声波破菌至溶液呈白色澄清。
3、4℃12,000rpm离心30分钟,然后用20mL的包涵体洗涤Buffer (50mmol/L Tris-HCl,100mmol/L NaCl,1mmol/L EDTA,0.5% Triton x-100,pH8.0)洗涤沉淀两次。
4、加20mL的包涵体溶解Buffer(50mmol/L Tris-HCl,100mmol/L NaCl,8mol/L Urea,pH8.0)充分溶解,(旋涡溶解,最好溶解时间长一点,1h左右,也可以用冰盒装放摇床上1h),4℃10,000 r/min离心30min,收集上清。
2.2.2 亲和层析纯化表达的蛋白pQE40和pET-32a(+)载体表达的蛋白C﹑N端均融合了6个组氨酸的tag,可用金属螯和层析纯化,也可用抗6个组氨酸的单克隆抗体检测表达蛋白的正确性。
根据表达蛋白的溶解情况分两种方法对蛋白进行纯化。
2.2.3 天然条件下纯化可溶形式的目的蛋白目的蛋白的表达和收获:用3.2.2.1所述的方法大量表达目的蛋白。
4℃下10,000 rpm离心5min弃上清,向细菌沉淀中加入4℃用冰预冷的1×Ni-NTA结合缓冲液(50 mmol/L NaH2PO4, 300 mmol/L NaCl, 10 mmol/L咪唑, pH8.0),每100mL培养液加入4mL结合缓冲液,重悬菌体。
-40℃冷冻,室温溶解,反复冻融三次。
再在冰水浴中超声10min(超声10s, 间隔10s),破碎菌体。
4℃下10,000 rpm离心20min,保留上清液。
[教材]包涵体蛋白的分离纯化
包涵体蛋白的分离纯化赵玲0743085096包涵体是外源基因在原核细胞中表达时,尤其在大肠杆菌中高效表达时,形成的由膜包裹的高密度、不溶性蛋白质颗粒,在显微镜下观察时为高折射区,与胞质中其他成分有明显区别。
包涵体形成是比较复杂的,与胞质内蛋白质生成速率有关,新生成的多肽浓度较高,无充足的时间进行折叠,从而形成非结晶、无定形的蛋白质的聚集体;此外,包涵体的形成还被认为与宿主菌的培养条件,如培养基成分、温度、pH 值、离子强度等因素有关。
细胞中的生物学活性蛋白质常以可融性或分子复合物的形式存在,功能性的蛋白质总是折叠成特定的三维结构型。
包涵体内的蛋白是非折叠状态的聚集体,不具有生物学活性,因此要获得具有生物学活性的蛋白质必须将包涵体溶解,释放出其中的蛋白质,并进行蛋白质的复性。
包涵体的主要成分就是表达产物,其可占据集体蛋白的40%~95%,此外,还含有宿主菌的外膜蛋白、RNA聚合酶、RNA、DNA、脂类及糖类物质,所以分离包涵体后,还要采用适当的方法(如色谱法)进行重组蛋白质的纯化。
1. 包涵体的形成重组蛋白不论在原核细胞还是真核细胞中表达时,都可形成包涵体。
通常所说的包涵体是指重组蛋白在大肠杆菌中高效表达时形成的无活性蛋白聚集体,一般含有50%以上重组蛋白,其余为核糖体组分、RNA聚合酶,外膜蛋白等杂蛋白,以及质粒DNA、RNA片断、脂质、肽聚糖、脂多糖等成分]。
由于包涵体在相差显微镜下为黑色斑点, 所以也称为折射体。
包涵体形成的原因主要有以下几点: ⑴蛋白合成速度太快,以致于没有足够的时间进行折叠。
蛋白折叠的动力学模型表明:蛋白质天然构象形成的速率取决于肽链的合成速率、折叠速率和聚集速率几个因素。
中间体正确折叠是分子内的一级反应,而中间体的聚集是发生在分子间的二级或高级反应,因此,折叠中间体的浓度对聚集反应影响非常大];⑵重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物的翻译后修饰系统(如糖基化等) ,致使中间体大量积累,容易形成包涵体;⑶培养条件不佳和重组蛋白所处的环境也可导致包涵体形成,如发酵温度高,胞内pH 接近蛋白的等电点等;⑷二硫键在蛋白折叠中有重要作用,而大肠杆菌胞内的还原环境不利于二硫键的形成;⑸包涵体不溶可能由于分子间无活性的β2片层含量高于天然结构或盐沉淀蛋白。
包涵体产物的纯化工艺
包涵体产物的纯化工艺
纯化涉及从原料中分离和去除杂质以获得纯净化合物的工艺。
对于包含有机或无机物的体产物,其纯化工艺可以根据具体情况进行调整,但以下是一般常用的几种纯化工艺:
1. 结晶:通过温度控制和溶剂选择,使目标化合物从溶液中结晶出来,然后进行过滤、洗涤和干燥等步骤,以获得纯净的产物。
2. 蒸馏:利用成分之间的沸点差异来分离和纯化混合物。
通过加热混合物,使成分按照沸点的高低逐渐蒸发和冷凝,从而分离目标化合物。
3. 萃取:利用不同物质在不同溶剂中的溶解度差异,将目标化合物从混合物中分离提取出来。
常见的萃取方法包括溶剂萃取、液液萃取和固相萃取等。
4. 色谱:利用样品成分在移动相和固定相之间的差异,通过一系列分离和纯化步骤来分离和纯化产物。
常见的色谱方法包括薄层色谱、柱层析、高效液相色谱和气相色谱等。
5. 活性炭吸附:通过将目标化合物吸附在活性炭上,去除混合物中的杂质物质,从而纯化产物。
这种方法常用于水处理、空气净化和溶剂回收等领域。
6. 晶体化学:通过对化合物晶体结构的解析和再合成,消除晶体中的杂质,实
现产物纯化。
以上是一些常见的纯化工艺,具体选择哪种工艺取决于产物性质、目标纯度要求、经济性和实际应用等因素。
包涵体纯化方法及包涵体蛋白制备
包涵体纯化方法及包涵体蛋白制备重组蛋白在大肠杆菌、酵母、哺乳动物中的表达可分为三种形式:胞外分泌表达、胞内可溶性表达和胞内不溶性表达(即产物以包涵体形式存在)。
以包涵体形式存在的重组蛋白是无生物活性的,需要进行复性处理,然后再进行分离纯化。
包涵体纯化与传统生物大分子的分离纯化方法相似,即以分子的等电点、溶解性、亲疏水性以及与其它分子的亲和性等特征为基础进行纯化。
一、常用的包涵体纯化方法1. 金属亲和层析该方法主要利用蛋白质表面暴露的一些氨基酸残基和金属离子之间的相互作用来进行蛋白纯化。
我们在载体构建时可以加上一些亲和性标签(如His标签、GST标签、Flag标签等),以便采取亲和纯化的方式纯化蛋白。
利用Ni2+和6×His tag之间的亲和性,通过在蛋白的N端或C端加上6~10个组氨酸,在一般或变性条件下借助它与Ni2+螯合柱的紧密结合能力,采用咪唑洗脱,或降低PH使组氨酸充分质子化,使其不再与Ni2+结合,从而分离纯化出带有6×His tag的融合蛋白,纯度通常能达到90%以上。
2.离子交换层析离子交换层析是根据在一定pH条件下,蛋白质所带电荷不同而进行的分离的方法。
常用的离子交换剂有羧甲基纤维素(阳离子交换剂,弱酸型)和二乙基氨基乙基纤维素(阴离子交换剂,弱碱型)。
阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,需要通过提高洗脱液中的盐浓度等措施将其洗脱下来。
根据蛋白质结合能力不同,洗脱的速度会存在差异,通常结合较弱的蛋白质先被洗脱。
反之,阳离子交换基质会结合带有正电荷的蛋白质,可以通过提高洗脱液的PH或增加洗脱液中的盐浓度将蛋白洗脱下来。
3.凝胶过滤层析凝胶过滤层析通常又称为分子筛方法,主要是根据蛋白质的大小和形状达到分离和纯化的目的。
一般是大分子先流出来,小分子后流出来。
此方法的优点在于层析所用的凝胶属于惰性载体,不带电荷并且吸附力弱,可较广的温度范围内进行。
包涵体的纯化方法---张崇文
包涵体的纯化
(一)试剂配制
1.缓冲液A:50mM Tris-HCl(pH8.0),2mM EDTA,100mM NaCl。
2.缓冲液B:50mM Tris-HCl(pH8.0),1mM EDTA,100 mM NaCl,1%NP-40。
3.缓冲液Ⅰ:50mM Tris-HCl (pH8.0),2mM EDTA,100 mM NaCl,0.5%Triton X-100(V/V),4M脲素。
4.缓冲液Ⅱ:50M Tris-HCl(pH8.0),2mM EDTA,100 mM NaCl,3% Triton X-100 。
1.缓冲液Ⅲ:50mM Tris-HCl(pH8.0),2mM EDTA,100 mM NaCl,0.5%Triton X-100,2M 盐酸胍。
5.缓冲液C:8M脲素,10mMβ-巯基乙醇,100 mM Tris-HCl(pH8.0),2mM EDTA及脱氧胆酸钠。
(二)操作步骤
1.用缓冲液A漂洗菌体细胞(10ml/g), 离心6000g×15min,收集菌体细胞,重复此步骤,将菌体细胞再在缓冲液A中洗涤一次。
2.将漂洗过的菌体细胞悬浮于缓冲液B中,超声破碎,镜检,破碎率高于95%,离心1500g×30min,收集包涵体沉淀。
3.将包涵体沉淀用缓冲液Ⅰ、缓冲液Ⅱ、缓冲液Ⅲ分别超声洗涤一次,1500g 离心收集包涵体沉淀。
4.包涵体的溶解:用含高浓度脲素的缓冲液室温放置30min,然后离心1500g×30min,留上清。
将溶解后的蛋白质适当稀释,磁力搅拌,透析过夜。
基因工程包涵体的纯化方法
基因工程包涵体的纯化方法基因工程可真是个神奇的领域,像是现代科技的魔法师,把DNA这个小家伙们玩弄得团团转。
在这片神秘的土地上,包涵体就像是隐藏的宝藏,得先把它们找出来,再通过纯化的方法把这些小宝贝洗净,才能让它们为我们所用。
今天,我们就来聊聊基因工程包涵体的纯化方法,让这趟旅程轻松愉快。
1. 什么是包涵体?首先,包涵体可不是某种古怪的生物,它们其实是细胞在生产某些蛋白质时,形成的一种颗粒。
就像是做饭时,锅里油烟聚集的那些小油滴,虽然它们看起来不太好,但里面可藏着好东西。
你要知道,包涵体里面有大量的目标蛋白质,但通常它们会和其他杂质混在一起,像是大海捞针,得费点功夫才能捞出来。
1.1 包涵体的形成当细胞用上基因工程的技术,强行让某种蛋白质“上班”时,有时候它们就会不太乖,聚集成包涵体。
这就像你在做作业时,有的题目就特别难,结果一堆答案写错了,最后只好把它们堆到一边。
虽然包涵体一开始可能看起来像个废物,但其实它们是生产特定蛋白质的一种“副产品”。
1.2 包涵体的用途那包涵体有什么用呢?别小看了它们,它们可是制药、疫苗开发的重要角色。
有的包涵体能转化为活跃的蛋白质,成为我们需要的药物,甚至可以用于研究新治疗方法,简直就是科研界的“黑马”。
所以,找到它们、纯化它们,那可是相当重要的任务。
2. 包涵体的纯化步骤接下来,我们就要聊聊如何把这些包涵体给纯化出来,步骤其实不复杂,但得有点耐心。
2.1 细胞裂解首先,得把细胞给撬开,就像剥开一个鸡蛋,才能见到里面的蛋黄。
这里我们通常会用一些裂解缓冲液,像是加盐的水,帮助细胞膜变得松软。
然后,咱们可以用超声波处理、化学试剂或者冷冻融化的方式把细胞打散,让包涵体慢慢浮出来。
2.2 离心分离一旦细胞裂解,包涵体就会在液体中游荡。
这时候,就要用离心机来大显身手了。
离心机就像是一位厨师,用强大的“旋转功力”把细胞残骸和包涵体分开。
你可以想象,把一大锅汤放进离心机,旋转后,沉淀物就会在底下,清汤会在上面。
包涵体蛋白纯化步骤
包涵体蛋白纯化步骤生物日记部落,这次将会擦掉黑板上曾经书写的知识笔记,转角进入“包涵体蛋白”。
包涵体蛋白纯化的步骤主要包括裂解、洗涤、溶解、复性、纯化。
在实验前线着手于瓶瓶罐罐的大家,实验所纠结的问题或许总会缠绕身前身后,闯入梦中。
在情理之中时,又是怎么看待“处理实验问题”的态度?两天一个周期的实验结束,没有结果,暂且随之不作为,接着重复做一次。
小伙伴们,这是一种正确的态度么?“如果你的工具只有一柄铁锤,你就可能认为所有的问题都是铁钉”。
回想,变通,将路延伸在嘴巴上请教,预测时间进程,交叉重复,这是在过去灰色的记忆里想起的一位老师给我讲的一种态度。
将态度按照个人的素养去演绎变幻,就会有多条路,意外到问题本身。
——看的见的问题是态度本身包涵体蛋白纯化步骤包涵体洗涤包涵体溶解包涵体复性包涵体纯化1、包涵体裂解细胞内重组蛋白的提取要依照蛋白的来源和性质选择合适的方法,蛋白一般来源于细菌、植物、哺乳动物细胞等。
细胞裂解常用的方法有:酶解法、研磨、匀浆、超声破碎法、冻融等。
(1) 细胞酶解:在稀释菌液中加入0.2-0.4 mg/ml 溶菌酶、1 mM MgCl 2、20 μg/mlDNase 、1mM PMSF ,混均匀,冰上或者室温放置30 min 。
根据目的蛋白对温度的敏感性选择合适的温度。
向着太阳是向日葵不变的态度(2)机械裂解:加入1% Triton X-100,充分混匀,冰上放置15 min,在冰上用超声波破碎细胞10 min,至细胞变澄清,或在-20℃下冰冻,室温溶解,反复冻融5次以上;4 ℃,5000 r/min离心15 min,弃上清,用0.45 μm或0.22 μm的滤膜过滤除去细胞碎片;在细胞裂解时应该注意:a 尽量选择比较温和的处理方法,避免太剧烈地操作导致目的蛋白变性,或者蛋白酶释放。
b 为了保持蛋白质的稳定性,在蛋白的提取时应迅速,低温,添加蛋白酶抑制剂,例如,加入DFP(二异丙基氟磷酸)抑制或者减慢自容,加入碘乙酸抑制巯基作用的蛋白水解酶活性,加入PMSF(苯甲磺酰基氟化物)抑制蛋白水解酶的活性,另外,选择合适的缓冲溶液稳定蛋白溶液的PH值及离子强度,添加DNA酶降低核酸的粘稠度。
包涵体蛋白纯化步骤
包涵体蛋白纯化步骤引言:包涵体蛋白纯化是生物技术和生物制药领域中重要的工艺步骤之一。
通过纯化包涵体蛋白,可以获得高纯度的目标蛋白,为后续的研究和应用提供了基础。
本文将介绍包涵体蛋白纯化的一般步骤,包括细胞破碎、包涵体回收、包涵体溶解、亲和层析和蛋白质再折叠等。
一、细胞破碎:细胞破碎是包涵体蛋白纯化的第一步。
通常使用机械方法(如超声波破碎或高压均质)或化学方法(如洗涤剂破碎)来破碎细胞,释放包涵体蛋白。
需要注意的是,破碎条件应该使得包涵体蛋白能够充分溶解而不会发生蛋白质降解。
二、包涵体回收:包涵体蛋白通常以包涵体的形式存在于细胞裂解液中。
包涵体回收是将包涵体从其他细胞成分中分离出来的过程。
一种常用的方法是通过离心将细胞碎片和其他细胞成分与包涵体分离。
此外,还可以使用过滤、沉淀或超滤等技术来实现包涵体的回收。
三、包涵体溶解:包涵体蛋白在还原条件下通常以不溶性的形式存在。
为了使包涵体蛋白能够溶解,通常需要添加变性剂(如尿素或胍氯酸)和还原剂(如二硫醇)。
通过调节溶解条件,可以使得包涵体蛋白迅速溶解为可溶性蛋白。
四、亲和层析:亲和层析是包涵体蛋白纯化的关键步骤之一。
通过将目标蛋白与亲和层析介质上的亲和配体结合,可以实现目标蛋白的富集和纯化。
亲和配体可以是金属离子、抗体或亲和标签等。
在亲和层析过程中,需要注意选择合适的亲和配体和适宜的洗脱条件,以实现对目标蛋白的高效纯化。
五、蛋白质再折叠:由于包涵体蛋白在还原条件下溶解,其折叠状态通常不完整。
为了使得目标蛋白具有正确的结构和功能,需要对其进行再折叠。
常用的再折叠方法包括逐渐降低变性剂浓度、添加折叠辅助剂和调节pH 值等。
通过适当的再折叠条件,可以使得目标蛋白恢复到天然的折叠状态。
结论:包涵体蛋白纯化是一项复杂的工艺步骤,需要经过细胞破碎、包涵体回收、包涵体溶解、亲和层析和蛋白质再折叠等步骤。
通过这些步骤的有序进行,可以得到高纯度和高活性的包涵体蛋白。
随着生物技术和生物制药的不断发展,对包涵体蛋白纯化技术的要求也越来越高,希望通过不断的研究和创新,能够进一步提高包涵体蛋白纯化的效率和纯度,为生物医药领域的研究和应用提供更好的支持。
包涵体变性、复性及纯化
一、菌体的裂解1、怎样裂解细菌?细胞的破碎方法1.高速组织捣碎:将材料配成稀糊状液,放置于筒约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。
此法适用于动物脏组织、植物肉质种子等。
2.玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3.超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG 频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施,时间以及超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮,如果不放心可以在显微镜下观察。
对超声波及热敏感的蛋白和核酸应慎用。
4.反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5.化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好,我用的浓度一般为1mg/ml。
无论用哪一种方法破碎组织细胞,都会使细胞蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
这是标准配方:裂解液:50mM Tris-HCl(pH8.5~9.0),2mM EDTA,100mM NaCl,0.5%Triton X-100,1mg/ml溶菌酶。
(溶菌酶在这个pH围比较好发挥作用)但我个人的经验是:如果你裂解细菌是为了提取蛋白的话,而且蛋白的分子量又小于20kd的话,尽量减少溶菌酶的用量,会引入溶菌酶这种杂蛋白.一般配60ml裂解液用药匙匙柄盛一点就够.判断裂解好坏的标准是,溶液很粘.protocol是10ml-50ml缓冲液(菌体洗涤液,裂解液等)/1g湿菌体.如果只做一个鉴定,我觉得100-200ml菌就够了.但凡超声,我都用60ml裂解液,因为我们的超声仪(现代分子生物学实验技术录象里的那种)很适合用100ml小烧杯,装60ml裂解液,这样能让超声头离液面不高不低,不会冒泡泡,也不会洒出来.菌多我就延长超声时间.沉淀,也就是包涵体沉淀了,如果要上柱纯化,一定要先用4M尿素洗涤一下再用8M尿素溶解.如果不上柱,只是跑跑电泳,可以直接用8M尿素溶解以后,离心取上清,加入适量体积的loading buffer.loading buffer对于包涵体的溶解能力是较弱的."取200微升菌液,离心后直接加上样buffer,100度3分钟后上样,然后SDSPAGE.这个方法到底能不能溶解细菌中的包涵体?"而楼主的问题,虽然loading buffer对于包涵体的溶解能力是较弱的,但是我觉得你的做法只是在鉴定有无表达,用loading buffer是没有问题的.2、表达重组蛋白时,细菌裂解方法都有哪些?在表达重组蛋白时,诱导以后跑SDS-PAGE发现表达都很好,但是在裂解细胞时遇到问题。
包涵体蛋白的提取与纯化
包涵体蛋白的提取与纯化摘要:随着基因重组技术的发展及越来越多的功能基因被发现和克隆, 蛋白质异源表达已被广泛应用。
大肠杆菌因遗传背景清楚、成本低、操作简单, 且能高效表达外源基因等特点, 是基础研究、临床应用及工业生产蛋白和多肽的首选表达系统。
然而, 重组蛋白在大肠杆菌中表达经常形成无活性的不溶性聚集物即包涵体。
包涵体的形成有一定的优势, 如具有高蛋白密度、易分离、易于毒性蛋白和宿主细胞致死蛋白表达等特点[1~ 3] 。
因此, 如何将包涵体蛋白转变为具有活性的可溶蛋白是备受关注的问题。
从包涵体中获得天然活性的重组蛋白一般包括三个步骤: 包涵体的分离和洗涤、包涵体的溶解、包涵体蛋白的复性。
本文综述了近年来包涵体蛋白分离纯化和色谱法复性技术研究进展,期望包涵体蛋白体外折叠这一难题早日解决。
正文:1.包涵体的形成重组蛋白不论在原核细胞还是真核细胞中表达时,都可形成包涵体[4]。
通常所说的包涵体是指重组蛋白在大肠杆菌中高效表达时形成的无活性蛋白聚集体,一般含有50%以上重组蛋白,其余为核糖体组分、RNA聚合酶,外膜蛋白等杂蛋白,以及质粒DNA、RNA片断、脂质、肽聚糖、脂多糖等成分[5,6]。
由于包涵体在相差显微镜下为黑色斑点,所以也称为折射体(Refractilebody)[7]。
包涵体形成的原因主要有以下几点:蛋白合成速度太快,以致于没有足够的时间进行折叠。
蛋白折叠的动力学模型表明:蛋白质天然构象形成的速率取决于肽链的合成速率、折叠速率和聚集速率几个因素。
中间体正确折叠是分子内的一级反应,而中间体的聚集是发生在分子间的二级或高级反应,因此,折叠中间体的浓度对聚集反应影响非常大[8];¦重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物的翻译后修饰系统(如糖基化等),致使中间体大量积累,容易形成包涵体[9];培养条件不佳和重组蛋白所处的环境也可导致包涵体形成,如发酵温度高,胞内pH接近蛋白的等电点等[10];¨二硫键在蛋白折叠中有重要作用,而大肠杆菌胞内的还原环境不利于二硫键的形成[2];©包涵体不溶可能由于分子间无活性的B-片层含量高于天然结构或盐沉淀蛋白[11]。
包涵体表达蛋白的纯化方法Purification of Expressed Proteins from Inclusion Bodies
包涵体表达蛋白的纯化方法Purification of Expressed Proteins from Inclusion Bodies试剂和溶液Cell lysis buffer I : 50 mM Tris-Cl (pH 8.0), 1 mM EDTA (pH 8.0), 100 mM NaCl;Cell lysis buffer II: 50 mM Tris-Cl (pH 8.0), 10 mM EDTA (pH 8.0), 100 mM NaCl, 0.5% (v/v) Triton X-100; 脱氧胆酸(蛋白纯); HCl (12 M) (浓盐酸);包含体溶解缓冲液I (用前准备) :50 mM Tris-Cl (pH 8.0), 1 mM EDTA (pH 8.0), 100 mM NaCl, 8 M urea, 0.1 M PMSF or Pefabloc SC;包含体溶解缓冲液II: 50 mM KH2PO4 (pH 10.7), 1 mM EDTA (pH 8.0), 50 mM NaCl; KOH (10 N); PMSF (phenylmethylsulfonyl fluoride苯甲基磺酰氟)(17.4 mg/ml溶于异丙醇中-20°C)注:可选择PMSF或Pefabloc SC(4-2-胺乙基苯磺酰氟盐酸盐),在缓冲溶液中无毒稳定.Tris-Cl (0.1 M, pH 8.5)尿素用于第7步方法2.准备0.1 M Tris-Cl (pH 8.5)和浓度递增的尿素(e.g., 0.5, 1, 2, and 5 M). 因为尿素在水溶液中分解,用新配的尿素立即使用。
载体和寄主:表达包含体形式的目的蛋白的大肠杆菌(1L培养物)。
酶和缓冲液:DNase I (1 mg/ml in 20 mM Tris-Cl [pH 7.8]), Lysozyme(溶菌酶)Gels/Loading Buffers: 10%含SDS聚丙烯酰胺凝胶, 1×SDS 凝胶上样缓冲液:50 mM Tris-Cl (pH 6.8), 2% (w/v) SDS分析纯, 0.1% (w/v) 溴酚蓝;在第13步用缓冲液前,加1 M二硫苏糖醇(dithiothreitol, DTT)储液到终浓度100 mM.2x SDS上样缓冲液: 100 mM Tris-Cl (pH 6.8), 4% (w/v) SDS分析纯, 0.2% (w/v) 溴苯酚兰20% 甘油;在第7和14步用前加1 M二硫苏糖醇(dithiothreitol, DTT)储液到终浓度100 mM.离心机/转子/离心管:Sorvall SLC-1500 rotor (4°C);其他材料:玻璃棒(磨光的), pH试纸.实验步骤:1.用预称重的离心管于4°C离心1L表达目的蛋白的E. coli培养液5000g(5500rpm in a Sorvall SLC-1500 rotor) 15 min.重要:完成步骤2-4 在4°C.2.倒掉上清确定E. coli沉淀重量. 每克(wet weight) E. coli加3 ml cell lysis buffer I温和蜗旋或通过磨光的玻璃棒搅动来重悬沉淀.3.每克E. coli加4 µl 100 mM PMSF 或Pefabloc SC及80µl的10g/l lysozyme.搅动混匀20min.4.继续搅拌, 每克E. coli加4 mg脱氧胆酸.5.置于37°C悬浮,偶尔用玻璃棒搅动.当溶解产物变粘稠,每克E. coli加20µl 1mg/ml DNase I.6.室温静置溶菌产物直到不再粘稠(约30 minutes).7.纯化和洗涤包含体有下面两种方法.Method 1:用Triton X-100 复性包含体a.高速离心细胞溶解产物4°C 15 min.b.倒掉上清. 在4°C重悬沉淀于9倍体积cell lysis buffer II.c.室温静置悬浮液5min。
包涵体的纯化和复性总结全
包涵体的纯化和复性总结二、包涵体的洗涤1、包涵体的洗涤问题通常的洗涤方法一般是洗不干净的,我以前是这么做的,先把包涵体用6M盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,你可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,我觉得比通常的直接洗脱效果好。
包涵体一般难溶解,所以你要注意未溶解的部分,你可以跑电泳对比,因为有时候难溶解的就是你的目标蛋白,所以每次处理都要把上清和沉淀跑电泳对比,免得把目标蛋白弄丢了。
此外刚处理完的包涵体好溶解。
冷冻后难溶解,溶解也需要长点时间,也需要大量的溶剂。
如果说是不少不溶解的不是你要的,那就不用管了。
2、如何得到比较纯的包涵体对于包涵体的纯化,包涵体的前处理是很重要的。
包涵体中主要含有重组蛋白,但也含有一些细菌成分,如一些外膜蛋白、质粒DNA和其它杂质。
洗涤常用1%以下的中性去垢剂,如Tween、Triton、Lubel和NP40等加EDTA 和还原剂2-巯基苏糖醇(DTT)、β-巯基乙醇等反复多次进行,因去垢剂洗涤能力随溶液离子强度升高而加强,在洗涤包涵体时可加50mM NaCL。
这样提取的包涵体纯度至少可达50%以上,而且可保持元结构。
也可用低浓度的盐酸胍或尿素/中性去垢剂/EDTA/还原剂等洗去包涵体表面吸附的大部分不溶性杂蛋白。
洗涤液pH以与工程菌生理条件相近为宜,使用的还原剂为0.1-5mM。
EDTA为0.1-0.3mM。
去垢剂如Triton X-100、脱氧胆酸盐和低浓度的变性剂如尿素充分洗涤去除杂质,这一步很重要,因为大肠杆菌外膜蛋白Omp T(37KDa)在4-8mol/L尿素中具有蛋白水解酶活性,在包涵体的溶解和复性过程中可导致重组蛋白质的降解。
对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。
它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。
包涵体纯化技术
包涵体纯化技术嘿,咱今儿就来唠唠这包涵体纯化技术!你知道吗,这包涵体就好像是一个神秘的小宝藏,藏在细胞里面呢!要把它纯化出来,那可得有点本事。
想象一下,细胞就像是一个大仓库,包涵体呢,就是仓库里被不小心藏起来的宝贝。
我们要做的就是想办法把这个宝贝找出来,还不能把其他乱七八糟的东西也带出来。
这可不是件容易的事儿啊!首先呢,得把细胞给破开,让包涵体露出来。
这就好比是打开仓库的大门,才能看到里面的宝贝呀。
然后呢,通过一些巧妙的方法,把包涵体和其他杂质分离开来。
这就像是在一堆杂物里,精准地挑出我们想要的那个小物件。
这其中啊,有各种各样的方法和技巧。
比如说,有些方法就像是一个精细的筛子,能把大小合适的包涵体筛出来,把不合适的给挡在外面。
还有些方法呢,就像是有一双神奇的手,能准确地抓住包涵体,而不碰到其他的东西。
纯化的过程就像是一场精细的手术,每一个步骤都得小心翼翼,不能有丝毫的马虎。
要是不小心弄错了一步,那可能就前功尽弃啦!哎呀,这可真让人提心吊胆啊。
而且啊,不同的包涵体可能需要不同的纯化方法呢。
这就好比不同的宝贝需要用不同的工具去挖掘一样。
有的可能很容易就纯化出来了,可有的就像个调皮的小孩,得费好大的劲才能抓住它。
在这个过程中,经验可是非常重要的哦!那些经验丰富的科学家们,就像是熟练的老猎人,能够轻松地找到最佳的方法和路径。
他们知道什么时候该用什么方法,怎么才能让包涵体乖乖地听话。
纯化出来的包涵体,那可都是宝贝呀!它们可以用来做很多重要的事情呢,比如说研究蛋白质的结构和功能,或者用来开发新的药物。
你说这包涵体纯化技术是不是很神奇?它就像是一个魔法,能把那些隐藏在细胞里的宝贝给变出来。
虽然过程充满了挑战和困难,但当我们成功地纯化出包涵体的时候,那种成就感可真是无法用言语来形容啊!所以啊,可别小瞧了这包涵体纯化技术,它可是有着大用处呢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、包涵体的纯化和复性总结(二)二、[ 2008-2-25 14:25:00 | By: 飞鸿 ]三、关于包涵体的纯化是一个令人头疼的问题,包涵体的复性已经成为生物制药的瓶颈,关于包涵体的处理一般包括这么几步:菌体的破碎、包涵体的洗涤、溶解、复性以及纯化,内容比较庞杂一、菌体的裂解1、怎样裂解细菌?细胞的破碎方法1.高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。
此法适用于动物内脏组织、植物肉质种子等。
2.玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3.超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施,时间以及超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮,如果不放心可以在显微镜下观察。
对超声波及热敏感的蛋白和核酸应慎用。
4.反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5.化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好,我用的浓度一般为1mg/ml。
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
这是标准配方:裂解液:50mM Tris-HCl(pH8.5~9.0), 2mM EDTA, 100mM NaCl, 0.5% Triton X-100, 1mg/ml 溶菌酶。
(溶菌酶在这个pH范围内比较好发挥作用)但我个人的经验是:如果你裂解细菌是为了提取蛋白的话,而且蛋白的分子量又小于20kd的话,尽量减少溶菌酶的用量,会引入溶菌酶这种杂蛋白.一般配60ml裂解液用药匙匙柄盛一点就够.判断裂解好坏的标准是,溶液很粘.protocol是10ml-50ml缓冲液(菌体洗涤液,裂解液等)/1g湿菌体.如果只做一个鉴定,我觉得100-200ml菌就够了.但凡超声,我都用60ml裂解液,因为我们的超声仪(现代分子生物学实验技术录象里的那种)很适合用100ml小烧杯,装60ml裂解液,这样能让超声头离液面不高不低,不会冒泡泡,也不会洒出来.菌多我就延长超声时间.沉淀,也就是包涵体沉淀了,如果要上柱纯化,一定要先用4M尿素洗涤一下再用8M尿素溶解.如果不上柱,只是跑跑电泳,可以直接用8M尿素溶解以后,离心取上清,加入适量体积的loading buffer.loading buffer对于包涵体的溶解能力是较弱的."取200微升菌液,离心后直接加上样buffer,100度3分钟后上样,然后SDSPAGE. 这个方法到底能不能溶解细菌中的包涵体? "而楼主的问题,虽然loading buffer对于包涵体的溶解能力是较弱的,但是我觉得你的做法只是在鉴定有无表达,用loading buffer是没有问题的.2、表达重组蛋白时,细菌裂解方法都有哪些?在表达重组蛋白时,诱导以后跑SDS-PAGE发现表达都很好,但是在裂解细胞时遇到问题。
总是不能彻底裂解细胞。
首先我采用超声裂解,可是不管我如何超声总有部分细菌没有裂解。
我的超声条件如下:宁波新芝超声细胞破碎仪,功率400W,超5秒,间隔5秒,重复99次。
然后显微镜观察,不彻底时再重复99次。
菌体来自200 ml培养液,用20 ml PBS重悬。
然后我又尝试加溶菌酶,首先加至终浓度100 ug/ml,4C半小时菌液不变粘,加大浓度至1 mg/ml,半小时后仍无明显变化。
因为我用的PBS是pH7.4,我怀疑是pH不合适,换用pH8.0 TE buffer,1 mg/ml溶菌酶,4C半小时仍无明显变粘。
因为这次使用的溶菌酶是前一天配好的,担心溶菌酶失效,重新称取冻干粉末,直接加入菌液,仍然没有明显变化。
真是郁闷。
到底出了什么事?请高手解答,并介绍优化的方案。
同时希望能介绍一下如何选择细胞破碎方法,以及如何确定最佳条件。
溶菌酶在pH7.4时是否没有活性了?可否配成浓缩液保存溶菌酶,如果可以,应如何保存?加入溶菌酶以后,如果细胞壁已破坏,菌液应该变粘吧,因为核酸被释放出来。
而超声破碎细胞,我觉得菌液是不会变粘的,因为超声可以把大分子核酸打碎成小片段。
我判断细胞破碎不完全是因为,在将破碎后样品离心分离上清和沉淀跑SDS-PAGE观察,发现在细胞碎片组分中除了经常出现的一两条带以外,还有菌体总蛋白样品中的很多带出现。
据此可以判断细胞只是部分破碎。
不知我的分析是否正确,请版主和各位高手指教。
如果溶菌酶效果还可以,我觉得先用溶菌酶初步裂解细胞,然后再用超声进一步破碎并断裂大分子核酸以降低粘度的细胞破碎策略可能比较好。
因为超声有可能使蛋白变性,但单用溶菌酶不能确定是否完全破碎,还要再加核酸酶降低粘度。
这种两步法策略应该还可以减少破碎条件优化的时间。
我用的溶菌酶放置时间比较长了,有可能失活了。
我刚从生工又定了一支,不过得后天到货,但愿它有用。
如何观察溶菌酶是否已裂解细胞,通过观察粘度变化是否可以?只反复冻融是否可以有效裂解大肠杆菌细胞?溶菌酶只有在pH值大于8.0的条件下才能发挥溶菌作用,请务必保持PBS的pH>8.0,同时溶菌酶的量一定要足!在加入溶菌酶后,最好放于磁力搅拌器上搅拌30分钟,再进行超声破菌,我的超声条件是:功率400W,工作2秒,间隔2秒,重复199次。
菌体来自500 ml培养物,用30 ml PBS重悬,超声效率还是可以的。
哪儿的溶菌酶好用?我用生工的溶菌酶,称取干粉20mg。
200ml菌液用18 ml NaCl重悬,加入2 ml 25mM Tris-HCl(pH8.0),将溶菌酶干粉加入体系,混匀,测pH降低到5-6,加20 ul 2M Tris碱,体系pH升到~8。
4C放置1小时,菌液上层变澄清,摇动发现体系没有变粘。
测pH仍在8左右。
再37C保温1小时,还没有变化,我简直不知如何才好了。
另一瓶200ml培养物,溶菌酶处理1小时后超声。
条件:300W,超5秒停5秒,重复99次。
菌液有变化,但很不明显。
继续超声400次,从外观来看没有太大区别。
我简直要说tmd了。
见鬼了。
我的操作有什么地方不妥当,请各位指正。
溶菌酶的厂商要求是否很重要?我的诱导物来自1:20过夜培养物接种,37C生长3小时后30C诱导2小时(0.8mM IPTG)。
是否菌液太浓,Pharmacia的说明书200 ml培养物用10 ml重悬,我用20 ml,仍然不够稀?有人告诉我菌液应该稀一些,200 ml用30-40 ml重悬。
但实际操作也不够理想。
SDS-PAGE总是观察到细胞破碎效果不够彻底。
超声那么多次,蛋白都要被超碎变性了。
3、酵母的破碎酵母是一类单细胞真菌的总称,其成员分别属于不同的真菌纲,细胞壁成分是否会有较大差别,这些都是做破碎酵母细胞前要考虑的。
我归纳了一下,做破碎酵母的几种方法:1 机械的方法:一般的PROTOCOL都是用glass beads:如 sigma G-8772,加玻璃珠后超声,蛋白活性保持较好。
2 化学裂解的方法:10g酵母加1ml的乙酸乙酯,充分搅拌至液体状(希望高手点评)3 尿素裂解液(尿素8mol/L, NaCl 0.5mol/L,Tris 20mmol/L, EDTA 20mmol/L, 2%SDS, PH 值8.0)高压匀浆。
(这个好象也该在方法2中)4 液氮冻融并研磨酵母破壁,我认为这种可能在小试中比较合适。
5 温和的酶法,可能不会会破坏酵母原生质体酶法裂解主要用两种酶:1。
蜗牛酶,可以直接从蜗牛的胃液中获得;2。
lyticase,可以从sigma定购。
这两种酶解法都可以和上面的几种方法结合使用,尤其是glass beads方法,效果很好。
我用过化学裂解的方法,10g酵母加1ml的乙酸乙酯,充分搅拌至液体状。
此法的裂解效果不错的,不妨试一下。
一篇文章是加尿素裂解液(尿素8mol/L, NaCl 0.5mol/L,Tris 20mmol/L, EDTA 20mmol/L, 2%SDS, PH值8.0),据说效果可以酵母破碎效果好的我所做过的方法中还是玻璃珠,就象microbe 和rongjunli所说的那样,效率很高的,而且对目的蛋白活性不会有什么影响。
一般应该用这个方法。
4、超声破碎的条件选择超声破碎的条件不能一概而论,要看你的实验要求,有的是细菌破碎,有的是对组织细胞进行破碎,要掌握好功率和每次超声时间,功率大时,每次超声时间可缩短,不能让温度升高,必要时在冰浴条件下进行超声破碎。
至于每次超声时是否起泡沫到不是关键的问题,这与你超声的量明显有关。
5、如何鉴定细菌超声破碎的程度最简单的方法:涂片--革兰氏结晶紫溶液染色0.5分钟---显微镜观察切记:只用结晶紫染色,别忘了染色后再用水稍冲洗一下6、细菌裂解的DNaseI不同纯度的酶换算标准不同,所以你最好查查是哪个公司的酶?仔细看说明书,可能会有换算说明。
另外看一下参考文献所用的酶是哪个公司的,到该公司的主页也可能有收获。
我用过华美和TAKARA的DNA酶,华美的是用mg/ml。
华美也有RNase free的DNA酶,定量用活性单位。
TAKARA的两种酶都是用活性单位定量的。
我在超声裂解细菌时加入一些DNA酶,一般用超声液加不同量的酶做一个预实验,选取符合你需要的酶量。
其实根据目的和方法的不同,所需要的酶量也是可调节的,比如酶切温度(16度或37度)。
7、超声裂解细菌是否完全?最简单的方法:涂片--革兰氏结晶紫溶液染色0.5分钟---显微镜观察切记:只用结晶紫染色二、包涵体的洗涤1、包涵体的洗涤问题通常的洗涤方法一般是洗不干净的,我以前是这么做的,先把包涵体用6M盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,你可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,我觉得比通常的直接洗脱效果好。