《相似三角形的应用》教案
九年级数学上册《相似三角形判定定理的应用》教案、教学设计
4.实践题:结合生活中的实际问题,让学生设计一道运用相似三角形判定定理的题目,并给出解答过程。此题旨在培养学生的几何直观和实际应用能力。
5.思考题:针对本节课学习的相似三角形判定定理,让学生思考以下问题:(1)相似三角形判定定理在实际问题中有什么作用?(2)如何将相似三角形的性质应用于其他几何问题的解决?
3.过渡:通过学生的回答,引出本节课的主题——相似三角形的判定定理的应用。
4.目标明确:告知学生本节课的教学目标,让学生明确学习重点和难点。
(二)讲授新知
1.概念回顾:简要回顾相似三角形的定义、性质以及判定条件。
2.理论讲解:详细讲解相似三角形的判定定理,包括SSS、SAS、ASA、AAS等,并举例说明。
3.方法指导:教授学生如何运用相似三角形的判定定理解决实际问题,包括如何分析题目、找出已知和未知条件、选择合适的判定定理等。
4.举例演示:通过具体例题,展示相似三角形判定定理的应用过程,让学生了解解题思路。
(三)学生小组讨论
1.分组:将学生分成若干小组,每个小组4-6人。
2.任务分配:给每个小组分配一道相似三角形的应用题目,要求学生运用判定定理进行解答。
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力,通过以下方法实现:
1.采用启发式教学,引导学生通过观察、分析、归纳等思维活动,自主发现相似三角形的判定定理。
2.设计丰富的教学活动,如小组讨论、问题解决、实例分析等,让学生在实践中掌握相似三角形的应用。
3.利用多媒体教学手段,展示相似三角形的动态变化过程,帮助学生形成直观的认识。
5.理论联系实际,学以致用:
标题:最新人教版八年级数学上册第十二章相似三角形 教案
标题:最新人教版八年级数学上册第十二章相似三角形教案一、教学目标:1. 理解相似三角形的定义,掌握相似三角形的判定方法。
2. 掌握相似三角形的性质,能够解决与相似三角形相关的问题。
3. 进一步提高学生的几何推理和证明能力。
二、教学内容:1. 相似三角形的定义及判定方法。
2. 相似三角形的性质和应用。
三、教学步骤:1. 导入:通过引入一道生活中的问题,激发学生关于相似三角形的思考和探索。
2. 讲解:给出相似三角形的定义,并介绍判定相似三角形的方法。
3. 实例演练:通过一些具体的实例,让学生掌握判定相似三角形的方法。
4. 性质探究:引导学生发现相似三角形的性质,进行讨论和证明。
5. 应用拓展:提供一些应用题,让学生运用相似三角形的知识解决问题。
6. 练巩固:提供一些练题,巩固学生对相似三角形的理解和应用能力。
7. 总结反思:总结相似三角形的知识点,让学生进行反思和思考。
8. 课堂作业:布置相似三角形相关的作业,检查学生的掌握情况。
四、教学资源:1. 人教版八年级数学上册教材。
2. 相关练题、应用题和思考题。
五、教学评价:1. 课堂表现评价:观察学生在课堂上的参与度、思维活跃度和回答问题的准确性。
2. 作业评价:检查学生作业的完成情况和准确度。
3. 测验评价:通过小测验检查学生对相似三角形知识的掌握程度。
六、教学后记:根据学生的表现和反馈情况,及时调整教学策略,对未掌握的知识点进行复习和强化训练。
同时,鼓励学生在课外自主学习,进一步提升对相似三角形的理解和应用能力。
初中数学华东师大九年级上册(2023年新编)第23章 图形的相似《相似三角形的应用》教案
《相似三角形的应用》教案【教学目标】1、认识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题.2、通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.【教学过程】一、自主学习 感受新知1、说一说相似三角形的判定方法有哪些,相似三角形的性质有哪些?2、大家都知道矗立在城中的科技大楼是我们这里比较高的楼,那么科技大楼有多高呢?我们如何用一些简单的方法去测量出科技大楼的高度呢?二、自主交流 探究新知导入新课:阅读课本73页例6完成下列任务:例6中当金字塔的高度不能直接测量时,本题中构造了_______和_______相似,且_______、________、_________是已知或能测量的.说一说测量金字塔高度的方案并加以证明.学法指导:同一时刻太阳光是平行直线,从而得到角相等,得到相似三角形.例7中河的宽度也是无法直接测量的,本题中构造了_________和________相似,且_______、__________、__________是已知或能测量的.说一说测量河的宽度的方案并加以证明.以上两例题向我们提供了利用相似三角形进行测量的方法.相似三角形的知识在实际应用中非常广泛,主要是运用相似三角形的有关性质来测量计算一些不易直接测量的物体的高度和宽度,解题时应先分析问题中哪些是相似图形,哪些是相等的角,哪些是成比例线段,已知的是哪些条件,要求的是什么,然后利用所学的相似三角形的知识把已知与未知联系起来,建立数学模型并解决.常见的相似模型有:阅读例,并说明它是如何利用相似三角形的性质来证明线段成比例的?学法指导:要将乘积式变为比例式.现在同学们应该知道该怎么样去计算科技大楼的高度了吧?方法归纳:测高的方法:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决.测距的方法:测量不能到达两点间的距离,常构造相似三角形求解课堂练习:课本75页1,2题三、自主应用 巩固新知1、某一时刻树的影长为8米,同一时刻身高为米的人的影长为3米,则树高为 .2、如图,某测量人员与标杆顶端F 、电视塔顶端在同一直线上,已知此人眼睛距地面米,标杆FC =米,且B C =1米,CD =5米,求电视塔的高度ED .3、如图,路灯距地面8米,身高米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度( )A .增大米B .减小米C .增大米D .减小米4、如上图(右)马戏团让狮子和公鸡表演跷跷板节目.跷跷板支柱AB 的高度为米.(1)若吊环高度为2米,支点A 为跷跷板PQ 的中点,狮子能否将公鸡送到吊环上?为什么?(2)若吊环高度为米,在不改变其他条件的前提下移动支柱,当支点A 移到跷跷板PQ 的什么位置时,狮子刚C BAF C D A B C A D E B AEE好能将公鸡送到吊环上?四、堂清任务(中考链接)小强用这样的方法来测量学校教学楼的高度:如图,在地面上方一面镜子,(镜子的高度不计),他刚好能从镜子中看到教学楼的顶端B ,他请同学协助量了镜子与教学楼的距离EA =21米,以及他与镜子的距离CE =米,已知他的眼睛距离地面的高度DC =米,请你帮助小强计算出教学楼的高度.(根据光的反射定律:反射角等于入射角)C D FE A B。
九年级数学《相似三角形应用举例1 》教案
“三部五环”教学模式设计《27.2.2相似三角形的应用举例1》教学设计教材义务教育课程标准实验教科书(人教版)《数学》九年级下册第二十七章《相似》第二小节相似三角形的判定第五课时相似三角形的应用举例。
设计理念从学生已有的生活经验和认知基础出发,让学生主动地进行学习。
学生在感知实际问题后,将实际问题转化为数学问题,进一步尝试解决、交流展示,从而培养学生分析、归纳、总结的能力和学生应用相似三角形的判定和性质解决实际问题的能力。
使学生感受数学源于生活又服务于生活,更好地理解数学知识的意义,体现“人人学有价值数学”的新课程理念。
整个教学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,将教学过程设计为有一定梯次的递进式活动序列。
学情分析教学对象是九年级学生,在学习本节前,学生已经掌握了相似三角形的概念、判定方法及性质;在思维已具备了初步的应用数学的意识;经历了在操作活动中探索性质的过程,获得了初步的数学活动经验和体验,也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力,在此基础上通过本节课的学习将进一步综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识。
培养学生在实际问题中建立数学模型的能力,从而提高学生理论联系实际的能力。
在推理论证方面须坚持遵循“特殊——一般——特殊”规律,注重对学生建立数学模型的能力和推理论证的严谨性的培养。
知识分析本节教材选自于人教版九年级下册第二十七章《相似》第二节《相似三角形》,隶属《全日制义务教育数学课程标准(实验稿)中的“空间与图形”领域。
图形的相似及相似三角形的判定和性质的应用是初中几何中重要的知识,是证明角相等,线段相等和线段成比例常用的解决问题方法。
它是建立在图形的全等和全等三角形、四边形的判定方法和性质及圆的有关知识的基础上学的,是继圆之后的又一章综合性比较强且应用比较广泛的重要章节。
相似三角形的综合应用(教案)
1.理论介绍:首先,我们要了解相似三角形的定义和判定方法。相似三角形是指对应角相等、对应边成比例的两个三角形。它在几何学中具有重要地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在建筑设计中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的定义、判定方法和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,关于教学难点和重点的把握,我认为在今天的课堂上,我对相似三角形的判定方法和性质的强调还不够。在今后的教学中,我需要更加突出这些知识点,通过反复讲解、举例和练习,帮助学生更好地理解和掌握。
最后,针对学生在解决实际问题时遇到的困难,我计划在接下来的课程中增加一些类似的问题进行专项训练,让学生在不断的实践中提高解决问题的能力。同时,我也会鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际中去。
2.加强逻辑推理能力,运用相似三角形的判定与性质进际问题,提高解决实际问题的能力;
4.培养学生团队协作和交流表达能力,通过小组讨论和案例分析,促进学生思维碰撞和知识共享。
三、教学难点与重点
1.教学重点
(1)掌握相似三角形的判定方法:SSS、SAS、ASA、AAS;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
初中数学相似教案
初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。
教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。
三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。
四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。
教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。
教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。
在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。
同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。
冀教版数学九年级上册25.6《相似三角形的应用》教学设计
冀教版数学九年级上册25.6《相似三角形的应用》教学设计一. 教材分析冀教版数学九年级上册第25.6节《相似三角形的应用》是本册教材中的一个重要内容。
本节内容是在学生已经掌握了相似三角形的判定和性质的基础上进行学习的,旨在让学生能够运用相似三角形的知识解决实际问题。
本节课的内容包括两个部分,第一部分是相似三角形的应用,主要包括相似三角形在测量和几何设计中的应用;第二部分是本节课的练习题,主要是让学生通过练习,进一步理解和掌握相似三角形的应用。
二. 学情分析九年级的学生已经掌握了相似三角形的判定和性质,对于如何运用这些知识解决实际问题,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生将理论知识与实际问题相结合,培养他们的解决问题的能力。
三. 说教学目标1.知识与技能目标:让学生掌握相似三角形在测量和几何设计中的应用,能够运用相似三角形的知识解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验数学在实际生活中的应用,增强他们对数学的兴趣和信心。
四. 说教学重难点1.教学重点:相似三角形在测量和几何设计中的应用。
2.教学难点:如何引导学生将相似三角形的知识与实际问题相结合,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过观察、思考、讨论和动手操作,解决实际问题。
2.教学手段:利用多媒体课件,展示实际问题,引导学生观察和思考;同时,利用黑板,板书关键步骤和结论。
六. 说教学过程1.导入:通过一个实际的测量问题,引导学生思考如何利用相似三角形解决实际问题。
2.新课导入:介绍相似三角形在测量和几何设计中的应用,让学生了解相似三角形的实际意义。
3.案例分析:分析几个实际的测量和几何设计问题,引导学生运用相似三角形的知识解决这些问题。
4.练习与讨论:让学生通过练习题,巩固相似三角形的应用知识,同时引导学生进行讨论,分享解题心得。
相似三角形教案
相似三角形教案相似三角形教案一、教学目标:1. 知识与技能:掌握相似三角形的概念;了解相似三角形的性质;能够判断两个三角形是否相似;能够应用相似三角形的性质解决实际问题。
2. 过程与方法:通过实例引入,提供多种不同的教学方法,如讲解、讨论、实例分析等,激发学生的学习兴趣;通过课堂练习和作业的形式,培养学生的分析问题和解决问题的能力。
3. 情感态度与价值观:培养学生的计算能力和分析能力,增强对数学的兴趣;培养学生的逻辑思维能力和创造力,注重培养学生的合作精神和团队意识。
二、教学重点与难点:1. 教学重点:相似三角形的性质及其应用。
2. 教学难点:如何判断两个三角形是否相似;如何应用相似三角形的性质解决问题。
三、教学过程与方法:1. 导入新知识:通过示意图引入相似三角形的概念和性质,让学生对相似三角形有初步的认识。
2. 讲解与示范:讲解相似三角形的判定方法和性质,并通过示例进行演示,让学生理解和掌握相似三角形的性质。
3. 实例分析:让学生通过分析实际生活中的例子,找出相似三角形的特点,并运用相似三角形的性质解决实际问题。
4. 讨论与合作:组织学生进行小组讨论,共同解决相似三角形的问题,培养学生的合作意识和团队精神,激发学生的思考和创造力。
5. 总结与归纳:让学生总结相似三角形的判定方法和性质,进行知识归纳和概念澄清,确保学生对相似三角形有深入的理解。
6. 拓展与巩固:通过练习题和作业的形式,巩固学生对相似三角形知识的掌握和运用能力,培养学生的分析和解决问题的能力。
四、教学资源:1. 教学课件:显示相似三角形的示意图和相关概念。
2. 教学实例:提供多个真实生活中的示例,让学生进行分析和解决问题。
五、教学评估:1. 课堂练习:在教学过程中进行课堂练习,检测学生对相似三角形的掌握程度。
2. 作业评价:布置相关的作业,检测学生对相似三角形的应用能力和解决问题的策略。
六、教后反思:通过本节课的教学,学生能够初步掌握相似三角形的概念和性质,并能够运用相似三角形的性质解决实际问题。
《相似三角形的应用》说课_人教版九年级数学说课稿
《相似三角形》一、教材分析(一)教材的地位和作用《相似三角形》选自人民教育出版社义务教育课程标准实验教科书中数学九年级下学期。
相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步的学习打下良好的基础。
本章的学习占重要地位。
同时对以后续教学内容起奠基作用,也为学生今后学习和生活更好的运用数学作准备。
(二)教学目标1、知识技能目标学生通过学习掌握相似三角形的性质、判定方法;学生掌握平行线型与相交线型两类基本图形。
2、能力目标(1)从相似三角形判定方法选择上经历分析、综合、假设、判断、归纳的思想方法;(2)学会用基本图形分析法来解决几何问题;(3)通过个人反思,课堂小结等活动形成评价与反思的意识。
3、情感、态度和价值观目标(1)通过条件开放、结论探索、动手操作使学生对解决问题的方法和规律有更深的认识,并培养学生积极思考的好习惯;(2)使每一名学生都能树立自信心,在积极探索的过程中,体验成功的快乐。
(三)教学的重点和难点因为相似三角形的判定、性质是解决与相似三角形有关问题的重要依据,所以灵活运用它们进行一些证明和计算是本节课的重点。
本节内容的难点是:通过分析、研究,揭示应用相似三角形有关知识解题的规律,提高分析问题和解决问题的能力。
二、教法与学法(一)教学方法为了突出教学重点,突破教学难点,遵循教学大纲中提出的:“提高学生的几何基础知识和基本技能”,这一重要教学指导思想,在教学过程中,我选用了以下的教学方法:1、采用课前复习归纳法,引导发现法培养学生类比推理能力,尝试指导法,逐步培养学生独立思考的能力及语言表达能力。
充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
2、采用小组合作学习,让学生充分发表自己的见解,给学生一定的时间和空间自主探索每一个问题,而不是急于告诉学生结论,学生充当小老师,既体现生生互动,又使学生积极主动地参与到学习中。
相似三角形的应用教案
相似三角形的应用教案教案标题:相似三角形的应用教案教案目标:1. 理解相似三角形的概念和性质。
2. 掌握相似三角形的判定方法。
3. 学会应用相似三角形解决实际问题。
教案步骤:一、引入(5分钟)1. 引导学生回顾并复习相似三角形的定义和性质。
2. 提出一个实际问题,如:一个高楼的影子长度为10米,同时一根1.5米高的杆子的影子长度为2米,问这栋高楼的高度是多少?二、概念讲解(10分钟)1. 通过示意图和实例,讲解相似三角形的判定方法,包括AAA(全等的对应角相等)、AA(两角对应相等)、SAS(两边成比例且夹角相等)和SAA(两边成比例且一角相等)。
2. 引导学生理解相似三角形的比例关系,如对应边的比例和对应角的相等关系。
三、应用练习(20分钟)1. 给学生提供一些实际问题,要求他们利用相似三角形的性质解决问题,如计算高度、距离等。
2. 学生个别或小组合作完成练习,教师巡视指导并解答疑问。
四、讲解答案和总结(10分钟)1. 教师与学生一起讨论并解答练习题。
2. 引导学生总结相似三角形的应用方法和技巧,强调实际问题与数学模型的联系。
五、拓展练习(15分钟)1. 提供一些更复杂的应用问题,要求学生运用相似三角形的知识解决。
2. 学生个别或小组合作完成拓展练习,教师巡视指导并解答疑问。
六、课堂总结(5分钟)1. 教师总结本节课的重点内容和要点。
2. 学生提出问题或分享学习心得。
教学资源:1. 教材:包含相似三角形的相关知识点和例题。
2. 实物:如杆子、影子等,用于引入实际问题。
评估方式:1. 教师观察学生在课堂上的参与度和理解程度。
2. 课堂练习和拓展练习的答案。
3. 学生的提问和讨论。
教案备注:1. 针对不同教育阶段的要求,可以适当调整教案的难度和深度。
2. 教师可以根据学生的学习情况,适时调整教学步骤和时间分配。
湘教版数学九年级上册3.5《相似三角形的应用》教学设计
湘教版数学九年级上册3.5《相似三角形的应用》教学设计一. 教材分析湘教版数学九年级上册3.5《相似三角形的应用》是本学期的重要内容。
本节内容通过引入实际问题,引导学生利用相似三角形的性质进行问题求解。
教材以生活中的实例为背景,让学生感受数学与生活的紧密联系,培养学生的应用意识。
二. 学情分析九年级的学生已经掌握了相似三角形的判定和性质,具备了一定的数学思维能力和问题解决能力。
但学生在实际应用中,可能会对一些复杂问题进行分析遇到困难,因此需要通过实例引导学生分析问题,逐步提高学生的应用能力。
三. 教学目标1.理解相似三角形的应用,能运用相似三角形的性质解决实际问题。
2.培养学生的分析问题、解决问题的能力。
3.增强学生对数学的兴趣,感受数学与生活的紧密联系。
四. 教学重难点1.重点:相似三角形的应用,解决实际问题。
2.难点:对复杂问题进行分析,运用相似三角形的性质进行求解。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实例引入,引导学生自主探究,小组讨论,共同解决问题。
六. 教学准备1.准备相关的实例问题。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引入:在一条直线上,有一点A和两个相似的三角形ABC 和DEF,AB=DE,BC=EF,AC=DF。
问:点A到直线BC的距离是多少?2.呈现(10分钟)呈现类似的几个问题,让学生尝试解决。
引导学生发现这些问题都可以通过相似三角形的性质来解决。
3.操练(10分钟)让学生分组讨论,每组选取一个实例问题,运用相似三角形的性质进行求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组学生解决问题的结果,进行讲解和分析,巩固学生对相似三角形应用的理解。
5.拓展(10分钟)让学生尝试解决一些更复杂的问题,引导学生运用所学知识进行问题分解和求解。
6.小结(5分钟)对本节课的内容进行总结,强调相似三角形在实际问题中的应用。
相似三角形的判定数学教学教案【优秀10篇】
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
23.3.4 相似三角形的应用(说课稿)-2022-2023学年九年级上册初三数学同步备课(华东师大
23.3.4 相似三角形的应用(说课稿)一、教材分析本节课是初三数学华东师大版教材《九年级上册》中的23.3.4小节,属于初中数学同步备课内容。
通过本节课的学习,学生将了解相似三角形的性质和应用,为后续学习几何知识打下基础。
二、教学目标本节课的教学目标如下:1.掌握相似三角形的定义与性质。
2.能够运用相似三角形的性质解决与实际生活相关的问题。
3.培养学生的数学思维和解决问题的能力。
三、教学重难点本节课的教学重点和难点如下:1.相似三角形的定义与性质的理解和应用。
2.解决与实际生活相关的相似三角形问题的能力。
四、教学过程1. 导入引入本节课的主题,通过一个生活实例来激发学生的学习兴趣。
例如:小明要设计一张宣传海报,需要按照实际比例缩小地图,那么如何确定地图和海报的比例尺呢?2. 知识讲解通过讲解相似三角形的定义和性质,帮助学生理解相似三角形的概念和特点。
重点讲解以下内容:•相似三角形的定义:两个三角形的对应角相等,并且对应边成比例,即可称为相似三角形。
•相似三角形的性质:–对应边成比例:相似三角形的对应边的长度比相等。
–对应角相等:相似三角形的对应角的度数相等。
–相似三角形的比例尺:相似三角形的对应边长度之比称为比例尺。
3. 解题示范通过具体实例,演示如何运用相似三角形的性质来解决实际问题。
例如:已知一座高山的高度是4500米,要用图纸标明山的高度,但图纸的尺寸较小,需要进行缩放。
已知图纸的高度是15厘米,现要求确定图纸的比例尺。
解题步骤如下: 1. 通过相似三角形的定义,找到两个相似三角形,一个是实际高山的三角形,一个是图纸上的等价三角形。
2. 列出相似三角形的比例关系式,解出比例尺。
4. 练习与巩固让学生进行相关的练习题,巩固所学内容,并且引导学生思考和应用。
例如:小华想要在一张平面上绘制一条长直路线,但平面尺寸不够大,需要缩小。
已知实际路线的长度是800米,现在要用一张图纸表示,图纸尺寸为20厘米。
(完整版)《相似三角形的应用》教学设计
雅典帕德嫩神庙:包含黄金矩形的建筑物,它是世界上最美丽的建筑之一
《相似三角形的应用》教学设计
一、情境引入;
图片欣赏,你能求出图中建筑物的高度吗?
二、自主探索,合作探究
如果不能实际的量出此建筑物的高度,那么用怎
样的方法既快又简便的得到它的高度呢?(利用所学的知识) 达标练习1
例题分析1:古代一位数学家想出了一种测量金字
塔高度的方法:如图18.3.12所示,为了测量金字
塔的高度OB ,先竖一根已知长度的木棒O ′B ′,
比较棒子的影长A ′B ′与金字塔的影长AB ,即可
近似算出金字塔的高度OB .如果O ′B ′=1,A ′
B ′=2,AB =274,求金字塔的高度OB.
例题分析2:如图18.3.13,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使AB ⊥BC ,然后,再选点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点
D .此时如果测得BD =120米,DC =60米,EC =50米,求两岸间的大致距离AB .
达标练习2
练 习:在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
教学反思:
本节课学了哪些内容?还有哪些疑问?
布置作业;(见作业纸) 图18.3.12。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
相似三角形的应用教案
相似三角形的应用教案教学目标:1.理解相似三角形的定义和性质。
2.能够利用相似三角形的性质解决实际问题。
教学资源:课本、白板、笔。
教学步骤:一、引入:老师可以通过贴图或举例子引入相似三角形的概念,让学生感受到相似三角形的特点。
二、概念讲解:1.相似三角形的定义:对于两个三角形ABC和DEF,如果它们的对应的角相等,且对应的边比例相等,那么我们称这两个三角形相似,记作∆ABC ∽∆DEF。
2.相似三角形的性质:a) 相似三角形的对应角相等;b) 相似三角形的对应边比例相等;c) 相似三角形的相似比等于对应边的比例。
三、应用实例:1.实例1:甲乙两地相距300公里,小明骑车从甲地出发,同时小红从乙地出发,小明骑车的速度是小红的3倍。
问多长时间后,小明和小红会相遇?(教师板书:甲地 300公里小明速度:小红速度 = 3:1)解:设小明骑车的时间为t小时,则小红骑车的时间为3t小时。
根据相似三角形的性质,有:300/t = 300/(3t) = 1/3通过解方程可以得到t=1小时,所以小明和小红会在1小时后相遇。
2.实例2:一个大人比一个小孩高160cm,甲和乙两人相似,甲的身高是130cm,乙的身高是多少?(教师板书:甲的身高 130cm乙的身高 x大人:小孩的身高 = 160:130)解:设乙的身高为x,则根据相似三角形的性质,有:160/130 = x/130通过解方程可以得到x=160cm,所以乙的身高是160cm。
四、拓展练习:让学生自己找一些实际问题,并利用相似三角形的性质解决。
五、总结:总结相似三角形的定义和性质。
六、作业:布置一些练习题,要求学生利用相似三角形的性质求解相关问题。
相似三角形的应用教案
相似三角形的应用教案一、教学目标1.了解相似三角形的定义和性质;2.掌握相似三角形的判定方法;3.学会应用相似三角形解决实际问题。
二、教学重点1.相似三角形的定义和性质;2.相似三角形的判定方法;3.应用相似三角形解决实际问题。
三、教学难点1.应用相似三角形解决实际问题。
四、教学内容1. 相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
相似三角形有以下性质:1.对应角相等;2.对应边成比例。
2. 相似三角形的判定方法判定两个三角形是否相似,有以下方法:1.AAA判定法:两个三角形的对应角分别相等,则它们相似;2.AA判定法:两个三角形的两个角分别相等,则它们相似;3.SAS判定法:两个三角形的一对对应边成比例,且夹角相等,则它们相似;4.SSS判定法:两个三角形的三对对应边成比例,则它们相似。
3. 应用相似三角形解决实际问题相似三角形在实际问题中有广泛的应用,例如:1.测量高度:利用相似三角形的性质,可以通过测量阴影和物体的长度来计算物体的高度;2.计算距离:利用相似三角形的性质,可以通过测量阴影和物体的长度来计算两个物体之间的距离;3.计算面积:利用相似三角形的性质,可以通过已知图形的面积和相似三角形的比例来计算另一个图形的面积。
五、教学方法1.讲解法:通过讲解相似三角形的定义、性质和判定方法,让学生掌握相似三角形的基本概念;2.案例法:通过实际问题的案例,让学生了解相似三角形的应用;3.练习法:通过练习相似三角形的判定和应用题目,让学生巩固所学知识。
六、教学步骤1. 引入通过实际问题的案例,引导学生了解相似三角形的应用。
2. 讲解相似三角形的定义和性质讲解相似三角形的定义和性质,让学生掌握相似三角形的基本概念。
3. 讲解相似三角形的判定方法讲解相似三角形的判定方法,让学生掌握判定相似三角形的方法。
4. 应用相似三角形解决实际问题通过实际问题的案例,让学生了解相似三角形的应用。
相似三角形的应用教案
23.3相似三角形的应用【教学内容】利用三角形相似的有关知识计算不能直接测量物体的长度和高度。
【教学目标】知识与技能:1、学生通过探索实际问题来体验测量中对相似三角形有关知识的应用。
2、经历应用相似三角形的有关知识去解决简单的实际问题的全过程。
过程与方法:1、全力培养学生的应用意识,和把实际问题转化为数学问题并用数学方法去分析、解决实际问题的能力。
2、通过开放的设计题来发展学生的思维,培养创造力。
情感态度价值观:培养学生科学、正确的数学观,体现探索精神。
【教学重点】1、引导学生根据题意构建出相似三角形模型,从而可以把实际问题转化为纯数学问题来解决。
2、面对已设计出来的测量方案,应注意在实际操作中所出现的错误。
教学难点:通过审题、思考后,如何在实际问题中抽象出相似三角形的模型。
【教学过程】一、知识回顾1、相似三角形的判定方法有哪些?(1)平行于三角形一边的直线,和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似;(2)定理1;(3)定理2;(4)定理3;2、相似三角形的性质有哪些?(1)对应边成比例,对应角相等;(2)相似三角形对应边上的高之比、对应角的角平分线之比、对应边上的中线之比、周长之比都等于相似比;(3)相似三角形的面积之比等于相似比的平方。
二、板书课题人们从很早开始,就懂得利用相似三角形的有关性质来计算那些不能直接测量的物体高度和两地距离。
今天我们就学习——相似三角形的应用(板书)。
三、揭示目标这节课我们就用相似三角形的这些知识来解决一些实际问题。
请看本节课我们要完成的目标(出示目标):1.利用相似三角形的判定和性质解决不能直接测量的物体的高度或宽度。
2.学会把实际问题转化为数学问题并用数学方法去分析、解决实际问题。
四、自学指导认真看73至74页练习前面的内容,在看例题时,思考:①太阳光线是什么光线?②例题中是怎样建立相似三角形的模型的?③例题中分别用了相似三角形的哪些知识?5分钟后,比谁能正确地做出与例题类似的习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.3 相似三角形的应用(王军)一、教学目标1.核心素养通过学习相似三角形的应用举例,初步形成基本的推理能力和应用意识.2.学习目标进一步巩固相似三角形的知识,学会用相似三角形知识解决不能直接测量的物体的长度或高度等一些实际问题.3.学习重点运用相似的判定和性质定理解决实际问题.4.学习难点灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).二、教学设计(一)课前设计1.预习任务任务1 阅读教材P39-40,思考:如何测量不能到达顶部的物体的高度?任务2 阅读教材P39-40,思考:如何测量不能直接到达的两点间的距离?任务3 阅读教材P40-41,思考:什么是视点、视线、仰角、俯角?什么是盲区?2.预习自测1.测量不能到达顶部的物体的高度,通常借助太阳光照射物体形成影子,根据同一时刻物高与影长______或利用相似三角形来解决.2.求不能直接到达的两点间的距离,关键是构造___________,然后根据相似三角形的性质求出两点间的距离.3.如图,小明测量某广场旗杆的高度,他从A走1.8m到C处时,他头顶的影子正好与点A重合.已知小明身高1.58m,并测得BC=7.2m,则旗杆的高度是( )A.8m B.7.9m C.7.5m D.7.2m(二)课堂设计1.知识回顾1.三角形相似的判定方法:(1)定义法:三个对应角相等,三条对应边成比例的两个三角形相似.(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(3)判定定理1(边边边):三边对应成比例,两三角形相似;(4)判定定理2(边角边):两边对应成比例且夹角相等,两三角形相似;(5)判定定理3(角角):两角对应相等,两三角形相似;(6)直角三角形相似的判定定理(HL):斜边和一条直角边成比例的两个直角三角形相似.2.相似三角形的性质:(1)相似三角形对应角相等、对应边成比例.(2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.相似三角形对应线段之比等于相似比.(3)相似三角形的周长之比等于相似比.(4)相似三角形的面积之比等于相似比的平方.2.问题探究问题探究一如何测量不能到达顶部的物体的高度?重点、难点知识★▲●活动1 探究利用三角形相似测量物高据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.小组合作:自学课本第39页,例题4----测量金字塔高度问题。
例:如图,如果木杆EF长2 m,它的影长FD为3m,测得OA为 201m,求金字塔的高度BO.怎样测出OA的长?问题:1、本题中是利用什么构造相似三角形的?2、本题的突破点在哪里?3、如何测量旗杆的高度?(设计出你的测量方案,画出图形与同伴交流)4、你发现了什么规律?学习成果展示:解:太阳光是平行线, 因此∠BAO= ∠EDF.又∠AOB=∠DFE=90°,∴△ABO ∽△DEF. ∴FD OA EF BO =,∴13432201=⨯=⋅=FD EF OA BO . 答:金字塔的高度BO=134m.你想到了吗?还可以有其他方法测量吗?(利用平面镜也可测高)△ABO ∽△AEF FD OA EF BO = FDEF OA BO ⋅= . 测高的方法:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决.甲物高 :乙物高 = 甲影长 :乙影长利用三角形相似可以解决一些不能直接测量的物体的长度的问题一般图形:●活动2 例题讲解例1:如图,某一时刻一根2m 长的竹竿EF 的影长GE 为1.2m ,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B 在地面上的影子点D 与B到垂直地面的落点C的距离是3.6m,求树AB的长.【知识点:相似三角形的应用】解析:先利用△BDC∽△FGE得到BC3.6=21.2,可计算出BC=6m,然后在Rt△ABC中利用含30度的直角三角形三边的关系即可得到AB的长.解:如图,CD=3.6m,∵△BDC∽△FGE,∴BCCD=EFGE,即BC3.6=21.2,∴BC=6m.在Rt△ABC中,∵∠A=30°,∴AB=2BC=12m,即树长AB是12m.点拨:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.例2.小明想利用树影测量树高,他在某一时刻测得长为1 m的竹竿影长0.9 m,但当他马上测量树影时,因树靠近一栋建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高l.2 m,又测得地面部分的影长2.7 m,他求得的树高是多少?【知识点:相似三角形的应用】解:如图,过点C作CE⊥AB于点E,因此BE=CD=1.2 m,CE=BD=2.7 m,由1,2.70.9AE所以AB=AE+BE=1.2+3=4.2 (m).答:这棵树的高为4.2 m.点拨:解本题的关键是构造出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.●活动3 应用练习1.在某一时刻,测得一根高为1.8 m的竹竿的影长为3m,同时测得一栋楼的影长为90m,这栋楼的高度是________m.【知识点:相似三角形的应用】解:54 设楼高xm ,则有38.190=x ,x=54,故填54. 2.小红用下面的方法来测量学校教学大楼AB 的高度.如图,在水平地面点E 处放一面平面镜,镜子与教学大楼的距离AE =20m.当她与镜子的距离CE =2.5m 时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC =1.6m ,则大楼AB 的高度为________m .(注:入射角=反射角).【知识点:相似三角形的应用】解:12.8 如图,∵根据光的反射定律知∠BEA =∠DEC ,∵∠BAE =∠DCE =90°,∴△BAE ∽△DCE ,∴AB DC =AE EC .∵CE =2.5m ,DC =1.6m ,∴AB 1.6=202.5,∴AB =12.8,∴大楼AB 的高度为12.8m.问题探究二 如何测量不能直接到达的两点间的距离? 重点、难点知识★▲ ●活动1 探究利用三角形相似测量距离(或宽度)例:如图,为了估算河的宽度,我们可以在河对岸选定一个目标P ,在近岸取点Q 和S ,使点P 、Q 、S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b的交R .如果测得QS = 45 m ,ST = 90m ,QR = 60 m ,求河的宽度PQ .小组合作:自学教材49页,例题5----测量河宽问题。
1.本题中是如何构造相似三角形来解决问题的?2.你还可以用什么方法来测量河的宽度?学习成果展示:解:∵∠PQR=∠PST= 90°,∠P=∠P ,∴ △PQR ∽△PST ,∴STQR QS PQ PQ =+,即906045=+PQ PQ ,∴PQ=90. 答:河的宽度PQ 为90m . 你想到了吗?还可以有其他方法测量吗?(利用三角形相似测宽)△ABE ∽△CDE EDBE CD AB = ED BE CD AB ⋅= . 测距的方法:测量不能到达两点间的距离,常构造相似三角形求解。
解相似三角形实际问题的一般步骤:(1)审题;(2)构建图形;(3)利用相似解决问题.●活动2 例题讲解例:如图,已知零件的外径为a ,要求它的厚度x ,需先求出内孔的直径AB ,现用一个交叉卡钳(两条尺长AC 和BD 相等)去量,若OA:OC=OB:OD=n ,且量得CD=b ,求厚度x 。
分析:如图,要想求厚度x ,根据条件可知,首先得求出内孔直径AB 。
而在图中可构造出相似形,通过相似形的性质,从而求出AB 的长度。
【知识点:相似三角形的判定与性质及应用;数学思想;数形结合】解:∵ OA:OC =OB:OD =n 且∠AOB =∠COD ,∴△AOB ∽△COD.∵ OA:OC =AB:CD =n ,又∵CD =b ,∴AB=CD ·n =nb ,∴x =a -AB 2 =a -nb 2. 点拨:利用三角形相似求线段长是常用方法.●活动3 应用练习1.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点M ,使AM=3MC ,作MN ∥AB 交BC 于N ,量得MN=18m ,则AB 的长为 m.【知识点:相似三角形的判定与性质及应用;数学思想;数形结合】解:722.如图所示,一条河的两岸有一段是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m ,在这岸离开岸边16m 处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有1棵树,但对岸被遮住的两棵树之间有四棵树,则这段河的河宽是 m.【知识点:相似三角形的判定与性质及应用;数学思想;数形结合】解:24 设河宽为dm ,∵∠BAC =∠EAD ,∠EDA =∠BCA ,∴△ABC ∽△AED ,∴AC AD =BC DE.∵BC =50m ,DE =20m ,AD =16m , ∴16+d 16=5020,解得d =24. 问题探究三 什么是视点、视角、盲区?它们是如何应用的? 重点、难点知识★▲●活动1 相关知识介绍:视点:观察者眼睛的位置叫视点;视线:由视点出发的线叫视线;盲区:眼睛看不见的区域叫盲区.视角:视线与水平线的夹角。
仰角:视线在水平线以上,视线与水平线的夹角。
俯角:视线在水平线以下,视线与水平线的夹角。
●活动2 例题讲解例:如图,左、右并排的两棵大树的高分别为AB = 8 m 和CD = 12 m ,两树底部的距离BD = 5 m ,一个人估计自己眼睛距地面1. 6 m. 她沿着正对这两棵树的一条水平直路l 从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C 了?分析:如图,设观察者眼睛的位置(视点)为点F(EF 近似为人的身高),画出观察者的水平视线FG ,它交AB 、 CD 于点H 、 K.视线FA 、 FG 的夹角∠ AFH 是观察点A 的仰角.能看到C 点.类似地, ∠ CFK 是观察点C 时的仰角,由于树的遮挡,区域Ⅰ和Ⅱ都在观察者看不到的区域(盲区)之内.再往前走就根本看不到C 点了.【知识点:相似三角形的判定与性质及应用;数学思想;数形结合】解:如图,假设观察者从左向右走到点E 时,她的眼睛的位置点F 与两棵树的顶端A ,C 恰在一条直线上.∵AB ⊥l ,CD ⊥l ,∴AB ∥CD.∴△AFH ∽△CFK. ∴CK AH FK FH =. 即4.104.66.1126.185=--=+FH FH . 解得FH=8(m).由此可知,如果观察者继续前进,即他与左边的树的距离小于8m 时,由于这棵树的遮挡,右边树的顶端点C 在观察者的盲区之内,观察者看不到它. 点拨:解实际问题关键是找出相似的三角形,然后根据对应边的比相等列出方程,建立适当的数学模型来解决问题.问题探究四如何解相似三角形与函数的综合应用?解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.活动1 合作探究,相似三角形与函数的综合应用1.相似三角形与一次函数例1.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【知识点:一次函数,相似三角形的判定与性质;数学思想;数形结合】分析:(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5.∵△BOD与△BCE相似,∴或,∴==或,∴BE=2,CE=,或CE=,∴E(2,2),或(3,).点拨:本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.2.相似三角形与反比例函数例2.如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN 的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.【知识点:反比例函数,相似三角形的判定与性质,一次函数;数学思想;数形结合】分析:(1)把A点坐标代入y=可得k的值,进而得到函数解析式;(2)根据A、B两点坐标可得AC=4﹣n,BC=m﹣1,ON=n,OM=1,则=,再根据反比例函数解析式可得=m,则=m﹣1,而=,可得=,再由∠ACB=∠NOM=90°,可得△ACB∽△NOM;(3)根据△ACB与△NOM的相似比为2可得m﹣1=2,进而得到m的值,然后可得B点坐标,再利用待定系数法求出AB的解析式即可.解:(1)∵y=(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4﹣n,BC=m﹣1,ON=n,OM=1,∴==﹣1,∵B(m,n)在y=上,∴=m,∴=m﹣1,而=,∴=,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m﹣1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴解析式为y=﹣x+.此题主要考查了反比例函数的综合应用,关键是掌握凡是函数图象经过的点,必然能使函数解析式左右相等.3.相似三角形与二次函数例3.如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B.(1)写出点B的坐标;(2)已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点. 若以CD为直角边的△PCD与△OCD相似,求点P的坐标.【知识点:二次函数,一次函数,相似三角形的判定与性质;数学思想;数形结合、分类讨论】点拨:本题考查了二次函数的综合运用.关键是利用平行线的解析式之间的关系,相似三角形的判定与性质,分类求解.活动2 应用练习1.如图,已知动点A 在函数x y 4=(x>o)的图象上,AB⊥x 轴于点B ,AC⊥y 轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E,使AE=AC.直线DE 分别交x 轴,y 轴于点P,Q .当QE :DP=4:9时,图中的阴影部分的面积等于_______.【知识点:一次函数,反比例函数,相似三角形的判定与性质;数学思想;数形结合】解:313 如图,作EF⊥y 轴,DH⊥x 轴,由题意得: △QEF∽△DHP,∵QE:DP=4:9设AC= a,则AB=a4, 94=HP EF ,a HP 49=,∵△AED∽△DHP, 424648==,==49934EA AD a a a a a DH HP a 得到:得:得:31333482122=+=+=a a S 阴影. 2.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C ,1l 、2l 分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线1l 、2l 上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;D E C y 1l 2l(3)若矩形DEFG 从点B 出发,沿x 轴以每秒1个单位长度的速度向点A 平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【知识点:一次函数,矩形,三角形面积,相似三角形的判定与性质;数学思想;数形结合、分类讨论】解:(1)解:∵A(-4,0) B(8,0) C(5,6),∴111263622ABC C S AB y ==⨯⨯=△·..448=-=DE (2)B(8,0) D(8,8) E ()48,..8,448==-=EF DE(3)①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG =,∴2RG t =. AF=8-t . ∴AF HF AM CM =,即896t HF -=,∴2(8)3HF t =-. ∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△. 即241644333S t t =-++.(03t ≤<) ②当38t ≤<时,如图2,矩形DEFG 与△ABC 重叠部分为梯形QFGR(t=8时,为△ARG),则AF=8-t , AG=12-t , 由Rt △AFQ ∽Rt △AGR ∽Rt △AMC 得AF FQ AM CM =,AG RG AM CM =, 即 896t FQ -=,1296t RG -=. ∴2(8)3FQ t =-2(12)3RG t =-. ∴1()2S QF RG FG =+g =122(8)(12)4233t t ⎡⎤-+-⎢⎥⎣⎦g =880(38)33t t -+≤<.(图3)(图1) (图2)③ 当812t ≤≤时,如图3,其重叠部分为△AGR ,则AG=12-t ,2(12)3RG t =-. ∴2121(12)(12)(12)233S t t t =--=-g (812)t ≤≤. 3.如图,直线AB 交x 轴于点B (4,0),交y 轴于点A (0,4),直线DM ⊥x 轴正半轴于点M ,交线段AB 于点C ,DM=6,连接DA ,∠DAC=90°.(1)直接写出直线AB 的解析式;(2)求点D 的坐标;(3)若点P 是线段MB 上的动点,过点P 作x 轴的垂线,交AB 于点F ,交过O 、D 、B 三点的抛物线于点E ,连接CE .是否存在点P ,使△BPF 与△FCE 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【知识点:一次函数,二次函数,相似三角形的判定与性质;数学思想;数形结合、分类讨论】解:(1)设直线AB 的解析式为y=kx+b ,将A (0,4),B (4,0)两点坐标代入,得,解得,所以,直线AB 的解析式为y=﹣x+4;(2)过D 点作DG ⊥y 轴,垂足为G ,∵OA=OB=4,∴△OAB 为等腰直角三角形,又∵AD ⊥AB ,∴∠DAG=90°﹣∠OAB=45°,即△ADG 为等腰直角三角形, ∴DG=AG=OG ﹣OA=DM ﹣OA=5﹣4=2,∴D (2,6);(3)存在.由抛物线过O (0,0),B (4,0)两点,设抛物线解析式为y=ax (x ﹣4), 将D (2,6)代入,得a=﹣,所以,抛物线解析式为y=﹣x (x ﹣4), 由(2)可知,∠B=45°,则∠CFE=∠BFP=45°,C (2,2),设P (x ,0),则MP=x ﹣2,PB=4﹣x ,①当∠ECF=∠BPF=90°时(如图1),△BPF 与△FCE 相似,过C点作CH⊥EF,此时,△CHE、△CHF、△PBF为等腰直角三角形,则PE=PF+FH+EH=PB+2MP=4﹣x+2(x﹣2)=x,将E(x,x)代入抛物线y=﹣x(x﹣4)中,得x=﹣x(x﹣4),解得x=0或,即P(,0),②当∠CEF=∠BPF=90°时(如图2),此时,△CEF、△BPF为等腰直角三角形,则PE=MC=2,将E(x,2)代入抛物线y=﹣x(x﹣4)中,得2=﹣x(x﹣4),解得x=或,即P(,0),所以,P(,0)或(,0).3.课堂总结【知识梳理】1、相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的)(2)测距(不能直接测量的两点间的距离)2、测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决.3、测距的方法测量不能到达两点间的距离,常构造相似三角形求解.4、解决实际问题时(如测高、测距),一般有以下步骤:①审题;②构建图形;③利用相似解决问题.【重难点突破】1.利用影长测量不能直接测量的物高的方法:利用同一时刻的太阳光线构造两个相似三角形,利用相似三角形对应边的比相等列出关于物高、物影、人高、人影的比例关系式,然后通过测量物影、人高、人影来计算出物高.2.利用“在同一时刻物高与影长成正比例”测物高要注意:(1)由于太阳在不停地移动,影子的长也随着太阳的移动而发生变化.因此,度量影子的长一定要在同一时刻下进行,否则就会影响结果的准确性.(2)太阳离我们非常远,因此可以把太阳光近似地看成平行光线.(3)此方法要求被测物体的底部可以到达,否则测不到被测物体的影长,从而计算不出物体的高.3.测量不能直接到达的两点间的距离,关键是构造两个相似三角形,利用能测量的三角形的边长及相似三角形的性质求此距离.4.利用相似三角形的知识对未知量(高度、宽度等)进行测量,一般要经历以下几个步骤:(1)利用平行线、标杆等构造相似三角形;(2)测量与表示未知量的线段相对应的边长,以及另外任意一组对应边的长度;(3)画出示意图,利用相似三角形的性质,列出以上包括未知量在内的四个量的比例式,解出未知量;(4)检验并得出答案.4.随堂检测1.已知一棵树的影长是27m,同一时刻一根长1.6m的标杆的影长为3m,则这棵树的高度是( )A.18m B.15.4m C.14.4m D.12m【知识点:相似三角形的应用】2.如图,铁路道口的栏杆短臂长1.2m,长臂长16m.当短臂端点下降0.6m时,长臂端点升高(杆的宽度忽略不计)()A.8m B.8.2m C.10m D.12m【知识点:相似三角形的应用;数学思想:数形结合】3.如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.68m,梯上点D距离墙1.4m,BD长0.8m,则梯子长为( )A.3.8m B.4m C.4.8m D.5m【知识点:相似三角形的应用;数学思想:数形结合】4.如图所示,太阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=2m,窗户下檐距地面的距离BC=1.4m,EC=1.75m,那么窗户的高AB为( )A.1.6m B.1.8m C.2m D.2.1m【知识点:相似三角形的应用;数学思想:数形结合】5.如图是小明设计用手电来测量某保护区围墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到围墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.6米,PD=10米,那么该围墙的高度是()(平面镜的厚度忽略不计).P DCBAA.340m B.9m C.8m D.7.5m【知识点:相似三角形的应用;数学思想:数形结合】(三)课后作业基础型自主突破1.小明在测量某建筑物高时,先测出建筑物在地面上的影长BA为21米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则建筑物高为( )A.16米 B.15米 C.14米 D.12米【知识点:相似三角形的应用;数学思想:数形结合】2.一斜坡长80m,它的高为6m,将某物从斜坡起点推到坡上30m处停止下,停下地点的高度为( )A.m49B.m25C.m310D.m215【知识点:相似三角形的应用;数学思想:数形结合】3.如图,某商场在一楼到二楼之间装有自动扶梯,楼面与地面平行.一人扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好完全通过,请你根据图中数据回答,两层楼之间的高约为( )A .2.2mB .5.5mC .6.2mD .11m【知识点:相似三角形的应用;数学思想:数形结合】4.如图所示是小孔成像原理的示意图,根据图中所标的尺寸,蜡烛AB 在暗盒中所成像CD 的高度是______cm .【知识点:相似三角形的应用;数学思想:数形结合】5.如图,屋架跨度的一半OP=6m ,高度OQ=2.7m.现要在屋顶上开一个天窗,天窗高度 AC=1.25m ,AB 在水平位置,则AB 的长度约为_________m.(结果保留两位小数)【知识点:相似三角形的应用;数学思想:数形结合】6.如图,某同学用RtDEF 纸板测量树的高度AB ,使斜边DF 与地平面平行,并使边DE 与点B 在同一直线上.已知纸板的两条直角边DE=50cm ,EF=25cm ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,则树高AB= m . A B C OP Q【知识点:相似三角形的应用;数学思想:数形结合】能力型师生共研7.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.240mB.270mC.530mD.670m【知识点:相似三角形的应用;数学思想:数形结合】8.如图,路灯距离地面8.2米,身高1.64米的李林从距离灯的底部(点O)18米的点A处,沿OA边向右行走12米到点B时,人影的长度()A.增大3米 B.减小3米 C.增大3.5米 D.减小3.5米【知识点:相似三角形的应用;数学思想:数形结合】9.相邻两根电线杆都用钢索在地面上固定(固定点M、N恰好为两电线杆的底部),如图,一根电线杆钢索系在离地面5m的A处,另一根电线杆钢索系在离地面6m 的B处,则中间两根钢索相交处点P离地面 m.【知识点:相似三角形的应用;数学思想:数形结合】10.如图,某一时刻大树AB的影子一部分落在地平面上,影长BC=6m,另一部分落在斜坡上,影长CD=4m,同时,1.5m的标杆影长3m,斜坡CD与地面夹角为30o,则大树AB高度为 m.【知识点:相似三角形的应用,解直角三角形;数学思想:数形结合】探究型多维突破11.一块直角三角形木板的一条直角边AB长为1.8m,面积为2.16m2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2.你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数)【知识点:相似三角形的应用,三角形面积,正方形性质;数学思想:数形结合、分类讨论】12.甲、乙两同学想测量某市城南“阁楼”的高度,因观测点与“阁楼”底部间的距离不易测得,需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,甲在乙和“阁楼”之间的直线BM上平放一平面镜,并做上标记点C,镜子不动,甲看着镜面上的标记,他来回走动,走到点D时,看到“阁楼”顶端点A在镜面中的像与镜面上的标记重合,这时,测得甲眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,甲从D点沿DM方向走了16米,到达“阁楼”影子的末端F点处,此时,测得甲身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“阁楼”的高AB的长度.【知识点:相似三角形的应用;数学思想:数形结合】自助餐1.如图,刘刚在打网球时,要使球恰好能打过网 ,而且落在离网4.8米的位置上,则拍击球的高度h应为()A、3米B、2.7米C、2.4米D、 1.8米【知识点:相似三角形的应用;数学思想:数形结合】2.小刚身高m.0,紧接着他把手臂竖直7.1,测得他站立在阳光下的影子长为m85举起,测得影子长为m1.1,那么小刚举起的手臂超出头顶()A.m6.0 D.m2.2.0 C.m555.0 B.m【知识点:相似三角形的应用;数学思想:数形结合】3.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组 B.2组 C.3组 D.4组【知识点:相似三角形的应用】4.如图,一木梯梯子共有七块互相平行的踏板,每相邻两踏板之间的距离都相等.已知梯子最上面一块踏板的长度m=,最下面一块踏板的长度5.0BA211.0A88m=,则第5块踏板的长度为()B77A.0.72mB.0.7mC.0.68mD.0.64m【知识点:相似三角形的应用;数学思想:数形结合】5.一张等腰三角形纸片,底边长l8.75cm,底边上的高长25cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第8张 B.第7张 C.第6张 D.第5张【知识点:相似三角形的应用,正方形性质;数学思想:数形结合】6.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1.5米的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.6米,则树高为()。