精选-高考数学大二轮复习专题二函数与导数2-3二导数的综合应用练习
高考数学二轮复习专题02:函数与导数
B . f(a)<f(b)
C . f(a)=f(b)
D . f(a)f(b)>0
4. (2分) (2019高二上·浙江期中) 已知 ,且 , , 是函数 的两个相邻的零点,且 ,则 的值为( )
A .
B .
C .
D .
5. (2分) 定义在R上的奇函数f(x),当x≥0时,f(x)= , 则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A . 3a﹣1
B . 1﹣3a
C . 3﹣a﹣1
D . 1﹣3﹣a
6. (2分) 已知函数 的图像为曲线C,若曲线C存在与直线 垂直的切线,则实数m的取值范围是( )
A .
B .
C .
D .
7. (2分) (2016高一上·沈阳期中) 已知函数f(x)满足:当f(x)= ,则f(2+log23)=( )
29-2、答案:略
29-3、答案:略
29-4、答案:略
30-1、
高考数学二轮复习专题02:函数与导数
姓名:________班级:________ 成绩:________
一、 单选题 (共17题;共34分)
1. (2分) (2016高一上·厦门期中) 已知函数f(x)=xln(x﹣1)﹣a,下列说法正确的是( )
A . 当a=0时,f(x)没有零点
B . 当a<0时,f(x)有零点x0 , 且x0∈(2,+∞)
A .
B .
C .
D .
17. (2分) ( )
A . 0
B . π
C . -π
D . 2π
二、 填空题 (共7题;共8分)
高考数学(理科)二轮复习【专题2】函数的应用(含答案)
第2讲函数的应用考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.热点一函数的零点例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎨⎧cos πx ,x ∈[0,12],2x -1,x ∈(12,+∞),则不等式f (x -1)≤12的解集为________.思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,74]解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点.(2)先画出y 轴右边的图象,如图所示.∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =12.设与曲线交于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,12],∴πx =π3,∴x =13.令2x -1=12,∴x =34,∴x A =13,x B =34.根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-13.∵f (x -1)≤12,则在直线y =12上及其下方的图象满足,∴13≤x -1≤34或-34≤x -1≤-13, ∴43≤x ≤74或14≤x ≤23. 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(1)已知函数f (x )=(14)x -cos x ,则f (x )在[0,2π]上的零点个数是________.(2)已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)和0的大小关系是________.答案 (1)3 (2)f (x 0)<0解析 (1)f (x )在[0,2π]上的零点个数就是函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点个数,而函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点有3个.(2)∵f (x )=2x -log 12x 在(0,+∞)上是增函数,又a 是函数f (x )=2x -log 12x 的零点,即f (a )=0,∴当0<x 0<a 时,f (x 0)<0.热点二 函数的零点与参数的范围例2 (2014·常州高三模拟)对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是________. 思维启迪 先确定函数f (x )的解析式,再利用数形结合思想求k 的范围. 答案 [-2,1)解析 解不等式x 2-1-(4+x )≥1, 得x ≤-2或x ≥3,所以f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3).函数y =f (x )+k 的图象与x 轴恰有三个不同交点转化为函数y =f (x )的图象和直线y =-k 恰有三个不同交点.如图,所以-1<-k ≤2,故-2≤k <1.思维升华 已知函数的零点个数求解参数范围,可以利用数形结合思想转为函数图象交点个数;也可以利用函数方程思想,构造关于参数的方程或不等式进行求解.定义在R 上的函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),若方程3a (f (x ))2+2bf (x )+c =0恰有6个不同的实根,则实数a 的取值范围是________. 答案 (-∞,-12)解析 ∵函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),∴-1和1是f ′(x )=0的根, ∵f ′(x )=3ax 2+2bx +c ,∴⎩⎨⎧(-1)+1=-2b 3a,(-1)×1=c3a,∴b =0,c =-3a ,∴f (x )=ax 3-3ax ,∵3a (f (x ))2+2bf (x )+c =0,∴3a (f (x ))2-3a =0,∴f 2(x )=1,∴f (x )=±1,∴⎩⎪⎨⎪⎧ f (1)>1,f (-1)<-1,即⎩⎪⎨⎪⎧a -3a >1,-a +3a <-1,∴a <-12.热点三 函数的实际应用问题例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?思维启迪 (1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号),∴t =x x 2+1=1x +1x ∈(0,12],即t 的取值范围是[0,12].(2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23,则g (t )=⎩⎨⎧-t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增,且g (0)=3a +23,g (12)=a +76,g (0)-g (12)=2(a -14).故M (a )=⎩⎨⎧ g (12),0≤a ≤14,g (0),14<a ≤12.即M (a )=⎩⎨⎧a +76,0≤a ≤14,3a +23,14<a ≤12.当0≤a ≤14时,M (a )=a +76<2显然成立;由⎩⎨⎧3a +23≤2,14<a ≤12,得14<a ≤49, ∴当且仅当0≤a ≤49时,M (a )≤2.故当0≤a ≤49时不超标,当49<a ≤12时超标.思维升华 (1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去. (2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2 (0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本) 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x . ∴W =⎩⎨⎧8.1x -x 330-10 (0<x ≤10),98-1 0003x-2.7x (x >10).(2)①当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,且当x ∈(0,9)时,W ′>0;当x ∈(9,10)时,W ′<0,∴当x =9时,W 取得最大值, 且W max =8.1×9-130·93-10=38.6.②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x·2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W =38,故当x =1009时,W 取最大值38.综合①②知:当x =9时,W 取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.1.函数与方程(1)函数f (x )有零点⇔方程f (x )=0有根⇔函数f (x )的图象与x 轴有交点. (2)函数f (x )的零点存在性定理:如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )<0,那么,函数f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使f (c )=0.①如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且函数f (x )在区间[a ,b ]上是一个单调函数,那么当f (a )·f (b )<0时,函数f (x )在区间(a ,b )内有唯一的零点,即存在唯一的c ∈(a ,b ),使f (c )=0.②如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )>0,那么,函数f (x )在区间(a ,b )内不一定没有零点.2.函数综合题的求解往往应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决. 3.应用函数模型解决实际问题的一般程序读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.真题感悟1.(2014·重庆改编)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3, x ∈(-1,0],x , x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是________. 答案 ⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 解析 作出函数f (x )的图象如图所示,其中A (1,1),B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x +1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎪⎨⎪⎧y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12].2.(2014·北京改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟. 押题精练1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点有________个.答案 4解析 当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.2.函数f (x )=x e x -a 有两个零点,则实数a 的取值范围是________. 答案 (-1e,0)解析 令f ′(x )=(x +1)e x =0,得x =-1,则当x ∈(-∞,-1)时,f ′(x )<0,当x ∈(-1,+∞)时,f ′(x )>0,所以f (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,要使f (x )有两个零点,则极小值f (-1)<0,即-e -1-a <0,所以a >-1e ,又x →-∞时,f (x )>0,则a <0,∴a ∈(-1e,0).3.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元. 答案 5 8解析 由题意知每台机器运转x 年的年平均利润为y x =18-(x +25x ),而x >0,故yx ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.(推荐时间:60分钟)一、填空题1.函数f (x )=x 2-2x 的零点个数为________. 答案 3解析 由于f (-1)=1-2-1=12>0,又f (0)=0-1<0,则在区间(-1,0)内有1个零点; 又f (2)=22-22=0,f (4)=42-24=0,故有3个零点.2.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________. 答案 -12,-13解析 由⎩⎪⎨⎪⎧ 22-2a -b =0,32-3a -b =0,得⎩⎪⎨⎪⎧a =5,b =-6.所以g (x )=-6x 2-5x -1的零点为-12,-13.3.f (x )=2sin πx -x +1的零点个数为________. 答案 5解析 ∵2sin πx -x +1=0,∴2sin πx =x -1,图象如图所示,由图象看出y =2sin πx 与y =x -1有5个交点,∴f (x )=2sin πx -x +1的零点个数为5.4.设函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若方程f (x )=m 有三个不同的实根,则实数m 的取值范围为________. 答案 (-14,0)解析 作出函数y =f (x )的图象,如图所示.当x >0时,f (x )=x 2-x =(x -12)2-14≥-14,所以要使函数f (x )=m 有三个不同的零点,则-14<m <0,即m 的取值范围为(-14,0).5.(2013·江西改编)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于E 、D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图象大致是________.答案 ④解析 如图所示,连结OF ,OG ,过点O 作OM ⊥FG ,过点A 作AH ⊥BC ,交DE 于点N .因为弧FG 的长度为x ,所以∠FOG =x , 则AN =OM =cos x 2,所以AN AH =AE AB =cos x 2,则AE =233cos x 2,所以EB =233-233cos x2.所以y =EB +BC +CD =433-433cos x 2+233=-433cos x 2+23(0<x <π).对照图象知④正确. 6.已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为________.答案 -7解析 由题意知g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图形可知函数f (x ),g (x )在区间[-5,1]上的交点为A ,B ,C ,易知点B 的横坐标为-3,若设C 的横坐标为t (0<t <1),则点A 的横坐标为-4-t ,所以方程f (x )=g (x )在区间[-5,1]上的所有实根之和为-3+(-4-t )+t =-7.7.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.8.(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1, x <1,x 13, x ≥1,则使得f (x )≤2成立的x 的取值范围是________.答案 (-∞,8]解析 当x <1时,x -1<0,e x -1<e 0=1≤2, ∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,1≤x ≤8. 综上可知x ∈(-∞,8].9.已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.答案 (1,+∞)解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根. ∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,故m >1.10.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R )使得f (x +λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:①f (x )=0是常数函数中唯一一个“λ-伴随函数”;②f (x )=x 是“λ-伴随函数”;③f (x )=x 2是“λ-伴随函数”;④“12-伴随函数”至少有一个零点. 其中正确结论的个数是________.答案 1解析 对于①,若f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ-伴随函数”,故①不正确.对于②,若f (x )=x 是一个“λ-伴随函数”,则(x +λ)+λx =0,求得λ=0且λ=-1,矛盾,故②不正确.对于③,若f (x )=x 2是一个“λ-伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾,故③不正确.对于④,若f (x )是“12-伴随函数”, 则f (x +12)+12f (x )=0,取x =0, 则f (12)+12f (0)=0, 若f (0),f (12)任意一个为0,函数f (x )有零点; 若f (0),f (12)均不为0, 则f (0),f (12)异号,由零点存在性定理, 知f (x )在(0,12)内存在零点x 0,所以④正确.二、解答题11.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.解 (1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1.所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根.所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4(4a )<0⇒a 2-a <0,所以0<a <1.因此实数a 的取值范围是(0,1).12.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?解 设裁员x 人,可获得的经济效益为y 万元,则y =(2a -x )(b +0.01bx )-0.4bx =-b 100[x 2-2(a -70)x ]+2ab . 依题意得2a -x ≥34·2a ,所以0<x ≤a 2. 又140<2a <420,即70<a <210.(1)当0<a -70≤a 2,即70<a ≤140时,x =a -70,y 取到最大值; (2)当a -70>a 2,即140<a <210时,x =a 2,y 取到最大值. 故当70<a ≤140时,公司应裁员(a -70)人,经济效益取到最大,当140<a <210时,公司应裁员a 2人,经济效益取到最大. 13.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9(a -89)2+89>0, 即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1. 检验(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65. 令f (x )=0,即x 2-135x -65=0, 解得x =-25或x =3. 方程在[-1,3]上有两个实数根,不合题意,故a ≠-15. 综上所述,a <-15或a >1.。
全国高考数学第二轮复习专题二函数与导数第讲导数及其应用理
———————————————————————————————— 作者:
———————————————————————————————— 日期:
专题二 函数与导数第3讲 导数及其应用
真题试做
1.(2012·课标全国高考,理12)设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为( ).
(1)求a的值;
(2)求函数f(x)的极值.
6.(2012·山东高考,理22)已知函数f(x)= (k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出实数b的取值范围;若不存在,试说明理由.
规律方法利用导数研究函数极值的一般步骤:(1)确定函数的定义域;(2)求函数f(x)的导数f′(x);(3)①若求极值,则先求出方程f′(x)=0的根,再检验f′(x)在方程根左右边f′(x)的符号,求出极值.当根中有参数时要注意分类讨论根是否在定义域内.②若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况,从而求解.
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
规律方法利用导数研究函数单调性的一般步骤:
(1)确定函数的定义域;
(2021年整理)高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版
高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版的全部内容。
函数与导数测试一.选择题(共60分)1、已知222{|,,},{|2,,},M y y x x y R N x x y x y R M N ==∈=+=∈⋂则= ( D ) A .{(1,1),(1,1)}- B .∅ C .[0,1]D .[0,2] 2.设函数f (x)=log 2x 的反函数为y=g (x ),若41)11(=-a g ,则a 等于 ( C )A .-2B .21-C .21D .23。
设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= ( D )A .3B .1C .-1D .-34。
若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是 ( A )A .B .C .D . 5.下列说法正确的是 ( D )A .命题:“已知函数(),(1)(1)f x f x f x +-若与均为奇函数,则()f x 为奇函数,”为真命题B .“1x >”是“||1x >"的必要不充分条件。
C .若“p q 且”为假命题,则,p q 均为假命题。
D .命题2:",10"p x R x x ∃∈++<使得,则2:",10".p x R x x ⌝∀∈++≥均有6.设函数()()f x g x 、在[],a b 上可导,且()()''f x g x >,则当a x b <<时有(A ) A .()()()()f x g a g x f a +>+B .()()f x g x <C .()()f x g x >D .()()()()f xg b g x f b +>+7。
数学高考二轮复习第1部分 专题2 规范答题示例
最大值为f(1a)=ln(1a)+a(1-1a)=-lna+a-1.
二 轮 复 习
因此f(1a)>2a-2等价于lna+a-1<0.
令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.
于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.
因此,a的取值范围是(0,1).
则h′(x)=x+3x2x-1,
数
二 轮
①当x∈(0,1)时,h′(x)<0,h(x)单调递减;
学
复
习
②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增;
所以h(x)min=h(1)=4. 因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,
所以a≤h(x)min=4,即a的取值范围为(-∞,4].
当a=-1时,f(x)=-x+lnx,f ′(x)=1-x x;
数 学
二 轮 复
当0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0;
习
所以f(x)的单调增区间为(0,1).
专题二 函数与导数
(2)因为f ′(x)=a+1x,
令f ′(x)=0,解得x=-1a;
由f ′(x)>0,解得0<x<-1a;
[解析] (1)f′(x)=lnx+1,
数
学
二 轮 复 习
当x∈(0,1e)时,f′(x)<0,f(x)单调递减;
当x∈(1e,+∞)时,f′(x)>0,f(x)单调递增;
所以f(x)的最小值为f(1e)=-1e.
专题二 函数与导数
(2)2xlnx≥-x2+ax-3,则a≤2lnx+x+3x,
设h(x)=2lnx+x+3x(x>0),
专题二 函数与导数
2018年高考数学二轮复习第二部分高考22题各个击破专题二函数与导数2.3函数与导数的应用专项练课件文
'=
������ '(����������)������ '(������) ������ 2 (������ )
[g(x) ≠0].
-3一、选择题 二、填空题
1.函数f(x)=excos x在点(0,f(0))处的切线斜率为( A.0 B.-1 C.1 D.
������ ������ ������ 1 1
1
故 k≥1.故选 D.
-8一、选择题 二、填空题
6.(2017河南郑州三模,文6)已知f'(x)=2x+m,且f(0)=0,函数f(x)的图
象在点 A(1,f(1))处的切线的斜率为 3,数列 S2 017 的值为(
2 017 A. 2 018
1 ������(������)
2.3 函数与导数的应用专项练
-2-
1.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义:函数y=f(x)在点x0处的导 数是曲线y=f(x)在P(x0,f(x0))处的切线的斜率f'(x0),相应的切线方程 是y-y0=f'(x0)(x-x0). 注意:在某点处的切线只有一条,但过某点的切线不一定只有一 条. 2.常用的求导方法 (1)(xm)'=mxm-1,(sin x)'=cos x,(cos x)'=-sin x,(ex)'=ex,
解析:由函数的图象可知f(0)=d>0,排除选项A,B; f'(x)=3ax2+2bx+c, 且由图象知(-∞,x1),(x2,+∞)是函数的减区间,可知a<0,排除D.故选C.
-5一、选择题 二、填空题
3.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是 ( A ) A.3x+y+2=0 B.3x-y+2=0 C.x+3y+2=0 D.x-3y-2=0
高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念
第3讲导数的概念及其简单应用导数的几何意义及导数的运算1.(2015洛阳统考)已知直线m:x+2y-3=0,函数y=3x+cos x的图象与直线l相切于Ρ点,若l ⊥m,则Ρ点的坐标可能是( B )(A)(-错误!未找到引用源。
,-错误!未找到引用源。
) (B)(错误!未找到引用源。
,错误!未找到引用源。
)(C)(错误!未找到引用源。
,错误!未找到引用源。
)(D)(-错误!未找到引用源。
,-错误!未找到引用源。
)解析:由l⊥m可得直线l的斜率为2,函数y=3x+cos x的图象与直线l相切于Ρ点,也就是函数在P点的导数值为2,而y ′=3-sin x=2,解得sin x=1,只有B,D符合要求,而D中的点不在函数图象上,因此选B.2.(2014广东卷)曲线y=e-5x+2在点(0,3)处的切线方程为.解析:由题意知点(0,3)是切点.y′=-5e-5x,令x=0,得所求切线斜率为-5.从而所求方程为5x+y-3=0.答案:5x+y-3=0利用导数研究函数的单调性3.(2015辽宁沈阳市质检)若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>错误!未找到引用源。
+1(e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:不等式f(x)>错误!未找到引用源。
+1可以转化为e x f(x)-e x-3>0令g(x)=e x f(x)-e x-3,所以g′(x)=e x(f(x)+f′(x))-e x=e x(f(x)+f′(x)-1)>0,所以g(x)在R上单调递增,又因为g(0)=f(0)-4=0,所以g(x)>0⇒x>0,即不等式的解集是(0,+∞).故选A.4.(2014辽宁卷)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( C )(A)[-5,-3] (B)[-6,-错误!未找到引用源。
高考数学二轮复习7大专题汇总
高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。
这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。
一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。
不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。
自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。
专题二:数列。
以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。
向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。
大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。
此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。
空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。
专题五:分析几何。
高三理科数学二轮复习专题能力提升训练:函数、导数、不等式的综合问题(含答案解析).pdf
训练 函数、导数、不等式的综合问题 一、选择题(每小题5分,共25分) 1.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(aR)的导函数y=f′(x)的图象,则f(-1)等于( ). A. B.- C. D.-或 2.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小时t的值为( ). A.1 B. C. D. 3.已知函数f(x)=x4-2x3+3m,xR,若f(x)+9≥0恒成立,则实数m的取值范围是( ). A. B. C. D. 4.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于( ). A.1 B.2 C.0 D. 5.设aR,若函数y=eax+3x,xR有大于零的极值点,则( ). A.a>-3 B. a<-3 C.a>- D.a<- 二、填空题(每小题5分,共15分) 6.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于________. 7.函数f(x)=x3-x2+ax-5在区间[-1,2]上不单调,则实数a的范围是________. 8.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知函数f(x)=x3-x2+bx+a.(a,bR)的导函数f′(x)的图象过原点. (1)当a=1时,求函数f(x)的图象在x=3处的切线方程; (2)若存在x<0,使得f′(x)=-9,求a的最大值. 10.(12分)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2(e=2.718 28…是自然对数的底数). (1)求实数b的值; (2)求函数f(x)的单调区间; (3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t[m, M],直线y=t与曲线y=f(x)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由. 11.(12分)已知f(x)=xln x,g(x)=-x2+ax-3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切的x(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,+∞),都有ln x>-.参考答案 1.D [f′(x)=x2+2ax+a2-1,f′(x)的图象开口向上,若图象不过原点,则a=0时,f(-1)=,若图象过原点,则a2-1=0,又对称轴x=-a>0,a=-1,f(-1)=-.] 2.D [|MN|的最小值,即函数h(x)=x2-ln x的最小值,h′(x)=2x-=,显然x=是函数h(x)在其定义域内唯一的极小值点,也是最小值点,故t=.] 3.A [因为函数f(x)=x4-2x3+3m,所以f′(x)=2x3-6x2,令f′(x)=0,得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-,不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,所以3m-≥-9,解得m≥.] 4.B [函数f(x)=x2-ax+3在(0,1)上为减函数,≥1,得a≥2.又g′(x)=2x-,依题意g′(x)≥0在x(1,2)上恒成立,得2x2≥a在x(1, 2)上恒成立,有a≤2,a=2.] 5.B [令f(x)=eax+3x,可求得f′(x)=3+aeax,若函数在xR上有大于零的极值点,即f′(x)=3+aeax=0有正根.当f′(x)=3+aeax=0成立时,显然有a<0,此时x=ln.由x>0,解得a<-3,a的取值范围为(-∞,-3).] 6.解析 由题得f′ (x)=12x2-2ax-2b=0,f′(1)=12-2a-2b=0,a+b=6.a+b≥2,6≥2,ab≤9,当且仅当a=b=3时取到最大值. 答案 9 7.解析 f(x)=x3-x2+ax-5,f′(x)=x2-2x+a=(x-1)2+a-1,如果函数f(x)=x3-x2+ax-5在区间[-1,2]上单调,那么a-1≥0或f′(-1)=3+a≤0且f′(2)=a≤0,a≥1或a≤-3.于是满足条件的a(-3,1). 答案 (-3,1) 8.解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0得,x1=0,x2=2,当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以,解得-4<a<0. 答案 (-4,0) 9.解 由已知,得f′(x)=x2-(a+1)x+b. 由f′(0)=0,得b=0,f′(x)=x(x-a-1). (1)当a=1时,f(x)=x3-x2+1,f′(x)=x(x-2),f(3)=1, f′(3)=3. 所以函数f(x)的图象在x=3处的切线方程为y-1=3(x-3), 即3x-y-8=0. (2)存在x<0,使得f′(x)=x(x-a-1)=-9,-a-1=-x-=(-x)+≥2=6,a≤-7,当且仅当x=-3时,a=-7. 所以a的最大值为-7. 10.解 (1)由f(e)=2,得b=2. (2)由 (1)可得f(x)=-ax+2+axln x. 从而f′(x)=aln x. 因为a≠0,故 当a>0时,由f′(x)>0,得x>1,由f′(x)<0得, 0<x<1; 当a<0时,由f′(x)>0,得0<x<1,由f′(x)<0得,x>1. 综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)当a=1时,f(x)=-x+2+xln x,f′(x)=ln x. 由(2)可得,当x在区间内变化时,f′(x),f(x)的变化情况如下表: x1(1,e)ef′(x) -0 +f(x)2-单调递减极小值1单调递增2又2-<2, 所以函数f(x)的值域为[1,2]. 据此可得,若则对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点; 并且对每一个t(-∞,m)(M,+∞),直线y=t与曲线y=f(x)都没有公共点. 综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点. 11.(1)解 f′(x)=ln x+1. 当x时,f′(x)<0,f(x)单调递减; 当x时,f′(x)>0,f(x)单调递增. 则当0<t<t+2<时,t无解; 当0<t<<t+2,即0<t<时, [f(x)]min=f=-; 当≤t<t+2,即t≥时, f(x)在[t,t+2]上单调递增. 所以[f(x)]min=f(t)=tln t.所以[f(x)]min= (2)解 2f(x)≥g(x),即2xln x≥-x2+ax-3, 则a≤2ln x+x+.设h(x)=2ln x+x+(x>0), h′(x)=. 当x(0,1)时,h′(x)<0,h(x)单调递减; 当x(1,+∞)时,h′(x)>0,h(x)单调递增. 所以[h(x)]min=h(1)=4.因为对一切x(0,+∞),2f(x)≥g(x)恒成立, 所以a≤[h(x)] min=4.故实数a的取值范围是(-∞,4]. (3)证明 问题等价于证明xln x>-,x(0,+∞). 由(1)可知f(x)=xln x,x(0,+∞)的最小值为-, 当且仅当x=时取得.设m(x)=-,x(0,+∞),则m′(x)=,易得[m(x)]max=m(1)=-. 从而对一切x(0,+∞),都有ln x>-成立.。
高考数学(理)二轮大提分【专题2】函数与导数 2-2导数及其应用
)
3.复合函数 y=f(g(x))的导数和函数 y=f(u),u=
g(x)的导数间的关系为 yx′=yu′·ux′,即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘
积.
一级排查
二级排查
(三级排查 )
4.在某个区间(a,b)内,如果f′(x)>0,则函数y=
f(x)在区间(a,b)内单调递增;如果f′(x)<0.那么
一级排查
二级排查
三级排查
【例】已知函数 f(x)=x3+ax2+bx+a2 在 x=1 处有极值为 10, 求 f(x). [ 正 解 ] f′(x) = 3x2 + 2ax + b , 由 题 意 得 3+2a+b=0, 1+a+b+a2=10, 解得ab= =4-,11 或ab= =- 3. 3, 当 a=-3,b=3 时,f(x)=x3-3x2+3x+9,f′(x)=3x2- 6x+3=3(x-1)2≥0.
()
一级排查
二级排查
三级排查
自我校对 1.× 2.√ 3.√ 4.√ 5.× 6.√ 7.× 第 1 题记错 y=cos x,y=logax 的求导公式.第 5 题没有理解
函数的极大(小)值的概念.第 7 题错误理解函数单调性与导 数的关系. 订正 1 几个重要的求导公式:(xn)′=nxn-1(n∈N*), (sin x)′=cos x,(cos x)′=-sin x,(ax)′=axln a, (loga x)′=xln1 a(a>0,a≠1).
第2讲 导数及其应用
一级排查
二级排查
三级排查
三年考向
排查考前必记的数学概念、公式、性质、定理
在下面 7 个小题中,有 3 个表述不正确,请在题
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》(含答案)
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》一、单选题(本大题共8小题,共40分)1.(5分)若z=−1+√3i,则zzz−−1=()A. −1+√3iB. −1−√3iC. −13+√33i D. −13−√33i2.(5分)命题“∀x∈R,∃x∈N,使得n⩾x2+1”的否定形式是()A. ∀x∈R,∃x∈N,使得n<x2+1B. ∀x∈R,∀x∈N,使得n<x2+1C. ∃x∈R,∃x∈N,使得n<x2+1D. ∃x∈R,∀x∈N,使得n<x2+13.(5分)已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x−1)2,如果g(x)= f(x)−log5|x−1|,则函数的所有零点之和为()A. 8B. 6C. 4D. 104.(5分)执行如图所示的程序框图,若输入的x为整数,且运行四次后退出循环,则输入的x的值可以是()A. 1B. 2C. 3D. 45.(5分)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,DF⊥AB于点F,且AE=8,AB=10.在上述条件下,给出下列四个结论:①DE=BD;②ΔBDF≌ΔCDE;③CE=2;④DE2=AF⋅BF,则所有正确结论的序号是()A. ①②③B. ②③④C. ①③④D. ①②④6.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π2)的图象如图所示,则()A. 函数f(x)的最小正周期是2πB. 函数f(x)在区间(π2,π)上单调递减C. 函数f(x)的图象与y轴的交点为(0,−12)D. 点(7π6,0)为函数f(x)图象的一个对称中心7.(5分)213,log26,3log32的大小关系是A. 213<log26<3log32 B. 213<3log32<log26C. 3log32<213<log26 D. 3log32<log26<2138.(5分)设函数y=ax2与函数y=|ln x+1ax|的图象恰有3个不同的交点,则实数a的取值范围为()A. (√33e,√e) B. (−√33e,0)∪(0,√33e)C. (0,√33e) D. (√e1)∪{√33e}二、填空题(本大题共5小题,共25分)9.(5分)设A,B是非空集合,定义:A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={x|x⩾0},则A⊗B=__________.10.(5分)某中学组织了“党史知识竞赛”活动,已知该校共有高中学生2000人,用分层抽样的方法从该校高中学生中抽取一个容量为50的样本参加活动,其中高一年级抽取了6人,则该校高一年级学生人数为 ______.11.(5分)某几何体的三视图如图所示,则该几何体的表面积是______.12.(5分)记S n为等比数列{a n}的前n项和,若a1=12,a42=a6,则S4=______.13.(5分)已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|,O为坐标原点,则该双曲线的离心率为______.三、解答题(本大题共6小题,共72分)14.(12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?15.(12分)在ΔABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.(Ⅰ)求cosB的值;(Ⅱ)求sin(2B+π6)的值.16.(12分)如图,ΔABC中,AC=2,BC=4,∠ACB=90°,D、E分别是AC、AB的中点,将ΔADE沿DE折起成ΔPDE,使面PDE⊥面BCDE,H、F分别是边PD和BE的中点,平面BCH与PE、PF分别交于点I、G.(Ⅰ)求证:IH//BC;(Ⅱ)求二面角P−GI−C的余弦值.17.(12分)设等比数列{a n}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,数列{b n}满足b n=2n.(1)求数列{a n}的通项公式;(2)设c n=a n⋅b n,若对任意n∈N∗,不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,求λ的取值范围.18.(12分)已知椭圆x2a2+y2b2=1(a>b>0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4,设直线l与椭圆相交于不同的两点A,B,点A的坐标为(−a,0).(Ⅰ)求椭圆的标准方程;(Ⅰ)若|AB|=4√2,求直线l的倾斜角.519.(12分)已知a为实数,函数f(x)=a ln x+x2−4x.(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;,e],使得f(x0)⩽g(x0)成立,求实数a的取值范围.(2)设g(x)=(a−2)x,若∃x0∈[1e答案和解析1.【答案】C;【解析】解:∵z =−1+√3i ,∴z ·z −=|z|2=(√(−1)2+(√3)2)2=4, 则zzz −−1=−1+√3i 4−1=−13+√33i. 故选:C.由已知求得z ·z −,代入zzz −−1,则答案可求.此题主要考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.【答案】D;【解析】解:因为全称命题的否定是特称命题,所以“∀x ∈R ,∃x ∈N ,使得n ⩾x 2+1”的否定形式为∃x ∈R ,∀x ∈N ,使得n <x 2+1”. 故选:D.直接利用特称命题的否定是全称命题写出结果即可.此题主要考查命题的否定.特称命题与全称命题的否定关系,基本知识的考查.3.【答案】A; 【解析】该题考查函数的零点,考查数形结合的数学思想,正确作出函数的图象是关键. 分别作出函数y =f(x)、y =log 5|x −1|的图象,结合函数的对称性,即可求得结论.解:当x ∈[0,2]时,f(x)=(x −1)2,函数y =f(x)的周期为2,图象关于y 轴对称的偶函数y =log 5|x|向右平移一个单位得到函数y =log 5|x −1|, 则y =log 5|x −1|关于x =1对称,可作出函数的图象:函数y =g(x)的零点,即为函数图象交点横坐标, 当x >6时,y =log 5|x −1|>1,此时函数图象无交点,又两函数在(1,6]上有4个交点,由对称性知它们在[−4,1)上也有4个交点,且它们关于直线x=1对称,所以函数y=g(x)的所有零点之和为:4×2=8,故选:A.4.【答案】A;【解析】解:依题意,S随着x的增大而增大,当x⩾2时,第一次循环时S⩾4,第二次循环时S⩾4+42=20,第三次循环时S⩾20+82=84⩾64,脱离循环,故x<2,故选:A.根据S和x的关系,S随着x的增大而增大,验证当x⩾2时的情况,即可得到结果.此题主要考查了程序框图,考查了循环结构.属于基础题.本题的难点在于逆推x的值,需要借助不等式来完成.5.【答案】B;【解析】解:∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴DE=DF,DC=DB,∴ΔBDF≌ΔCDE,所以①不正确,②正确;∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴AE=AF=8.又∵ΔBDF≌ΔCDE,∴CE=BF=AB−AF=10−8=2,故③正确;∵AB是直径,∴∠ADB=90°.又∵DF⊥AB,∴ΔDBF∽ΔADF,∴DFAF =BFDF,即DF2=AF⋅BF,∴DE2=AF⋅BF,故④正确;故选:B.利用角平分线的性质和全等三角形的判定可以判断①②的正误;利用排除法可以判断③④的正误.此题主要考查了相似三角形的判定与性质.解题时,利用了角平分线的性质和圆周角定理,难度不大.6.【答案】D;【解析】解:由函数图可象知T4=5π12−π6=π4,所以T=π,因为T=2πω,∴ω=2,所以最小正周期为π,故A错误;又函数过点(5π12,1),所以f(5π12)=sin(2×5π12+φ)=1,所以5π6+φ=π2+2kπ,(k∈Z),解得φ=−π3+2kπ,(k∈Z),∵|φ|<π2,所以φ=−π3,所以f(x)=sin(2x−π3),当x∈(π2,π),所以2x−π3∈(2π3,5π3),因为y=sinx在x∈(2π3,5π3)上不单调,故B错误;令x=1,则f(0)=sin(−π3)=−√32,所以与y轴交点为(0,−√32),故C错误;若点(7π6,0)为函数f(x)图象的一个对称中心,则f(7π6)=0,当x=7π6时,f(7π6)=sin(2×7π6−π3)=sin2π=0,所以点(7π6,0)为函数f(x)图象的一个对称中心,故D正确,故选:D.根据函数图像求出函数解析式,再结合选项一一判断即可.此题主要考查了三角函数的图象与性质的应用问题,也考查了数形结合与函数思想,属于中档题.7.【答案】B;【解析】此题主要考查了指数函数与对数函数的大小比较问题,属于基础题.首先根据单调性,将指数值与32比较,其次根据对数函数的递增性质得到两个对数值与2、32大小关系,答案易得.解:213<212<32,3log32=32log34>32,3log32=log38<log39=2,log26>log24=2,所以213<3log32<log26.故选B.8.【答案】C;【解析】解:令ax2=|ln x+1ax|得a2x3=|ln x+1|,显然a>0,x>0.作出y=a2x3和y=|ln x+1|的函数图象,如图所示:设a=a0时,y=a2x3和y=|ln x+1|的函数图象相切,切点为(x0,y0),则{3a02x02=1x0a02x03=ln x0+1,解得x0=e−23,y0=13,a0=√3e3.∴当0<a<√3e3时,y=a2x3和y=|ln x+1|的函数图象有三个交点.故选:C.令ax2=|ln x+1ax|得a2x3=|ln x+1|,作出y=a2x3和y=|ln x+1|的函数图象,利用导数知识求出两函数图象相切时对应的a0,则0<a<a0.此题主要考查了函数图象的交点个数判断,借助函数图象求出临界值是关键.9.【答案】{x|x=0或x⩾2};【解析】此题主要考查集合的新定义,是基础题由集合A={x|0<x<2},B={x|x⩾0},可得A∪B={x|x⩾0},A∩B={x|0<x<2},则A⊗B={x|x=0或x⩾2}.10.【答案】240;【解析】解:设该校高一年级学生人数为n,则6n =502000,即n=240,故答案为:240.由分层抽样方法,按比例抽样即可.此题主要考查了分层抽样方法,重点考查了阅读能力,属基础题.11.【答案】16+8√2;【解析】解:由三视图知:几何体为直三棱柱削去一个三棱锥,如图:其中直棱柱的侧棱长为8,底面为直角三角形,且AB=BC=2,SA=2,SB=2√2,AC=2√2,∴几何体的表面积S=12×2×2+12×2×2√2+4+22×2√2+4+22×2+4×2=16+8√2.故答案为:16+8√2.几何体为直三棱柱削去一个三棱锥,结合直观图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.此题主要考查了由三视图求几何体的表面积,判断几何体的形状及数据所对应的几何量是解答此类问题的关键.12.【答案】152;【解析】解:∵a1=12,a42=a6,∴(12q3)2=12q5,解可得,q=2,则S4=12(1−24)1−2=152.故答案为:152.由已知结合等比数列的通项公式可求公比,然后结合等比数列的求和公式即可求解.这道题主要考查了等比数列的公式及求和公式的简单应用,属于基础试题.13.【答案】√3+1;【解析】解:过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|=c,∠AOx=60°,则A(c2,√3c 2)所以c 24a2−3c24b2=1,c2 4a2−3c24(c2−a2)=1,可得e 24−3e24e2−4=1,可得e4−8e2+4=0.解得e=1+√3.故答案为:√3+1.利用已知条件求出A的坐标,代入双曲线方程,结合离心率公式,求解即可.此题主要考查双曲线的定义和性质,主要是离心率的求法,注意运用三角形的中位线定理和勾股定理,考查运算能力,属于中档题.14.【答案】解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y⩽300,5x+10y⩽110,x⩾0,y⩾0,x、y均为整数由图知直线y=−34x+18P过M(4,9)时,纵截距最大,这时P也取最大值P max=6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.;【解析】此题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.15.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB =csinC,所以bsinC=csinB,又由3csinB=4asinC,得3bsinC=4asinC,即3b=4a,又因为b +c =2a ,得b =4a 3,c =2a3,由余弦定理可得cosB =a 2+c 2−b 22ac=a 2+49a 2−169a 22⋅a⋅23a=−14;(Ⅱ)由(Ⅰ)得sinB =√1−co s 2B =√154,从而sin2B =2sinBcosB =−√158, cos2B =cos 2B −sin 2B =−78,故sin (2B +π6)=sin2Bcos π6+cos2Bsin π6=−√158×√32−78×12=−3√5+716.; 【解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题. (Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.16.【答案】证明:(Ⅰ)∵D ,E 分别是边AC 和AB 的中点,∴DE ∥BC , ∵BC ⊄平面PED ,ED ⊂平面PED , ∴BC ⊂平面BCH , ∴IH ∥BC .解:(Ⅱ)如图,建立空间右手直角坐标系,由题意得:D (0,0,0),E (2,0,0),P (0,0,1),F (3,12,0),C (0,1,0),H (0,0,12),∴EP →=(-2,0,1),EF →=(1,12,0),CH →=(0,-1,12),HI →=12DE →=(1,0,0), 设平面PGI 的一个法向量为n →=(x ,y ,z ),则{EP →.n →=−2x +z =0EF →.n →=x +12y =0,令x=1,解得y=-2,z=2,∴n →=(1,-2,2), 设平面CHI 的一个法向量为m →=(a ,b ,c ),则{CH →.m →=−b +12c =0HI →.m →=a =0,取b=1,得m →=(0,1,2), 设二面角P-GI-C 的平面角为θ, 则cosθ=|m →.n →||m →|.|n →|=3×√5=2√1515.∴二面角P-GI-C的余弦值为2√1515.;【解析】(Ⅰ)推导出DE//BC,从而BC⊂平面BCH,由此能证明IH//BC.(Ⅱ)以D为原点,DE,DC,DP为x,y,z轴,建立空间右手直角坐标系,利用向量法能求出二面角P−GI−C的余弦值.该题考查线线平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.【答案】解:(1)设公比为q的等比数列{ an}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,所以:{a1q=182S2=S1+116+S3,解得:a1=14,q=12,所以S n=14(1−12n)1−12=12(1−12n),故a n=14.(12)n−1=(12)n+1,(2)由于:a n=(12)n+1,数列{b n}满足b n=2n.则:C n=a n b n=n2n,则:T n=12+222+323+⋯+n2n①,1 2T n=122+223+324+⋯+n2n+1②,①−②得:12T n=(121+122+⋯+12n)−n2n+1,解得:T n=2−2+n2n,由于S n=14(1−12n)1−12=12(1−12n),所以不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,即2−2+n2n ⩾1−12n+12λ−1,则2−n+12n⩾12λ恒成立,令f(n)=n+12n,则f(n +1)−f(n)=n+22n+1−n+12n=−n2n+1<0,所以f(n)关于n 单调递减, 所以(2−n+12n )min=2−1+12,则2−22⩾12λ 解得:λ⩽2.故:λ的取值范围为(−∞,2].;【解析】此题主要考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,恒成立问题的应用,主要考查学生的运算能力和转化能力,属于较难题.(1)直接利用递推关系式和建立的方程组进一步求出数列的通项公式;(2)利用(1)的结论,进一步利用错位相减法求出数列的和,最后利用恒成立问题求出参数的取值范围.18.【答案】解:(1)∵椭圆x 2a2+y 2b 2=1(a >b >0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4, ∴a=2,c=√3,b=1, ∴椭圆的标准方程:x 24+y 21=1,(2)∵设直线l 与椭圆相交于不同的两点A ,B ,点A 的坐标为(-a ,0). ∴点A 的坐标为(-2,0), ∴直线l 的方程为:y=k (x+2),(Ⅱ)(i )由(Ⅰ)可知点A 的坐标是(-2,0). 设点B 的坐标为(x 1,y 1),直线l 的斜率为k . 则直线l 的方程为y=k (x+2).于是A 、B 两点的坐标满足方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x+(16k 2-4)=0. 由-2x 1=16k 2−41+4k 2,得x 1=2−8k 21+4k 2.从而y 1=4k1+4k 2. 所以|AB|=4√1+k 21+4k 2 由|AB|=4√25,得4√1+k 21+4k 2=4√25整理得32k 4-9k 2-23=0,即(k 2-1)(32k 2+23)=0,解得k=±1. 所以直线l 的倾斜角为π4或3π4.;【解析】(1)椭圆x 2a 2+y 2b 2=1(a >b >0)根据a 2=b 2+c 2,ca =√32,2a =4,求解.(2)联立方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2−4)=0,运用韦达定理,弦长公式求解.此题主要考查了椭圆和直线的位置关系,联立方程组结合弦长公式求解.19.【答案】解:(1)函数f (x )定义域为(0,+∞),f′(x )=ax +2x-4=2x 2−4x +ax假设存在实数a ,使f (x )在x=1处取极值,则f′(1)=0,∴a=2,…(2分) 此时,f′(x )=2(x−1)2x,当x >0时,f′(x )≥0恒成立,∴f (x )在(0,+∞)递增.…(4分) ∴x=1不是f (x )的极值点.故不存在实数a ,使得f (x )在x=1处取极值.…(5分) (2)由f (x 0)≤g (x 0) 得:(x 0-ln x 0)a≥x 02-2x 0 …(6分) 记F (x )=x-lnx (x >0),∴F′(x )=x−1x(x >0),.…(7分)∴当0<x <1时,F′(x )<0,F (x )递减;当x >1时,F′(x )>0,F (x )递增. ∴F (x )≥F (1)=1>0.…(8分) ∴a≥x 02−2x 0x0−ln x 0,记G (x )=x 2−2xx−lnx ,x ∈[1e ,e]∴G′(x )=(2x −2)(x−lnx )−(x−2)(x−1)(x−lnx )2=(x−1)(x−2lnx +2)(x−lnx )2…(9分)∵x ∈[1e,e],∴2-2lnx=2(1-lnx )≥0,∴x-2lnx+2>0∴x ∈(1e ,1)时,G′(x )<0,G (x )递减;x ∈(1,e )时,G′(x )>0,G (x )递增…(10分)∴G (x )min =G (1)=-1∴a≥G (x )min =-1.…(11分) 故实数a 的取值范围为[-1,+∞). …(12分); 【解析】(1)求出函数f(x)定义域,函数的导函数f′(x),假设存在实数a ,使f(x)在x =1处取极值,则f′(1)=0,求出a ,验证推出结果.(2)由f (x 0)⩽g(x 0) 得:(x 0−ln x 0)a ⩾x 02−2x 0,记F(x)=x −ln x(x >0),求出F′(x),推出F(x)⩾F(1)=1>0,转化a ⩾x 02−2x 0x 0−ln x 0,记G(x)=x 2−2x x−ln x,x ∈[1e,e]求出导函数,求出最大值,列出不等式求解即可.该题考查函数的动手的综合应用,函数的最值的求法,极值的求法,考查转化思想以及计算能力.。
高考数学二轮复习 专题2 函数与导数 教案 文
高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。
高考数学大二轮复习专题二函数与导数2.3(一)导数及其应用练习
2.3(一)导数及其应用【课时作业】A 级1.已知⎠⎛1e⎝ ⎛⎭⎪⎫1x -m d x =3-e 2,则m 的值为( )A.e -14e B .12 C .-12D .-1解析: ⎠⎛1e⎝ ⎛⎭⎪⎫1x -m d x =(ln x -mx )|e1=(ln e -m e)-(ln 1-m )=1+m -m e =3-e 2,∴m =12.故选B. 答案: B2.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫-43,0 B .⎝ ⎛⎭⎪⎫0,43C.⎝⎛⎭⎪⎫-∞,-43,(0,+∞) D .⎝⎛⎭⎪⎫-∞,-43∪(0,+∞) 解析: 因为f ′(x )=3x 2-2mx ,所以f ′(-1)=3+2m =-1,解得m =-2.所以f ′(x )=3x 2+4x .由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-43,(0,+∞),故选C. 答案: C3.(2018·广州市高中综合测试(一))已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析: f ′(x )=3x 2+2ax +b,依题意可得⎩⎪⎨⎪⎧f ′1=0,f 1=10得⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a2-a -12=0,解得a =-3或a =4.故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.答案: C4.已知函数f (x )=e x +a e -x为偶函数,若曲线y =f (x )的一条切线的斜率为32,则切点的横坐标等于( )A .ln 2B .2ln 2C .2D . 2解析: 因为f (x )是偶函数,所以f (x )=f (-x ),即e x +a e -x =e -x +a e -(-x ),解得a =1,所以f (x )=e x +e -x, 所以f ′(x )=e x-e -x.设切点的横坐标为x 0,则f ′(x 0)=e x 0-e -x 0=32.设e x 0=t >0,所以t -1t =32,解得t=2(负值已舍去),得e x 0=2,所以x 0=ln 2.故选A.答案: A5.(2018·安徽淮北一模)函数f (x )在定义域R 内可导,若f (1+x )=f (3-x ),且当x∈(-∞,2)时,(x -2)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .c >b >aD .b >c >a解析: ∵f (1+x )=f (3-x ),∴函数f (x )的图象关于直线x =2对称,∴f (3)=f (1). 当x ∈(-∞,2)时,(x -2)f ′(x )<0, ∴f ′(x )>0,即此时f (x )单调递增,∵0<12<1,∴f (0)<f ⎝ ⎛⎭⎪⎫12<f (1)=f (3),即a <b <c ,故选C. 答案: C6.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________.解析: y ′=1-2sin x ,令y ′=0,且x ∈⎣⎢⎡⎦⎥⎤0,π2,得x =π6,则x ∈⎣⎢⎡⎭⎪⎫0,π6时,y ′>0;x ∈⎝ ⎛⎦⎥⎤π6,π2时,y ′<0,故函数在⎣⎢⎡⎭⎪⎫0,π6上递增,在⎝ ⎛⎦⎥⎤π6,π2上递减,所以当x =π6时,函数取最大值π6+ 3.答案:π6+ 3 7.设函数f (x )=g ⎝ ⎛⎭⎪⎫x 2+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析: 由曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0可得g (1)=-8,g ′(1)=-9.函数f (x )=g ⎝ ⎛⎭⎪⎫x 2+x 2的导数为f ′(x )=12g ′⎝ ⎛⎭⎪⎫x 2+2x ,则有f (2)=g (1)+4=-8+4=-4,f ′(2)=12g ′(1)+4=-92+4=-12.故曲线y =f (x )在点(2,f (2))处的切线方程为y-(-4)=-12(x -2),即x +2y +6=0.答案: x +2y +6=08.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________. 解析: 由题意知f (x )的定义域为(0,+∞),f ′(x )=1+ax,要使函数f (x )=x +a ln x 不是单调函数,则需方程1+a x=0在(0,+∞)上有解,即x =-a ,∴a <0.答案: (-∞,0)9.已知f (x )=e x -ax 2,曲线y =f (x )在(1,f (1))处的切线方程为y =bx +1. (1)求a ,b 的值;(2)求f (x )在[0,1]上的最大值. 解析: (1)f ′(x )=e x-2ax ,所以f ′(1)=e -2a =b ,f (1)=e -a =b +1, 解得a =1,b =e -2. (2)由(1)得:f (x )=e x-x 2,f ′(x )=e x -2x ,令g (x )=e x -2x ,则g ′(x )=e x -2,所以f ′(x )在(0,ln 2)上递减,在(ln 2,+∞)上递增, 所以f ′(x )≥f ′(ln 2)=2-2ln 2>0, 所以f (x )在[0,1]上递增, 所以f (x )max =f (1)=e -1.10.已知x =1是f (x )=2x +b x+ln x 的一个极值点. (1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求a 的取值范围.解析: (1)f (x )的定义域为(0,+∞),f ′(x )=2-b x 2+1x,x ∈(0,+∞).因为x =1是f (x )=2x +bx+ln x 的一个极值点, 所以f ′(1)=0,即2-b +1=0.解得b =3,经检验,适合题意,所以b =3. 因为f ′(x )=2-3x 2+1x =2x 2+x -3x2, 解f ′(x )<0,得0<x <1.所以函数f (x )的单调递减区间为(0,1). (2)g (x )=f (x )-3+a x =2x +ln x -ax(x >0),g ′(x )=2+1x +ax2(x >0).因为函数g (x )在[1,2]上单调递增,所以g ′(x )≥0在[1,2]上恒成立,即2+1x +a x2≥0在[1,2]上恒成立,所以a ≥-2x2-x 在[1,2]上恒成立,所以a ≥(-2x 2-x )max ,x ∈[1,2].因为在[1,2]上,(-2x 2-x )max =-3,所以a ≥-3. 故a 的取值范围为[-3,+∞).B 级1.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f n -f mn -m,f ′(x 2)=f n -f mn -m .则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,12 B .⎝ ⎛⎭⎪⎫32,3 C.⎝ ⎛⎭⎪⎫12,1 D .⎝ ⎛⎭⎪⎫13,1 解析: 因为f (x )=x 3-x 2+a ,所以由题意可知,f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f a -f 0a -0=a 2-a ,所以方程3x 2-2x=a 2-a 在区间(0,a )上有两个不相等的实根.令g (x )=3x 2-2x -a 2+a (0<x <a ),则⎩⎪⎨⎪⎧Δ=4-12-a 2+a >0,g 0=-a 2+a >0,g a =2a 2-a >0,解得12<a <1,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1. 答案: C2.(2018·兰州市诊断考试)定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4B .3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4 解析: ∵cos x ·f ′(x )+sin x ·f (x )<0,∴在⎝ ⎛⎭⎪⎫0,π2上,⎣⎢⎡⎦⎥⎤f x cos x ′<0,∴函数y =f x cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,∴f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cosπ3,∴f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故选C. 答案: C 3.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值.解析: (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立, ∴a ≤1ln 2x -1ln x =⎝ ⎛⎭⎪⎫1ln x -122-14.∵x ∈(1,+∞),∴ln x ∈(0,+∞),∴当1ln x -12=0时,函数t =⎝ ⎛⎭⎪⎫1ln x -122-14的最小值为-14,∴a ≤-14, 即实数a 的取值范围为⎝⎛⎦⎥⎤-∞,-14.(2)当a =2时,f (x )=xln x +2x (x >1),f ′(x )=ln x -1+2ln 2xln 2x , 令f ′(x )=0得2ln 2x +ln x -1=0,解得ln x =12或ln x =-1(舍去),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∴f (x )的极小值为f ⎝ ⎛⎭⎪⎫e 12=e1212+2e 12=4e 12.4.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2x <1,a ln x x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.解析: (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0 ⎝ ⎛⎭⎪⎫0,23 23 ⎝ ⎛⎭⎪⎫23,1 f ′(x ) -0 +0 - f (x )极小值极大值故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =3.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, 则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.。
专题2-3-导数压轴小题归类(讲 练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)
专题2-3 导数压轴小题归类目录讲高考 ............................................................................................................................................................................... 1 题型全归纳 ...................................................................................................................................................................... 2 【题型一】公切线求参 ............................................................................................................................................... 2 【题型二】“过点”切线条数 ................................................................................................................................. 3 【题型三】切线法解题 ............................................................................................................................................... 3 【题型四】恒成立“同构型”求参 ....................................................................................................................... 4 【题型五】恒成立“虚根”型求参 ....................................................................................................................... 5 【题型六】恒成立“整数解”求参 ....................................................................................................................... 5 【题型七】换元求参型 ............................................................................................................................................... 6 【题型八】选择主元求参型 ..................................................................................................................................... 7 【题型九】多参放缩型 ............................................................................................................................................... 7 【题型十】多参韦达定理型 ..................................................................................................................................... 7 【题型十一】构造函数求参 ..................................................................................................................................... 8 【题型十二】极值点偏移型 ..................................................................................................................................... 9 专题训练 (10)讲高考1.(2022·全国·统考高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A .1-B .12-C .12D .12.(2021·全国·统考高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<3.(2019·天津·高考真题)已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e4.(·四川·高考真题)设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞) D .(1,+∞)5.(2021·全国·统考高考真题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b < B .a b > C .2ab a < D .2ab a > 6.(2022·全国·统考高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.7.(2021·全国·统考高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.题型全归纳【题型一】公切线求参【讲题型】例题1.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2e B .(]0,e C .[)2,e +∞ D .(],2e e例题2.已知直线l 与曲线()x f x e =和()ln g x x =分别相切于点()11,A x y ,()22,B x y .有以下命题:(1)90AOB ∠>︒(O 为原点);(2)()11,1x ∈-;(3)当10x <时,)2121x x ->.则真命题的个数为( ) A .0 B .1 C .2D .31..若函数1()33(0)fx x x x=+->的图象与函数()e x g x tx =的图象有公切线l ,且直线l 与直线122y x =-+互相垂直,则实数t =( )A .1eB .2eC .1e 或D .1e 或2.直线12y x t =+与曲线y =()2220x y r r +=>相切,则r =( ) A .15B C .3 D3..若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( )A .e 2B .eCD .2e【题型二】“过点”切线条数【讲题型】例题1.若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<-B .3n m >-C .0n <D .30n m <=-例题2.已知函数()ln f x x =,若过点(),0P t 存在2条直线与曲线()y f x =相切,请写出满足条件的一个t 值:______.1.已知函数21()2f x x x =+,过点(2,)M a 作()f x 的切线,切线恰有三条,则a 的取值范围是________.2.已知函数()32692f x x x x =-+-,过点()0,2P 作曲线()y f x =的切线,则可作切线的最多条数是______.3.已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.△当切点为(2,-3)时,切线为()1y x =-+,即1y x =--,【题型三】切线法解题【讲题型】例题1.已知过原点的直线与函数()e ,0ln ,0x x f x x x -⎧≤=⎨>⎩的图像有两个公共点,则该直线斜率的取值范围( )A .()1,e e ⎧⎫-∞-⎨⎬⎩⎭B .{}1e 0,e ⎛⎫- ⎪⎝⎭C .1e,e ⎧⎫-⎨⎬⎩⎭D .()1,e 0,e ⎛⎫-∞- ⎪⎝⎭例题2.已知函数()()1ln f x kx x x =+-,若()0≤f x 有且只有两个整数解,则k 的取值范围是( ) A .ln 5ln 2,3010⎛⎤⎥⎝⎦ B .ln 5ln 2,3010⎛⎫⎪⎝⎭ C .ln 2ln 3,⎛⎤⎥ D .ln 2ln 3,⎛⎫⎪1.已知函数()eln ||f x x x a =--,2[1,e ]x ∈.若()y f x =的图象与x 轴有且仅有两个交点,则实数a 的取值范围是( ) A .[1,e] B .(0,e]C .2[1,e 2e]-D .2(0,e 2e]-2..已知0a >,0b >,直线y x a =+与曲线1e 21x y b -=-+相切,则21a b+的最小值为___________.3..对任意的x ∈R ,若关于x sin 2(0)6m x m π⎛⎫++> ⎪⎝⎭恒成立,则m 的最小值为__________.【题型四】恒成立“同构型”求参【讲题型】例题1.若关于x 的不等式1ln x e a a ax ++>对于任意()0,x ∈+∞恒成立.则实数a 的取值范围是___________.例题2.已知当e x ≥时,不等式11e ln ax x a x +-≥恒成立,则正实数a 的最小值为___________.1.若关于x 的不等式1e ln x a a ax -->对于任意的()0,x ∈+∞恒成立,则实数a 的取值范围是___________.2.已知对任意给定的0b >,存在a b ≥使ln e (0)mb a m m => 成立,则实数m 的取值范围为:__________.3.若对任意0x >,恒有()112ln ax a x x x e ⎛⎫+≥+ ⎪⎝⎭,则实数a 的最小值为( )A .21eB .22eC .1eD .2e【题型五】恒成立“虚根”型求参【讲题型】例题1.已知当(1,)x ∈+∞时,关于x 的方程ln (2)1x x k xk+-=-有唯一实数解,则k 值所在的范围是 A .(3,4) B .(4,5) C .(5,6) D .(6,7)例题2.设函数()()21ln x f x e e x =-+(其中e 为自然对数的底数),则函数()f x 的零点个数为( ) A .0 B .1C .2D .31.已知21a -<<,且0x ≥时,()5854842x e x a +≥-恒成立,则a 的最小值是( ) A .1- B .ln 22- C .1e - D .ln33-2.当0x >时,不等式2e 2ln 1x x mx x ≤++有解,则实数m 的范围为( )A .[)1,+∞B .1,e ⎡-+∞⎫⎪⎢⎣⎭C .2,e ⎡⎫+∞⎪⎢⎣⎭ D .[)2,+∞3.已知函数21()ln (2)(1)e 12x f x x x a x x =+---+在(0,)+∞上是减函数,则a 的取值范围为( ) A .(,1]-∞ B .(,3]-∞ C .(,e 1]-∞+ D .(,4e]-∞【题型六】恒成立“整数解”求参【讲题型】例题1.设函数()2(1)x f x ax a e x =-+-,其中1a <,若存在唯一整数0x ,使得0()0f x >,则a 的取值范围是A .2,13e ⎛⎫ ⎪⎝⎭B .21,32e ⎡⎫⎪⎢⎣⎭ C .2,13e ⎛⎫- ⎪⎝⎭ D .21,32e ⎡⎫-⎪⎢⎣⎭例题2.已知函数() lnxf x x=,关于 x 的不等式()()2 0?f x af x ->有且只有三个整数解,则实数a 的取值范围是 A .52 )52ln ln ⎡⎢⎣, B .53)53ln ln ⎡⎢⎣, C .52(52ln ln ⎤⎥⎦, D .53(53ln ln ⎤⎥⎦,1.若关于x 的不等式0x xe ax a -+<的解集为()(),0m n n <,且(),m n 中只有一个整数,则实数a 的取值范围是 A . B .C .D .2..已知函数()f x 的导函数为()'f x ,且对任意的实数x 都有23()()xx f x f x e+'=-(e 是自然对数的底数),且(0)1f =,若关于x 的不等式()0f x m -<的解集中恰有两个整数,则实数m 的取值范围是_________.3.在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【题型七】换元求参型【讲题型】例题1.设k ,b ∈R ,若关于x 的不等式()ln 1x x kx b -+≤+在()1,+∞上恒成立,则11b k --的最小值是( ) A .2e - B .11e -+ C .21e -D .1e --例题2.若函数f (x )=12ax 2-ex +1在x =x 1和x =x 2两处取到极值,且212x x ≥,则实数a 的取值范围是________.【练题型】1.已知函数()3e x f x x =,()3ln g x x x =,若0a >,0b >,且()()f a g b =,则3a b -的最大值为______.2.设正实数x ,则()2ln ln x xf x x=的值域为_____.【题型八】选择主元求参型【讲题型】例题1.已知实数a 、b 、c 满足a b c <<,6.9a b c ab bc ca ++=⎧⎨++=⎩下列命题中:①01a <<;①13b <<;①34c <<;①()()55b c --的最小值是154,所有真命题为__________.例题2..若a ,b 为实数,且13a ≤≤,24b ≤≤,则324a bab +的取值范围是___________.1.已知0a >,0b >,4c ≥,且2a b +=,则2ac c c b ab +-___________.2..若a ,b 为实数,且13a ≤≤,24b ≤≤,则324a bab +的取值范围是___________.【题型九】多参放缩型【讲题型】例题1.已知(),,x a b R f x e ax b ∈=-+,若()1f x ≥恒成立,则b aa-的取值范围是_________.例题2.已知0m >,若存在实数[1,)x ∈+∞使不等式120mx m x +⋅-≤成立,则m 的最大值为_______.【练题型】1.已知函数()()ln x f x x m e =+-,满足()0f x <恒成立的最大整数m 为__________.2.已知不等式ln(1)(2)2x a x b --+≤-恒成立,则32b a -+的最小值为______.3.已知不等式x−3lnx +1≥mlnx +n (m ,n△R ,且m≠−3)对任意实数x 恒成立,则n-3m+3的最大值为A 、−2ln2B 、−ln2C 、1−ln2D 、2−ln2【题型十】多参韦达定理型【讲题型】例题1.已知函数()()2++,f x ax x b a b R =∈在区间[]23,上有零点,则2+a ab 的取值范围是( )A .(]4-∞,B .818⎛⎤-∞ ⎥⎝⎦,C .8148⎡⎤⎢⎥⎣⎦,D .818⎡⎫+∞⎪⎢⎣⎭,例题2.已知()()21ln f x x a x =-+在1,4⎛⎫+∞ ⎪⎝⎭上恰有两个极值点1x ,2x ,且12x x <,则()12f x x 的取值范围为( ) A .13,ln 22⎛⎫-- ⎪⎝⎭B .1ln 2,12⎛⎫- ⎪⎝⎭C .1,ln 22⎛⎫-∞- ⎪⎝⎭D .13ln 2,ln 224⎛⎫-- ⎪⎝⎭1.设函数1()ln ()f x x a x a R x=-+∈的两个极值点分别为12,x x ,若()()12212221f x f x e a x x e ----恒成立,则实数a 的取值范围是_______.2.已知函数()(e )()x bf x x c x=+-(其中1a ≥,,b c R +∈),当(0,)x ∈+∞时()0f x ≥恒成立,则ea b a-的取值范围为___________.【题型十一】构造函数求参【讲题型】例题1.已知定义域为R 的函数()f x 的导函数为()f x ',且()()32x xf x x e f x '=+,若()2244f e =+,则函数()()2g x f x =-的零点个数为( ) A .1B .2C .3D .4例题2.已知奇函数()f x 的导函数为()f x ',且()f x 在0,2π⎛⎫⎪⎝⎭上恒有()cos ()sin 0f x x f x x '-<成立,则下列不等式成立的( ) A64fππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.36f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C43ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D 34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭1.已知函数()f x 的导函数为()f x ',任意x ∈R 均有()()e x f x f x '-=,且()10f =,若函数()()g x f x t =-在[)1,x ∈-+∞上有两个零点,则实数t 的取值范围是( )A .()1,0-B .21,e ⎛⎫-- ⎪⎝⎭C .[)1,0-D .21,e ⎛⎤-- ⎥⎝⎦2.)若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xe f x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( )A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦3.设奇函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,且()f x 的图象是连续不间断,,02x π⎛⎫∀∈- ⎪⎝⎭,有()cos ()sin 0f x x f x x '-<,若1()cos 23f t t f π⎛⎫<⎪⎝⎭,则t 的取值范围是( ). A .,23ππ⎛⎫- ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,23ππ⎛⎫-- ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭【题型十二】极值点偏移型【讲题型】例题1..已知()()x f x xe x R -=∈,若12x x ≠,且12()()f x f x =,则12x x +与2的关系为A .122x x +>B .122x x +≥C .122x x +<D .大小不确定例题2.1kx e =有两个不同的实数根1x ,2x (12x x <),则下列不等式不成立的是A .212x x e ⋅> B .122x x e +> C .11x k e e -<+ D .21x k e e->+【练题型】1.已知函数()x f x e ax =-有两个零点1x 、2x ,12x x <,则下面说法不正确...的是( )A .122x x +>B .121x x <C .a e <D .有极小值点0x ,且1202x x x +<2.已知()()x f x xe x R -=∈,若12x x ≠,且12()()f x f x =,则12x x +与2的关系为 A .122x x +> B .122x x +≥ C .122x x +< D .大小不确定3.1kx e =有两个不同的实数根1x ,2x (12x x <),则下列不等式不成立的是( )A .212x x e ⋅>B .122x x e +>C .11x k e e -<+D .21x k e e->+练一、单选题1.已知函数2()ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(),0∞-B .10,2⎛⎫⎪⎝⎭C .()0,1D .()0,∞+2.若实数x ,y 满足24ln 2ln 44x y x y +≥+-,则( )A .xy =B .x y +=C .21x y +=+D .31x y =3.已知函数()()ln 1,01e ,0xx x f x x ⎧-≤=⎨->⎩,若|()|0f x ax -,则实数a 的取值范围是( ) A .(,1]-∞ B .(,0]-∞ C .[1,1]- D .[0,1]4.已知函数()24e 1ln2x f x x=+,则不等式()2e x f x >的解集是( )A .()0,1B .11,2e 4⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫⎪⎝⎭ D .11,2e 2⎛⎫ ⎪⎝⎭5.函数()22ln 1f x x a x =-+在()3,a a -上不单调,则实数a 的取值范围为( )A .9,44⎡⎤⎢⎥⎣⎦B .9,44⎛⎫ ⎪⎝⎭C .[)3,4D .[]3,46.函数2y kx =+与函数1||y x =的图像至少有两个公共点,关于k 的不等式()20k a k -->有解,则实数a 的取值范围是( )A .1(,)3-∞ B .1(1,)3- C .(,1)-∞- D .[1,)+∞7.已知函数()e ln 3x f x m x x =-+有且仅有一个极值点,则实数m 的取值范围是( )A .(],0-∞B .210,e ⎛⎤ ⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .(]1,0e ⎧⎫⋃-∞⎨⎬⎩⎭8.已知函数1()f x x x=-,若对任意[1,),()()0x f mx f m x ∈+∞+-<恒成立,则实数m 的取值范围是( )A .10,2⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭ B .1(,0)0,2⎛⎫-∞ ⎪⎝⎭C .10,2⎛⎛⎫⎪ ⎝⎭⎝⎭D .10,2⎛⎛⎫-∞ ⎪ ⎝⎭⎝⎭二、多选题9.已知当e x ≥时,不等式11e ln ax x a x x+-≥恒成立,则正实数a 的值可以为( )A .1B .1e C .e D .21e10.若函数()()321,R,0f x ax bx a b a =+-∈≠有且仅有两个零点1x ,2x ,则下列说法正确的是( )A .当a<0时,120x x +<B .当a<0时,120x x +>C .当0a >时,120x x +<D .当0a >时,120x x +>11.函数()e x ax f x =和()ln xg x ax=有相同的最大值b ,直线y m =与两曲线()y f x =和()y g x =恰好有三个交点,从左到右三个交点横坐标依次为123,,x x x ,则下列说法正确的是( ) A .1a =B .1b e=C .1322x x x +=D .2132x x x =12.已知函数()ln f x x ax =-有两个零点12,x x ,且12x x <,则下列选项正确的有( )A .10,e a ⎛⎫∈ ⎪⎝⎭B .()y f x =在(0,e)上单调递减C .126x x +>D .若221,e e a ⎛⎫∈ ⎪⎝⎭,则212a x x a --<三、填空题13.正实数a ,b 满足1e 4a a +=+,()ln 3b b +=,则b a -的值为____________.14.若关于x 的不等式222e 23x x ax a +-≥-恒成立,则a 的取值范围是_____.15.已知函数ln 1()e 2x x f x ax x =--在(0,)+∞上有两个不同的零点,则实数a 的取值范围为______.16.已知函数()3e x f x x =,()3ln g x x x =,若0a >,0b >,且()()f a g b =,则3a b -的最大值为______.。
2021年高考数学大二轮复习专题二函数与导数2.3(二)导数的综合应用练习
2.3〔二〕导数的综合应用【课时作业】A 级1.(2021·昆明市高三摸底调研测试)假设函数f (x )=2x-x 2-1,对于任意的x ∈Z 且x ∈(-∞,a ),都有f (x )≤0恒成立,那么实数a 的取值范围为( )A .(-∞,-1]B .(-∞,0]C .(-∞,4]D .(-∞,5]解析: 对任意的x ∈Z 且x ∈(-∞,a ),都有f (x )≤0恒成立,可转化为对任意的x ∈Z 且x ∈(-∞,a ),2x ≤x 2+1恒成立. 令g (x )=2x,h (x )=x 2+1, 当x <0时,g (x )<h (x ), 当x =0或1时,g (x )=h (x ), 当x =2或3或4时,g (x )<h (x ), 当x ≥5时,g (x )>h (x ).综上,实数a 的取值范围为(-∞,5],应选D. 答案: D2.函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+f xx>0,那么函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3解析: 由F (x )=xf (x )+1x=0,得xf (x )=-1x,设g (x )=xf (x ),那么g ′(x )=f (x )+xf ′(x ), 因为x ≠0时,有f ′(x )+f xx>0, 所以x ≠0时,f x +xf ′xx>0,即当x >0时,g ′(x )=f (x )+xf ′(x )>0,此时函数g (x )单调递增,此时g (x )>g (0)=0,当x <0时, g ′(x )=f (x )+xf ′(x )<0,此时函数g (x )单调递减,此时g (x )>g (0)=0, 作出函数g (x )和函数y =-1x的图象,(直线只代表单调性和取值范围),由图象可知函数F (x )=xf (x )+1x的零点个数为1个.答案: B3.定义1:假设函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,那么称函数f (x )在区间D 上存在二阶导数,记作f ″(x ),即f ″(x )=[f ′(x )]′.定义2:假设函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,那么称函数f (x )在区间D 上为凹函数.函数f (x )=x 3-32x 2+1在区间D 上为凹函数,那么x 的取值范围是________.解析: ∵f (x )=x 3-32x 2+1,∴f ′(x )=3x 2-3x ,∴f ″(x )=6xf ″(x )>0,即6x -3>0,解得x >12.∴x 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 答案: ⎝ ⎛⎭⎪⎫12,+∞4.函数f (x )=exx,g (x )=-(x -1)2+a 2,假设当x >0时,存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,那么实数a 的取值范围是________.解析: 由题意得存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,等价于f (x )min ≤g (x )max . 因为g (x )=-(x -1)2+a 2,x >0, 所以当x =1时,g (x )max =a 2. 因为f (x )=exx,x >0,所以f ′(x )=e x ·x -e x x2=exx -1x 2. 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )min =f (1)=e.又g (x )max =a 2,所以a 2≥e ⇔a ≤-e 或a ≥ e.故实数a 的取值范围是(-∞,-e]∪[e ,+∞). 答案: (-∞,-e]∪[e ,+∞)5.(2021·武汉市武昌区调研考试)函数f (x )=ln x +a x,a ∈R . (1)讨论函数f (x )的单调性; (2)当a >0时,证明f (x )≥2a -1a.解析: (1)f ′(x )=1x -a x 2=x -ax2(x >0).当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,假设x >a ,那么f ′(x )>0,函数f (x )在(a ,+∞)上单调递增; 假设0<x <a ,那么f ′(x )<0,函数f (x )在(0,a )上单调递减. (2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1. 要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a,即证ln a +1a-1≥0.令函数g (a )=ln a +1a-1,那么g ′(a )=1a -1a 2=a -1a2(a >0),当0<a <1时,g ′(a )<0,当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以g (a )min =g (1)=0. 所以ln a +1a-1≥0恒成立,所以f (x )≥2a -1a.6.(2021·南昌市第一次模拟测试卷)函数f (x )=e x-a ln x -e(a ∈R ),其中e 为自然对数的底数.(1)假设f (x )在x =1处取得极小值,求a 的值及函数f (x )的单调区间; (2)假设当x ∈[1,+∞)时,f (x )≥0恒成立,求a 的取值范围. 解析: (1)易知f (x )的定义域为(0,+∞). 由f (x )=e x-a ln x -e(a ∈R ),得f ′(x )=e x-ax.由题意可知f ′(1)=0,所以a =e ,所以f ′(x )=e x-e x =x e x-ex.令g (x )=x e x -e ,那么g ′(x )=e x(1+x ).当x >0时,g ′(x )>0,所以g (x )在(0,+∞)上单调递增,且g (1)=0. 所以当x ∈(0,1)时,g (x )<0,当x ∈(1,+∞)时,g (x )>0, 所以当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0. 故函数f (x )的减区间为(0,1),增区间为(1,+∞). (2)由f (x )=e x-a ln x -e ,得f ′(x )=e x-ax.①当a ≤0时,f ′(x )=e x-a x>0,所以f (x )在[1,+∞)上单调递增,f (x )min =f (1)=0.(符合题意)②当a >0时,f ′(x )=e x -a x,当x ∈[1,+∞)时,e x≥e. (ⅰ)当a ∈(0,e]时,因为x ∈[1,+∞), 所以a x≤e,f ′(x )=e x-a x≥0,所以f (x )在[1,+∞)上单调递增,f (x )min =f (1)=0.(符合题意) (ⅱ)当a ∈(e ,+∞)时,存在x 0∈[1,+∞),满足f ′(x 0)=e x0-a x 0=0, 所以f (x )在[1,x 0)上单调递减,在(x 0,+∞)上单调递增,故f (x 0)<f (1)=0. 不满足x ∈[1,+∞)时,f (x )≥0恒成立. 综上所述,a 的取值范围是(-∞,e].B 级1.(2021·武汉市局部学校调研)函数f (x )=e x-ax -1(a ∈R )(e =2.718 28…是自然对数的底数).(1)求f (x )的单调区间;(2)讨论g (x )=f (x )⎝ ⎛⎭⎪⎫x -12在区间[0,1]上零点的个数. 解析: (1)∵f (x )=e x-ax -1,∴f ′(x )=e x-a , 当a ≤0时,f ′(x )>0恒成立,∴f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,令f ′(x )<0,得x <ln a ,令f ′(x )>0,得x >ln a , ∴f (x )的单调递减区间为(-∞,ln a ),单调递增区间为(ln a ,+∞). (2)令g (x )=0,得f (x )=0或x =12,先考虑f (x )在区间[0,1]上的零点个数,当a ≤1时,f (x )在(0,+∞)上单调递增且f (0)=0, ∴f (x )在[0,1]上有一个零点;当a ≥e 时,f (x )在(-∞,1)上单调递减,∴f (x )在[0,1]上有一个零点; 当1<a <e 时,f (x )在(0,ln a )上单调递减,在(ln a,1)上单调递增,而f (1)=e -a -1,当e -a -1≥0,即1<a ≤e-1时,f (x )在[0,1]上有两个零点, 当e -a -1<0,即e -1<a <e 时,f (x )在[0,1]上有一个零点. 当x =12时,由f ⎝ ⎛⎭⎪⎫12=0得a =2(e -1), ∴当a ≤1或a >e -1或a =2(e -1)时,g (x )在[0,1]上有两个零点; 当1<a ≤e-1且a ≠2(e -1)时,g (x )在[0,1]上有三个零点.2.(2021·开封市高三定位考试)函数f (x )=a x+x 2-x ln a (a >0,a ≠1). (1)当a =e(e 是自然对数的底数)时,求函数f (x )的单调区间;(2)假设存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e-1,求实数a 的取值范围. 解析: (1)f ′(x )=a xln a +2x -ln a =2x +(a x -1)ln a . 当a =e 时,f ′(x )=2x +e x-1,在R 上是增函数,又f ′(0)=0,∴f ′(x )>0的解集为(0,+∞),f ′(x )<0的解集为(-∞,0),故函数f (x )在a =e 时的单调递增区间为(0,+∞),单调递减区间为(-∞,0).(2)∵存在x 1,x 2∈[-1,1], 使得|f (x 1)-f (x 2)|≥e-1,又当x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤f (x )max -f (x )min , ∴只要f (x )max -f (x )min ≥e-1即可.∵当a >1时,ln a >0,y =(a x -1)ln a 在R 上是增函数, 当0<a <1时,ln a <0,y =(a x -1)ln a 在R 上也是增函数, ∴当a >1或0<a <1时, 总有f ′(x )在R 上是增函数,又f ′(0)=0,∴f ′(x ),f (x )随x 的变化而变化的情况如表所示:∴当x ∈[-min f (x )max 为f (-1)和f (1)中的较大者.f (1)-f (-1)=(a +1-ln a )-⎝ ⎛⎭⎪⎫1a +1+ln a =a -1a -2ln a ,令g (a )=a -1a-2ln a (a >0),∴g ′(a )=1+1a2-2a =⎝ ⎛⎭⎪⎫1-1a 2≥0,∴g (a )=a -1a-2ln a 在(0,+∞)上是增函数.而g (1)=0,故当a >1时,g (a )>0,即f (1)>f (-1);当0<a <1时,g (a )<0,即f (1)<f (-1).∴当a >1时,f (x )max -f (x )min =f (1)-f (0)≥e-1, 即a -ln a ≥e-1,函数y =a -ln a 在(1,+∞)上是增函数,解得a ≥e; 当0<a <1时,f (x )max -f (x )min =f (-1)-f (0)≥e-1, 即1a+ln a ≥e-1,函数y =1a +ln a 在(0,1)上是减函数,解得0<a ≤1e.综上可知,实数a 的取值范围为⎝ ⎛⎦⎥⎤0,1e ∪[e ,+∞).。
2021-2022年高考数学二轮复习 专题二 函数与导数 2.2 导数素能演练提升 文
2021年高考数学二轮复习专题二函数与导数 2.2 导数素能演练提升文1.函数f(x)的定义域为开区间(a,b),导函数f'(x)在区间(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:f'(x)>0,f(x)单调递增,f'(x)<0,f(x)单调递减.极小值点附近函数应有先减后增的特点,即f'(x)<0→f'(x)=0→f'(x)>0,由f'(x)的图象可知只有1个极小值点.答案:A2.直线y=kx+b与曲线y=x3+ax+1相切于点(2,3),则b的值为( )A.-3B.9C.-15D.-7解析:将点(2,3)分别代入曲线y=x3+ax+1和直线y=kx+b,得a=-3,2k+b=3.又k=y'|x=2=(3x2-3)|x=2=9,故b=3-2k=3-18=-15.答案:C3.函数f(x)=ax3-2ax2+(a+1)x-log2(a2-1)不存在极值点,则实数a的取值范围是( )A.[1,3]B.[1,3)C.(1,3]D.(1,3)解析:∵a2-1>0,∴a>1或a<-1.又∵函数f(x)不存在极值点,令f'(x)=3ax2-4ax+a+1=0,则Δ=16a2-4×3a(a+1)=4a(a-3)≤0.∴0≤a≤3.又∵a>1或a<-1,∴1<a≤3.答案:C4.若函数f(x)=2x+ln x,且f'(a)=0,则2a ln2a=( )A.1B.-1C.-ln2D.ln2解析:f'(x)=2x ln2+,由f'(a)=2a ln2+=0,得2a ln2=-,则a2a ln2=-1,即2a ln2a=-1.答案:B5.(xx山西忻州一模,10)函数f(x)=x2+2cos x+2的导函数f'(x)的图象大致是( )解析:∵f'(x)=x-2sin x,显然是奇函数,∴排除A.而[f'(x)]'=-2cos x=0有无穷多个根,∴函数f'(x)有无穷多个单调区间,排除C,D.故选B.答案:B6.(xx山西忻州一模,12)定义在上的函数f(x),f'(x)是它的导函数,且恒有f(x)<f'(x)tan x 成立,则( )A. B.f(1)<2f sin1C.>fD.<f解析:∵f(x)<f'(x)tan x,即f'(x)sin x-f(x)cos x>0,∴'=>0,∴函数上单调递增,从而,即<f.答案:D7.已知f(x)=x(1+|x|),则f'(1)·f'(-1)=.解析:当x≥0时,f(x)=x2+x,f'(x)=2x+1,则f'(1)=3.当x<0时,f(x)=x-x2,f'(x)=1-2x,则f'(-1)=3.故f'(1)·f'(-1)=9.答案:98.函数f(x)=|x3-3x2-t|,x∈[0,4]的最大值记为g(t),当t在实数范围内变化时,g(t)的最小值为.解析:令g(x)=x3-3x2-t,则g'(x)=3x2-6x,令g'(x)≥0,则x≤0或x≥2,在[0,2]上g(x)为减函数,在[2,4]上g(x)为增函数,故f(x)的最大值g(t)=max{|g(0)|,|g(2)|,|g(4)|},又|g(0)|=|t|,|g(2)|=|4+t|,|g(4)|=|16-t|,在同一坐标系中分别作出它们的图象.由图象可知,在y=16-t(t≤16)与y=4+t(t≥-4)的交点处,g(t)取得最小值,由16-t=4+t,得2t=12,t=6,∴g(t)min=10.答案:109.设函数f(x)=(x-1)e x-kx2(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k∈时,求函数f(x)在[0,k]上的最大值M.解:(1)当k=1时,f(x)=(x-1)e x-x2,f'(x)=e x+(x-1)e x-2x=x e x-2x=x(e x-2),令f'(x)=0,得x1=0,x2=ln2,当x变化时,f'(x),f(x)的变化如下表:由表可知,函数f(x)的递减区间为(0,ln2),递增区间为(-∞,0),(ln2,+∞).(2)f'(x)=e x+(x-1)e x-2kx=x e x-2kx=x(e x-2k),令f'(x)=0,得x1=0,x2=ln(2k),令g(k)=ln(2k)-k,k∈,则g'(k)=-1=≥0,所以g(k)在上单调递增.所以g(k)≤ln2-1=ln2-ln e<0.从而ln(2k)<k,所以ln(2k)∈(0,k).所以当x∈(0,ln(2k))时,f'(x)<0;当x∈(ln(2k),+∞)时,f'(x)>0.所以M=max{f(0),f(k)}=max{-1,(k-1)e k-k3}.令h(k)=(k-1)e k-k3+1,则h'(k)=k(e k-3k),令φ(k)=e k-3k,则φ'(k)=e k-3≤e-3<0.所以φ(k)在上单调递减,而φ·φ(1)=(e-3)<0,所以存在x0∈使得φ(x0)=0,且当k∈时,φ(k)>0,当k∈(x0,1)时,φ(k)<0,所以φ(k)在上单调递增,在(x0,1)上单调递减.因为h=->0,h(1)=0,所以h(k)≥0在上恒成立,当且仅当k=1时取得“=”.综上,函数f(x)在[0,k]上的最大值M=(k-1)e k-k3. 10.(xx广东高考,文21)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.解:(1)由f(x)=x3+x2+ax+1,求导得f'(x)=x2+2x+a.令f'(x)=0,即x2+2x+a=0,Δ=4-4a.①当Δ≤0,即a≥1时,f'(x)≥0恒成立,f(x)在R上单调递增;②当Δ>0,即a<1时,方程x2+2x+a=0的两根分别为:x1=-1+,x2=-1-,当x∈(-∞,-1-)时,f'(x)>0,f(x)单调递增;当x∈(-1-,-1+)时,f'(x)<0,f(x)单调递减;当x∈(-1+,+∞)时,f'(x)>0,f(x)单调递增.(2)当a<0时,由(1),令x1=-1+=1,解得a=-3.①当a<-3时,1<-1+,由(1)的讨论可知f(x)在(0,1)上单调递减,此时不存在x0∈,使得f(x0)=f.②当-3<a<0时,1>-1+,f(x)在(0,-1+)上递减,在(-1+,1)上递增,f(1)-fa+,依题意,要f(x)存在x0∈,使得f(x0)=f,只需f(1)-fa+>0,解得a>-,于是有-<a<0即为所求.11.(xx陕西高考,文21)设函数f(x)=ln x+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f'(x)-零点的个数;(3)若对任意b>a>0,<1恒成立,求m的取值范围.解:(1)由题设,当m=e时,f(x)=ln x+,则f'(x)=,∴当x∈(0,e),f'(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞),f'(x)>0,f(x)在(e,+∞)上单调递增,∴x=e时,f(x)取得极小值f(e)=ln e+=2,∴f(x)的极小值为2.(2)由题设g(x)=f'(x)-(x>0),令g(x)=0,得m=-x3+x(x>0),设φ(x)=-x3+x(x≥0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图像(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,<1恒成立,等价于f(b)-b<f(a)-a恒成立.设h(x)=f(x)-x=ln x+-x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h'(x)=-1≤0在(0,+∞)恒成立,得m≥-x2+x=-(x>0)恒成立,∴m≥,∴m的取值范围是.。
人教b版数学选修2-2导数专题之导数的综合应用3(真题专练)
高中数学学习材料(灿若寒星 精心整理制作)导数专题之导数的综合应用——真题专练1、已知函数1ln )1()(2+++=ax x a x f(I )讨论函数)(x f 的单调性;(II )设1-<a .如果对任意),0(,21+∞∈x x ,||4)()(|2121x x x f x f -≥-,求a 的取值范围。
2、已知函数f (x )=ln x -ax 2+(2-a )x .(I)讨论f (x )的单调性;(II )设a >0,证明:当0<x <1a 时,f (1a +x )>f (1a-x ); 3、设函数()1x f x e -=-. (I)证明:当x >-1时,()1x f x x ≥+; (II )设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. 4、设函数2()1x f x e x ax =---。
(I)若0a =,求()f x 的单调区间;(II )若当0x ≥时()0f x ≥,求a 的取值范围解:0a =时,()1x f x e x =--,'()1x f x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(II )'()12x f x e ax =--由(I )知1x e x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥.由1(0)x e x x >+≠可得1(0)x e x x ->-≠.从而当12a >时, '()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1(,]2-∞. 5、设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x <(I )求a 的取值范围,并讨论()f x 的单调性;(II )证明:()21224In f x -> 解: (I )()2222(1)11a x x a f x x x x x++'=+=>-++ 令2()22g x x x a =++,其对称轴为12x =-。
高考数学二轮复习专题二函数与导数2.3导数的简单应用课件理
考点 2 利用导数研究函数的单调性
1.若求函数的单调区间(或证明单调性),只要在其定义域内解 (或证明)不等式 f′(x)>0 或 f′(x)<0 即可.
2.若已知函数的单调性,则转化为不等式 f′(x)≥0 或 f′(x)≤0 在单调区间上恒成立问题来求解.
例 2(2017·全国卷Ⅲ)已知函数 f(x)=lnx+ax2+(2a+1)x. (1)讨论 f(x)的单调性; (2)当 a<0 时,证明 f(x)≤-43a-2.
1.(2017·山西临汾五校三联)已知函数 f(x)是奇函数,当 x<0 时, f(x)=xln(-x)+x+2,则曲线 y=f(x)在 x=1 处的切线方程为( )
A.y=2x+3 B.y=2x-3 C.y=-2x+3 D.y=-2x-3
解析:设 x>0,则-x<0, ∵f(x)为奇函数,当 x<0 时,f(x)=xln(-x)+x+2, ∴f(x)=-f(-x)=-(-xlnx-x+2)=xlnx+x-2. ∴f(1)=-1,f′(x)=lnx+2. ∴f′(1)=2, ∴曲线 y=f(x)在 x=1 处的切线方程是 y=2x-3.故选 B. 答案:B
(2)∵f′(x)=ex(sinx+cosx),
∴k=f′(0)=1=-m1 ,∴m=-1. (3)由导数的几何意义,知 k=y′=ex+e-x-3≥2 ex·e-x-3= -1, 当且仅当 x=0 时等号成立. 即 tanα≥-1,α∈[0,π).又-12≤x≤12,tanα=k<0, 所以 α 的最小值是34π.
2.经过原点(0,0)作函数 f(x)=x3+3x2 的图象的切线,则切线方 程为________________.
2019年高考数学大二轮复习专题二函数与导数2.3二导数的综合应用课件
当 f′(x)>0 时,x2+3x+1<0,解得-2<x<-3+2
5 .
当
f′(x)<0
时,解得
-3+ x> 2
5 .
所以 f(x)的单调增区间为-2,-3+2 5, 单调减区间为-3+2 5,+∞.
(2)证明:设 h(x)=f(x)-g(x) =2ln(x+2)-(x+1)2-k(x+1)(x>-1). 当 k=2 时,由题意,当 x∈(-1,+∞)时,h(x)<0 恒成立. h′(x)=-2xx2++32x+1-2=-2x+x+32x+1, 当 x>-1 时,h′(x)<0 恒成立,h(x)单调递减. 又 h(-1)=0,当 x∈(-1,+∞)时,h(x)<h(-1)=0 成立,即 f(x)-g(x)<0 对 于∀x>-1,f(x)<g(x).
专题二
函数与导数
(二) 导数的综合应用
题型一
题型一 利用导数证明不等式 已知 f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1).
(1)求 f(x)的单调区间; (2)当 k=2 时,求证:对于∀x>-1,f(x)<g(x).
解析: (1)f′(x)=x+2 2-2(x+1)
=-2xx2++32x+1(x>-2).
∴f(x)max=f mm=2ln mm-m·m1 +1=-ln m, 若存在 x0,使得 f(x0)>m-1 成立,则 f(x)max>m-1. 即-ln m>m-1,ln m+m-1<0 成立, 令 g(x)=x+ln x-1(x>0), ∵g′(x)=1+1x>0,∴g(x)在(0,+∞)上单调递增,且 g(1)=0,∴0<m<1. ∴实数 m 的取值范围是(0,1).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3(二)导数的综合应用
【课时作业】
A 级
1.(2018·昆明市高三摸底调研测试)若函数f (x )=2x
-x 2
-1,对于任意的x ∈Z 且x ∈
(-∞,a ),都有f (x )≤0恒成立,则实数a 的取值范围为()
A .(-∞,-1]
B .(-∞,0]
C .(-∞,4]
D .(-∞,5]
解析: 对任意的x ∈Z 且x ∈(-∞,a ),
都有f (x )≤0恒成立,可转化为对任意的x ∈Z 且x ∈(-∞,a ),2x
≤x 2
+1恒成立.
令g (x )=2x
,h (x )=x 2
+1,
当x <0时,g (x )<h (x ),
当x =0或1时,g (x )=h (x ),
当x =2或3或4时,g (x )<h (x ),
当x ≥5时,g (x )>h (x ).
综上,实数a 的取值范围为(-∞,5],故选D.
答案: D
2.已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+
x
>0,则函数F (x )
=xf (x )+1
x
的零点个数是()
A .0
B .1
C .2
D .3
解析: 由F (x )=xf (x )+1
x
=0,
得xf (x )=-1
x ,
设g (x )=xf (x ),
则g ′(x )=f (x )+xf ′(x ),
因为x ≠0时,有f ′(x )+x
>0, 所以x ≠0时,
+x
>0,
即当x >0时,g ′(x )=f (x )+xf ′(x )>0,此时函数g (x )单调递增,
此时g (x )>g (0)=0,
当x <0时,g ′(x )=f (x )+xf ′(x )<0,此时函数g (x )单调递减,此时g (x )>g (0)=0,
作出函数g (x )和函数y =-1
x
的图象,(直线只代表单调性和取值范围),由图象可知函数
F (x )=xf (x )+1x
的零点个数为1个.
答案: B
3.定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x ),即f ″(x )=[f ′(x )]′.
定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x )
在区间D 上为凹函数.
已知函数f (x )=x 3
-32
x 2+1在区间D 上为凹函数,则x 的取值范围是________.
解析: ∵f (x )=x 3-32
x 2+1,∴f ′(x )=3x 2
-3x ,∴f ″(x )=6x -3.令f ″(x )>0,即
6x -3>0,解得x >12.∴x 的取值范围是⎝ ⎛⎭
⎪⎫12,+∞.
答案: ⎝ ⎛⎭
⎪
⎫12,+∞
4.已知函数f (x )=
ex x
,g (x )=-(x -1)2+a 2
,若当x >0时,存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是________.
解析: 由题意得存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,等价于f (x )min ≤g (x )max .
因为g (x )=-(x -1)2
+a 2
,x >0,
所以当x =1时,g (x )max =a 2
.
因为f (x )=ex
x
,x >0,
所以f ′(x )=ex·x-ex
x2
=
-x2
.
所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,
所以f (x )min =f (1)=e.
又g (x )max =a 2
,
所以a 2
≥e ⇔a ≤-e 或a ≥ e.
故实数a 的取值范围是(-∞,-e]∪[e ,+∞).
答案: (-∞,-e]∪[e ,+∞)
5.(2018·武汉市武昌区调研考试)已知函数f (x )=ln x +a
x
,a ∈R .
(1)讨论函数f (x )的单调性;
(2)当a >0时,证明f (x )≥
2a -1
a
.
解析: (1)f ′(x )=1x -a x2=x -a
x2
(x >0).
当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.
当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增;
若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减. (2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1.
要证f (x )≥2a -1a ,只需证ln a +1≥2a -1
a
,
即证ln a +1
a
-1≥0.
令函数g (a )=ln a +1
a
-1,
则g ′(a )=1a -1a2=a -1
a2
(a >0),
当0<a <1时,g ′(a )<0,当a >1时,g ′(a )>0,
所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增.
所以g (a )min =g (1)=0.
所以ln a +1
a
-1≥0恒成立,
所以f (x )≥2a -1
a
.
6.(2018·南昌市第一次模拟测试卷)已知函数f (x )=e x
-a ln x -e(a ∈R ),其中e 为自
然对数的底数.
(1)若f (x )在x =1处取得极小值,求a 的值及函数f (x )的单调区间;
(2)若当x ∈[1,+∞)时,f (x )≥0恒成立,求a 的取值范围.
解析: (1)易知f (x )的定义域为(0,+∞).
由f (x )=e x -a ln x -e(a ∈R ),得f ′(x )=e x
-a x
.。