九年级上相似三角形-视图与投影-反比例函数练习

合集下载

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第四章投影与视图练习题一、选择题1.如图,路灯灯柱OP的长为8米,身高米的小明从距离灯的底部点米的点A处,沿AO所在的直线行走14米到达点B处,人影的长度A. 变长了米B. 变短了米C. 变长了米D. 变短了米2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.3.如图,在直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为A. 3B. 5C. 6D. 74.在相同时刻的物高与影长成比例,如果高为m的测杆的影长为m,那么影长为30m的旗杆的高是A. 20mB. 16mC. 18mD. 15m5.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是A. B.C. D.6.在相同时刻的物高与影长成比例,如果高为的测杆的影长为3m,那么影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m7.相同时刻太阳光下,若高为的测杆的影长为3m,则影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m8.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿,它的影子,木竿PQ的影子有一部分落在了墙上,它的影子,,木竿PQ的长度为A. 3mB.C.D.9.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是A. B.C. D.10.如图,该几何体的俯视图是A. B. C. D.11.如图所示,该几何体的俯视图是A. B. C. D.12.如图所示的几何体的主视图为A. B. C. D.13.观察如图所示的三种视图,与之对应的物体是A.B.C.D.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A. 3,B. 2,C. 3,2D. 2,315.下列四个几何体中,主视图与俯视图不同的共有.A. 1个B. 2个C. 3个D. 4个二、填空题16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为______17.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_________.18.一个长方体的主视图和左视图如图所示单位:,则这个长方体的体积是______.19.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要_________个立方块.20.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是______.三、解答题21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.22.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆底部米的D处测得其影长DF为3m,设小丽身高为.求灯杆AB的高度;小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.23.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得,已知标杆直立时的高为,求路灯的高CD的长.24.一个几何体从三个方向看到的图形如图所示单位:.写出这个几何体的名称:_____;若其从上面看为正方形,根据图中数据计算这个几何体的表面积.答案和解析1.【答案】D【解析】【分析】此题考查中心投影及相似三角形的应用,应注意题中三角形的变化.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x米,B处时影长为y米.则米,米,,,∽,∽,,,则,;,,,故变短了米.故选D.2.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大即位似变换的关系.利用中心投影,延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,证明∽,然后利用相似比可求出的长.【解答】解:延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,,,.,,,,∽,,即,,故选C.4.【答案】C【解析】【分析】本题考查的是中心投影,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比列式计算即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为,,解得.故选C.5.【答案】B【解析】【分析】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:当等边三角形木框与阳光平行时,投影是A;当等边三角形木框与阳光垂直时,投影是C;当等边三角形木框与阳光有一定角度时,投影是D;投影不可能是B.故选B.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为3m,,.故选A.7.【答案】A【解析】【分析】此题考查了物高与影长的关系,解题的关键是将实际问题转化为数学问题,根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:,,解得:旗杆的高度米.故选A.8.【答案】B【解析】【分析】此题主要考查了平行投影以及相似三角形的应用有关知识,直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作,同一时刻物体影子与实际高度成比例,,解得:,,故选B.9.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.【答案】D【解析】解:从上边看是三个矩形,故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.【答案】D【解析】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.利用主视图的定义,即从几何体的正面观察得出视图即可.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.13.【答案】D【解析】【分析】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大,首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰选项ABC,选D.故选:D.14.【答案】C【解析】【分析】本题考查简单几何体的三视图,由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则,解得,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2 ,故选C.15.【答案】B【解析】【分析】本题考查了几何体的三种视图,掌握定义及各几何体的特点是关键.主视图是从正面看到的图形,俯视图是从物体的上面看到的图形,可根据各几何体的特点进行判断即可.【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图是圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.16.【答案】24【解析】解:设这栋建筑物的高度为xm,由题意得,,解得,即这栋建筑物的高度为24m.故答案为:24.根据同时同地的物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.17.【答案】10米【解析】【分析】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.根据平行的性质可知∽,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,由题意得,∽,,,,,,米.故答案为10米.18.【答案】24【解析】解:由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为.故答案为:24.由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.19.【答案】10,14【解析】【分析】本题主要考查了三视图判断几何体,要分成最多,最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”算出个数.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”解答即可.【解答】解:根据主视图和俯视图可知,正方体的分布的情况如下图所示:最多的正方体需要14个;正方体的分布最少的情况如下图所示:最少需要10个.故答案为10,14.20.【答案】7【解析】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查简单几何体的三视图的画法,画三视图时还要注意“长对正、宽相等、高平齐”.21.【答案】解:如图所示:【解析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为2,2,2,依此画出图形即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】解:,,∽,,.灯杆AB的高度为米.将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,如图所示.,,∽,,即,.同理,可得出∽,,即,.小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】由、可得出∽,根据相似三角形的性质可求出AB的长度,此题得解;将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,由、可得出∽,根据相似三角形的性质可求出的长度,同理可得出∽,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:由∽利用相似三角形的性质求出AB的长度;由∽利用相似三角形的性质求出PN的长度.23.【答案】解:设CD长为x米,,,,,,米,∽,,即,解得:.经检验,是原方程的解,路灯高CD为米.【解析】根据,,,得到,从而得到∽,利用相似三角形对应边的比相等列出比例式求解即可.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.【答案】解:长方体;由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是答:这个几何体的表面积是.【解析】【分析】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.由2个视图是长方形,那么这个几何体为棱柱,另一个视图是正方形,那么可得该几何体是长方体;由三视图知,长方体的底面是边长为3的正方形,高是4,根据长方体表面积公式列式计算即可.【解答】解:根据三视图可得这个几何体是长方体.故答案为长方体;见答案.。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)

一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.343.如图,几何体由6个大小相同的正方体组成,其俯视图...是()A.B.C.D.4.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A .4B .6C .9D .125.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4π B .2π C .32π D .π6.如图是由五个棱长为2的小立方块搭建而成的几何体,则它的左视图的面积是( )A .3B .4C .12D .167.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是 ( )A .6B .7C .8D .98.如图的几何体的俯视图是( )A.B.C.D.9.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.10.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.11.下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱12.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.二、填空题13.写出图中圆锥的主视图名称________.14.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x=______,y=________.15.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.一个立体图形的三视图如图所示,这个立体图形的名称是__.18.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是22的正方形若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则可以拿掉小方块的个数为_____.19.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.如图,在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学在测量树的高度时,发现树的影子有一部分(0.2 米)落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是 4.62米.”小强说:“要是没有台阶遮挡的话,树的影子长度肯定比 4.62米要长.”(1)你认为谁的说法对?并说明理由;(2)请根据小玲和小强的测量数据计算树的高度.【答案】(1)小强的说法对,理由见解析;(2)8米.【分析】(1)画出解题示意图,利用同一时刻,物高与影长成正比,计算判断即可;(2)利用同一时刻,物高与影长成正比,计算判断即可;【详解】解:(1)小强的说法对;根据题意画出图形,如图所示,根据题意,得10.6DE EH =, ∵DE=0.3米,∴0.30.60.18EH =⨯=(米).∵GD ∥FH ,FG ∥DH , ∴四边形DGFH 是平行四边形, ∴0.2FH DG ==米. ∵AE=4.42米,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8(米), 即要是没有台阶遮挡的话,树的影子长度是4.8米, ∴小强的说法对;(2)由(1)可知:AF=4.8米.∵10.6AB AF =, ∴8AB =米.答:树的高度为8米. 【点睛】本题考查了太阳光下的平行投影问题,准确理解影长的意义,灵活运用同一时刻,物高与影长成正比是解题的关键.22.请你画出下面几何体的主视图,左视图,俯视图.【答案】见解析. 【分析】根据三视图的概念作图即可.【详解】解:如图所示:【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看所得到的图形.23.作图题(1)如图所示的几何体是由5个相同的正方体搭成的,请画出它的三视图.(涂阴影)(2)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(涂阴影)【答案】(1)见解析;(2)见解析.【分析】(1)根据三视图的定义画图即可;(2)根三视图的定义再结合题意画图即可.【详解】解:(1)该立体图形的三视图如图:(2)该几何体的主视图和左视图如图:【点睛】本题考查了根据立体图形画三视图,较好的空间想象能力是解答本题的关键.24.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.25.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD 的影子刚好不落在广告墙PQ上.(1)画出太阳光线CE和AB的影子BF;(2)若AB=10米,CD=6米,CD到PQ的距离DQ的长为8米,求此时木杆AB的影子BF的长.【答案】(1)如图所示,见解析;(2)木杆AB 的影长BF 是403米. 【分析】(1)连结CQ ,即为太阳光线CE ,过A 点作CE 的平行线与BQ 交于点F ,即可得到AB 的影子BF ;(2)根据在同一时刻的太阳光线下,物体高度与影子长度对应成比例可列出关系式,代入数值计算即可求得BF 的长. 【详解】解:(1)如图所示,CE 和BF 即为所求;(2)设木杆AB 的影长BF 为x 米, 由题意,得:CD DQ AB BF =,即6810x=, 解得:403x =. 答:木杆AB 的影子BF 的长为403米. 【点睛】本题考查了相似三角形的应用,理解题意并熟练运用相似三角形的性质是解题的关键.26.如图,甲、乙两个几何体是由一些棱长是1的正方体粘连在一起所构成的,这两个几何体从上面看到的形状图相同是“”请回答下列问题:(1)请分别写出粘连甲、乙两个几何体的正方体的个数.(2)甲、乙两个几何体从正面、左面、上面三个方向所看到的形状图中哪个不相同?请画出这个不同的形状图.(3)请分别求出甲、乙两个几何体的表面积.【答案】(1)见解析,甲的正方体有8个;乙的正方体有7个;(2)见解析;(3)甲几何体的表面积为:28;乙几何体的表面积为:28【分析】(1)分别利用几何的形状得出组成的个数;(2)甲的左视图从左往右3列正方形的个数依次为2,2,2;乙的左视图从左往右3列正方形的个数依次为2,1,2;(3)直接利用几何体的形状进而得出表面积.【详解】解:(1)如图所示:甲的正方体有4+4=8个;乙的正方体有4+3=7个;(2)甲、乙两个几何体的主视图相同,俯视图也相同,只有左视图不同;甲、乙两个几何体的左视图不同,如图所示:;(3)甲几何体的表面积为:14+14=28;乙几何体的表面积为:14+1+5+8=28.【点睛】本题考查了视图的相关知识;用到的知识点是:三视图分别是从物体的正面、左面、上面看得到的平面图形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.D解析:D【分析】首先要数清这个组合体的表面是由几个正方形组成的,再乘以1个正方形的面积即可得到表面积.【详解】+6×2+2)×21=34解:这个组合几何体的表面积为:(5×2+52故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.C解析:C【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【详解】解:从物体上面看,底层是1个小正方形,上层是并排放4个小正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.5.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.6.C解析:C【分析】先确定几何体的左视图的形状,再根据图形求面积.【详解】由图知该几何体的左视图由两列构成,第一列是两个小正方块,第二列是一个小正方块,共三个小正方块,∴它的左视图的面积是23212,故选:C.【点睛】此题考查几何体的三视图,根据几何体得到三视图的图形形状是解题的关键. 7.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.8.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.9.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.10.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.11.A解析:A【解析】【分析】根据图形的三视图特点,进行选择.【详解】由题意图形的三视图可判断图形为圆锥.故答案选A.【点睛】本题主要考查的是三视图的性质特征,熟练掌握三视图的性质特征是本题的解题关键. 12.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.二、填空题13.等腰三角形【解析】主视图是指从正面看圆锥体从正面看是等腰三角形故答案为:等腰三角形解析:等腰三角形【解析】主视图是指从正面看,圆锥体从正面看是等腰三角形,故答案为:等腰三角形.14.1或23【分析】由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列叠有2个正方体从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知解析:1或2 3【分析】由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,从而求解【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为1或2;3.15.5【详解】首先作出BM⊥EO得出△BND∽△BME即可得出再利用已知得出BNBMDN的长即可求出EM进而求出EO即可解:过点B作BM⊥EO交CD于点N∵CD∥EO∴△BND∽△BME∴∵点A(﹣10解析:5【详解】首先作出BM⊥EO,得出△BND∽△BME,即可得出BN DNBM EM=,再利用已知得出BN,BM,DN的长,即可求出EM,进而求出EO即可.解:过点B作BM⊥EO,交CD于点N,∵CD∥EO,∴△BND∽△BME,∴BN DNBM EM=,∵点A(﹣10,0),∴BM=10米,∵眼睛距地面1.5米,∴AB=CN=MO=1.5米,∵DC=2米,∴DN=2﹣1.5=0.5米,∵他的前方5米处有一堵墙DC,∴BN=5米,∴50.510EM=,∴EM=1米,∴EO=1+1.5=2.5米.故答案为2.5.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.正四棱柱【分析】由主视图和左视图可确定是柱体再由俯视图可确定具体形状【详解】解:由主视图和左视图可确定是柱体再由俯视图可确定是正四棱柱故答案为:正四棱柱【点睛】本题考查了由三视图还原立体图形掌握立体解析:正四棱柱.【分析】由主视图和左视图可确定是柱体,再由俯视图可确定具体形状.【详解】解:由主视图和左视图可确定是柱体,再由俯视图可确定是正四棱柱.故答案为:正四棱柱.【点睛】本题考查了由三视图还原立体图形,掌握立体图形的三视图的形状,注意解题所用的方法.18.4或5【分析】根据正面和左面看到的图形可知上面一层必须保留左后面的正方体上层其它的正方体拿掉下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体另外两个保留据解析:4或5【分析】根据正面和左面看到的图形可知,上面一层必须保留左后面的正方体,上层其它的正方体拿掉,下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体,另外两个保留,据此作答即可.【详解】解:根据题意,拿掉若干个小立方块后,从正面和左面看到的图形如图2所示,所以可拿掉的小方块的个数可为5个或4个.故答案为:4或5.【点睛】本题考查了简单组合体的三视图.主要考查学生的空间想象能力.19.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。

最新北师版九年级初三数学上册第五章投影与视图第一节《投影》》试卷

最新北师版九年级初三数学上册第五章投影与视图第一节《投影》》试卷

北师大版数学九年级上册第五章投影与视图第一节《投影》一、选择题1.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B. 15 C. 10 D.3.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是()A. 正方形B. 长方形C. 线段D. 梯形4.如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 逐渐变长D. 先变长后变短5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A. ①②③④B. ④①③②C. ④②③①D. ④③②①7.在阳光的照射下,一个矩形框的影子的形状不可能是()A. 线段B. 平行四边形C. 等腰梯形D. 矩形8.从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A. 先变长,后变短B. 先变短,后变长C. 方向改变,长短不变D. 以上都不正确9.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A. 相等B. 长的较长C. 短的较长D. 不能确定10.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A. 3.2米B. 4.8米C. 5.2米D. 5.6米11.圆形物体在阳光下的投影不可能是()A. 圆形B. 线段C. 矩形D. 椭圆形12.如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A. 矩形B. 线段C. 平行四边形D. 一个点13.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A. ③①④②B. ③②①④C. ③④①②D. ②④①③14.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.15.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. B. C. D.二、填空题16.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.17.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子________.(填“长”或者“短”)19.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是________,影子的长短随人的位置的变化而变化的是________.20.太阳光线下形成的投影是________投影.(平行或中心)三、解答题21.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.22.如图,分别是两根木杆及其影子的图形.(1)哪个图形反应了阳光下的情形?哪个图反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.23.某一广告墙PQ旁有两根直立的木杆AB和CD ,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.答案解析部分一、选择题1.【答案】A【考点】平行投影【解析】【解答】A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.2.【答案】B【考点】平行投影【解析】解答:由题意得:DC=2R ,DE= ,∠CED=60°,∴可得:DC=DEsin60°=15.故选B.分析:根据题意建立直角三角形DCE ,然后根据∠CED=60°,DE=可求出答案.3.【答案】D【考点】平行投影【解析】【解答】在同一时刻,平行物体的投影仍旧平行.所以正方形纸板在投影面上形成的投影不可能是梯形.故选:D.【分析】利用平行投影的特点:在同一时刻,平行物体的投影仍旧平行判定即可.4.【答案】B【考点】中心投影【解析】【解答】在小亮由A处径直走到路灯下时,他在地上的影子逐渐变短,当他从路灯下走到B处时,他在地上的影子逐渐变长.故选B.【分析】根据中心投影的特征可得小亮在地上的影子先变短后变长.5.【答案】A【考点】中心投影【解析】【解答】因为人往路灯下行走的这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选A.【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.6.【答案】B【考点】平行投影【解析】【解答】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北﹣北﹣东北﹣东,故分析可得:先后顺序为④①③②.故选B.【分析】北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.【答案】C【考点】平行投影【解析】【解答】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是等腰梯形.故选:C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.8.【答案】B【考点】平行投影【解析】【解答】旭日广场的旗杆在地面上的影子的变化规律是先变短,后变长.故选B.【分析】根据太阳的运动规律和平行投影的特点和规律可知.9.【答案】D【考点】平行投影【解析】【解答】由于不知道两个物体的摆放情况,无法比较两物体.故选D.【分析】因不知道物体与地面的角度关系如何,即不知道与光线的角度大小,故无法比较其投影的长短.10.【答案】B【考点】平行投影【解析】解答:设旗杆的高为x,有,可得x=4.8米.故选:B.分析:由成比例关系,列出关系式,代入数据即可求出结果.11.【答案】C【考点】平行投影【解析】【解答】∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,但不可能是矩形,故选C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.12.【答案】D【考点】平行投影【解析】【解答】阳光斜射在地面上,当矩形纸片与太阳光垂直时,矩形纸片在地面上的影子为矩形;当矩形纸片与太阳光斜交时,矩形纸片在地面上的影子为平行四边形;当矩形纸片与太阳光平行时,矩形纸片在地面上的影子为线段.故选D.【分析】在太阳光下的投影为平行投影,平行投影不可能把矩形投影为一个点.13.【答案】C【考点】平行投影【解析】【解答】西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②.故选:C.【分析】根据从早晨到傍晚物体影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.14.【答案】D【考点】平行投影【解析】【解答】依题意,光线是垂直照下的,故只有D符合.故选D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.15.【答案】B【考点】平行投影【解析】解答:第一次观察到的影子长为6×cot60°= (米);第二次观察到的影子长为6×cot30°= (米).两次观察到的影子长的差= = (米).故选B.分析:利用所给角的正切值分别求出两次影子的长,然后作差即可.二、填空题16.【答案】40【考点】平行投影【解析】【解答】∵,∴(m).故答案为:40米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.17.【答案】上午8时【考点】平行投影【解析】【解答】根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为:上午8时.【分析】根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长.故在上午影子最长的时刻为即最早的时刻:上午8时.18.【答案】短【考点】平行投影【解析】【解答】∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.【分析】根据太阳照射的角度从春天开始会逐渐开始直射,则影子会不断变短.19.【答案】太阳光下形成的影子;灯光下形成的影子【考点】平行投影,中心投影【解析】【解答】根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.故答案为:太阳光下形成的影子;灯光下形成的影子.【分析】根据平行投影和中兴投影的性质分别分析得出答案即可.20.【答案】平行【考点】平行投影【解析】【解答】太阳光线下形成的投影是平行投影.故答案为:平行.【分析】太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.三、解答题21.【答案】(1)解答:影子EG如图所示;;(2)解答:∵DG∥AC ,∴∠G=∠C ,∴Rt△ABC∽Rt△DGE ,∴,即,解得,∴旗杆的高度为.【考点】相似三角形的应用,平行投影【解析】【分析】连结AC ,过D点作DG∥AC交BC于G点,则GE为所求;先证明Rt△ABC∽△RtDGE ,然后利用相似比计算DE的长.22.【答案】(1)解答:上图为路灯下的情形,下图为太阳光下的情形;;(2)如图所示:【考点】平行投影,中心投影【解析】【分析】利用物体和影子关系得出光线方向,进而判断得出;利用上图两根木杆及其影子位置得出路灯的位置,进而得出小树的影子,利用下图两根木杆及其影子位置得出太阳光线方向,进而得出小树的影子.23.【答案】(1)解答:如图所示:;(2)设木杆AB的影长BF为x米,由题意,得,解得.答:木杆AB的影长是米.【考点】相似三角形的应用,平行投影【解析】【分析】根据木杆CD的影子刚好不落在广告墙上可以画出此时的太阳光线CE,根据太阳光线是平行的,可以画出木杆AB的影子BF;根据在同一时刻,物高与影子成比例进行求解.。

九年级上册数学第四章视图与投影练习(附答案)

九年级上册数学第四章视图与投影练习(附答案)

九年级上册数学第四章视图与投影练习(附答案)以下是为您推荐的九年级上册数学第四章视图与投影练习(附答案),希望本篇文章对您学习有所帮助。

 九年级上册数学第四章视图与投影练习(附答案) 1.图1所示的物体的左视图(从左面看得到的视图)是( D ) 图1 A. B. C. D. 2.如图所示的是某几何体的三视图,则该几何体的形状是( B ) (A)长方体(B)三棱柱(C)圆锥(D)正方体 3.在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那幺影长为30米的旗杆的高是( C ) A、20米B、16米C、18米D、15米 4.如图3,箭头表示投影的方向,则图中圆柱体的投影是( B ) A.圆B.矩形C.梯形D.圆柱 5.在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是( A ) 6.如图5,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B ) A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长 7.关于盲区的说法正确的有( C ) (1)我们把视线看不到的地方称为盲区 (2)我们上山与下山时视野盲区是相同的 (3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住 (4)人们常说站得高,看得远”,说明在高处视野盲区要小,视野范围大 A、1 个B、2个C、3个D、4个 8.一个长方体的左视图、俯视图及相关数据如图6所示,则其主视图的面积为( B ) A.6 B.8 C.12 D.24 9.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是( D ) A.AB=CD B. 小于等于C. D. ≥ 10.图7-(1)表示一个正五棱柱形状的高大建筑物,7-图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图7-(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为( B ) A.30º B.36º C.45º D.72º 二、细心填一填!(30分) 11.如果一个立体图形的主视图为矩形,则这个立体图形可能是( 只需填上一个立体图形). 12.如图8中物体的一个视图(a)的名称为_▲_. 13. 一个几何体的三视图如图9所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是 . 14.我们把大型会场、体育看台、电影院建为阶梯形状,是为了. 15.如图10,为了测量学校旗杆的高度,小东用长为3.2的竹竿做测量工具。

初三数学中考总复习 尺规作图、视图与投影 专题复习练习 含答案

初三数学中考总复习   尺规作图、视图与投影   专题复习练习 含答案

初三数学中考总复习尺规作图、视图与投影专题复习练习1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( C )2.如图,是一个空心圆柱,它的俯视图是( B )3.图中三视图对应的几何体是( C )4.下列图形中,不可以作为一个正方体的展开图的是( C )5.下列尺规作图,能判断AD是△ABC边上的高是( B )6.某老师在上完视图投影这堂课后,带着同学们来到阳光明媚的操场上.此时老师拿出一个矩形的框子问同学们地面上会出现什么图形,下面的图形不会出现的是( A )A.梯形 B.正方形 C.线段 D.平行四边形7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8. 一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是( B )A.3个B.4个C.5个D.6个9.写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.10.如图,根据尺规作图所留痕迹,可以求出∠ADC=__70__°.11.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__.12.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是__24__cm3.13.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成28°角时,测得旗杆AB在地面上的投影BC长为25米,则旗杆AB的高度是__13.3__米.(结果精确到0.1)14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是__7__个.13.如图,已知线段a 及∠O ,只用直尺和圆规,求作△ABC ,使BC =a ,∠B=∠O ,∠C=2∠B.(在指定作图区域作图,保留作图痕迹,不写作法)解:如图所示∶14.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示 (2)∵DG∥AC,∴∠G =∠C ,∴Rt △ABC ∽Rt △DGE ,∴AB DE =BC EG ,即1.6DE =2.416,解得DE =323,∴旗杆的高度为323m15. 如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵的长.解:(1)如图, ⊙C 为所求(2)∵⊙C 切AB 于D, ∴CD⊥AB,∴∠ADC=90°, ∴∠DCE=90°-∠A=90°-30°=60°, ∴∠BCD=90°-∠ACD=30°, 在Rt△BCD 中,∵cos∠BCD=CD BC ,∴CD=3cos30°=332,∴DE ︵的长=60·π·332180=32π初三数学专题复习 尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是( )A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是( )A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是( )A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指( )A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C 在∠AOB 的边OB 上,用尺规作出了∠BCN=∠AOC ,作图痕迹中,弧FG 是( )A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。

九年级数学 相似三角形(压轴必刷30题专项训练)(解析版)

九年级数学 相似三角形(压轴必刷30题专项训练)(解析版)

相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)(2)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)(2)

一、选择题1.观察如图所示的几何体,从左面看到的图形是()A.B.C.D.2.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同3.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.4.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动B.把剪影向投影灯方向移动C.把剪影向银幕方向移动D.把银幕向投影灯方向移动5.如图是用4个同样大小正方体搭成的立体图形,从左面看,它应是下列图形中的()A.B.C.D.6.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A.B.C.D.7.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A.5 B.6 C.7 D.88.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.9.如图所示的某零件左视图是()A.B.C.D.10.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B 的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变11.如图是一个由多个相同小正方体堆积而成的几何体从上面看到的形状图,图中所示数字为该位置小正方体的个数,则这个几何体从正面看到的形状图是( )A.B.C.D.12.某立体图形如图,其主视图是()A.B.C.D.二、填空题13.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积是______14.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积_____.15.长方体从正面看和从上面看所得到的图形如图所示,则这个长方体的体积是________.16.一个几何体的三视图如图所示,则这个几何体是_____.17.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.18.如图,电灯P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是3m,则P到AB的距离是__________m.19.一个立体图形的三视图如图所示,这个立体图形的名称是__.20.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为__.三、解答题21.在一次数学活动课上,王老师带领学生去测量教学楼的高度.在太阳光下,测得身高1.6米的小同学(用线段BC表示)的影长BA为1.1米,与此同时,测得教学楼(用线段DE表示)的影长DF为12.1米.(1)请你在图中画出影长DF;(2)求教学楼DE的高度.【答案】(1)见解析(2)17.6米【分析】(1)射线AC,过E点作EF∥AC,交AD于点F即可;(2)根据相似列出比例式,求解即可.【详解】(1)画射线AC,过E点作EF∥AC,交AD于点F,DF就是所求画影长.(2)根据题意,∠EDF=∠CBA=90°,∵EF ∥AC ,∴∠EFD=∠CAB ,∴EFD CAB △∽△. ED DF CB BA ∴=, 12.11.6 1.1DE =, 17.6DE =(米),答:教学楼DE 的高度为17.6米.【点睛】本题考查了相似三角形的应用和平行投影,解题关键是准确画出图形,根据平行投影证明三角形相似.22.工厂生产某种零件,其示意图如下(单位:mm ).(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图;(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.【答案】(1)见解析;(2)72mm 2【分析】(1)根据左视图是从左面看得到的图形,俯视图是从上面看得到的图形进行画图,要本着长对正,高平齐,宽相等规则,和三视图的位置来画即可;(2)根据观察到的各面的面积进而求得表面积即可.【详解】(1)根据长对正,高平齐,宽相等,和三视图的位置来画,如图所示:(2)[5×2+2×(3﹣2)+5×3+3×3]×2,=(10+2+15+9)×2,=36×2,=72(mm2).故需要涂漆的面积是72mm2.【点睛】本题考查了几何体三视图的画法以及表面积的求法,注意观察角度是解题的关键.23.由几个相同的棱长的小正方体搭成的几何体的俯视图如图所示,正方形中的数字表示该位置上小正方体的个数,在网格中画出这个几何体的主视图和左视图(注:网格中小正方形的边长等于小正方体的棱长)【答案】见解析【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1.据此可画出图形.【详解】解:如图所示:【点睛】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.用5个完全相同的小正方体组合成如图所示的立体图形,请你画出从正面、左面和上面看到的几何体的形状.【答案】见解析【分析】从正面看有3列,每列小正方形数目分别为1,1,2;从左面看有2列,每列小正方形的数目分别为2,1;从上面看有3列,每列小正方形的数目为2,1,1.【详解】解:如图所示:.【点睛】本题考查了实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.由8个边长为1的相同小立方块搭成的几何体如图所示:(1)请画出它的三视图;(2)请计算它的表面积.【答案】(1)三视图见解析;(2)36【分析】(1)画出从正面、左面和上面看到的图形即可;(2)查出从前后,上下,左右可以看到的面,进行计算即可求解.【详解】解:(1)如图所示:;(2)从正面和后面看各有6个面,从上面和下面看各有6个面,从左面和右面看各有6个面,所以表面积为:()666236++⨯=.【点睛】本题考查三视图与求几何体的表面积,画出三视图是解题的关键.26.作图题(1)如图所示的几何体是由5个相同的正方体搭成的,请画出它的三视图.(涂阴影)(2)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(涂阴影)【答案】(1)见解析;(2)见解析.【分析】(1)根据三视图的定义画图即可;(2)根三视图的定义再结合题意画图即可.【详解】解:(1)该立体图形的三视图如图:(2)该几何体的主视图和左视图如图:【点睛】本题考查了根据立体图形画三视图,较好的空间想象能力是解答本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.3.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.4.B解析:B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B 正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.故选:B.【点睛】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.5.A解析:A【分析】从左面观察三个正方形的形状即可解答.【详解】解:从左面看,共有2列,左边一列是两个正方形,右边是一个正方形,且下齐.故答案为A.【点睛】本题考查了立体图形的三视图,理解三视图的概念以及较好的空间思维能力是解答本题的关键.6.D【解析】【分析】根据主视图是从物体正面看所得到的图形判断即可.【详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D.【点睛】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.B解析:B【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边上层最多有2个,右边下层最多有2个.所以图中的小正方体最多8块,最少有6块.故选:B.【点睛】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.D解析:D【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.9.B解析:B【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.10.A解析:A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.11.C解析:C【解析】【分析】根据俯视图可判断主视图有3列,根据数字可判断每列最多的小正方体的个数,即可得答案.【详解】由俯视图中的数字可得:主视图有3列,从左到右的最大数字分别是:3,3,2.故选C.【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方体数目为俯视图中该列小正方体数字中的最大数字.12.B解析:B【解析】【分析】找到从正面看所得到的图形即可.【详解】从物体正面看,左边1个正方形,中间2个正方形,右边2个正方形.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.二、填空题13.3π【分析】由三视图可知:该几何体是一个圆锥其轴截面是一个高为的正三角形可计算边长为2据此即可得出表面积【详解】由三视图可知:该几何体是一个圆锥其轴截面是一个高为的正三角形∴正三角形的边长==2∴圆解析:3π【分析】为2,据此即可得出表面积.【详解】∴=2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为1×2π×2=2π,∵底面积为πr2=π,2∴全面积是3π.故填:3π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.5【分析】先得出从上面看所得到的图形再求出俯视图的面积即可【详解】从上面看易得第一行有1个正方形第二行有3个正方形第三行有1个正方形共5个正方形s所以面积为5故答案为5【点睛】本题考查了三视图的知识解析:5【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【详解】从上面看易得第一行有1个正方形,第二行有3个正方形,第三行有1个正方形,共5个正方形,s所以面积为5.故答案为5.【点睛】本题考查了三视图的知识,熟知俯视图是从物体的上面看得到的视图是解决问题的关键. 15.36【解析】由图可知这个长方体的长为4宽为3高为3∴长方体的体积V=4×3×3=36故答案为36解析:36【解析】由图可知,这个长方体的长为4,宽为3,高为3,∴长方体的体积V=4×3×3=36,故答案为36.16.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.17.15π【解析】试题分析:由三视图可知这个几何体是母线长为5高为4的圆锥∴a=2=6∴底面半径为3∴侧面积为:π×5×3=15π考点:1三视图;2圆锥的侧面积解析:15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.18.1【解析】试题分析:根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可考点:1相似三角形的应用2中心投影解析:1【解析】试题分析:根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.考点:1.相似三角形的应用.2.中心投影.19.正四棱柱【分析】由主视图和左视图可确定是柱体再由俯视图可确定具体形状【详解】解:由主视图和左视图可确定是柱体再由俯视图可确定是正四棱柱故答案为:正四棱柱【点睛】本题考查了由三视图还原立体图形掌握立体解析:正四棱柱.【分析】由主视图和左视图可确定是柱体,再由俯视图可确定具体形状.【详解】解:由主视图和左视图可确定是柱体,再由俯视图可确定是正四棱柱.故答案为:正四棱柱.【点睛】本题考查了由三视图还原立体图形,掌握立体图形的三视图的形状,注意解题所用的方法.20.5【分析】由主视图和左视图可得此几何体有三行三列判断出各行各列最少有几个正方体组成即可得答案【详解】由主视图和左视图可得此几何体有三行三列∵底层正方体最少有3个小正方体第二层最少有2个正方体∴组成这解析:5【分析】由主视图和左视图可得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可得答案.【详解】由主视图和左视图可得此几何体有三行,三列,∵底层正方体最少有3个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有5个,∴n的最小值为5,故答案为:5【点睛】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.三、解答题21.无22.无23.无24.无25.无26.无。

第15讲 相似、投影与视图(易错点梳理+微练习)(解析版)

第15讲 相似、投影与视图(易错点梳理+微练习)(解析版)

第15讲相似、投影与视图易错点梳理易错点梳理易错点01混淆相似三角形的判定定理与全等三角形的判定定理相似三角形的常用判定方法有:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;三边对应成比例,两三角形相似;两边对应成比例且夹角相等,两三角形相似;两角对应相等,两三角形相似.全等三角形的常用判定方法有SAS,ASA,AAS,SSS 这4种。

易错点02混淆位似和相似位似是一种特殊的相似,位似图形一定相似(或全等),但相似图形不一定位似易错点03错误认为相似三角形的面积比等于相似比错误认为相似三角形的面积比等于相似比,相似三角形的面积比等于相似比的平方。

易错点04混淆平行投影与正投影的概念由平行的光线所形成的投影是平行投影.在平行投影中,如果投射线垂直于投影面,那么这种投影叫作正投影,正投影属于平行投影的一种。

易错点05颠倒了视图的观察方向一个物体在3个相互垂直的投影面内进行正投影,在正面内得到的由前向后观察物体的视图是主视图,在水平面内得到的由上向下观察物体的视图是俯视图,在侧面内得到的由左向右观察物体的视图是左视。

图.例题分析考向01相似三角形的性质例题1:(2021·陕西兴平·九年级期中)如图,在正方形ABCD 中,点P 、Q 分别在AB 、BC 的延长线上,且BP CQ =,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ DP ⊥;②2OA OE OP =⋅;③AOD S =△S 四边形OECF ,其中正确结论的个数是()A .0B .1C .2D .3【答案】C【解析】解:∵四边形ABCD 是正方形,∴,90AB AD BC CD DAB ABC ===∠=∠=︒,∵BP CQ =,∴BP AB CQ BC +=+,即AP BQ =,在△DAP 与ABQ △中,ADABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ ,∴P Q ∠=∠,∵90Q QAB ∠+∠=︒,∴90P QAB ∠+∠=︒,∴90AOP ︒=∠,∴AQ DP ⊥,则结论①正确;∵90DOA AOP ∠=∠=︒,90ADO P ADO DAO ∠+∠=∠+∠=︒,∴DAO P ∠=∠,∴△DAO ∽△APO ,∴OAODOP OA =,∴2OA OD OP =⋅,∵AE AB >,AB AD =,∴AE AD >,∴OD OE ≠,∴2OA OE OP ≠⋅;则结论②错误;在CQF △与△BPE 中,FCQ EBP Q P CQ BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF ≌△BPE ,∴CF BE =,∴CD CF BC BE -=-,即DF CE =,在△ADF 与△DCE 中,90AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADF ≌△DCE,∴△△=ADF DCE S S ,∴ADF DFO DCE DOF S S S S -=-△△△△,即AOD OECF S S = 四边形,则结论③正确;综上,正确结论的个数是2个,故选:C .例题2:(2021·河南·平顶山市第九中学九年级期中)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②DEF ABG ∽△△;③32ABG FGH S S =△△;④AG +DF =FG .其中正确的是()(把所有正确结论的序号都选上)A .①②B .①④C .①②③D .①③④【答案】D 【解析】解:∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴∠CBE =∠FBE ,∠ABG =∠FBG ,BF =BC =10,BH =BA =6,AG =GH ,∴∠EBG =∠EBF +∠FBG =12∠CBF +12∠ABF =12∠ABC =45°,所以①正确;在Rt △ABF 中,AF 8==,∴DF =AD −AF =10−8=2,设AG =x ,则GH =x ,GF =8−x ,HF =BF −BH =10−6=4,在Rt △GFH 中,∵GH 2+HF 2=GF 2,∴x 2+42=(8−x )2,解得x =3,∴GF =5,∴AG +DF =FG =5,所以④正确;∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处∴∠BFE =∠C =90°,∴∠EFD +∠AFB =90°,而∠AFB +∠ABF =90°,∴∠ABF =∠EFD ,∴△ABF ∽△DFE ,∴AB AF DF DE =,∴8463DE AF DF AB ===,而623AB AG ==,∴AB DE AG DF≠,∴△DEF 与△ABG 不相似;所以②错误.∵S △ABG =12×6×3=9,S △GHF =12×3×4=6,∴S △ABG =32S △FGH .所以③正确.∴正确的结论有:①③④,故选:D .考向02相似三角形的判定例题3:如图,每个小方格的边长都是1,则下列图中三角形(阴影部分)与△ABC 相似的是()A.B.C.D.【答案】C【解析】解:因为△ABC中有一个角是135°,选项中,有135°角的三角形只有C,且满足两边成比例夹角相等,故选:C.例题4:(2021·上海浦东新·九年级期中)如图,在正方形ABCD中,点E为AD边上的一个动点(与点A,D不重合),∠EBM=45°,BE交对角线AC于点F,BM交对角线AC于点G,交CD于点M,下列结论中错误的是()A.△AEF∽△CBF B.△CMG∽△BFG C.△ABF∽△CBG D.△BDE∽△BCG【答案】C【解析】解:∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∠DCA=∠ACB=∠DAC=∠CAB=∠EBM=45°,∴△AEF∽△CBF,故选项A不合题意;∵∠EBM=∠DCA=45︒,∠MGC=∠BGF,∴△CMG∽△BFG,故选项B不合题意;∵∠CAB=∠ACB=∠FBG=45°,∴∠ABF+∠CBG=45°,∴∠ABF与∠CBG不一定相等,∴△ABF与△CBG不一定相似,故选项C符合题意;∠=︒∠+∠∠=︒=∠+∠45=,45,FBG DBE DBM DBC DBM CBG∴∠=∠DBE CBG,∠=∠=︒EDB GCB45,∴△BDE∽△BCG,故D不符合题意;故选:C.考向03投影与视图例题5:(2021·广东深圳·九年级期末)如图所示的几何体,从左面看的图形是()A.B.C.D.【答案】A【解析】解:从左面看,是一列三个小正方形.故选A.例题6:(2021·江苏南京·中考真题)如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【答案】D【解析】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些,故选D微练习一、单选题1.(2021·陕西武功·九年级期中)如图,直线123l l l ∥∥,直线a 、b 与1l 、2l 、3l 分别交于点A 、B 、C 和点D 、E 、F ,若:2:3AB BC =,9EF =,则DE 的长是()A .4B .7C .6D .12【答案】C 【解析】解:∵l 1∥l 2∥l 3,∴AB :BC =DE :EF ,∵AB :BC =2:3,EF =9,∴2:3=DE :EF ,∴DE =6.故选:C .2.(2021·河南封丘·九年级期中)下列图形一定相似的是()A .两个平行四边形B .两个矩形C .两个正方形D .两个等腰三角形【答案】C 【解析】解:A 、两个平行四边形边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;B 、两个矩形四个角相等,但是各边不一定对应成比例,所以不一定相似,故本选项错误;C 、两个正方形,形状相同,大小不一定相同,符合相似的定义,故本选项正确;D 、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选C .3.(2021·上海市市西初级中学九年级期中)将两个完全相同的等腰直角三角形△ABC 与△AFG 摆成如图的样子,两个三角形的重叠部分为△ADE ,那么图中一定相似的三角形是()A .△ABC 与△ADEB .△ABD 与△AEC C .△ABE 与△ACD D .△AEC 与△ADC【答案】C 【解析】A.△ABC 是直角三角形,△ADE 不是直角三角形,故不能判断△ABC 与△ADE 相似;B.只有C B ∠=∠,不能判断B 选项中△ABD 与△AEC 相似;D.只有C C ∠=∠,不能判断D 选项中△AEC 与△ADC 相似;C.,ABC AFG △△是等腰直角三角形,则45,90ABE ACB DAE BAC ∠=∠=∠=︒∠=︒设BAD ∠=α,则45ADC BAD B α∠=∠+∠=︒+,90DAC BAC BAD α∠=∠-∠=︒-,9045EAC DAE BAD α∴∠=︒-∠-∠=︒-,∴AEB C EAC ∠=∠+∠454590αα=︒+︒-=︒-,DAC AEB ∴∠=∠45C B ∠=∠=︒ ∴ABE DCA △△∽,故选C .4.(2021·福建周宁·九年级期中)如图,点P 是△ABC 的边AC 上一点,连结BP ,以下条件中,不能判定△ABP ∽△ACB 的是()A .AB AP =AC AB B .BC BP =AC AB C .∠ABP =∠CD .∠APB =∠ABC【答案】B【解析】解:A 、∵∠A =∠A ,AB AP =AC AB ∴△ABP ∽△ACB ,故本选项不符合题意;B 、根据BC BP =AC AB 和∠A =∠A 不能判断△ABP ∽△ACB ,故本选项符合题意;C 、∵∠A =∠A ,∠ABP =∠C ,∴△ABP ∽△ACB ,故本选项不符合题意;D 、∵∠A =∠A ,∠APB =∠ABC ,∴△ABP ∽△ACB ,故本选项不符合题意;故选:B .5.(2021·河南·郑州市第二初级中学九年级期中)如图,▱OABC 的顶点O (0,0),A (1,2),点C 在x 轴的正半轴上,延长BA 交y 轴于点D ,将△ODA 绕点O 顺时针旋转得到△OD 'A ',当点D 的对应点D '落在OA 上时,D 'A '的延长线恰好经过点C ,则点C 的坐标为()A .B .C .1,0)+D .1,0)+【答案】B 【解析】解:延长A ′D ′交y 轴于点E ,延长D ′A ′,由题意D ′A ′的延长线经过点C ,如图,∵A (1,2),∴AD =1,OD =2,∴OA ==由题意:△OA ′D ′≌△OAD ,∴A ′D ′=AD =1,OA ′=OA OD ′=OD =2,∠A ′D ′O =∠ADO =90°,∠A ′OD ′=∠DOD ′.则OD ′⊥A ′E ,OA 平分∠A ′OE ,∴△A ′OE 为等腰三角形.∴OE =OA ED ′=A ′D ′=1.∵EO ⊥OC ,OD ′⊥EC ,∴△OED ′∽△CEO .∴ED EO OD OC''=.∴12=.∴OC∴C (0).故选:B .6.(2021·安徽·阜阳实验中学九年级期中)如图,在Rt △ABC 中,∠ABC =90°.AB =BC .点D 是线段AB 上的一点,连接CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF ,给出以下四个结论:①AG AB =AF FC ;②若点D 是AB 的中点,则AF=3AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;④若DB AD =12,则9=ABC BDF S S △△,其中正确的结论的个数是()A .1B .2C .3D .4【答案】C 【解析】解:依题意可得BC ∥AG ,∴△AFG ∽△CFB ,∴AG AF BC CF=,又AB =BC ,∴AG AF AB CF =.故结论①正确;如图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG 与△BCD 中,3490AB BC BAG CBD ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△ABG ≌△BCD (ASA ),∴AG =BD ,又∵BD =AD ,∴AG =AD ;∵△ABC 为等腰直角三角形,∴AC ;∴AG =AD =12AB =12BC ;∵△AFG ∽△BFC ,∴AG BC =AF FC,∴FC =2AF ,∴AF =13AC =3AB .故结论②正确;当B 、C 、F 、D 四点在同一个圆上时,∵∠ABC =90°,∴CD 是B 、C 、F 、D 四点所在圆的直径,∵BG ⊥CD ,∴,∴DF =DB ,故③正确;∵AG AF AB CF =,AG =BD ,12BD AD =,∴13BD AB =,∴AF CF =13,∴AF =14AC ,∴S △ABF =14S △ABC ;∴S △BDF =13S △ABF ,∴S △BDF =112S △ABC ,即S △ABC =12S △BDF .故结论④错误.故选:C .7.如图所示,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于()A .4.5米B .6米C .7.2米D .8米【答案】B 【解析】解:如图所示,GC ⊥BC ,AB ⊥BC ,∵=王华的身高路灯的高度王华的影长路灯的影长,当王华在CG 处时,Rt △DCG ∽Rt △DBA ,即DC GC DB AB =,当王华在EH 处时,Rt △FEH ∽Rt △FBA ,即EF EH CG BF AB AB==,∴CD EF BD BF =,∵CG =EH =1.5米,CD =1米,CE =3米,EF =2米,设AB =x ,BC =y ,∴1215y y =++,解得y =3,则1.514x =,解得,x =6米.即路灯A 的高度AB =6米.故选:B .8.(2021·甘肃兰州·中考真题)如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m 时,标准视力表中最大的“”字高度为72.7mm ,当测试距离为3m 时,最大的“”字高度为()A .4.36B .29.08C .43.62D .121.17【答案】C 【解析】根据题意,得CAB FAD ∠=∠,且90ABC ADF ∠=∠=︒∴ABC ADF△∽△∴BC DF AB AD=∴72.7343.62mm 5BC AD DF AB ⨯⨯===故选:C .9.(2021·山东·济南市济阳区实验中学九年级期中)如图,四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA ′ABCD 与四边形A ′B ′C ′D ′的面积比为()A .4:9B .2:5C .2:3D .5:5【答案】B【解析】解:∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA :OA∴DA :D ′A ′=OA :OA∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为:2:2=2:5,故选:B.10.下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】①两个正方形是相似图形,但对应点的连线不一定交于一点,故不一定是位似图形,②两个等边三角形是相似图形,但对应点的连线不一定交于一点,故不一定是位似图形,③两个同心圆符合位似图形的定义,是位似图形,④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形,∴正确的有③④,共2个,故选:B.11.(2021·江苏淮安·中考真题)如图所示的几何体的俯视图是()A.B.C.D.【答案】A【解析】解:从上面看该几何体,所看到的图形如下:故选:A.12.(2021·福建·中考真题)如图所示的六角螺栓,其俯视图是()A .B .C .D .【答案】A【解析】从上面看是一个正六边形,中间是一个圆,故选:A .二、填空题13.(2021·上海市奉贤区古华中学九年级期中)在△ABC 中,点D 在边AC 上,且AD :DC =1:2,E 为BD 中点,延长AE 交BC 于点F ,则BF :FC 的值是___.【答案】1:3【解析】如图,过点D 作//DG AF 交BC 于点G ,AD FG DC GC ∴=12=即2GC FG=E 是BD 的中点,//DG AF1BE BF ED FG∴==即BF FG=:BF FC ∴=1:3故答案为:1:314.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是______(填“背向太阳”或“面向太阳”),小宁比小勇_______(填“高”、“矮”、或“一样高”).【答案】面向太阳矮【解析】∵小勇的影子正好落到后面一个同学身上,∴他们的队列方向是面向太阳,∵小宁的影子却没有落到后面一个同学身上,∴小勇的影子比小宁的影子长,∴小宁比小勇矮.故答案为:面向太阳,矮15.如图,在△ABC 中,O 是BC 的中点,以点O 为位似中心,作△ABC 的位似图形△DEF.若点A 的对应点D 是△ABC 的重心,则△ABC 与△DEF 的位似比为______.【答案】3:1【解析】∵点D 是△ABC 的重心,O 是BC 的中点∴2AD OD=∵O 是BC 的中点,以点O 为位似中心,作△ABC 的位似图形△DEF∴ODF OAC△∽△∴31AC OA OD AD DF OD OD +===故答案为:3:1.16.(2021·辽宁千山·九年级期中)如图,已知等边三角形ABC 绕点B 顺时针旋转60︒得BCD △,点E 、F 分别为线段AC 和线段CD 上的动点,若AE CF =,则下列结论:①四边形ABDC 为菱形;②△ABE ≌△CBF;③△BEF 为等边三角形;④CFB CGE ∠=∠;⑤若3CE =,1CF =,则154BG =.正确的有(填序号)________.【答案】①②③④【解析】解:由等边三角形和旋转的性质可知AB =AC =BD =CD ,即四边形ABDC 为菱形,故①正确;∵在△ABE 和△CBF 中,60AB CB BAE BCF AE CF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≅△CBF (SAS),故②正确;∵△ABE ≅△CBF ,∴BE =BF ,∠ABE =∠CBF ,∵∠ABC =∠ABE +∠EBC =60°,∴∠CBF +∠EBC =60°,即∠EBF =60°,∴△BEF 为等边三角形,故③正确;∵∠CFB =∠CFG +∠BFG ,∠CGE =∠CFG +∠FCG ,又∵∠FCG =60°,∠BFG =60°,∴∠CFB =∠CGE ,故④正确;∵AE =CF =1,∴BC =AC =AE +CE =4,∵∠CFB =∠CGE ,∠ECG =∠BC F=60°,∴△CFB ∼△CGE ,∴CG CE CF BC =,即314CG =∴CG =34,∴BG =BC −CG =4−34=134,故⑤错误.综上,①②③④正确.故答案为①②③④.三、解答题17.(2021·上海市奉贤区实验中学九年级期中)已知:线段a 、b 、c ,且345a b c ==.(1)求23a b c +的值;(2)如线段a 、b 、c 满足3a ﹣4b +5c =54,求a ﹣2b +c 的值.【答案】(1)1115;(2)0【解析】解:(1)由345a b c ==设3,4,5a k b k c k ===∴23241111=3351515a b k k k c k k ++⨯==⨯(2)把3,4,5a k b k c k ===代入3a ﹣4b +5c =54得33445554k k k ⨯-⨯+⨯=整理得,1854k =∴3k =∴9,12,15a b c ===∴2=9212150ab c +-⨯+=﹣18.(2021·河南原阳·九年级期中)如图,在△ABC 中,DF ∥AC ,DE ∥BC .(1)求证:BF CE FC EA=;(2)若AE =4,EC =2,BC =10,求BF 和CF 长.【答案】(1)见解析;(2)103BF =,203CF =【解析】(1)证明:∵DF ∥AC ,∴BF BD FC AD=,∵DE ∥BC ,∴BD CE AD AE =,∴BF CE FC AE=;(2)解:设BF x =,∵10BC =,∴10CF x =-,∵BF CE FC AE =,且AE =4,EC =2,∴2104x x =-,解得:103x =,∴103BF =,∴10201033CF =-=.19.(2021·广东南海·九年级期中)如图,已知O 是坐标原点,AB 两点的坐标分别为(3,﹣1),(2,1).(1)以点O 为位似中心,在y 轴的左侧将△OAB 放大2倍;(2)分别写出A ,B 两点的对应点A ′,B ′的坐标.【答案】(1)见详解;(2)A′(-6,2),B′(-4,-2).【解析】解:(1)如图,△OB ꞌA ꞌ为所作;(2)∵236,2(1)2,224,212,-⨯=--⨯-=-⨯=--⨯=-∴A ,B 两点的对应点A ′,B ′的坐标为A ′(-6,2),B ′(-4,-2).20.(2021·山东长清·九年级期中)如图,在路灯下,小明的身高如图中线段AB 所示,他在地面上的影子如图中线段AC 所示.(1)请你通过画图确定灯泡所在的位置.(2)如果小明的身高AB =1.6m ,他的影子长AC =1.4m ,且他到路灯的距离AD =2.1m ,求灯泡的高.【答案】(1)见解析;(2)4m【解析】(1)解:如图,点O 为灯泡所在的位置,线段FH 为小亮在灯光下形成的影子;(2)解:由已知可得,OD BA∥∴ABC DOC△∽△∴AB DO =CA CD,∴1.6DO = 1.41.4 2.1+,∴OD =4m .∴灯泡的高为4m .21.(2021·陕西兴平·九年级期中)如图,在锐角△OAB 中,点M ,N 分别在边OB ,OA 上,连接MN ,OG AB ⊥于点G ,OH MN ⊥于点H ,NOH GOB ∠=∠.(1)求证:OHN OGB V :V ;(2)若3OM =,7OA =,求MN AB的值.【答案】(1)见解析;(2)37【解析】(1)证明:∵90OHN OGB ∠=∠=︒,NOH GOB ∠=∠,∴OHN OGB V :V .(2)解:由(1)得OHN OGB V :V ,∴ONH B ∠=∠,又∵AOB MON ∠=∠,∴OMN OAB △△:.∴37MN OM AB OA ==.22.(2021·广东·松岗实验学校九年级期中)如图①,四边形OABC 是一张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,OC =5,点E 在边BC 上,点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M .现将纸片折叠,使顶点C 落在MN 上,并与MN 上的点G 重合,折痕为OE .(1)点G 的坐标为;点E 的坐标为;(2)如图②,若OG 上有一动点P (不与O ,G 重合),从点O 出发,以每秒1个单位的速度沿OG 方向向点G 匀速运动,设运动时间为t 秒(0<t <5),过点P 作PH ⊥OG 交OE 于点H ,连接HG ,求出△PHG 的面积s 与t 的函数关系式;(3)在(2)的条件下,求当t 为何值时,以点P 、H 、G 为顶点的三角形与△OEG 相似?【答案】(1)(3,4),(53,5);(2)()2150566S t t t =-+<<;(3)52或92【解析】解:(1)由翻折的性质可知,OC =OG =5,CE =EG ,∵N (3,0),NM //OC ,∴∠ONG =90°,∴GN 22OG ON -2253-4.∴G (3,4),∵MN //OC ,CM //ON ,∴四边形OCMN 是平行四边形,∵∠CON =90°,∴四边形OCMN 是矩形,∴CM =ON =3,设EC =EG =x ,在Rt △EMG 中,则有x 2=12+(3﹣x )2,解得x =53,∴E (53,5),故答案为:(3,4),(53,5);(2)∵∠OPH =∠OGE =90°,∠POH =∠GOE ,∴△OPH ∽△OGE ,∴OP OG =PH EG,∴553t PH =,∴PH =3t ,∴S =12•PG •PH =12×(5﹣t )×3t =﹣16t 2+56t (0<t <5);(3)∵∠GPH =∠EGO =90°,∴当PH EG =PG OP时,△GPH ∽△OGE ,∴1353t =55t -,解得t =52.当PH OG =PG EG时,△GPH ∽△EGO ,∴135t =553t -,解得t =92,综上所述,满足条件的t 的值为52或92.。

沪教版 九年级 上册 相似三角形 经典例题与练习 (含答案) 生本教育强力推荐

沪教版 九年级 上册 相似三角形 经典例题与练习 (含答案) 生本教育强力推荐

沪教版九年级上册相似三角形经典例题与练习 (含答案) 生本教育强力推荐生本教育是一家致力于从“学会”到“会学”的教育引领者。

本次教学是关于九年级上册相似三角形总结与加强与平行向量线性运算的课程,课时数为2小时。

教学目标包括熟练掌握相关定义与定理,熟练应用相似三角形的性质与判定定理,熟悉常见题型和图形,熟练掌握常用解题方法与分析方法。

其中,性质与判定定理的熟练应用是重点难点。

教学内容分为回顾知识要点和知识点讲解及经典例题两部分。

回顾知识要点包括三角形相似判定定理,相似形定义和比例知识。

知识点讲解及经典例题部分介绍了相似三角形的比例线段有关概念,比例性质和平行线分线段成比例定理。

此外,还介绍了相似三角形的判定,包括两角对应相等,两边对应成比例且夹角相等,三边对应成比例,直角三角形相似,平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似,以及直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

在教学中,需要重点强化性质与判定定理的熟练应用。

同时,在讲解知识点和经典例题时,需要注重图形的展示和解题方法的讲解,以帮助学生更好地理解和掌握知识。

如果一个三角形的两边的比等于另一个三角形某两边的比,并且它们的夹角相等,那么这两个三角形相似。

相似三角形有以下性质:①对应角相等;②对应边成比例;③对应高的比、对应中线的比和对应角平分线的比都等于相似比;④周长的比等于相似比;⑤面积的比等于相似比的平方。

一、如何证明三角形相似例1:如图,点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽△BCF。

例2:已知△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD。

例3:已知,如图,D为△ABC内一点,连结ED、AD,以BC为边在△ABC外作∠XXX∠ABD,∠XXX∠BAD,证明:△DBE∽△ABC。

例4:矩形ABCD中,BC=3AB,E、F是BC边的三等分点,连结AE、AF、AC,证明:不存在非全等的相似三角形。

《相似》《视图与投影》《解直角三角形》知识训练

《相似》《视图与投影》《解直角三角形》知识训练
AC 的 长 是 ( )
B. 1 0 m

2 2 1 福建 福 州 ) 列 几 何 体 .( 0 1 下 中 , 视 图 、 视 图与 俯 视 图都 是 相 主 左
同 的 圆的 几何 体 是 ( )
A.5 /3 m 、
C. 1 5 m
D 0 /3 m .1 、
A ① 和②相似 . B ①和③相似 . c ①和④ 相似 .
中 ,点D, 分 别在A , 上 ,E∥ E BA c D
BC, 5 B 1 AE 3 AD= , D= 0, = ,则C 的值 E
为( )
B .6 C .3 D.4
交AD的 延 长线 于 点E。则下 列 结 论
A. sn i a
6 2 1 湖 南 湘 潭 ) 城 中 学 九 .( 0 1 莲 年 级 数 学 兴趣 小 组 为 测 量 校 内旗 杆 高 度 , 图1 在 C 测 得旗 杆 顶 端A 如 0, 点
的仰 角 为 3 。 向 前 走 了6m到 达 D 0, 点 ,在D点 测 得 旗杆 顶 端A的 仰 角 为
观 } } i 觋 想 出 褊 挚 的 童 潍 彤 . } j
列结 论 中一定 正 确 的是 (

5 ( 0 1 南 怀 化 )在 aA C . 2 1湖 B
相 似
1 21山东泰安 ) 图1点Fra bibliotek .(0 1 如 ,
是  ̄ABC : : 7 D的 边 C D上 一 点 .直 线 B F
A.— ED
. 一

D F
=一
: —



DE

EF
: —

AD F 面 积 比为 ( E 的

北师大版九年级数学上册第五章投影与视图第1节投影课后练习

北师大版九年级数学上册第五章投影与视图第1节投影课后练习

第五章投影与视图第1节投影课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,小颖当时所处的时间是()A.上午B.中午C.下午D.无法确定2.下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线3.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律4.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点”B.小亮:“中午12点”C.小刚:“下午5点”D.小红:“什么时间都行”5.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长6.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是()A.①①①①B .①①①①C.①①①①D.①①①①7.如图所示的圆台的上下底面与平行光线平行,圆台的正投影是()A.矩形B.两条线段C.等腰梯形D.圆环8.如图,在一条笔直的小路上有一盏路灯,晚上小雷从点B处径直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是()A.B.C.D.9.一幢4层楼房只有一个窗户亮着一盏灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的窗口是()A.1号窗口B.2号窗口C.3号窗口D.4号窗口10.如图,太阳在房子的后方,那么你站在房子的正前方看到的影子为()A.B.C.D.评卷人得分二、填空题 11.一个长方形的正投影的形状、大小与原长方形完全一样,则这个长方形________投影面;一个长方形的正投影的形状、大小都发生了变化,则这个长方形________投影面.12.当你走向路灯时,你的影子在你的________,并且影子越来越________. 13.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)14.如图,小英和她的妈妈正在散步,妈妈身高1.8m ,她在地面上的影长为2.lm ,小英比她妈妈矮0.3m ,则小英的影长为______m.15.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高 1.2CD m =,0.6CE m =,30CA m =(点A 、E 、C 在同一直线上).已知小明身高EF 是1.6m ,则楼高AB 为______m .16.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.17.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被这两个同学发现(用阴影部分的序号表示)________.18.如图,迎宾公园的喷水池边上有半圆形的石头(半径为1.12m)作为装饰,其中一块石头正前方5.88m处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为0.56πm.如果同一时刻,一直立0.6m的杆子的影长为1.8m,则灯柱的高____m.19.下图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是________.评卷人得分三、解答题20.如图,小赵和路人在路灯下行走,试确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21.如图所示,灯在距地面6米的A处,与灯柱AB相距3米的地方有一长3米的木棒CD直立于地面.(1)在图中画出木棒CD的影子,并求出它的长度;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化有什么规律?你能求出其影长的取值范围吗?22.如图所示,甲物体高4米,影长3米,乙物体高2米,影长4米,两物体相距5米.23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.(2)如果灯杆高12m,小亮的身高1.6m,小亮与灯杆的距离13m,请求出小亮影子的长度.24.如图所示,分别是两棵树及其影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形.(2)请画出图中表示小丽影长的线段.(3)阳光下小丽影子长为1.20 m树的影子长为2.40 m,小丽身高1.88 m,求树高.25.在公园有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分?(2)若同一时间量得高圆柱落在墙上的影长为150公分,则高圆柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.参考答案:1.C【解析】【详解】小明在向正北方向走路时,发现自己的身影向右偏,即影子在东方;故小明当时所处的时间是下午.故选C.点睛:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.2.A【解析】【分析】利用中心投影(光由一点向外散射形成的投影叫做中心投影)和平行投影(由平行光线形成的投影是平行投影)的定义即可判断出.【详解】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.B.台灯的光线是由台灯光源发出的光线,是中心投影;C.手电筒的光线是由手电筒光源发出的光线,是中心投影;D.路灯的光线是由路灯光源发出的光线,是中心投影.所以,只有A不是中心投影.故选:A.【点睛】本题考查了中心投影和平行投影的定义.熟记定义,并理解一般情况下,太阳光线可以近似的看成平行光线是解决此题的关键.3.B【解析】【分析】上午九点到十一点太阳升高,影子变短.【详解】解:在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选B.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念和认真观察生活现象是解题关键. 4.C【解析】【详解】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C.本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.5.B【解析】【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.6.C【解析】【分析】太阳光线下的影子是平行投影,就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东,于是即可得到答案.【详解】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:①①①①,故选C.【点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东”,是解题的关键.7.C【解析】【分析】根据正投影的定义“是指平行投射线垂直于投影面”分析即可.【详解】根据题意,圆台的上下底面与平行光线平行,则圆台的正投影是该圆台的轴截面,即等腰梯形故选:C.【点睛】本题考查了正投影的定义,正确理解正投影的定义是解题关键.8.C【解析】【详解】①小路的正中间有一路灯,晚上小雷由B处径直走到A处,他在灯光照射下的影长y与行走的路程x之间的变化关系,应为当小雷走到灯下以前为:y随x的增大而减小,①用图象刻画出来应为C,故选C.【点睛】本题主要考查了函数图象以及中心投影的性质,得出影长y随行走的路程x的变化规律是解决问题的关键.9.B【解析】【分析】根据给出的两个物高与影长即可确定点光源的位置.【详解】如图所示,故选B.【点睛】本题考查中心投影.10.C【解析】【详解】根据平行投影的性质可知烟囱的影子应该在右下方,房子左边对应的突起应该在影子的左边.11.平行不平行于【解析】【分析】根据投影性质作答即可.【详解】解:由投影定义可知,当正投影后的形状、大小不改变时,图形平行投影面,当投影后的形状、大小改变时,图形不平行投影面,【点睛】本题考查了正投影的实际应用,属于简单题,熟悉正投影的概念是解题关键.12.后面短【解析】【详解】试题解析:走向路灯时,影子在人的灯的相反方,故你的影子在你的后面,离路灯越近影子越短.故答案为后面,短.13.逐渐变大【解析】【分析】在灯光下,离点光源越近,影子越大;离点光源越远,影子越小,所以当发光的手电筒由远及近时,落在竖直墙面上的球的影子会逐渐变大.【详解】解:根据中心投影的特点,可得:当发光的手电筒由远及近时,落在竖直墙面上的球的影子会逐渐变大,故答案为逐渐变大.【点睛】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.①等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.14.1.75【解析】【分析】在同一时刻物高和影长成正比,即太阳光线照到两个物体上光线、物体、影子三者形成的直角三角形相似.【详解】解:①妈妈身高1.8m,小英比他妈妈矮0.3m,①小英高1.5m,设小英的影长为xm,①1.5:x=1.8:2.1,解得x=1.75,小英的影长为1.75m.【点睛】本题考查了平行投影,在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.15.21.2【解析】【分析】过点D作DN①AB,可得四边形CDME、ACDN是矩形,即可证明①DFM①①DBN,从而得出BN,进而求得AB的长.【详解】解:过点D作DN①AB,垂足为N.交EF于M点,①四边形CDME、ACDN是矩形,①AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,①MF=EF-ME=1.6-1.2=0.4m,依题意知EF①AB,①①DFM①①DBN,DM MF DN BN=,即:0.60.430BN=,解得:BN=20,①AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.16.4m【解析】【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】解:如图所示:过点D作DC①AB于点C,连接AE,由题意可得:DE=BC=1m,BE=1.5m,①一根长为1m的竹竿的影长是0.5m,①AC=2CD=3m,故AB=3+1=4(m).故答案为4m.【点睛】此题主要考查了平行投影,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.17.①①①【解析】【分析】根据图形找出AB两点的盲区即可【详解】由图可知,①①①都在AB两个视点的盲区内,因此在这三处,不会被两个同学发现,因此选①①①.【点睛】投影和视图是本题的考点,根据图形正确找出盲区是解题的关键.18.259 75【解析】【分析】如图,OC=OD=1.12m,BD=5.88m,CD的弧长为0.56πm,先利用弧长公式计算出①DOC=90°,则OC①OD,作CE①AB于E,则CE=OB=OD+BD=7m,BE=OC=1.12m,接着利用相似比得到70.6 1.8AE,解得AE=73,然后计算AE+BE即可.【详解】解:如图,OC=OD=1.12m,BD=5.88m,CD的弧长为0.56πm,设①COD=n°,则π×1.12180n=0.65π,解得n=90,即①DOC=90°,①OC①OD,作CE①AB于E,则CE=OB=OD+BD=1.12m+5.88m=7m,BE=OC=1.12m,①同一时刻,一直立0.6m的杆子的影长为1.8m,①7 0.6 1.8 AE,①AE=73,①AB=AE+BE=73+1.12=25975(m),即灯柱的高为25975(m)故答案为:25975(m).【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了弧长公式.19.④③①②【解析】【分析】根据平行投影中影子的变化规律即可得到结果.【详解】解:根据平行投影的特点以及北半球影长的规律可知:影长由长变短再变长,故答案为①①①①. .【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.20.作图见解析.【解析】【详解】试题分析:根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.试题解析:画图如下:考点: 中心投影.21.(1)作图见解析,影子DE的长度为3米;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化规律为:先变长,后变短;当木棒CD与经过C'点的光线垂直时,影子DE'最长,3米≤影长≤5米.【解析】【分析】(1)根据中心投影即可在图中画出木棒CD的影子,根据三角形相似即可求出它的长度;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化先变长,后变短,根据相似三角形的性质即可求出其影长的取值范围.【详解】如图,(1)DE即为木棒CD的影子,根据题意,得AB=6,CD=3,BD=3.①CD①AB,①DE CD BE AB=即336 DEDE=+,解得:DE=3.所以影子DE的长度为3米;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化规律为:先变长,后变短;当木棒CD与经过C'点的光线垂直时,影子DE'最长.如图DC'①AE',①①E'C'D=①ABE'=90°,①C'E'D=①AE'B,①①E'C'D①①E'BA,①'''' C D C E AB BE=即BE'=2C'E'设C'E'=x,则BE'=2x,①DE'=BE'﹣BD=2x﹣3,在Rt△DE'C'中,根据勾股定理,得(2x﹣3)2=32+x2解得:x=0或4,①DE'=5,所以其影长的取值范围是:大于或等于3米,小于或等于5米.【点睛】考查了中心投影的应用,解题关键是确定影子的最长时点C的位置.22.(1)见解析;(2) 4.8米.【分析】(1)首先连接GA,HC并延长交于点O,从而确定光源,然后连接OE并延长即可确定影子.(2)OM①QH,设OM=x,BM=y,根据三角形相似列出比例式可确定灯的高度.【详解】解(1)点O为灯的位置,FM为丙物体的影子;(2)作OM①QH,设OM=x,BM=y,由①GAB①①GOM,得=,即=,①由①CDH①①OMH,得=,即=,①由①①,得x=4.8,y=0.6.答:灯的高度为4.8米.【点睛】本题考查了投影的定义和相似三角形对应边成比例的性质,解题关键是熟练掌握定义和性质求解.23.(1)详见解析;(2)小亮影子的长度为2m.【解析】【分析】(1)连接EG进而延长交DF于点N,得出FN进而得出答案;(2)直接利用相似三角形的判定与性质得出答案.解:(1)如图所示:FN 即为所求;(2)①FG ①DE ,①①GFN①①NDE ,①NDFN =DE FG , ①灯杆高12m ,小亮的身高1.6m ,小亮与灯杆的距离13m ,①13FN FN =1.612, 解得:FN =2,答:小亮影子的长度为2m .【点睛】 本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.24.(1)见解析 (2)见解析 (3)3.76m【解析】【详解】试题分析:(1)物体在太阳光的照射下形成的影子是平行投影,物体在灯光的照射下形成的影子是中心投影.太阳光是平行光线,物高与影长成正比,据此即可判断和说明; (2)图①作平行线得到小丽的影长,图①先找到灯泡的位置再画小丽的影长.(3)根据平行投影,物高与影长成正比,设树高为xm ,利用比例相等列出式子进行求解即可.试题解析:(1)如图所示:甲图反映了阳光下的情形,乙图反映了路灯下的情形;(2)如图所示:AB ,CD 是小丽影长的线段;(3)①阳光下小丽影子长为1.20m ,树的影子长为2.40m ,小丽身高1.88m ,设树高为xm ,①1.20 2.401.88x=, 解得:x=3.76,答:树的高度为3.76m .25.(1)敏敏的影长为100公分;(2)高圆柱的高度为330公分.【解析】【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题. (2)如图,连接AE ,作//FB EA .分别求出AB ,BC 的长即可解决问题.【详解】解:(1)设敏敏的影长为x 公分.由题意:1509060x =, 解得100x =(公分),经检验:100x =是分式方程的解.①敏敏的影长为100公分.(2)如图,连接AE ,作//FB EA .//AB EF ,①四边形ABFE 是平行四边形,150AB EF ∴==公分,设BC y =公分,由题意BC 落在地面上的影从为120公分.9012060y ∴=,180∴=(公分),yAC AB BC∴=+=+=(公分),150180330答:高圆柱的高度为330公分.【点睛】本题考查相似三角形的应用,平行投影,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.答案第14页,共14页。

九年级 相似形,投影视图,锐角三角函数三章测试

九年级 相似形,投影视图,锐角三角函数三章测试

第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32 B .41 C .31 D .21 2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DE B .21=∆∆的周长的周长ABC ADEC .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .AD EF BC BF = C .FC BF EC AE =D .BCDE AB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个 D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______. 三、解答题13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.14.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D 的度数;(2)求证:AC 2=AD ·CE .18.已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF∽△CEG;(2)求用x表示S的函数表达式,并写出x的取值范围;(3)当E点运动到何处时,S有最大值,最大值为多少?答案与提示第二十七章 相似全章测试1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5.14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x 当∠ADE 为底角时:⋅=21AE 19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y(2)1130=t 或;1350(3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.第二十八章 锐角三角函数全章测试一、选择题1.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( ) A .6B .52C .53D .1322.⊙O 的半径为R ,若∠AOB =α ,则弦AB 的长为( )A .2sin2αRB .2R sin αC .2cos2αR D .R sin α3.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .312B .12C .324D .3484.若某人沿倾斜角为α 的斜坡前进100m ,则他上升的最大高度是( ) A .m sin 100αB .100sin α mC .m cos 100βD .100cos β m5.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( ) A .15m B .12m C .9m D .7m6.P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 点,若∠APB =2α ,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin R B .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R7.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =β ,则AD 等于( ) A .a sin 2β B .a cos 2β C .a sin β cos β D .a sin β tan β8.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APCC .tan ∠APCD .APC∠tan 19.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )第9题图A .m )3828(+B .m )388(+C .m )33828(+D .m )3388(+10.如图所示,要在离地面5m 处引拉线固定电线杆,使拉线和地面成60°角,若考虑既要符合设计要求,又要节省材料,则在库存的l 1=5.2m 、l 2=6.2m 、l 3=7.8m 、l 4=10m ,四种备用拉线材料中,拉线AC 最好选用( )第10题图A .l 1B .l 2C .l 3D .l 4二、填空题11.在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______.12.在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度.13.如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.第13题图14.如图所示,有一圆弧形桥拱,拱的跨度m 330=AB ,拱形的半径R =30m ,则拱形的弧长为______.第14题图15.如图所示,半径为r 的圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 的移动到与AC 边相切时,OA 的长为______.第15题图三、解答题16.已知:如图,AB =52m ,∠DAB =43°,∠CAB =40°,求大楼上的避雷针CD 的长.(精确到0.01m)17.已知:如图,在距旗杆25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已知测角仪AB 的高为1.5m ,求旗杆CD 的高(精确到0.1m).18.已知:如图,△ABC 中,AC =10,,31sin ,54sin ==B C 求AB .19.已知:如图,在⊙O 中,∠A =∠C ,求证:AB =CD (利用三角函数证明).20.已知:如图,P 是矩形ABCD 的CD 边上一点,PE ⊥AC 于E ,PF ⊥BD 于F ,AC=15,BC =8,求PE +PF .21.已知:如图,一艘渔船正在港口A 的正东方向40海里的B 处进行捕鱼作业,突然接到通知,要该船前往C 岛运送一批物资到A 港,已知C 岛在A 港的北偏东60°方向,且在B 的北偏西45°方向.问该船从B 处出发,以平均每小时20海里的速度行驶,需要多少时间才能把这批物资送到A 港(精确到1小时)(该船在C 岛停留半个小时)?)45.26,73.13,41.12(≈≈≈22.已知:如图,直线y =-x +12分别交x 轴、y 轴于A 、B 点,将△AOB 折叠,使A点恰好落在OB 的中点C 处,折痕为DE .(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.23.已知:如图,斜坡PQ的坡度i=1∶3,在坡面上点O处有一根1m高且垂直于水平面的水管OA,顶端A处有一旋转式喷头向外喷水,水流在各个方向沿相同的抛物线落下,水流最高点M比点A高出1m,且在点A测得点M的仰角为30°,以O点为原点,OA所在直线为y轴,过O点垂直于OA的直线为x轴建立直角坐标系.设水喷到斜坡上的最低点为B,最高点为C.(1)写出A点的坐标及直线PQ的解析式;(2)求此抛物线AMC的解析式;(3)求|x C-x B|;(4)求B点与C点间的距离.答案与提示第二十八章 锐角三角函数全章测试1.B . 2.A . 3.A . 4.B . 5.A . 6.C . 7.C . 8.B . 9.D . 10.B . 11.⋅23 12.60. 13.⋅54 14.20πm . 15..332r 16.约4.86 m . 17.约15.9m .18.AB =24.提示:作AD ⊥BC 于D 点.19.提示:作OE ⊥AB 于E ,OF ⊥CD 于F .设⊙O 半径为R ,∠A =∠C =α .则AB =2R cos α ,CD =2R cos α ,∴AB =CD . 20.⋅151618提示:设∠BDC =∠DCA =α .PE +PF =PC sin α +PD sin α =CD sin α . ,158sin =α ⋅=⨯=+∴151618158161PF PE21.约3小时,提示:作CD ⊥AB 于D 点.设CD =x 海里. 22.(1)⋅=∠=53sin .25BEC AE 提示:作CF ⊥BE 于F 点,设AE =CE =x ,则EF .29x -= 由CE 2=CF 2+EF 2得.25=x (2)⋅475提示:.4245sin 21o AE AD AE AD S S AED CDE ⋅=⋅==∆∆设AD =y ,则CD =y ,OD =12-y ,由OC 2+OD 2=CD 2可得⋅=215y 23.(1)A (0,1),;33x y =(2).1332312)3(3122++-=+--=x x x y(3)m 15. (4).m 5230cos ||=-=B C x x BC第二十九章 投影与视图全章测试一、选择题1.平行投影中的光线是( ) A .平行的 B .聚成一点的 C .不平行的 D .向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.55.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S += 第二种:高为b ,表面积为⋅+=π222a ab S。

九年级上相似三角形,视图与投影,反比例函数练习

九年级上相似三角形,视图与投影,反比例函数练习

北师大九年级上册第四章视图与投影测试卷一.选择题:(每小题3分,共30分)1、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A、16mB、18mC、20mD、22m2、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短C、明的影子和小强的影子一样长D、法判断谁的影子长3、如图是邓老师出示的他昨天画的一幅写生画,他四个同学猜测他画这幅画的时间。

能根据王老师给出的方向坐标,判断说的时间比较接近的是()A、丽说:“早上8点”B、强说:“中午12点”C、刚说:“下午5点”D、明说:“哪个时间段都行”4、一个物体的俯视图是圆,则该物体的形状是()A、球体B、圆柱C.圆锥D.以上都有可能5、如左图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是右图中的()6.如左图所示圆锥的俯视图为右图中的()7.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,下图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()A.乙照片是参加100m的B.甲照片是参加400m的C.乙照片是参加 400m的D.无法判断甲、乙两张照片8.在路灯下漫步时,越接近路灯,其影子的长度将()A.不变B.变短C.变长D.无法确定9.如图是由一些相同的小立方块搭成的立体图形的三种视图,则搭成这个立体图形的小立方块的个数是()A .5B .6 C.7 D .810.将左图所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )二.填空题:(每小题4分,共20分)1.如图是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有______________。

2.如图,阳光通过窗口照到仓库内,在地上留下2.7m 宽的亮区,如图,已知亮区一边到窗下的墙角的距离为CD=8.7m ,窗口高AB=1.8m ,那么窗口底边高地面的高BC=_________。

九年级数学北师大版上册:第五、六章投影和视图反比例函数综合测试题

九年级数学北师大版上册:第五、六章投影和视图反比例函数综合测试题

北师大版九年级上册 第五、六章 投影和视图 反比例函数测试题题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案A .上午10点时,走在路上的人的影子B .晚上走在路灯下的人的影子C .中午用来乘凉的树影D .早上升国旗时,地上旗杆的影子 2.某运动会颁奖台如图所示,它的主视图是( )3.桌面上放置的几何体中,主视图与左视图可能不同的是( ) A .圆柱 B .正方体 C .球 D .直立圆锥 4.在下列函数中,反比例函数是( )A .y =k xB .y =8x 2C .y =12xD .yx =25.对于反比例函数y =1x ,下列说法正确的是( ) A .图象经过点(1,-1) B .图象位于第二、四象限 C .图象是中心对称图形 D .当x <0时,y 随x 的增大而增大6.点A (-2,5)在反比例函数y =kx (k ≠0)的图象上,则k 的值是( ) A .10 B .5 C .-5 D .-107.若反比例函数y =kx 的图象过点(-2,1),则一次函数y =kx -k 的图象过( ) A .第一、二、四象限 B .第一、三、四象限 C .第二、三、四象限 D .第一、二、三象限8.正比例函数y =2x 与反比例函数y =kx 的图象有一个交点为(2,4),则另一个交点的坐标为 ( ) A .(2,-4) B .(-2,-4) C .(-2,4) D .(-2,-2) 9.面积为2的△ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是( )10.如图1,双曲线y =8x 的一个分支为( ) 图1 A .① B .② C .③ D .④11.函数y =x +m 与y =mx (m ≠0)在同一坐标系内的图象可以是( )图212.点A (1,y 1),B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定13.已知一次函数y 1=ax +b 与反比例函数y 2=kx 的图象如图2,当y 1<y 2时,x 的取值范围是( ) A .x <2 B .x >5 C .2<x <5 D .0<x <2或x >514.如图3,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点P 是双曲线y =3x(x >0)上的一个动点,PB ⊥y 轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小 15.平面直角坐标系中,点P ,Q 在同一反比例函数图象上的是( ) A .P(-2,-3),Q(3,-2) B .P(2,-3),Q(3,2)C .P(2,3),Q(-4,-32) D .P(-2,3),Q(-3,-2)二、填空题(每小题5分,共25分) 图316.三角尺在灯泡O 的照射下在墙上形成影子(如图所示).现测得OA =20 cm ,OA ′=50 cm ,这个三角尺的周长与它在墙上形成的影子的周长的比是________.(第16题图) (第17题图) (第18题图) (第20题图)17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是____个.18.如图,已知反比例函数y =kx (k 为常数,且k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为2,则k =________.19.下列关于反比例函数y =21x 的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y 随x 的增大而减小;③它的图象在二、四象限内.其中正确的是________.20.如图,A ,B 分别是反比例函数y =10x ,y =6x 图象上的点,过A ,B 作x 轴的垂线,垂足分别为C ,D ,连接OB ,OA ,OA 交BD 于E 点,△BOE 的面积为S 1,四边形ACDE 的面积为S 2,则S 2-S 1=______.三、解答题(本大题共7个小题,共80分)21.(10分)蓄电池的电压为定值,使用此电源时,电流I (A)是电阻R (Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式. (2)当R =10 Ω时,求电流I (A).22.(10分)若函数y=(m+1)x m2+2m−1是反比例函数,且它的图象位于第一、三象限内,求m的值.23.(10分)学校食堂厨房的桌子上整齐地摆放着若干个相同规格的碟子,碟子的个数x与碟子的高度y的关系如下表:(1)当桌子上放有x个碟子时,请写出此时碟子的高度y;(用含x的式子表示)(2)分别从三个方向上看,其三视图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.24.(10分)如图,在平面直角坐标系中,点O为原点,反比例函数y=kx的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的解析式(2)请直接写出菱形OABC的面积.25.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求一次函数和反比例函数的表达式;(2)已知直线AB与x轴相交于点C,在第一象限内反比例函数y=m x的图象上有一点P,使得S△POC =9,试求点P的坐标。

数学九年级上《相似三角形》复习测试题(答案)

数学九年级上《相似三角形》复习测试题(答案)

B 第18题图ABC DEF相似三角形一、选择题1、如图1,已知AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 23、如图G 是❒ABC 的重心,直线L 过A 点与BC 平行。

若直线CG 分别与AB 、 L 交于D 、E 两点,直线BG 与AC 交于F 点,则❒AED 的面积:四边形ADGF 的面积=?( ) (A) 1:2 (B) 2:1 (C) 2:3 (D) 3:24、图为❒ABC 与❒DEC 重迭的情形,其中E 在BC 上,AC 交DE 于F 点, 且AB // DE 。

若❒ABC 与❒DEC 的面积相等,且EF =9,AB =12,则DF =?( ) (A) 3 (B) 7 (C) 12 (D) 15 。

5、如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )A 、6米B 、8米C 、18米D 、24米6、如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的A B C D O 图1 B A C D E第4题B CD EAF E D B C 60°图2 (第2题图) 中点,则DEF △与ABC △的面积比是( ) A .1:6 B .1:5 C .1:4 D .1:27、给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( ) A .①真②真 B .①假②真C .①真②假D .①假②假8、如图2所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于( )A. 129、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC的值为 ( )A.5:3B.3:5C.4:3D.3:410、如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A.1:2B .1:4C .1:D .2:111、如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于 A .5 B .4 C .3 D .212、如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC,,的中点,则DEF △与ABC △的面积比是( ) A .1:6 B .1:5 C .1:4 D .1:213、给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( ) A .①真②真 B .①假②真 C .①真②假 D .①假②假14、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( ) A .2 B .3 C .6 D .5415、如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( )A.35x + B.45x - C.72D.21212525x x -16、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、222b a c =+ D 、22b a c ==17、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A.91 B.92 C.31 D.9418、如图,在△ABC 中,若DE ∥BC,AD DB =12,DE=4cm,则BC 的长为( ) A.8cm B.12cmC.11cmD.10cm19、下列四个三角形,与左图中的三角形相似的是( )20、若△ABC∽△DEF,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()(第7题) A . B . C . D .CABCDEP((第10题图)E图5A 、2∶3 B、4∶9 C、2∶3 D 、3∶221、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( )A 、4.8米B 、6.4米C 、9.6米D 、10米22、小刚身高1.7m ,测得他站立在阳关下的影子长为0.85m 。

(完整版)视图与投影--真题练习

(完整版)视图与投影--真题练习

第七章图形与变换第一节视图与投影基础过关检测A V 该图是三棱柱的表面展开图B X 该图是三棱锥的表面展开图C X 该图是四棱锥的表面展开图DX该图不能围成一个几何体,不是任何几何体的表面展开图2. 如图,这是一个正三棱柱,则它的俯视图为( )2AX该图是从前面看这个正三棱柱得到的视图,即主视图,因为后面的棱看不到, 所以画成虚线1.第2题图第5题图3.如图,桌面上的模型由20个棱长为a 的小正方体组成,现将该模型露在外面的部分涂上 涂料,则涂上涂料部分的总面积为( )第3题图A . 20a 2B . 30a 2C . 40a 2D . 50a 23.D 【解析】考查点: 本题考查了根据三视图计算几何体的表面积.解题思路:主视图的面积 10a 2 左视图的面积 10a 2 涂颜料的总面积=2S 主视图+2S 左视图+S 俯视图=50a 2俯视图的面积10a 24. 如图,晚上小亮在路灯下散步,在小亮由 A 处径直走到B处这一过程中,他在地上的影子( ) A .逐渐变短B .先变短后变长C .先变长后变短D .逐渐变长第4题图 4.B 【解析】考查点: 本题考查了中心投影的性质•解题思路:人到点光源:先由远到近,再由近到远影子:先由长变短,再由短到长5.如图,身高为1.6米的某学生想测量学校旗杆的高度,当他站在 C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是()A . 6.4 米B . 7 米C . 8 米D . 9 米第8题图5. C 【解析】考查点: 本题考查了中心投影,相似三角形 .解题思路:6.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该 位置上的小正方体的个数,那么该几何体的左视图是()AX 该图是这个几何体的主视图 B V 该图是这个几何体的左视图 C X 该图是这个几何体的右视图 DX该图不是这个几何体的任何视图7.如图(11格、第2格、第3格,这时小正方体朝上一面的字是(第7题图7. D【解析】本题考查了正方体的表面展开图,几何体的翻转 .解题思路:接 运 翻到第1格: “奥”朝下, “圣”朝上 表面展开图奥 圣 翻到第2格: “接”朝下, “运”朝上火迎火翻到第3格: “迎”朝下, “火”朝上8.如图,共有12个大小相同的小正方形,其中阴影部分的 5个小正方形是一个正方体的表面展开图的一部分.先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展 开图的概率是 _________________ .相似三角形对应边成比例2 = 1.62+8 =旗杆的高度旗杆的高度=8米6.B 【解析】考查点:本题考查了几何体的三视图.解题思路:A .奥B .运C .圣D .火图248. - 思路分析:如图,共有7中等可能的涂法,只有 4种涂法能构成这个正方体的表面74展开图,所以P (能构成这个正方体的表面展开图)=-.7i 1■ 2 ■ 34 ■ ■ A ■■ ■[| :■ *: ;第8题图9. 一个几何体的三视图如图所示,这个几何体是 ______________口口—主(正)视图左视图第9题图 9. 圆柱 【解析】 本题考查了根据三视图推断几何体的形状•解题思路:主视图 矩形 左视图 矩形 圆柱 俯视图 圆10. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为10. 8【解析】 本题考查了根据左视图和俯视图的大小判 断主视图的大小.解题思路:【归纳总结】 主视图主要反映物体的长和高, 左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.11. 如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是第10题图左视图:宽3高2 俯视图:长4主视图:长4高2 S 主视图=4 2=8俯视图3A第11题图卧hI创h I【技巧点拨】本题考查了由若干个小正方体组成的几何体的三视图求组成该几何体的小正方体的个数,解题思路一般都在俯视图上操作,即先在俯视图中的各个小正方形处填上该处正方体叠加的个数,然后相加即得总数•12. 一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图)【易错提示】画俯视图时不要漏掉圆心的黑点13.如图是某几何体的展开图.(1)这个几何体的名称是_______________(2)画出这个几何体的三视图;13.思路分析:本题综合考查了几何体的表面展开图,三视图,圆柱的体积计算.(1)由表11. 5 思路分析:从主视图来看,从左往右数第一列有2个小正方形(说明上下有2层),因此俯视图中第一列的2个正方形中至少有一个要填 2 ;主视图的第二列、第三列都只有一个小正方形,因此俯视图的第二列、第三列均只能填1 (如图1、2、3所示,共有三种填法)再从左视图来看,从左往右数第一列有2个小正方形,说明几何体第二排中有两层的情况;第二列有1个小正方形,说明几何体第一排都是一层•因此只有图2符合题意,可知这个几何体由5个小正方块组成.左视图12.思路分析:20面展开图可知该几何体是圆柱;(2)圆柱的三视图分别是长方形,长方形,圆; (3)由展开图可知该圆柱底面圆的直径为 10,高为20,根据圆柱的体积计算公式可求得其体积解:(1)圆柱; (2)如图所示;第13题图2 2(3)体积为:n 2h = 3.14 520 =1570 .14. 在同一时刻的物高与水平地面上的影长成正比例•如图,小莉发现垂直地面的电线杆AB 的影子落在地面和土坡上,影长分别为 BC 和CD ,经测量得BC 20m , CD 8m , CD 与地面成30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大九年级上册第四章视图与投影测试卷
一.选择题:(每小题3分,共30分)
1、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()
A、16m
B、18m
C、20m
D、22m
2、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()
A、小明的影子比小强的影子长
B、小明的影子比小强的影子短
C、明的影子和小强的影子一样长
D、法判断谁的影子长
3、如图是邓老师出示的他昨天画的一幅写生画,他四个同学猜测他画这幅画的时间。

能根据王老
师给出的方向坐标,判断说的时间比较接近的是()
A、丽说:“早上8点”
B、强说:“中午12点”
C、刚说:“下午5点”
D、明说:“哪个时间段都行”
4、一个物体的俯视图是圆,则该物体的形状是()
A、球体
B、圆柱C.圆锥D.以上都有可能
5、如左图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何
体图形是右图中的()
6.如左图所示圆锥的俯视图为右图中的()
7.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,下图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()
A.乙照片是参加100m的B.甲照片是参加 400m的
C.乙照片是参加 400m的D.无法判断甲、乙两张照片
8.如上图是由一些相同的小立方块搭成的立体图形的三种视图,则搭成这个立体图形的小立方块的个数是() A.5 B.6 C.7 D.8
9.在路灯下漫步时,越接近路灯,其影子的长度将( ) A .不变
B .变短
C .变长
D .无法确定
10.将左图所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )
二.填空题:(每小题4分,共20分)
1.如图是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形 有_____________ _。

(写出2组即可)
2.如上图2,阳光通过窗口照到仓库内,在地上留下2.7m 宽的亮区,如图,已知亮区一边到窗下的墙角的距离为CD=8.7m ,窗口高AB=1.8m ,那么窗口底边高地面的高BC=_________。

3.如图是小明一天上学时看到一棵树的影子的俯视图,请你将它们按时间先后顺序进行排列__ 。

4.将如上图所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB 旋转一周所得到的几何体的主视图是右图四个图形中的_________(只填序号)。

5.如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE 是2米.如果小明的身高为1.6米,那么路灯高地面的高度AB 是_________米。

三.解答题:(每小题7分,共14分)1.作出下图所示立体图形的三视图。

2.如图是一束平行的阳光从教室窗户射人的平面示意图,光线与地面所成角∠AMC =30○
,在教室地面的影长MN=2 3 ,若窗户的下檐到教室地面的距离BC =1m ,则窗户的上檐到教室地面的距离AC 是多少?
北师大九年级上册第三章---相似三角形测试卷
一、选择题(本题有10小题,每题3分,共30分) 1、已知3x=4y ,则
y x = ( ) A 、34 B 、43 C 、43- D 、-3
4 2.、下列各组中的四条线段成比列的是( ) A 、1cm 、2cm 、20cm 、30cm
B 、1cm 、2cm 、3cm 、4cm
C 、4cm 、2cm 、1cm 、3cm
D 、5cm 、10cm 、10cm 、20cm
3、若P 是线段AB 的黄金分割点(PA >PB ),设AB=1,则PA 的长约为 ( ) A 、0.191 B 、0.382 C 、0.5 D 、0.618
4、下面两个三角形一定相似的是( )A 、两个等腰三角形
B 、两个直角三角形
C 、两个钝角三角形
D 、两个等边三角形
5、如图:点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC 的是( ) A 、∠ACP =∠B B 、∠APC =∠ACB C 、
AC AP AB AC = D 、AB
AC
BC PC = 6、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )A 、1对 B 、2对 C 、3对 D 、4对
7、已知如图DE ∥BC ,
12AD DB = 求DE BC =( ) A 、12
B 、1
3 C 、2 D 、3
第5题 第6题 第7题 第8题 8. 如图,在梯形ABCD 中,AB//CD ,AC 交BD 于点O .若DC:AB=2 : 3,则S △DOC :S △DOA : S △AOB =(
)
C
B
E D A
C
B
A. 1 : 2 : 3
B. 4 : 5 : 6
C. 4 : 6 : 9
D. 4 : 8 : 9
9.把一个矩形剪去一个正方形,若所剩矩形与原矩形相似,则原矩形长与宽之比为 ( ) A .()
51+:2 B .3:2 C .(1+3):2 D .(1+6):2 二.应用题
1. (8分)如图,CD //AB ,AC 与BD 相交于点O. E 为CD 中点,EO 延长线交AB 于点F .
求证:点F 平分AB.
2. (8分)如图,把△ABC 沿AB 边平移到△A 1 B 1 C 1的位置,它们的重叠部分的面积为△ABC 的面积的
4
25
,若AB=4,求三角形移动的距离AA 1是多少?
北师大九年级上册第四章 反比例函数
概念:①反比例函数的定义:一般地,如果两个变量x ,y 之间的关系可以表示成 (k 为常数,0≠k )的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为 。

②一般形式:x
k
y =
(0≠k ),也可写成 ,或 。

一.选择题 1.下列各点中,不在反比例函数x
y 6
-=图象上的点是( )
(A )()6,1- (B )()2,3- (C )⎪⎭

⎝⎛-12,21 (D )()5,2-
2.已知反比例函数x
m y 1
+=
的图象具有下列特征:在所在象限内,y 的值随x 的增大而增大,那么m 的取值范围是 。

3.已知点A ),2(1y -,B ),1(2y -和C ),3(3y 都在反比例函数x
y 4
-=
的图象上,则1y ,2y 与3y 的大小
关系为 。

二.填空 1.在下列函数表达式中,表示y 是x 的反比例函数的有 。

①31-=xy ②x y 5= ③2x y = ④x y -=5 ⑤x
y 52
-=
2.电流I ,电阻R ,电压U 之间满足关系式U=IR ,当U=220V 时,用含有R 的代数式表示I : 3.一个矩形的面积为20cm 2,相邻的两条边长分别为x cm 和y cm ,请写出y 与x 的函数关系
式 。

4.y 是x 的反比例函数,下表给出了x 与y 的一些值:
(1)写出这个反比例函数的表达式 。

(2)根据函数表达式完成上表。

5.已知反比例函数x
y 2
=,当6=y 时,x = 。

6.函数()9
22
2--+=m m
x m y 是反比例函数,则m 的值是( )
(A )24-==m m 或 (B )4=m (C )2-=m (D )1-=m 7、反比例函数x
k
y =
图象是由由两支曲线组成的 。

8、当k >0时,两支曲线分别位于第 象限内,在每一象限内,y 的值随x 的增大而 。

当k <0时,两支曲线分别位于第 象限内,在每一象限内,y 的值随x 的增大而 。

9、如右上图,在反比例函数x
k
y =
图象上任取取两点P 、Q ,过点P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1;过点Q 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 2;
S 1 与S 2的关系为 。

且它们的面积都等于 。

10.如右图,设P (m ,n )是双曲线x
k
y =
(0≠k )上任意一点,有 (1)过P 作x 轴的垂线,垂足为A ,则=∆OAP S 。

11、已知A (m+3,2)和B (3,
3
m
)是同一个反比例图象上的两个点, (1) 求m 的值;(2)作这个反比例函数的图象;(3)将A ,B 两点标在函数图象上。

12、如图,正比例函数x k y 1=的图象与反比例函数x
k y 2
=的图象相交于A ,B 两点,其中点A 的坐标为(
)
32,3,(1)分别写出这两个函数的表达式;(2)求出点B 的坐标。

相关文档
最新文档