【数学】培优圆的综合辅导专题训练附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线;
(2)若BC=4,CD=6,求平行四边形OABC 的面积.
【答案】(1)证明见解析(2)24 【解析】
试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;
(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A ,
∵四边形OABC 是平行四边形, ∴OC ∥AB ,
∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中,
OE OD EOC DOC OC OC =⎧⎪
∠=∠⎨⎪=⎩
∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线;
(2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形,
∵S △CDO =
1
2
CD•OD , 又∵OA=BC=OD=4,
∴S△CDO=1
2
×6×4=12,
∴平行四边形OABC的面积S=2S△CDO=24.
2.如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(3)已知⊙O的半径为3.
①若AB
AC
=
5
3
,求BC的长;
②当AB
AC
为何值时,AB•AC的值最大?
【答案】(1)证明见解析;(2)证明见解析;(3)2;②3 2
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则
CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BG
BF BA
=,即BF•BG=BE•AB,将BF=BC-CF=BC-
AC、BG=BC+CG=BC+AC代入可得;
(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,
Rt△DMC中由DC=AC=3k、MC=1
2
6k求得22
CD CM
-3,可知OM=OD-
3,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴BE BG
BF BA
=,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(3)设AB=5k、AC=3k,
∵BC2﹣AC2=AB•AC,
∴6k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=3k,MC=1
2
6k,
∴223
CD CM k
-=,∴OM=OD﹣DM=33k,
在Rt △COM 中,由OM 2+MC 2=OC 2得(3﹣3k )2+(6k )2=32, 解得:k=
23
3
或k=0(舍), ∴BC=26k=42;
②设OM=d ,则MD=3﹣d ,MC 2=OC 2﹣OM 2=9﹣d 2, ∴BC 2=(2MC )2=36﹣4d 2,
AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2, 由(2)得AB•AC=BC 2﹣AC 2 =﹣4d 2+6d+18
=﹣4(d ﹣34
)2+814,
∴当d=34,即OM=34
时,AB•AC 最大,最大值为81
4,
∴DC 2=272
,
∴AC=DC=36
, ∴AB=
96
,此时
32AB AC . 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
3.在平面直角坐标系xOy 中,点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.
(1)已知点A (2,0),B (0,23),则以AB 为边的“坐标菱形”的最小内角为 ;
(2)若点C (1,2),点D 在直线y=5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;
(3)⊙O 的半径为2,点P 的坐标为(3,m ).若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.
【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1
【解析】
分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;
(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;
(3)分两种情况:
①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;
②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22
(),∴∠ABO=30°.
223
∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.
∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;
(2)如图2.
∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.
过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;
(3)分两种情况:
①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.
∵⊙O2,且△OQ'D是等腰直角三角形,∴OD2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,
∴AB=3+2=5.
∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;
②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.
∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,
∴AB=3+2=5.
∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;
综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.
点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.
4.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)若半圆O的半径为6,求AC的长.
【答案】(1)直线CE 与半圆O 相切(2)4π 【解析】
试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;
(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题. 试题解析:(1)直线CE 与半圆O 相切,理由如下: ∵四边形OABC 是平行四边形,∴AB ∥OC. ∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE , ∴直线CE 与半圆O 相切.
(2)由(1)可知:∠COF=60°,OC=OF , ∴△OCF 是等边三角形, ∴∠AOC=120° ∴AC 的长为
1206
180
π⨯⨯=4π.
5.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;
(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.
【答案】(1)F (3,4);(2)8-43;(3)7;(4)t 的值为245
或325. 【解析】
试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;
(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.
试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°, ∴∠ABO =30°,点E 是AB 的中点,OE =
1
2
AB =4,BO =43,∴点B 下滑的距离为843-.
(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.
(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853
t
=,∴t 1=
245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=32
5
. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为
245或32
5
. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.
6.(1)问题背景
如图①,BC 是⊙O 的直径,点A 在⊙O 上,AB=AC ,P 为BmC 上一动点(不与B ,C 重2PA=PB+PC .
小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:
第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);
第二步:证明Q,B,P三点共线,进而原题得证.
请你根据小明同学的思考过程完成证明过程.
(2)类比迁移
如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.
(3)拓展延伸
如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=4
3
AC,AB⊥AC,垂足
为A,则OC的最小值为.
【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)3
2
.
【解析】
试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;
(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;
(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=4
3
OA,连接OQ,
BQ,OB.由△QAB∽OAC,推出BQ=4
3
OC,当BQ最小时,OC最小;
试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);
∵BC是直径,∴∠BAC=90°,
∵AB=AC,∴∠ACB=∠ABC=45°,
由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,
∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q ,B ,P 三点共线, ∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP 2=AP 2+AQ 2=2AP 2, ∴QP=2AP=QB+BP=PC+PB ,∴
2AP=PC+PB .
(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,
∵AB ⊥AC,∴∠BAC=90°,
由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;
(3)如图③中,作AQ ⊥OA ,使得AQ=
4
3
OA ,连接OQ ,BQ ,OB .
∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =4
3
, ∴△QAB ∽OAC ,∴BQ=
4
3
OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2, ∴OC 的最小值为34×2=32
, 故答案为
32
. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.
7.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .
求证:(1)AD 是⊙B 的切线;
(2)AD =AQ ;
(3)BC 2=CF×EG .
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得
AD BD =,再根据正方形的性质,可得90ADB ∠=;
()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=
∠=,继而求得67.5ADQ AQD ∠=∠=,由等角对等边,可证得AD AQ =; ()3易求得67.5
GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,即可证得Rt DCF ∽Rt GED ,根据相似三角形的对应边成比例,即可证得结论.
【详解】
证明:()1连接BD ,
四边形BCDE 是正方形,
45DBA ∴∠=,90DCB ∠=,即DC AB ⊥,
C 为AB 的中点,
CD ∴是线段AB 的垂直平分线,
AD BD ∴=,
45DAB DBA ∴∠=∠=,
90ADB ∴∠=,
即BD AD ⊥, BD 为半径,
AD ∴是B 的切线;
()2BD BG =,
BDG G ∴∠=∠,
//CD BE ,
CDG G ∴∠=∠,
122.52
G CDG BDG BCD ∴∠=∠=∠=∠=, 9067.5ADQ BDG ∴∠=-∠=,9067.5AQB BQG G ∠=∠=-∠=,
ADQ AQD ∴∠=∠,
AD AQ ∴=;
()3连接DF ,
在BDF 中,BD BF =,
BFD BDF ∴∠=∠,
又45DBF ∠=,
67.5BFD BDF ∴∠=∠=,
22.5GDB ∠=, 在Rt DEF 与Rt GCD 中,
67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,
Rt DCF ∴∽Rt GED ,
CF CD ED EG
∴=, 又CD DE BC ==,
2BC CF EG ∴=⋅.
【点睛】
本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.
8.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ
+=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .
(1)如图1,当r =
①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.
②A 2(1+2,0)是否为⊙C 的“2相关依附点”.
(2)若⊙C 上存在“k 相关依附点”点M , ①当r=1,直线QM 与⊙C 相切时,求k 的值.
②当3k =时,求r 的取值范围.
(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.
【答案】(1)2.②是;(2)①3k =
②r 的取值范围是12r <≤;(3)
333b -<. 【解析】
【分析】
(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =
计算即可解决问题;
②根据定义求出k 的值即可判断; (2)①如图,当1r =时,不妨设直线QM 与
C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设
QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ
,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =3DQ =221CD CQ DQ -=,假设C 经过点Q ,此时2r ,因为点Q 早C 外,推出r 的取值范围是12r <; (3)如图4中,由(2)可知:当3k =12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<.
【详解】
(1)①如图1中,连接AC 、1QA .
由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即
11CA QA ⊥,1QA ∴是C 的切线,122222QA k QC ∴===. ②2(12,0)A +在C 上,221212k -+++∴==,2A ∴是C 的“2相关依附点”.
故答案为:2,是;
(2)①如图2,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.
(1,0)Q -,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时
23MQ k CQ
==; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =,
∴2MQ NQ DQ k DQ CQ CQ +=
==,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,点Q 早C 外,r ∴的取值范围是12r <.
(3)如图4中,由(2)可知:当3k =12r <.
当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<<.
【点睛】 本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点
)B 是C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.
9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;
(2)若AD =2,AC=6,求⊙O 的半径R 的长.
【答案】(1)证明见解析
(2)32
【解析】
试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则
∠1=∠2=12
∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则
2AD AC AC R =,从而求得R . 试题解析:(1)证明:连接OC ,
∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,
∴OC ⊥CD .
又∵AC 平分∠DAB ,
∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,
∴AD ∥OC , ∴AD ⊥CD .
(2)连接BC ,则∠ACB =90°,
在△ADC 和△ACB 中
∵∠1=∠2,∠3=∠ACB =90°,
∴△ADC ∽△ACB .
∴2AD AC AC R
= ∴R =2322
AC AD =
10.如图,已知在△ABC 中,AB=15,AC=20,tanA=12
,点P 在AB 边上,⊙P 的半径为定长.当点P 与点B 重合时,⊙P 恰好与AC 边相切;当点P 与点B 不重合时,⊙P 与AC 边相交于点M 和点N .
(1)求⊙P 的半径;
(2)当AP=5△APM 与△PCN 是否相似,并说明理由.
【答案】(1)半径为52)相似,理由见解析.
【解析】
【分析】(1)如图,作BD ⊥AC ,垂足为点D ,⊙P 与边AC 相切,则BD 就是⊙P 的半径,利用解直角三角形得出BD 与AD 的关系,再利用勾股定理可求得BD 的长;
(2)如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,根据垂径定理得出MN=2MH ,PM=PN ,再利用勾股定理求出PH 、AH 、MH 、MN 的长,从而求出AM 、NC 的长,然后求出AM MP 、PN NC 的值,得出AM MP =PN NC
,利用两边对应成比例且夹角相等的两三角形相似即可证明.
【详解】(1)如图,作BD ⊥AC ,垂足为点D ,
∵⊙P 与边AC 相切,
∴BD 就是⊙P 的半径,
在Rt △ABD 中,tanA= 1BD 2AD =, 设BD=x ,则AD=2x ,
∴x 2+(2x)2=152,
解得:5
∴半径为5
(2)相似,理由见解析,
如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,
∴PH 垂直平分MN ,
∴PM=PN ,
在Rt △AHP 中,tanA=
12PH AH =, 设PH=y ,AH=2y ,
y 2+(2y )2=(52
解得:y=6(取正数),
∴PH=6,AH=12,
在Rt △MPH 中, ()22356-,
∴MN=2MH=6,
∴AM=AH-MH=12-3=9,
NC=AC-MN-AM=20-6-9=5, ∴35535AM MP ==,355
PN NC =,
∴AM
MP =
PN NC
,
又∵PM=PN,
∴∠PMN=∠PNM,
∴∠AMP=∠PNC,
∴△AMP∽△PNC.
【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.。