Flooding-enhanced immobilization effect of sepiolite

合集下载

英文翻译

英文翻译

人工湿地处理潜在的富营养化水:对中国太湖湖证据林丰李的A,B,研发,英豪李一,迪利普库马尔比斯瓦斯1,月刚念ç,蒋高明1,*对植被与环境变化,植物,中国科学院,北京100093,中国公关研究所重点实验室b农学院广东海洋大学,湛江524088,公关中国C中文研究院环境科学学院,北京100012,公关中国Ḏ中国科学院研究生院,北京100049中国100049收到2006年9月29日,在经修订的形式收到的07年4月4日,接受2007年4月4日可在线2007年5月25日摘要三个平行单位的试点规模人工湿地(凭单),即垂直潜流(VSF)的,水平潜流(HSF)和自由水面流(鱼类和野生生物)湿地的试验,以评估净化太湖富营养化水体的能力,中国。

湖水在不断地泵的水力负荷率0.64博士每次治疗1到凭单。

一年的表现屏幕显示,化学需氧量(COD),氨氮平均去除率ðNHþ4- NÞ,硝酸盐氮感言3 NÞ,总氮(TN)和总磷(TP)的是17-40%,23 - 46%,34-65%,20-52%和35-66%,分别为。

那个粘胶短纤和HSF显示,除NHþ4养分去除统计类似的高潜力氮,前者为14%,高于是后者。

然而,FWS的湿地显示效果相比,至少在高水力负荷率的粘胶短纤和HSF。

粘胶短纤平均在大埔污水浓度(0.056毫克蜇1)和HSF(0.052毫克蜇1)湖泊几乎达到了三级(60.05毫克L 1和储层)中国水水质标准。

湿地植物(蒲黄)生长良好,在这三个凭单。

我们注意到,植物吸收和存储都是为氮和磷的三个凭单负责清除的重要因素。

然而,收获地上生物量的20%贡献N和57全氮和鱼类和野生生物湿地去除磷%P,而它只占5%和7%N和14%和17全氮和粘胶短纤和HSF凭单,分别取消磷%P。

我们的研究结果表明,人工湿地处理很可能在太湖富营养化湖泊水域。

如果土地被认为是限制,粘胶短纤和HSF是比较合适的在较高的比鱼类和野生生物水力负荷率。

重力泄水辅助蒸汽驱开采机理及油藏工程设计

重力泄水辅助蒸汽驱开采机理及油藏工程设计

大庆石油地质与开发Petroleum Geology & Oilfield Development in Daqing2023 年 8 月第 42 卷第 4 期Aug. ,2023Vol. 42 No. 4DOI :10.19597/J.ISSN.1000-3754.202204039重力泄水辅助蒸汽驱开采机理及油藏工程设计李培武 曹峻博 张崇刚 李鑫 杨光璐 李迎环(中国石油辽河油田公司勘探开发研究院,辽宁 盘锦124010)摘要: 针对辽河油田稠油区块蒸汽吞吐后期产量低、转换开发方式难度大的问题,按照“垂向泄水提高热效率、直平采液提高采注比、水平井注汽提干度、注采泄稳定控制扩波及”的技术思路,开展重力泄水辅助蒸汽驱油藏工程研究,进一步明确开采机理并明确了各阶段开发特征,并对油藏工程关键参数进行优化设计。

研究表明:采用上下叠置水平井与直井组合的立体井网,实现了平面蒸汽驱替、垂向重力泄水的渗流模式;重力泄水辅助蒸汽驱立体井网可为蒸汽腔的形成创造良好的条件,有效缓解了深层、特-超稠油埋藏深、沿程热损失大造成的井底蒸汽干度低、注采不同平衡等系列矛盾;重力泄水辅助蒸汽驱可划分为直井、水平井井间热连通,重力泄水辅助蒸汽驱驱替阶段和蒸汽驱调整3个阶段;重力泄水辅助蒸汽驱现场试验取得较好的开发效果,预计汽驱结束采收率可达到58.6%,为深层-特深层稠油开发方式转换提供了新途径。

研究成果为同类油藏进一步提高采收率提供了借鉴。

关键词:重力泄水辅助蒸汽驱;深层稠油;水平井;注采参数中图分类号:TE345 文献标识码:A 文章编号:1000-3754(2023)04-0099-06Development mechanism of gravity water⁃drainage assisted steamflooding and reservoir engineering designLI Peiwu ,CAO Junbo ,ZHANG Chonggang ,LI Xin ,YANG Guanglu ,LI Yinghuan(E & D Research Institute of Petrochina Liaohe Oilfield Company ,Panjin 124010,China )Abstract :In the light of problems of low production and much difficulty in development mode conversion at the latestage of CSS in heavy oil blocks of Liaohe Oilfield, on the basis of technical ideas of “improving thermal efficiency by vertical water drainage, increasing production -injection ratio by producing fluid from vertical wells and horizontal well, increasing injected -steam dryness with horizontal wells, and increasing swept volume by stably controlled in‑jection -production -drainage ”, reservoir engineering of gravity water -drainage assisted steam flooding is studied to further determine development mechanism and development characteristics of each stage, and key parameters of res‑ervoir engineering are optimized. The results show that a flow pattern of areal steam flooding and vertical gravity drainage is realized by using 3D well pattern consisting of stacked horizontal wells and vertical wells. 3D well pat‑tern of gravity water -drainage assisted steam flooding provides favorable conditions for the formation of steam cham‑ber,effectively mitigating a series of contradictions of low bottom hole steam dryness and injection -production imbal‑ance caused by deep buried ultra -extra heavy oil with much heat loss along wellbore. Gravity drainage assisted steam flooding is divided into 3 stages: thermal connection between vertical wells and horizontal wells, displacement stage of gravity drainage assisted steam flooding stage and steam flooding adjustment stage. Field test of gravitydrainage assisted steam flooding achieves good development results, with recovery factor at the end of steam flooding收稿日期:2022-04-14 改回日期:2022-12-08基金项目:国家科技重大专项“辽河、新疆稠油/超稠油开发技术示范工程”(2016zx05055)。

高科技利弊英语作文

高科技利弊英语作文

Title:The Pros and Cons of High TechnologyIn the modern era,the rapid advancement of technology has become an integral part of our daily lives.While high technology has undoubtedly brought about numerous benefits, it is also not without its drawbacks.This essay will explore the advantages and disadvantages of high technology,providing a balanced perspective on its impact on society.Pros of High Technology1.Enhanced Communication:High technology has revolutionized the way we communicate.With the advent of smartphones,social media,and instant messaging apps, staying in touch with friends and family across the globe has never been easier.This has not only fostered stronger relationships but also facilitated business collaborations and international diplomacy.2.Improved Healthcare:Medical technology has seen significant advancements,leading to better diagnostic tools,treatments,and even the development of lifesaving vaccines. Telemedicine and remote patient monitoring have also made healthcare more accessible, particularly in remote areas.3.Efficiency in Work:Automation and artificial intelligence have increased productivity in various industries.Tasks that were once timeconsuming and laborintensive can now be completed with greater speed and accuracy,freeing up human resources for more complex and creative endeavors.cational Advancements:Technology has transformed education,making it more accessible and interactive.Online courses,digital libraries,and virtual classrooms have broken down geographical barriers,allowing students from all over the world to access quality education.5.Environmental Monitoring:High technology plays a crucial role in monitoring environmental changes and natural disasters.Satellite imagery and data analysis tools help scientists track climate change,deforestation,and other ecological issues,enabling more informed decisionmaking.Cons of High Technology1.Privacy Concerns:The rise of technology has led to increased surveillance and data collection,raising serious privacy concerns.Personal information is often collectedwithout consent,and there is a risk of misuse by corporations or governments.2.Digital Divide:While technology has made information more accessible,it has also created a divide between those who have access to it and those who do not.This digital divide can exacerbate existing social and economic inequalities.3.Job Displacement:Automation and AI have the potential to replace human workers in various sectors,leading to job displacement and unemployment.This can have significant social and economic repercussions,particularly for those in lowskilled jobs.4.Mental Health Impact:The constant connectivity and pressure to be online can lead to increased stress,anxiety,and other mental health issues.The overuse of social media can also contribute to feelings of inadequacy and social isolation.5.Environmental Impact:The production and disposal of hightech devices contribute to environmental pollution and the depletion of natural resources.Ewaste is a growing concern,as it often contains hazardous materials that can harm ecosystems and human health.In conclusion,while high technology offers numerous benefits that have improved our quality of life,it is essential to address the associated challenges.A balanced approach that promotes the positive aspects of technology while mitigating its negative impacts is crucial for a sustainable and equitable future.Policymakers,technologists,and society at large must work together to ensure that the benefits of high technology are accessible to all,and its drawbacks are managed responsibly.。

基于栖息地模拟的河道生态需水量多目标评价方法及其应用

基于栖息地模拟的河道生态需水量多目标评价方法及其应用

2008年5月水 利 学 报SH UI LI X UEBA O 第39卷 第5期收稿日期:2007207219基金项目教育部新世纪优秀人才支持计划(6);清华大学基础研究基金(q 5)作者简介郝增超(),男,山东招远人,硕士生,主要从事水文水资源研究。

2z 5@文章编号:055929350(2008)0520557205基于栖息地模拟的河道生态需水量多目标评价方法及其应用郝增超,尚松浩(清华大学水利水电工程系水沙科学与水利水电工程国家重点实验室,北京 100084)摘要:本文提出基于栖息地模拟法的多目标评价法计算河道生态需水量,以加权可利用面积(W UA )最大和流量最小为目标,采用理想点法进行求解。

该方法综合考虑了生态用水和经济用水,提供了一个栖息地保护和经济用水相协调的最优河流生态需水量。

最后以鱼类作为指示物种,对新疆额尔齐斯河中游鱼类产卵期的河道生态需水量进行了计算。

计算结果表明,其生态流量为78m 3/s ,占该河段多年平均流量的74%。

该结果比直接采用栖息地模拟法计算的结果小,但该生态流量可以对河流栖息地提供足够的保护,且较好地协调了生态用水和经济用水的矛盾。

关键词:河道生态需水量;栖息地模拟法;多目际评价法中图分类号:X143;T V13112文献标识码:A 1 研究背景随着人们对河流水资源利用程度的不断提高,河水流量减少、水污染加剧以及生态恶化等问题逐渐涌现,河流生态需水量的研究也逐渐引起了人们的关注。

生态需水量的研究在概念上还存在着如生态需水、生态用水等用法,这些概念之间的区别和联系并不明确[1],而且也经常相互替代。

为了研究方便,本文所研究的生态需水是特指河道内流量(instream flow ),即在某一个特定河流或者河段保持现有水生栖息地和鱼群的足够水量[2]。

河道内生态需水量的研究方法主要有:水文学方法、水力学方法、栖息地方法和整体法等。

水文学方法有T ennant 法、7Q10法、RV A 法等,水力学方法有湿周法、R2CR OSS 法等,栖息地方法有(加权)有效宽度法、栖息地模拟法(Physical Habitat S imulation S ystem ,PH A BSI M )和河道内流量增加法(Instream F low Incremental Methodology ,IFI M)等,整体法有构筑模块法(BBM)法等。

低渗透致密油藏CO2驱油与封存技术及实践

低渗透致密油藏CO2驱油与封存技术及实践

第30卷第2期油气地质与采收率Vol.30,No.22023年3月Petroleum Geology and Recovery EfficiencyMar.2023—————————————收稿日期:2022-01-20。

作者简介:王香增(1968—),男,河南滑县人,教授级高级工程师,博士,从事特低渗透致密油气开采理论与工程技术攻关工作。

E-mail :*****************。

基金项目:国家重点研发计划项目“二氧化碳提高油藏采收率与地质封存一体化关键技术及应用示范”(2022YFE0206700)和“CO 2驱油技术及地质封存安全监测”(2018YFB0605500),陕西省青年科技新星项目“促进CO 2与原油混相的伴生气体系构筑及其改善CO 2驱油效果评价”(2021KJXX-86)。

文章编号:1009-9603(2023)02-0027-09DOI :10.13673/37-1359/te.202201034低渗透致密油藏CO 2驱油与封存技术及实践王香增1,2,杨红1,3,王伟1,3,姚振杰1,3,梁全胜1,3,刘瑛1,3(1.陕西省CO 2封存与提高采收率重点实验室,陕西西安710065;2.陕西延长石油(集团)有限责任公司,陕西西安710065;3.陕西延长石油(集团)有限责任公司研究院,陕西西安710065)摘要:延长油田将煤化工CO 2减排和CO 2资源化利用创新结合,开创了陕北地区煤化工低碳发展和低渗透致密油藏绿色高效开发联动发展的产业模式。

系统阐述了延长油田全流程一体化碳捕集、利用与封存(CCUS )技术及矿场试验,形成了煤化工低温甲醇洗低成本CO 2捕集技术,提出了低渗透致密油藏CO 2非混相驱“溶蚀增渗、润湿促渗”新理论,形成了以提高CO 2混相程度和CO 2驱立体均衡动用为主的CO 2高效驱油技术,明确了储层上覆盖层封闭机理,完善了盖层封盖能力和CO 2封存潜力评价方法,丰富了油藏CO 2安全监测技术体系。

富营养化水体水华暴发的突变模型

富营养化水体水华暴发的突变模型

中国环境科学 2006,26(1):125~128 China Environmental Science 富营养化水体水华暴发的突变模型陈云峰1,殷福才2,陆根法1*(1.南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏南京 210093;2.安徽省环境保护科学研究所,安徽合肥 230061)摘要:对南方某水库1991~2004年水质数据进行了系统分析,综合考虑TP、N:P、Chla和DO 4个对该水库富营养化乃至水华影响较大的因子,构建了该水库水华突变的尖点模型.经检验,模型的相对误差控制<5%,具有较好的拟合精度.根据模型的突变判别,水库的水生态系统在1997年发生了突变,这一模拟结论与TP指标的突变判别结论相印证,并与该水库1997年首度暴发水华的实际情况相一致.关键词:水华;突变理论;尖点模型;富营养化;水库中图分类号:X524 文献标识码:A 文章编号:1000-6923(2006)01-0125-04The catastrophic model of water bloom breaking out of eutrophication waters. CHEN Yun-feng1, YIN Fu-cai2, LU Gen-fa1* (1.State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093, China;2.Anhui Academy for Environment Science Research, Hefei 230061, China). China Environmental Science,2006,26(1):125~128Abstract:Facing the serious situation of lakes and reservoirs, the prevention and control of algae water bloom was an urgent matter; while the effective premonition of the water bloom based on the eutrophication status quo was the important basic work of preventing and controlling the water bloom. The systemic analysis of the water quality data of certain south reservoir in the years 1991~2004 found that the evolution rule of the April TP and Chla indexes at the reservoir bend monitor section fitted cusp model characteristics of catastrophe theory. As viewed from the aquatic ecosystem, TP, N:P, Chla and DO, four most outstanding factors influencing the eutrophication and water bloom of this reservoir, were synthetically considered; the cusp model of water bloom catastrophe of this reservoir was constructed. Through test the relative error of the model was controlled less than 5% possessing better modeling precision. Based on distinguishing the model catastrophe, the aquatic ecosystem of the reservoir happened catastrophe in the year 1997, this simulating conclusion echoed with the catastrophe distinguishing conclusion of TP index, judged that the first outbreak of water bloom would happen in 1997 in the reservoir. The conclusion was consistent with the fact of water bloom breaking out for the first time in 1997 in the reservoir.Key words:water bloom;catastrophe theory;cusp model;eutrophication;reservoir水华的暴发是水生态系统中营养因子和环境因子综合作用的产物,不仅要求有N、P等营养盐条件,还涉及到温度、pH值、光照、水流、微量元素等诸多因素的共同影响,针对水华情况下水生态系统各因子的研究已有不少的成果[1,2],但研究水华突变事件的模型并不多见[3].作者应用突变理论,以南方某水库为研究对象,构建水体水华突变模型,进行数值模拟,识别该水体水华的暴发条件,为水华的预警以及防治提供科学依据. 1 南方某水库概况南方某水库属深水型过水性水库,20世纪90年代以来,氮磷等营养物质含量逐渐增高(表1).水生态环境恶化,污染物的积累由量变引起质变,该水库从1997年起开始暴发水华,且多集中在春季温湿条件较适宜的4月.收稿日期:2005-06-07基金项目:国家“863”项目(2002AA601012-7)* 责任作者, 教授, lugf@126 中国环境科学26卷表1水库1991~2004年富营养化状况Table 1 Eutrophication state of a certain southreservoir from 1991 to 2004各因子浓度时间(年-月) TP(mg/L) TN(mg/L)Chla(mg/m3)DO(mg/L)1991-04 0.050 1.240 6.4 8.761992-04 0.070 1.500 9.9 6.721993-04 0.060 1.220 8.2 7.621994-04 0.090 0.790 8.9 5.401995-04 0.110 0.940 16.6 4.801996-04 0.122 1.383 24.4 3.001997-04 0.171 1.062 53.4 1.321998-04 0.221 1.145 20.1 1.201999-04 0.248 2.445 12.8 1.802000-04 0.382 2.691 42.4 1.862001-04 0.301 3.685 21.6 2.582002-04 0.380 3.866 39.8 3.422003-04 0.146 2.733 32.2 5.222004-04 0.119 2.647 27.9 4.80 II类水质标准 0.025 0.5 * 6注:* 为暂无国家标准2 突变理论与尖点突变模型突变理论是目前唯一研究由渐变引起突变的系统理论[4],是通过研究对象的势函数来研究突变现象的.系统势函数通过系统状态变量X={x1,x2,……x m}(系统的行为状态)和外部控制参量U={u1,u2,……u n}(影响行为状态的诸因素)来描述系统的行为,即V=f(U,X).这样,在各种可能变化的外部控制参量和内部行为变量的集合条件下,可构成状态空间和控制空间.通过联立求解V′(x)和V″(x),得到系统平衡状态的临界点,突变理论正是通过研究临界点之间的相互转换来研究系统的突变特征的.当系统有2个控制变量和1个状态变量时,称为尖点突变,其势函数和分叉集分别为:V(x)=x4+ux2+vxB=8u3+27v2=0分叉集B就是突变流形M在u-v平面上的投影(图1).突变流形的上、中、下3叶分别代表了系统可能的3个平衡位置,即上下2叶是稳定的,中叶是不稳定的.在从上叶到下叶或从下叶到上叶的转换中,如果跨越了折叠线(即∆=0),系统的状态将发生突跳.图1 尖点突变的一般形态Fig.1 The general form of the cusp catastrophe3 水质指标的突变判别对表1中的TP指标1991~1996数据进行突变判别.采用最小二乘法,将所考察指标的时间序列数据做4次多项式拟合:y(t)=b0+b1t+b2t2+ b3t3+b4t4(1) 令t=x-q,其中:q=b3/4b4,通过变量代换,消去式(1)中的3次项,即可转化为尖点突变的标准型:y(x)=d0+d1x+d2x2+ d4x4(2) 其中:24432332122141432106310010000bq q q qdbd q q qbd q qbdb⎡⎤⎡⎤−−⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦进一步进行变量代换,令4()()F xV xd=,得:V(x)=x4+Px2+Qx+C根据尖点模型的分叉集计算公式,进行突变判别:B = 8P3+27Q2<0如果不等式成立,说明该考察指标已在考察的时间序列内发生了突变.控制变量11期陈云峰等:富营养化水体水华暴发的突变模型 127TP指标1991~1996年数据经上述处理后, B=8P3+27Q2=-48543<0满足突变条件,这与该水库1997年第1次暴发水华的实际情况相吻合.运用相同的方法对1991~1996年的Chla、TN和DO数据进行处理后发现,Chla满足突变判别式的要求,而TN和DO则不满足.由此可见,在水库富营养化引发水华的过程中,TP和Chla指标的演化符合尖点突变的模型特征.下面将进一步从整个水生态系统角度,构建南方某水库水华的突变模型,通过模型对水华情势进行数值模拟.4 水华突变模型4.1 模型结构TP在考察时间段内发生了突变,故采用它作为系统的状态变量x,表征水生态系统的富营养化状态;总结以前对水库的研究成果,选取对水库富营养化影响最为突出的N/P和DO作为系统的控制变量u和v;采用Chla作为系统的势函数V,表征水体藻类的生长状态和暴发水华的趋势.如此,由2个控制变量和1个状态变量,可以构建尖点模型对表1的数据进行拟合.4.2 数据的预处理为了解决模型等式两边的量纲统一问题,需要对各参变量做无量纲化处理.TP*:参考国内各湖泊富营养化标准中的TP 取值[5],按公式TP*=TP/0.11,计算水库中磷的超标率,作为状态变量TP*.N/P*:该水库的优势藻类属蓝藻门,相关的研究表明,12以上的氮磷比将抑制南方某水库中蓝藻对磷的吸收,故按公式N:P*=(TN:TP-12)/TN: TP,计算氮磷比适宜度,作为控制变量N:P*.DO*:参考II类湖泊水质标准中的溶氧取值,按公式DO*=DO/6,计算溶氧的不饱和度,作为另一个控制变量DO*.Chla*:通过转换系数k,按公式Chla*= Chla/k,去除叶绿素的量纲,作为势函数Chla*.经过数据的预处理,该水库水华突变模型即可表示为:Chla*= TP*4+N:P*⋅TP*2+DO*⋅TP*(3) 4.3 数据拟合选用水库首次水华暴发前的1991~1997年数据,利用最小二乘法进行拟合,求得叶绿素的转换系数k=11.36,带回模型中进行逐年的模拟计算后,与各年的实际值进行比较,并根据分叉集判别式对各年是否发生水华突变进行计算和判别(表2).表2 1991~2004年数据拟合与突变判别结果Table 2 Result of data fitting and catastropheidentification from 1991to 2004时间(a)TP* N:P*DO*Chla*相对误差%突变判别(B) 19910.45 0.52 1.460.56 2.8 58.6519920.64 0.44 1.120.87 3.0 34.5519930.55 0.41 1.270.72 -4.4 44.1019940.82 -0.370.900.78 -4.2 21.471995 1.00 -0.400.80 1.46 -4.5 16.751996 1.11 -0.060.50 2.15 -3.9 6.75 1997 1.55 -0.930.30 4.70 4.7 -5.171998 2.01 -1.320.20 1.77 717.0-17.161999 2.25 -0.220.30 1.13 2284.9 2.35 2000 3.47 -0.700.31 3.73 3831.4-0.192001 2.74 0.02 0.43 1.90 3020.8 4.99 2002 3.45 -0.180.57 3.50 4141.48.73 2003 1.33 0.36 0.87 2.83 80.4 20.812004 1.08 0.46 0.80 2.46 14.2 18.06由表2可见,1997年之前,模型的拟合精度令人满意,相对误差控制在±5%以内.1997年的∆<0,根据突变判别系统发生了突变.这一结论与上述TP的判定结论相呼应,并与当年水库暴发水华的实际情况相符;1997年以后,水华的发生严重损坏了水库水生态系统的功能,各项指标数据不再与尖点模型相吻合;但随着近年来各项环境保护和生态重建项目的实施,崩溃了的水库水生态系统开始得以逐步恢复,模型的拟合精度也逐渐提高(2004年相对误差达到14.2%).4.4 模型应用4.4.1水华的预警根据尖点模型的突变判别,128 中国环境科学26卷当控制变量满足判别式∆=8u3+27v2<0时,将引起状态变量的突跳,系统会发生突变.根据式(3) Chla*=TP*4+N:P*×TP*2+DO*×TP*,如果掌握了模型控制因子N:P和DO的变化情势,利用突变判定条件: ∆=8u3+27v2=8N:P*3+27DO*2<0,即可对该水库在各种富营养化情势下是否暴发水华进行预警.4.4.2对策措施的预测、优化和统筹为防止突变的发生,就必须对控制变量进行调控,保证∆=8u3+27v2>0.具体到南方某水库,各项对策措施的实施效果可以通过对实施前后的∆值的计算和预测后进行对比,分析其对水华防治的贡献;同时,也根据判别式∆>0的要求,对不同的组合方案进行优化和统筹,以期以最经济的手段获取最佳的整治效果,即在∆>0的约束条件前提下,满足成本最小化的函数目标.min Z = Cost(N:P*)+Cost(DO*)s.t.: ∆=8u3+27v2 = 8N:P*3+27DO*2 >0需要指出的是,本文中水华突变模型的构建方法在运用到其他湖泊水库时,需要考虑地理、气候、水文等方面的差异性,在标准和参数的选取以及对水质数据的处理方法等方面做适当的调整和修正,甚至在模型的形式上采用更多维的控制变量和状态变量.5 讨论水华是水生态系统中营养物质长期累积的结果,是系统经富营养化长期演化后的极端状态,是一个由量变到质变、由渐变到突变的状态阶跃.这就要求采用的数学模型能够体现这种非连续的、阶跃式的数理特征[4,5].突变理论是目前唯一研究系统运动由渐变引起突变的理论,曾被称为比微分数学更有价值,因为后者只考虑了光滑、连续的过程,而突变理论却提供了一个研究所有跳跃的变迁、不连续性以及突发的质变的一般方法.本案例研究表明,突变模型的应用为富营养化水体的水华现象提供了一条全新的研究思路. 6 结语突变模型不仅可以用来对该水库在各种富营养化状态下是否暴发水华进行预警,还可以对各项防治措施的实施效果进行模拟预测,进而为综合整治方案的优化和统筹提供科学依据.本模型是水华研究方法的一种新的尝试,文中的结论部分尚有待于在其他湖泊水库进行对比研究后作进一步验证.由于数据收集等方面的条件所限,模型也仅考虑了Chla、TP、TN和DO等对该水库富营养化影响较为突出的几个因子,而光照、pH值、水文等参量模型中尚未包括,有待于进一步丰富和完善.参考文献:[1] 周云龙,于明.水华的发生、危害和防治 [J]. 生物学通报,2004,39(6):11-14.[2] 杜桂森,王建厅,张为华,等.官厅水库水体营养状况分析 [J]. 湖泊科学,2004,16(3):278-281.[3] 全为民,严力蛟,虞左明,等.湖泊富营养化模型研究进展 [J]. 生物多样性,2001,9(2):168-175.[4] Collie J S, Richardson K, Steele J H. Regime shifts: canecological theory illuminate the mechanisms [J]. Progress in Oceanography, 2004,60(2-4):281-302.[5] Scheffer M, Carpenter S R. Regime shifts in ecosystems: Modelsand evidence [J]. Trends in Ecology and Evolution., 2003,18: 648-656.作者简介:陈云峰(1969-),男,安徽合肥人,南京大学环境学院博士研究生,主要从事环境数值仿真方面的研究.发表论文10余篇.。

富营养化水体底泥磷释放的研究进展

富营养化水体底泥磷释放的研究进展

富营养化水体底泥磷释放的研究进展李海宗;潘梅【摘要】底泥是富营养化水体内源性磷的主要来源,而底泥中磷的释放与磷的形态及其数量分布、环境影响因子等有密切的关系.综述了国内外学者对底泥磷的形态、释放影响因素及原位控制技术等最新研究进展,并分析了今后的研究重点.%The sediment is the main source of phosphorus in eutrophic water. The release of phosphorus in sediments is influenced by the formsrnand concentration of phosphorus and environmental factors. The paper reviewed the formsof phosphorus in sediments, the factors influencing thernphosphorus release and the in situ control technology both at home and abroad, and then analyzed the future research focus.【期刊名称】《安徽农业科学》【年(卷),期】2012(040)021【总页数】4页(P11008-11010,11013)【关键词】底泥;磷释放;影响因素;控制技术【作者】李海宗;潘梅【作者单位】江苏省盐城市环境监测中心站,江苏盐城224002;盐城工学院,江苏盐城224051【正文语种】中文【中图分类】S181.3磷是水体富营养化最常见的限制性营养盐,磷素的增加不仅带来了水体溶解氧的消耗以及蓝藻的暴发,而且藻类在繁殖过程中产生的一系列藻毒素会对水生生物甚至人类产生更大的危害。

随着人们对于湖泊富营养化危害及原因认识的提高,大部分湖泊的外来营养源已得到了有效控制,但底泥作为湖泊营养物质的重要储存库,成为水体营养物质的重要来源。

城市防洪系统综合评价模型的研究

城市防洪系统综合评价模型的研究

城市防洪系统综合评价模型的研究发布时间:2021-11-04T02:59:57.034Z 来源:《工程建设标准化》2021年8月第15期作者:周亭秀[导读] 城市防洪系统是城市防洪的保障,其完善与否直接关系到城市的安全和发展周亭秀1.成都锦城学院,四川成都 610097摘要:城市防洪系统是城市防洪的保障,其完善与否直接关系到城市的安全和发展。

因此建立有效的城市防洪系统的综合评价模型,对于城市防洪规划的制定和具体实施有着重要意义。

本文首先根据BP神经网络、灰色系统理论和遗传算法的使用条件和各自特点,建立了基于遗传算法的优化灰色神经网络城市防洪系统评价模型。

并在考虑城市防洪系统影响的多指标性的基础上,设计了基于MATLAB软件平台可独立运行的城市防洪系统综合评价模型的程序。

通过对城市防洪影响指标数据的灰色系统预处理,以及运用遗传算法对神经网络赋予最佳初始权值和阈值,并运用样本数据对神经网络学习训练,最后采用所建立的城市防洪系统评价模型,对某城市防洪系统进行了综合评价,验证了模型应用上的可行性,实现了在城市防洪系统综合评价上软硬措施相结合的整体思路,为城市防洪系统综合评价提供了一种新途径。

关键词:城市防洪;综合评价;灰色系统;BP人工神经网络;遗传算法中图分类号: TU 473.1+6 文献标识码: A A Study On The Comprehensive Evaluation Model For Urban Flood SystemZHOU Ting-xiu1 MAI Ji-ting2(1.University For Science & Technology Sichuan ,Chengdu 611745,China ;2.School of Civil Eng., Southwest Jiaotong University, Chengdu 610031,China) Abstract: An urban flood prevention system is a cornerstone to flood prevention of a city. Thus establishing an effective and comprehensive evaluation model for urban flood prevention plan will have a significant impact on creating and implementing such a plan. Based on the current assessment researches, this paper 1st studies are done related to neural network, the principles and characteristics of the gray system theory and genetic algorithms. Based on their application conditions, advantages and disadvantages, a genetic algorithm optimizing gray neural network is composed for urban flood prevention system evaluation. A comprehensive evaluation model is further developed involving multiple measurements on impacts. This model is based on MATLAB software platform but can be run independently. Through pre-processing the impact measurement data for urban flood prevention using gray system theory, and identifying the optimal initial weights and thresholds for neural network using genetic algorithms, as well as training the neural network using sample data, the comprehensive evaluation for flood prevention system for a city is finally achieved by the comprehensive evaluation model . A new way to evaluate the urban flood preventions system is thus established, involving both soft and hard measures holistically.Key words: Urban flood control; Comprehensive evaluation; Gray system; BP artificial neural network; Genetic algorithm 近年来全球气候异常,我国城市洪水灾害频繁的发生,对国民经济和社会造成了严重损害。

太阳能微动力污水处理系统在合肥投入使用

太阳能微动力污水处理系统在合肥投入使用

1999,225(1-2):109-118.[3]K ümmerer K,A Al -Ahmad,V Mersch Sundermann.Biodegra-dability of some antibiotics,elimination of the genotoxicity and affection of wastewater bacteria in a simple test [J].Chemosphere,2000,40(7):701-710.[4]杨军,陆正禹,胡纪萃,等.抗生素工业废水生物处理技术的现状与展望[J].环境科学,1997,18(3):83.[5]徐南平,邢卫红,赵宜江.无机膜分离技术与应用[M].北京:化学工业出版社,2003.STUDY ON TREATING FERMENTATION WASTEWATER FROM ANTIBIOTIC PRODUCTWang Jinrong,Wang Zhigao,Qi Xiuying,Peng Wenbo,Zhang Hong(Jiangsu Jiuwu Hi-Tech Corperation Limited,Nanjing 211808,China )Abstract:Fermentation wastewater from antibiotic product was treated with double-membrane filtration to be reused.The technology of flocculate sedimentation,ultrafiltration with ceramic membrane,and RO were discussed.Result show that:after flocculation with 350mg/L PAFC,using constant flow operation of ceramic membrane,the waster water was treated to the extent of reuse water standard by RO:COD ≤50mg/L ,conductivity ≤50μS/cm ,turbidity ≤0.2NTU.Keywords :constant flow;ceramic membrane;antibiotic wastewater≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤(上接第117页)≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤简讯太阳能微动力污水处理系统在合肥投入使用据悉,一套太阳能微动力污水处理系统在合肥市庐阳区三十岗乡崔岗村正式竣工并投入使用。

风暴潮灾害损失评估的主成分模型研究

风暴潮灾害损失评估的主成分模型研究

风暴潮灾害损失评估的主成分模型研究一、内容描述本研究旨在探讨风暴潮灾害损失评估的主成分模型,以期为我国风暴潮灾害的防治提供科学依据。

风暴潮是一种自然灾害,其强度和范围对沿海地区的人类生活、经济发展和生态环境产生严重影响。

因此准确评估风暴潮灾害损失具有重要意义。

主成分分析(PCA)是一种广泛应用于数据分析的技术,它通过线性变换将多个相关变量降维到一个新的坐标系中,从而实现对原始数据的有效表示。

在风暴潮灾害损失评估中,PCA可以用于提取影响风暴潮灾害损失的关键因素,为决策者提供科学依据。

本研究首先对国内外关于风暴潮灾害损失评估的研究现状进行了梳理,总结了各种方法的优缺点。

然后针对风暴潮灾害损失评估的特点,提出了一种基于PCA的主成分模型。

该模型主要包括以下几个部分:数据预处理;特征选择;PCA降维;主成分分析;损失指标构建;模型验证与优化。

在数据预处理阶段,本文采用了归一化、标准化等方法对原始数据进行处理,以消除量纲和数值范围的影响。

特征选择阶段通过计算各特征之间的相关性,筛选出与风暴潮灾害损失关系密切的特征。

PCA降维阶段采用主成分法将原始数据降维到一个较低的维度,以便于后续的分析。

主成分分析阶段通过对降维后的数据进行旋转和缩放,得到各个主成分的权重系数。

损失指标构建阶段根据主成分分析的结果,构建了反映风暴潮灾害损失的新指标。

模型验证与优化阶段对所建立的主成分模型进行了实证研究,并对其进行了改进和优化。

通过对大量实际数据的实证分析,本文证明了所建立的主成分模型具有较高的预测精度和稳定性,能够有效评估风暴潮灾害损失。

同时本文还对模型的应用前景进行了展望,并提出了一些改进和完善的建议。

1. 研究背景和意义随着全球气候变化的加剧,风暴潮灾害频发,给人类社会和自然环境带来了严重的损失。

风暴潮灾害不仅对沿海地区的基础设施、建筑物、交通运输等造成破坏,还对海洋生态环境产生影响,如海水倒灌、海浪侵蚀等。

因此对风暴潮灾害损失进行科学、准确的评估具有重要的现实意义。

城市化过程中的下垫面变化对水文循环的影响

城市化过程中的下垫面变化对水文循环的影响

【作者简介】郑小乐(1983~),男,山东博兴人,助理工程师,从事城市水文研究。

城市化过程中的下垫面变化对水文循环的影响Impact of Underlying Surface Changes During the Process of Urbanizationon the Hydrological Cycle郑小乐(济南市水文中心,济南250014)ZHENG Xiao-le(Ji ’nan Hydrological Center,Ji ’nan 250014,China)【摘要】深入探讨了城市化进程中下垫面变化对水文循环的影响,分析了下垫面变化如何影响城市及其周边地区的水文循环,包括地下水流、径流和蒸发过程的改变,探索了由下垫面变化导致的一系列环境问题,如城市洪涝、热岛效应和水资源短缺。

为解决这些挑战,论文提出了一系列应对策略和建议,强调了绿色基础设施、生态友好城市设计和有效的雨水管理在确保水资源可持续利用和城市生态健康中的关键作用。

【Abstract 】The influence of underlying surface changes on the hydrological cycle during urbanization is deeply discussed,and howunderlying surface changes affect the hydrological cycle of cities and their surrounding areas is analyzed,including changes in groundwater flow,runoff and evaporation processes,and a series of environmental problems caused by underlying surface changes are explored,such as urban flooding,heat island effect and water resource shortage.To address these challenges,the paper proposes a series of strategies and recommendations that highlight the critical role of green infrastructure,eco-friendly urban design and effective stormwater management in ensuring sustainable water use and urban ecological health.【关键词】城市化;下垫面;变化情况;水文循环;影响【Keywords 】urbanization;underlying surface;changes;hydrological cycle;impact 【中图分类号】P339【文献标志码】B【文章编号】1007-9467(2024)04-0022-03【DOI 】10.13616/ki.gcjsysj.2024.04.2071下垫面变化对降水的影响1.1城市热岛效应对局地降水模式的改变城市化指的是人口从农村到城市的迁移,伴随着城市规模的扩大和非农经济活动的增加,通常与工业化、现代化和经济发展相伴随,标志着国家或地区从以农业为主的生产模式转向以工业和服务业为主的生产模式。

分段配水强化受污染水源水生物膜修复工艺脱氮性能

分段配水强化受污染水源水生物膜修复工艺脱氮性能

第31卷第12期2011年12月环境科学学报Acta Scientiae CircumstantiaeVol.31,No.12Dec.,2011基金项目:国家科技支撑计划项目(No.2006BAJ08B01);浙江省教育厅科研项目(No.Y200909172)Supported by the National Key Technology R&D Program (No.2006BAJ08B01)and the Research Projects of Department of Education of Zhejiang Province (No.Y200909172)作者简介:冯丽娟(1986—),女,博士研究生,E-mail :flj20045587@zju.edu.cn ;*通讯作者(责任作者),E-mail :xuxy@zju.edu.cn Biography :FENG Lijuan (1986—),female ,Ph.D.candidate ,E-mail :flj20045587@zju.edu.cn ;*Corresponding author ,E-mail :xuxy@zju.edu.cn冯丽娟,朱亮,徐京,等.2011.分段配水强化受污染水源水生物膜修复工艺脱氮性能研究[J ].环境科学学报,31(12):2595-2600Feng L J ,Zhu L ,Xu J ,et al .2011.Enhanced denitrification in the biofilm process remedying polluted water source via step-feeding [J ].Acta Scientiae Circumstantiae ,31(12):2595-2600分段配水强化受污染水源水生物膜修复工艺脱氮性能研究冯丽娟1,朱亮1,徐京4,丁炜1,徐剑1,徐向阳1,2,3,*1.浙江大学环境工程系,杭州3100582.浙江大学-西澳大学水环境综合管理与保护联合研究中心,杭州3100583.农业面源污染控制重点开发实验室,杭州3100584.浙江桐乡市环保局,桐乡314500收稿日期:2011-03-08修回日期:2011-05-12录用日期:2011-06-08摘要:针对受污染水源水生物脱氮过程可利用碳源不足的突出问题,研究分段配水强化受污染源水生物膜修复工艺脱氮性能.结果表明,应用分段配水策略后生物膜修复工艺的碳源有效利用率从0.199mg·mg -1增至0.211mg ·mg -1,系统TN 去除率亦从29.5%ʃ2.2%增至35.0%ʃ2.7%,且出水高锰酸盐指数(COD Mn )和氨氮(NH +4-N )浓度稳定,均满足GB3838—2002中的Ⅲ类水标准.PCR-DGGE 分析发现,分段配水后修复工艺中、后段生物膜的多样性指数均上升至与工艺前段相仿的水平,生物膜内优势菌分属Hyphomicrobium 、Pseudomonas 、Pantoea 、Synechococcus 等,多数与氮素、难降解有机污染物去除有关.结果揭示在生物膜工艺修复微污染环境水体时,可采用多点配水策略强化脱氮微生物富集和污染物去除.关键词:受污染水源水;生物膜;分段配水;脱氮;微生物群落文章编号:0253-2468(2011)12-2595-06中图分类号:X703.1文献标识码:AEnhanced denitrification in the biofilm process remedying polluted water source via step-feedingFENG Lijuan 1,ZHU Liang 1,XU Jing 4,DING Wei 1,XU Jian 1,XU Xiangyang 1,2,3*1.Department of Environmental Engineering ,Zhejiang University ,Hangzhou 3100582.ZJU-UWA Joint Centre in Integrated Water Management and Protection ,Hangzhou 3100583.Key Laboratory of Non-point Source Pollution Control ,Ministry of Agriculture ,Hangzhou 3100584.Tongxiang Environmental Protection Bureau ,Tongxiang 314500Received 8March 2011;received in revised form12May 2011;accepted 8June 2011Abstract :In view of the carbon deficiency for denitrification in polluted source water ,a enhanced biofilm denitrification via step-feeding was studied in this paper.Results showed that the utilization efficiency of carbon source in the remediation system increased from 0.199mg·mg -1to 0.211mg ·mg -1after two step-feeding process was applied ,and the removal efficiency of total nitrogen (TN )simultaneously increased from 29.5%ʃ2.2%to 35.0%ʃ2.7%.Meanwhile ,the effluent concentrations of permanganate index (COD Mn )and ammonia nitrogen (NH +4-N )steadily reached Grade Ⅲof ‘Environment Quality Standard for Surface Water ’(GB3838—2002).The result of PCR-DGGE showed that the bacteria diversities of biofilms in the middle and the end of the remediation system both increased to the same level as that in the front part after two step-feeding process applied.The dominant bacteria in biofilms belonged to Hyphomicrobium ,Pseudomonas ,Pantoea ,Synechococcus ,which was mostly associated with denitrification and refractory organics utilized.The results demonstrated that the biofilm remediation system with step-feeding process favored the denitrification microorganisms enrichment and pollutants removal in the oligotrophic environment.Keywords :contaminated source water ;biofilm ;step-feeding ;denitrification ;microbial community环境科学学报31卷1引言(Introduction)由于城镇工业废水、生活污水、农业化肥及畜禽污粪等污染加剧,我国城镇饮用水水源普遍受到氮素污染(中国环境状况公报,2009).氮素不仅易造成水体恶臭和富营养化,其达到一定浓度亦会引起生物高铁血红蛋白血症及增加胃癌等风险(Dahab et al.,1994;Shrimali et al.,2001;Camargo et al.,2006).为此,近年来环境水体脱氮工艺研究备受关注.生物膜法因其具有生物群落丰富、水生生态友好、运行成本低、性能稳定等特点,在污(废)水处理与环境水体原位修复方面得到大量应用(Khatoon et al.,2007;Qin et al.,2008;Wu et al.,2009;丁炜等,2010).目前,针对环境水体生物膜脱氮研究包括自养反硝化和异养反硝化.其中,自养反硝化法以硫或氢气作为电子供体,在少量或不投加有机碳源的条件下可实现脱氮,多应用于地下水硝酸盐原位去除(Zeng et al.,2005;Ghafari et al.,2008;Zhang et al.,2009),但存在启动周期长、出水硫酸盐及氨氮超标等问题(Karanasiosa et al.,2010).针对寡营养水体反硝化碳源不足及利用率低的问题,研究者多从碳源补充角度开展异养反硝化研究,以投加水溶性碳源和固体碳源为主,如厌氧上流式生物膜脱氮系统投加甲醇修复地下水(Aslan et al.,2005),利用米糠(Shao et al.,2009)、海草(Ovez et al.,2006)、麦秆(Aslan et al.,2005)等廉价材料作为固体碳源与生物膜载体强化环境水体脱氮等,但往往伴随着出水有机物及浊度超标等问题.本文尝试以分段配水方式补充生物膜修复工艺后段碳源,以提高碳源利用率,强化受污染源水生物膜修复工艺的脱氮性能,为开发新型、经济有效的环境水体原位生物修复工艺提供技术支撑.2材料与方法(Materials and methods)2.1试验装置试验装置为课题组自行设计的模拟河道生物膜反应器,由有机玻璃制成,长150cm,上底宽30 cm,下底宽16cm,高30cm,底部坡降0.5%,有效容积为100L,具体反应器构型见图1.实验装置内布设TA-Ⅱ型弹性立体填料,购于杭州天宇环保工程有限公司,填料片加工至直径200mm、比表面积200 300m2·m-3,以2.33%(V/V)体积填充率布设于装置内.试验用水取自浙江大学华家池水,经长期检测发现华家池水质与杭嘉湖地区典型水源地水质接近,具体进水水质如表1所示.2.2装置运行工况反应装置在单点进水(工况Ⅰ)和两点进水(工况Ⅱ)两种条件下运行,研究常规进水与分段配水条件下生物膜修复工艺的脱氮性能与微生物群落结构特征差异,具体反应器装置示意图见图1.其中,工况Ⅰ单点进水流量为48mL·min-1;工况Ⅱ时在反应装置的前段(Z1)和中段(Z2)分两点进水,进水流量分别为24mL·min-1和24mL·min-1.系统运行过程,定期取样检测出水COD、氨氮(NH+4-N)、总氮(TN)等常规水质指标.考虑到分段配水方式对系统中段(Z2)与后段(Z3)生物膜影响较大,选取工况Ⅰ和工况Ⅱ时Z2和Z3区段的生物膜进行微生物群落结构分析,同时选取工况Ⅰ时反应器前段生物膜作为对照.为保证较好的脱氮条件,装置运行期间未给予曝气,反应器底部活解氧在0.06 0.66 mg·L-1范围,温度控制在20 25ħ.图1模拟河道生物膜反应器实验装置示意图(1.进水Q=48 mL·min-1;2.分段进水Q=24mL·min-1;3.弹性填料;4.出水;5.生物膜样品B1;6.生物膜样品B2;7.生物膜样品B3;Z1、Z2、Z3分别代表反应器前段、中段和后段)Fig.1Schematic diagram of the simulated river biofilm reactor (1.Influent Q=48mL·min-1;2.Step feeding Q=24mL·min-1;3.Elastic filler;4.Effluent;5.Biofilm sampleB1;6.Biofilm sample B2;7.Biofilm sample B3;Z1,Z2,Z3refer to the front,middle and back zones of the reacor)2.3分析方法2.3.1常规指标分析CODMn、NH+4-N、TN等常规指标测定方法参见《水和废水监测分析方法(第4版)》(国家环境保护总局,2002),每个指标平行测定3次后取均值;DO、温度采用YSI550A溶解氧仪测定.2.3.2PCR-DGGE分析1)生物膜基因组16S695212期冯丽娟等:分段配水强化受污染水源水生物膜修复工艺脱氮性能研究rRNA提取与PCR扩增每个工况运行稳定时(40 50d)剪取反应器内附着生物膜的填料至2 mL离心管中,加入1mL EDTA后涡旋振荡10min,于1ˑ104r·min-1离心2min后去上清液;继续加入1mL EDTA振荡、离心,直至上清液相对澄清.预处理后的样品采用E.Z.N.A TM Soil DNA kit (OMEGA)提取16s rRNA,获得的16S rRNA样品于-20ħ保存.PCR扩增引物为细菌16S rRNA V3可变区通用引物:P338f和P518r(Lapara et al.,2002).在50μL反应体系内进行PCR:10ˑPCR Buffer(Mg2+15mmol·L-1),5μL;dNTP Mixture(各2.5 mmol·L-1),4μL;引物各0.5μL(25μmol·L-1);Taq DNA聚合酶(5U·μL-1),0.25μL;模版DNA,5μL;加DEPC处理水定容至50μL.PCR反应程序如下:94ħ预变性5min;94ħ变性30s,55ħ退火30s,72ħ延伸1min,扩增30个循环;72ħ延伸7min.每组PCR扩增过程设立阴性对照.PCR产物经0.8%琼脂糖凝胶电泳、GoldViewⅠ型染料染色后,于254nm下检验PCR扩增结果.2)DGGE分析PCR产物的DGGE分析在Bio Rad公司Dcode TM 基因突变检测系统上进行,采用浓度为8%的聚丙烯酰胺凝胶(Acrylamide/Bis-Acrylamide37.5ʒ1),添加10%APS(过硫酸铵)80μL,TEMED(N,N,N',N'-四甲基乙二胺)溶液18μL;变性剂浓度梯度范围30% 60%(100%变性剂包含7mol·L-1尿素和40%(V/V)去离子甲酰胺).DGGE电泳上样量30μL,首先在30V、60ħ条件下预电泳30min,然后在155V、60ħ下恒温恒压运行5 6h;电泳结束后采用SYBR GREENⅠ染料避光染色30min,dH2O 浸洗胶片5min后洗去表面溶液,通过GelDoc2000凝胶成像系统成像,采用Quantity One4.6一维分析软件分析DGGE图谱.3)割胶测序用无菌手术刀从DGGE胶上小心割下含目标条带的凝胶块,转移至灭菌离心管中,经无菌水浸洗3次,每次5min;将凝胶挤碎,加入50μL TE(pH=8),4ħ环境温度下放置16h;45ħ水浴2h左右,置于4ħ冰水中约0.5h,10000r·min-1离心1min,取上清;以回收DNA为模板进行PCR扩增,引物为P338f(不带GC 发夹)、P518r.50μL PCR反应体系组成:10ˑPCR Buffer(Mg2+15mmol·L-1),5μL;dNTP Mixture(各2.5 mmol·L-1),4μL;引物各0.5μL(25μmol·L-1);Taq DNA聚合酶(5U·μL-1),0.25μL;模版DNA,5μL;加DEPC处理水至50μL.PCR程序如下:94ħ预变性5min;94ħ变性30s,55ħ退火30s,72ħ延伸60s,扩增35个循环;最终72ħ延伸7min.PCR扩增产物经0.8%琼脂糖电泳检验后,送Takara(大连)测序,所得序列通过Blast程序与GenBank中核酸数据进行双序列比对分析(http:// www.ncbi.nlm.nih.gov/blast/).3实验结果(Experimental Results)3.1反应器运行效果生物膜修复系统在单点进水(工况Ⅰ)和两点进水(工况Ⅱ)两种条件下运行,COD Mn、NH+4-N和TN去除情况如表1所示.结果表明,两种工况下系统TN平均去除率分别为29.5%ʃ2.2%和35.0%ʃ2.7%,相比而言两点进水后生物膜修复工艺的脱氮性能有一定幅度的提升;COD Mn在两个工况下去除较为稳定,平均去除率均在35%左右,出水浓度均低于6mg·L-1,稳定达到《地表水环境质量标准》中的Ⅲ类水标准;不同工况下修复工艺的NH+4-N 去除率波动幅度较大,主要与实际源水水质波动有关,但出水浓度均低于0.2mg·L-1.表1不同工况时生物膜修复工艺的污染物去除性能Table1Pollutant Removal performance of the two biofilm remediation processes污染物工况Ⅰ进水浓度/(mg·L-1)出水浓度/(mg·L-1)去除率工况Ⅱ进水浓度/(mg·L-1)出水浓度/(mg·L-1)去除率COD Mn8.79ʃ0.845.58ʃ0.4736.39%ʃ3.36%8.56ʃ0.975.47ʃ0.4035.80%ʃ3.20% NH+4-N0.66ʃ0.140.12ʃ0.0280.39%ʃ5.48%0.31ʃ0.090.13ʃ0.0152.56%ʃ4.93% TN1.98ʃ0.061.39ʃ0.0429.52%ʃ2.20%1.86ʃ0.141.21ʃ0.0734.98%ʃ2.65%为进一步揭示分段配水生物膜修复工艺的强化脱氮性能,对反应装置不同区段的NH+4-N和CODMn 浓度进行监测,具体如表2所示.结果表明,工况Ⅰ时生物膜修复工艺的有机物去除主要发生在Z1区,其出水COD Mn浓度达(6.1ʃ0.4)mg·L-1,与Z2、Z3区的出水浓度接近;而出水NO-3-N浓度7952环境科学学报31卷则从Z1到Z3逐渐上升,表明反应器后段可利用碳源不足、反硝化脱氮效率低;采用两点配水后,修复工艺Z2和Z3区碳源利用率有所增加,若以TN去除负荷与COD Mn去除负荷之比表征系统碳源有效利用率,工况Ⅱ两点配水后平均碳源有效利用率从0.199mg·mg-1增至0.211mg·mg-1,反应装置Z2和Z3区出水NO-3-N浓度相比工况Ⅰ亦有所降低,系统TN平均去除率达35.0%.表2不同工况时生物膜修复工艺各区段的NO-3-N、COD Mn去除性能Table2Removal performances of NO-3-N and COD Mn in different zones of the two biofilm remediation processes污染物工况进水/(mg·L-1)Z1出水/(mg·L-1)Z2出水/(mg·L-1)Z3出水/(mg·L-1)NO-3-N工况Ⅰ0.20ʃ0.040.58ʃ0.220.69ʃ0.250.73ʃ0.24工况Ⅱ0.23ʃ0.040.63ʃ0.070.57ʃ0.080.62ʃ0.08 COD Mn工况Ⅰ8.79ʃ0.846.08ʃ0.435.75ʃ0.475.58ʃ0.47工况Ⅱ8.56ʃ0.975.49ʃ0.465.76ʃ0.475.47ʃ0.40图2生物膜样品的DGGE图谱(条带标记1—8,泳道标记L1—L5,B1、B2和B3分别为反应装置前段、中段和后段生物膜样品,I和II分别代表工况Ⅰ和工况Ⅱ)Fig.2The DGGE profiles of16S rRNA fragments obtained from the biofilms(Band label1—8;lane label L1—L5;B1,B2and B3were biofilm samples from the front,middle and theend of the reactor,respectively;ⅠandⅡrefered to phaseⅠand phaseⅡ)3.2总细菌16S rRNA PCR-DGGE结果对不同运行工况下特征点生物膜样品进行基因组总细菌16S rRNA提取和PCR-DGGE试验,并由Quantity one软件分析其相似性矩阵及香浓指数变化,具体结果见表3和图3.结果表明,工况Ⅰ时反应装置中后段生物膜B2、B3与前段生物膜B1相似性较低,分别为58.8%和69.8%;采用两点进水后(工况Ⅱ)相似性分别提高到83.0%和86.6%.从生物膜微生物多样性指数(香浓指数)分析来看,工况Ⅰ时反应装置前段到后段生物膜的香浓指数分别为2.29,2.15,2.06,工况Ⅱ时反应装置中、后段生物膜的香浓指数均提高到2.29左右.表3生物膜DGGE图谱相似性分析Table3Dice coefficient comparing the similarity of DGGE fingerprints from the biofilms样品生物膜DGGE图谱相似性泳道12345 B2-Ⅰ1100.0%64.1%58.8%63.0%56.0% B3-Ⅰ264.1%100.0%69.8%59.6%66.0% B1-Ⅱ358.8%69.8%100.0%83.0%86.6% B2-Ⅱ463.0%59.6%83.0%100.0%74.6% B3-Ⅱ556.0%66.0%86.6%74.6%100.0%图3生物膜总细菌DGGE条带的Shannon指数Fig.3Shannon index of the DGGE fingerprints from the biofilms 选取DGGE图谱主要优势条带进行割胶测序与序列比对发现(表4),生物膜优势菌属于α-proteobacteria、γ-proteobacteria、Cyanobacteria和Chloroflexi,相似性均在99%以上.895212期冯丽娟等:分段配水强化受污染水源水生物膜修复工艺脱氮性能研究表4生物膜内部分优势菌16S rRNA DGGE片段测序分析结果Table4Sequences of16S rRNA DGGE fragments from the biofilms条带序列比对结果同源性系统发育种群1Uncultured Pseudomonas sp.[AM711878.1]100%γ-proteobacteria 2Synechococcus sp.ACT9807[GQ422959.1]100%Cyanobacteria 3Pantoea sp.I-Bh20-21[FN555402.1]100%γ-proteobacteria 4Uncultured Chloroflexi bacterium[FJ916310.1]100%Chloroflexi 5Uncultured Hyphomicrobium sp.[GU257860.1]100%α-proteobacteria 6Pseudomonas putida strain d92[FJ950674.1]99%γ-proteobacteria 7Hyphomicrobium sp.[AM502926.1]100%α-proteobacteria 8Uncultured Pantoea sp.[GU569157.1]100%γ-proteobacteria4讨论(Discussion)采用分段配水后,生物膜修复工艺的TN去除率从29.5%ʃ2.2%增至35.0%ʃ2.7%,系统脱氮性能有所提高.从生物膜修复工艺不同区段有机物和硝态氮出水变化情况来看(表2),工况Ⅰ有机物去除主要发生在Z1区,Z2和Z3区碳源利用率较低,而Z2和Z3硝态氮出水也相应升高;Z2补充进水后(工况Ⅱ)克服了反应器后段碳源不足、脱氮效率低的问题,碳源有效利用率从0.199mg·mg-1增至0.211mg·mg-1,有利于生物膜修复工艺后段反硝化脱氮.有文献报道微污染水体碳源相对缺乏且碳源利用率不高,不利于异养型脱氮菌生长与富集,是目前微污染水体脱氮效果较低的主要原因(Aslan et al.,2005;Shao et al.,2009).为此,有研究者通过外加碳源的方式强化污水处理系统脱氮能力,但对于微污染水体原位修复而言,直接投加碳源的方式较难应用,且易造成水质有机物超标等问题(Aslan et al.,2005).本实验采用分段配水方式进行生物膜修复工艺强化脱氮研究,系统碳源有效利用率与TN去除率均得到增强,出水有机物亦稳定达到《地表水环境质量标准》中的Ⅲ类水标准.结果揭示,采用生物膜工艺修复环境水体时,可采用分段配水方式提高系统的碳源利用率,强化修复工艺脱氮性能.有关最佳补水位置与流量配比等研究有必要进一步开展,以获得优化的环境水体生物膜修复工艺性能.在微污染环境水体原位生物修复过程中,由于修复对象有机物浓度偏低,导致工艺后段异氧微生物可利用碳源不足,进而影响后段填料对功能微生物富集与脱氮性能.本实验反应装置采用两点进水后,中、后段生物膜内微生物多样性提高到与反应装置前段基本一致,其相似性也得到相应提高,TN 去除率亦随之提升.结果表明,应用分段配水策略可为生物膜修复工艺后段提供补充碳源,利于脱氮功能微生物的富集,整个工艺均可获得较丰富的微生物多样性.对工况Ⅰ和工况Ⅱ时反应装置中后段生物膜内共有优势菌分析发现,主要分属Pseudomonas、Synechococcus、Chloroflexi、Pantoea等.其中,Pseudomonas 在生物处理系统经常被检测到,主要参与有机物降解及脱氮除磷,也有报道显示该类微生物具有异养硝化和好氧反硝化功能(Su et al.,2006);Synechococcus是海洋蓝细菌代表性类群之一,属超微型光合自养原核生物,其不仅能利用水体氮磷等营养物质,还可通过光合作用为生物膜提供氧气,利于生物膜内硝化菌及其他好氧微生物生长(马英等,2004);有研究表明,Chloroflexi bacterium对水溶性碳水化合物具有较强的吸附作用(Yuki et al.,2007),并出现在处理高浓度有机废水的好氧颗粒污泥系统中(Yamada et al.,2005),可见其对有机物稳定去除具有一定作用;Pantoea作为常见的脱氮菌(Braker et al.,2010),在本试验中作为生物膜内优势菌存在.研究还发现,工况Ⅰ和工况Ⅱ时反应装置中、后段的生物膜内菌群结构亦存在一定差异.应用分段配水策略后,装置中后段(B2-Ⅱ和B3-Ⅱ)的生物膜样品DGGE条带5、条带6和条带7亮度均有所增强,其中条带5和条带7均与Hyphomicrobium有100%同源性,条带6与Pseudomonas putida有100%同源性.有资料显示,Hyphomicrobium和Pseudomonas putida均与有机物(包括有毒难降解有机物)及氮磷去除相关,是脱氮系统常检测到的优势菌(Labbe et al.,2007;Green et al.,2010).可见,分段配水生物膜修复技术可强化与氮素、有机物去除有关功能菌的富集,确保工艺高效稳定运行.9952环境科学学报31卷5结论(Conclusions)1)在生物膜法原位修复受污染环境水体过程中,应用分段配水策略可有效提高系统的碳源利用率,解决生物膜修复工艺后段碳源不足、脱氮效率低的问题,系统TN平均去除率可从29.5%ʃ2.2%提高到35.0%ʃ2.7%.2)PCR-DGGE分析发现,分段配水后生物膜修复工艺中后段填料附着的生物膜内微生物种群多样性有所提高,Hyphomicrobium、Pseudomonas、Pantoea等与氮素、难降解有机物去除有关的贫营养功能菌得到富集.结果揭示在生物膜工艺修复微污染环境水体时,可采用多点配水策略强化脱氮微生物富集和污染物去除.责任作者简介:徐向阳(1964—),男,教授,博士生导师.主要从事有毒难降解工业废水处理工艺技术与工业化应用、有机毒物污染环境的生物修复、新型生物脱氮技术及其应用、废水生物处理微生物分子生态学等方面研究.通讯地址:杭州市余杭塘路866号,浙江大学环境工程系,邮编:310058,E-mail:xuxy@zju.edu.cn.参考文献(References):Aslan S.2005.Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system[J].Process Biochemistry,40(1):417-424Aslan S,Turkman A E.2005.Combined biological removal of nitrate and pesticides using wheat straw as substrates[J].Process Biochemistry,40(2):935-943Braker G,Schwarz J,Conrad R.2010.Influence of temperature on the composition and activity of denitrifying soil communities[J].FEMS Microbiology Ecology,73:134-148Camargo J,Alonso A.2006.Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:a global assessment[J].Environment International,32(6):831-849 Dahab M F,Lee Y W,Bogardi I.1994.A rule-based fuzzy-set approach to risk analysis of nitrate-contaminated groundwater[J].Water Science Technology,30(7):45-52丁炜,朱亮,徐京,等.2010.不同生物载体模拟河道反应器的微污染水源水修复研究[J].环境科学,31(11):2639-2644Ding W,Zhu L,Xu J,et al.2010.Bioremediation of micro-pollutedsource water by simulated river bioreactor with different carriers[J].Environmetal Science,31(11):2639-2644(in Chinese)Ghafari S,Hasan M,Aroua MK.2008.Bio-electrochemical removal of nitrate from water and wastewater a review[J].Bioresource Technology,99(10):3965-3974Green S J,Prakash O,Gihring T M,et al.2010.Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination[J].Applied Environmental Microbiology,76(10):3244-3254Karanasios K A,Vasiliadou I A,Pavlou S,et al.2010.Hydrogenotrophic denitrification of potable water:A review[J].Journal of Hazardous Materials,180(1/3):20-37Labbe N,Laurin V,Juteau P,et al.2007.Microbiological community structure of the biofilm of a methanol-fed,marine denitrification system,and identification of the methanol-utilizing microorganisms [J].Microbial Ecology,53(4):621-630Lapara T M,Nakatsu C H,Pantea L M.2002.Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE[J].Water Research,36(3):638-646马英,焦念志.2004.聚球藻(Synechococcus)分子生态学研究进展[J].自然科学进展,14(9):967-972Ma Y,Jiao N Z.2004.Molecular ecology research progress on Synechococcus[J].Natural Science Progress,14(9):967-972(in Chinese)Ovez B,Mergaert J,Saglam M.2006.Biological denitrification in drinking water treatment using the seaweed Gracilaria verrucosa as carbon source and biofilm carrier[J].Water Environment Research,78(4):430-434Qin Y T,Zhang X W,Ren H Q,et al.2008.Population dynamics of ammonia oxidizing bacteria in an aerated submerged biofilm reactor for micro-polluted raw water pretreatment[J].Environmental Biotechnology,79(1):135-145Shao L,Xu Z X,Jin W,et al.2009.Rice husk as carbon source and biofilm carrier for water denitrification[J].Pokish Journal of Environmental Studies,18(4):693-699Shrimali M,Singh K P.2001.New methods of nitrate removal from water [J].Environ Pollut,112(3):351-359.国家环保部.2009.中国环境状况公报[R].北京:国家环保部.4-17 State Environmental Protection Administration.2009.Report on the Environment state in China in2009[R].Beijing:State Environmental Protection Administration.4-17国家环保部.2002.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社.200-281State Environmental Protection Administration.2002.Chinese Standard Methods for the Examination of Water(The fourth edition)[M].Beijing:China Environmental Science Press.200-281(in Chinese)Su J J,Yeh K S,Tseng P W.2006.A strain of Pseudomonas sp isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan[J].Current Microbiology,53(1):77-81Wu W Z,Liu Y,Zhu Q,et al.2009.Remediation of polluted river water by biological contact oxidation process using two types of carriers [J].International Journal of Environment and Pollution,38(3):223-234Yamada T,Sekiguchi Y,Imachi H,et al.2005.Diversity,localization,and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules[J].Applied Environmental Microbiology,71(11):7493-7503Yuki M,Yoshumasa W,Sathshi O.2007.Significance of chloroflexi in performance of submerged membrane bioreactors(MBR)treating municipal wastewater[J].Environmental Science Technology,41(22):7787-7794Zeng H,Zhang T C.2005.Evaluation of kinetic parameters of a sulfur-limestone autotrophic denitrification biofilm process[J].Water Research,39(20):4941-4952Zhang Y H,Zhong F H,Xia S Q,et al.2009.Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor[J].Journal of Hazardous Materials,170(1):203-2090062。

Floodingstress-univ-mrsfr:驱力mrsfr大学

Floodingstress-univ-mrsfr:驱力mrsfr大学
l and lactic acid are the main metabolic products into plant tissues depleted in oxygen
pH homeostasis (Davies-Roberts hypothesis)
Oxygen lacks, ATP production is inhibited
Hydrilla verticillata
Hydrilla verticillata
- infesting aquatic plant.
- leaves without stomata.
- plants perform a C3-type gas exchange.
- when [CO2] is low (able to induce photorespiration in C3), Hydrilla produce malic acid (as a C4 plants) and sustain photosynthesis.
They have anatomical and physiological properties that allow their growth in aquatic environments, that represent an evolutive challenge
Adaptive mechanisms to face floods - thick root hypoderm (in order to reduce oxygen loose) - aerenchyma (continuous intra-cellular spaces between root and stem) - lenticels (oxygen exchange) - adventitious roots from stem - pneumatophores (superficial roots with a negative geo-trophism) - metabolism adaptation

基于水力性能和净化效果的表面流人工湿地设计参数优化

基于水力性能和净化效果的表面流人工湿地设计参数优化

出布置、水生植物水葱。
关键词:优化;湿地;设计;水力性能;净化效果;正交试验
doi:10.11975/j.issn.1002-6819.2019.12.019
中图分类号:S156.8
文献标志码:A
文章编号:1002-6819(2019)-12-0157-08
马 震,崔远来,郭长强设计参数优化[J]. 农
(1. 武汉大学水资源与水电工程科学国家重点实验室,武汉 430072;2. 浙江大学生物系统工程与 食品科学学院,杭州 310058;3. 江西省灌溉试验中心站,南昌 330201)
摘 要:为探究表面流人工湿地设计参数对水力性能和净化效果的影响,分析设计参数与水力性能指标和净化效果指标
之间的关系性,优选综合考虑水力性能和净化效果的设计参数组合,对表面流人工湿地设计参数(长宽比、水深、植物
收稿日期:2018-11-14 修订日期:2019-05-10 基金项目:国家自然科学基金(51779181);江西省水利科技项目(KT201737) 作者简介:马 震,主要从事农田水环境修复技术研究。 Email:mazhenwhu@. ※通信作者:崔远来,教授,主要从事节水灌溉及农业面源污染治理研究。 Email:YLCui@.
第卷第期农业工程学报年月基于水力性能和净化效果的表面流人工湿地设计参数优化马震崔远来郭长强万荻刘方平马林华武汉大学水资源与水电工程科学国家重点实验室武汉浙江大学生物系统工程与食品科学学院杭州江西省灌溉试验中心站南昌摘要为探究表面流人工湿地设计参数对水力性能和净化效果的影响分析设计参数与水力性能指标和净化效果指标之间的关系性优选综合考虑水力性能和净化效果的设计参数组合对表面流人工湿地设计参数长宽比水深植物间距流量进出口布置植物种类开展正交试验结果表明设计参数对净化效果有显著的影响各水力性能指标之间

给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷

给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷

第13卷第4期2019年4月Vol.13,No.4Apr.2019环境工程学报Chinese Journal ofEnvironmentalEngineering E-mail:cjee@ (010)62941074刘新,左小凡,吴禹,等.给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷[J].环境工程学报,2019,13(4):784-791.LIU Xin,ZUO Xiaofan,WU Yu,et al.Removal of excessive phosphorus from eutrophic river water by filtration columns constructed with ferric and aluminum sludge[J].Chinese Journal of Environmental Engineering,2019,13(4):784-791.给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷刘新1,左小凡1,吴禹1,王梦皎1,赵珍1,蒋豫2,*1.南京林业大学生物与环境学院,南京2100372.江苏省生态环境评估中心(江苏省排污权登记与交易管理中心),南京210036第一作者:刘新(1968—),男,博士研究生,副教授。

研究方向:水污染控制与修复等。

E -mail :xin126mail@ *通信作者:蒋豫(1990—),男,硕士。

研究方向:生态环境保护。

E -mail :njfujiangyu@摘要为避免因FAS 释放过量有机物和氮而产生的潜在不利影响,分析了以给水厂铁铝泥(FAS)构建过滤柱处理富营养化河水的特征与机制,研究了以厌氧热处理改性后的FAS 作为辅助基质(2%)构建过滤柱。

结果表明:在对其他性质无影响的情况下,FAS 的添加显著提高了过滤柱对水体中磷的去除率,促使出水磷浓度在整个运行期间小于0.01mg ·L -1;被FAS 吸附的磷主要以NaOH 提取态、HCl 可提取态和残渣态存在。

应用增强回归树对小兴安岭沼泽湿地构成信息的提取

应用增强回归树对小兴安岭沼泽湿地构成信息的提取
tion threshold of wetlands and non⁃wetlands is 0.7, the extraction accuracy of the model for wetlands ( 0.828) is higher
than that for non⁃wetlands (0.803) , and the performance to predict wetlands is better than that of non⁃wetlands.
产品,对地球 表 面 水 体 制 图 及 动 态 变 化 监 测 分 析

[ 4-5]
。 将云计算和机器学 习 应 用 于 地 理 空 间 科
1) 黑龙江省省属本科高校基本科研业务费项目( 2021-KYYWF
-E006) ;国家自然科学基金项目( 41671100,42071079) ;牡丹江师范
保护提供准确的数据。
1 研究区概况
本文以小兴安岭区域为研究区,小兴安岭位于
黑龙江省北部( 45°50′ ~ 51°10′N,125°20′ ~ 131°20′
E) ,其山脉总体为西北 - 东南走向,北部多台地、宽
东 北 林 业 大 学 学 报 第 51 卷
为 0.11 ~ 21.55。
本研究使用的遥感数据为 30 m 的 Landsat8 OLI
光学数据,提取蓝光波段( B2) 、绿光波段( B3) 、红
光波段( B4) 、近红外波段( B5) 、归一化植被指数和
归一化水体指数等变量;搜集时间范围为 2015 年 5
月 1 日至 2015 年 9 月 30 日覆盖研究区的 Landsat8
该像元与邻域内的像元平均值接近。 地形位置指数

人工光源强化沉水植物法处理印染生化尾水

人工光源强化沉水植物法处理印染生化尾水

人工光源强化沉水植物法处理印染生化尾水袁珍凤;张显球;杜明霞;张勇;王国祥【摘要】Aiming at the problem that the removal of residual chroma and nutrient salt from biochemical dye tail water is difficult,an advanced purification method of artificial light enhanced submerged plants has been proposed. Experi-mental results show that under artificial light supplementary lighting condition,the effects of ceratophyllum demersum and vallisne on the removal of chroma,TP and NH4+-N from biochemical dye tail water are all better than that of the group without supplementary lighting. Among them,the treatment effect of using red light for assisting the purification of ceratophyihum is the best. When the detention time is 5 days,the chroma in biochemical dye tail water can be decreased from about 40 times to 8 times,TP can be decreased from 1.50 mg/L to 0.11mg/L,and NH4+-N decreases from 8.00 mg/L to l.83 mg/L,the removing rates of chroma,TP and NH4+-N can reach 80.0%,92.6%,and 77.1%, respectively. The treated effluent reaches level V water standard of surface water environment(GB 3838—2002).%针对印染生化尾水中残留色度及营养盐去除难的问题,提出了人工光源强化沉水植物深度净化的新方法. 实验结果表明,人工光源补光条件下,金鱼藻和苦草对印染生化尾水中色度、TP和NH4+-N的去除效果均优于无补光组.其中,采用红光辅助金鱼藻的净化处理效果最好,当停留时间为5 d时,可将印染生化尾水中的色度从40倍降至8倍左右,TP从1.50 mg/L降为0.11 mg/L, NH4+-N从8.00 mg/L降为1.83 mg/L,色度、TP、NH4+-N去除率分别达到80.0%、92.6%和77.1%,处理出水达到地表水环境V类水标准(GB 3838—2002).【期刊名称】《工业水处理》【年(卷),期】2015(035)010【总页数】4页(P58-61)【关键词】人工光源;沉水植物;色度;印染生化尾水【作者】袁珍凤;张显球;杜明霞;张勇;王国祥【作者单位】南京师范大学地理科学学院环境科学与工程系,江苏南京210046;南京师范大学地理科学学院环境科学与工程系,江苏南京210046;南京师范大学地理科学学院环境科学与工程系,江苏南京210046;南京师范大学地理科学学院环境科学与工程系,江苏南京210046;南京师范大学地理科学学院环境科学与工程系,江苏南京210046【正文语种】中文【中图分类】X703.1当前,国内印染废水的处理普遍采用生化法。

雨强和坡度对裸地径流颗粒物及磷素流失的影响

雨强和坡度对裸地径流颗粒物及磷素流失的影响

雨强和坡度对裸地径流颗粒物及磷素流失的影响袁溪;潘忠成;李敏;刘峰【摘要】Artificial simulated rainfall experiments were conducted in this study to investigate the effects of rainfall intensity (30~100mm/h) and slope gradient (0~10°) on suspended substance (SS), total phosphorus (TP) and particulate phosphorus (PP) losses in runoff from bare land in north China. The relationships between SS, TP and PP losses were also studied. The results showed that SS and TP losses increased greatly with the increase of rainfall intensity and slope gradient. There was a significant linear relationship between SS and TP losses, as well as TP and PP losses (R2>0.946). Rainfall intensity had more intensive influence on SS and P losses than slope gradient in the range of our experimental conditions. There were clear linear relationships between SS, P losses and the rainfall intensity, slope gradient and the total amount of runoff (R2>0.911). The linear equations of SS, P losses from bare land with and without an incline should be separately simulated because the rainwater infiltration and the runoff generation pathway on 0degree and other slopes were distinctly different. The results provided a calculation method for estimating SS and P losses in runoff from sandy loam soil in north China.%采用人工模拟降雨的方法,研究了不同雨强(0~100mm/h)和坡度(0°~10°)条件下,北方砂壤土裸地降雨径流中颗粒物(SS)、总磷(TP)、颗粒态磷(PP)的流失量及径流污染物之间的相关关系,并分析了雨强和坡度对污染物流失量的影响.研究结果表明,雨强和坡度越大,SS 和TP流失量越大;径流中SS与TP、TP与PP的单位面积流失量呈显著线性相关关系(R2>0.946);在实验条件范围内,雨强对颗粒物及磷素流失量的影响比坡度更显著;径流中颗粒物及磷素单位面积流失量与雨强、坡度及场降雨径流总量之间均有明显的线性关系,相关系数大于0.911,由于0°裸地和有坡度裸地的下渗及产流情况差异较大,在模拟雨强和坡度对颗粒物及磷素流失量影响时需分别考虑.结果可为我国北方砂壤土裸地径流中颗粒物及磷素单位面积流失量的估算提供计算方法和科学依据.【期刊名称】《中国环境科学》【年(卷),期】2016(036)010【总页数】8页(P3099-3106)【关键词】降雨雨强;坡度;裸地;颗粒物;磷素【作者】袁溪;潘忠成;李敏;刘峰【作者单位】北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,北京 100083;北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,北京 100083;北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,北京 100083;北京未来科技发展集团有限公司,北京102209【正文语种】中文【中图分类】X144;S157.1降雨易导致裸露土地形成径流,冲刷出大量颗粒物及溶解态污染物,造成水土流失,产生面源污染.随水土流失所携带养分的流失是造成河流及湖泊水体富营养化日趋严重的重要原因之一[1-2].径流中的颗粒物含有相当数量的粘土矿物和有机、无机胶体,不仅其本身就是一种污染物,同时由于络合、吸附等作用,又成为许多污染物的载体[3]. 降雨条件下土壤中的磷既随下渗的水分向深层迁移,也可在雨滴打击及径流冲刷作用下向地表径流传递[4].地表径流是磷的主要流失途径,其迁移量是壤中流的3~4倍[5].地表径流中的磷从形态上分为颗粒态和溶解态两部分,颗粒态磷占流失磷素的80%以上,流失主要通过颗粒物对磷的吸附作用而进行[6].磷的径流流失量与土壤的物理结构、坡度、降雨量等有密切关系[7],目前主要采用人工降雨方法研究不同雨强和坡度条件下裸土养分流失的规律[8-10].已有研究表明,泥沙粒径分布显著影响输沙量,粒径小于0.054mm的悬浮颗粒物输移是最重要的侵蚀机制[11].土壤中粘粒是磷素流失的载体,由泥沙携带的颗粒态磷占绝对优势[12-13].国内学者发现[14-16],降雨量越大,颗粒态磷比例越高;磷流失量与次降雨量呈现显著正相关,但在降雨量增加到一定程度时即达最大值.Ziadat[17-18]等认为,坡度对径流和未开垦土壤流失量有较大影响.在0°~10°坡度范围内,地表径流中磷浓度和磷流失量均随土壤坡度增加呈上升趋势[19];而在15°~20°范围,存在磷流失的坡度临界值,超过坡度临界值,磷流失减小[12]. Qian[20]还发现,当土壤中含磷量较少时,磷流失量主要取决于径流量.由于水体中总磷质量浓度与泥沙含量有一定关系[21-22],而径流中颗粒态磷是总磷的主要组成成分,因此可以尝试建立颗粒物、总磷、颗粒态磷流失量的数学关系.在现有资料中,研究多集中于对我国中部[23]、南部[24]小流域坡耕地养分流失规律的研究,且多为现场观测数据,针对北方地区砂壤土裸地的径流磷流失规律研究较少,给定量评估北方草地对降雨径流污染物的削减带来困难.本文通过人工模拟降雨试验,研究了4种雨强、3个坡度条件下砂壤土裸地径流中颗粒物及磷素的变化规律,得出雨强、坡度与单位面积土壤磷素流失量的数量关系,可用于估算裸地径流中颗粒物及磷素的流失量,并为裸地土壤种植草坪后对降雨径流中颗粒物及磷素的削减效果提供基础数据,进而为控制城市径流面源污染提供理论依据.1.1 试验设施模拟降雨试验场地位于北京林业大学鹫峰试验基地的降雨大厅.人工模拟降雨装置为QYJY-503C型降雨装置,降雨强度变化范围为10~300mm/h,降雨过程由计算机自动控制.喷头类型为旋转下喷式,有效降雨高度12m,雨滴可达终点速度,容易获得与天然降雨相似的降雨[25].试验降雨面积为64m2,利用雨量筒测量实际雨强[26].率定后的降雨均匀度达80%以上,可满足人工模拟降雨试验的要求[27].试验所用冲刷土槽的规格为1m(长)×0.3m(宽)×0.5m(高),底部均匀分布直径5mm的小孔,土壤水分可自然下渗,试验装置见图1.试验土采自北京市昌平区,为典型北方砂壤土,容重为1.40g/cm3,pH值为7.34,全磷含量为0.83g/kg,速效磷含量为4.43mg/kg,有机质含量为19.10g/kg.对土壤粒径分析得出,粘粒、砂粒、粉粒占总质量的比例分别为0.38%,25.97%,73.65%.1.2 试验设计与测定试验共设置4个降雨强度(30、50、65、100mm/h)、3个坡度(0°、5°、10°),降雨历时均为1h,每组试验设一组平行以保证试验准确性.填土前在槽底均匀铺上10cm厚细沙,保证透水性良好.根据设计容重和土壤厚度(40cm)计算填土质量,填土时以5cm为1层分层填土并压实.实验前按照常见城市道路径流中SS和磷浓度[28-29]配置模拟径流溶液,将45mL溶液用注射器均匀滴在土壤表层,每次试验前用TDR(Time Domain Reflectometer)测定土壤水分,使土壤含水率保持在20%左右.降雨开始后用秒表记录产流时间,自产流开始间隔一定时间测定径流量并收集径流水样,采样时间间隔分别为产流开始的前30min每5min取1次,30~60min每10min取1次.试验结束后将样品带回实验室进行分析.悬浮颗粒物(SS)测定采用重量法,总磷(TP)测定采用过硫酸钾氧化钼锑抗分光光度法[30].样品经0.45um滤膜过滤后测定溶解态磷(DP),测定方法同TP;颗粒态磷(PP)为TP与DP的差值. 2.1 径流中SS及磷素浓度随降雨历时的变化对于0°坡度裸地,在30mm/h雨强的降雨条件下基本没有产生径流.其他条件下径流中的悬浮颗粒物及各形态磷浓度随降雨历时变化如图2所示.由图可知,坡度和雨强增大,产流时间提前.在产流后的较短时间内,SS和磷素浓度随降雨历时延长先迅速降低,随后减少速度变缓,其浓度在波动中渐趋稳定.0°坡度径流SS浓度较低,磷素流失以溶解态为主.10°坡度径流SS浓度较高,磷素流失以颗粒态为主,PP变化趋势与TP一致,DP浓度很低并随历时延长略有增加.在降雨初期,雨滴溅蚀破坏土壤团聚体结构[31-33],分散表层土壤,土壤颗粒被初期径流卷携,导致SS浓度很高.磷素流失主要通过地表径流,在具坡度条件下径流PP占TP的83.7%以上,而PP不会淋溶和从土壤溶出,因此TP与SS浓度变化规律类似.初期降雨后,雨水对裸地地面的冲刷基本稳定,同时土壤表层被压实并形成水膜,使被径流卷携出的颗粒物和磷素浓度也基本稳定.2.2 雨强和坡度对径流SS浓度的影响事件平均浓度EMC计算公式为:式中:Ci为取样时间段内污染物浓度,mg/L;Vi为取样时间段内径流体积,L;n为整场降雨的取样次数.据此计算出不同雨强和坡度条件下径流中SS及TP的EMC浓度.不同雨强和坡度条件下,降雨径流中SS的EMC浓度变化如图3所示.从图中可以看出,相同坡度下,雨强对SS浓度有显著影响.随雨强增大,SS浓度增大.但在0°坡度下,中小雨强对SS浓度影响有限.这是因为雨强越大,单位坡面面积上受到雨滴的击溅力越大,更多的土壤颗粒得以分散,地表径流量增加,径流中卷携有更多的泥沙,导致SS浓度增大.而在0°坡度下,雨滴垂直击打土壤,在中小雨强下不会对土壤造成冲刷,因此雨强增大,SS浓度的增加不明显.相同雨强下,坡度对SS浓度影响显著.随坡度的增加,SS浓度增大.这是因为坡度越大,重力在顺坡方向的分力增大,沿垂直坡面方向的分力减小,导致入渗总量减小,地面径流总量增加同时也加快了径流的流速,使径流对土壤的冲击力更大,冲刷出的颗粒物更多.傅涛等研究表明[8],坡度是影响土壤颗粒物流失最主要的地形因子之一,坡度小于22°时,坡度越大,地面侵蚀泥沙量越大,本实验结果与其吻合.从图中还可看出,5°和10°坡度下径流中SS浓度明显高于0°坡度下SS浓度;雨强从50mm/h增加到100mm/h时,5°和10°坡度径流中SS浓度差值从715mg/L降至212mg/L,说明大雨强条件下坡度不是影响径流污染物浓度的主要因素.2.3 雨强和坡度对径流TP浓度的影响不同雨强和坡度条件下,降雨径流中TP的EMC浓度变化见图4.从图中可以看出,相同坡度下,雨强对TP浓度有显著影响.随雨强增大,TP浓度增大.这是因为降雨强度越大,径流中SS浓度越大,致使吸附于土壤小颗粒表面和微团聚体表面的磷随SS的流失而流失.相同雨强下,坡度对TP浓度影响显著.随坡度的增加,TP浓度增大.这是因为坡度能通过影响降雨入渗时间及径流流速从而影响坡面表层土壤颗粒起动、侵蚀方式和径流的挟沙能力,对坡面土壤磷素流失产生主要影响.2.4 TP、PP及SS流失量的相关性分析场降雨径流污染物流失量计算公式为:式中:L为流失量,mg/m2;Ci为取样时间段内污染物浓度,mg/L;Vi为取样时间段内径流体积,L;n为场降雨取样次数;S0为径流槽面积,m2.不同坡度及雨强条件下,各污染物的单位面积流失量见表1.可以发现,SS、TP、PP单位面积流失量均随着雨强和坡度的增大而增大.0°条件下PP占TP流失量的百分比较低,5°和10°时,PP所占百分比均达到80%以上.将所有坡度及雨强条件下的SS、TP、PP流失量数据进行相关性分析,结果如图5所示.据图5得出,裸地径流不考虑坡度变化的各污染物单位面积流失量的综合相关关系:L(TP)= 0.3699L(ss)-0.1314,R2=0.946;L(PP)=0.9613L(TP)-0.685,R2=0.999.裸地径流中TP与SS、PP与TP之间均存在很强的线性相关关系,这是因为裸地径流中颗粒物含量较高,冲刷出的磷素主要是由颗粒物吸附的颗粒态磷,可溶性磷酸盐从土壤中浸出的量较低.2.5 雨强、坡度对SS、TP流失量的影响2.5.1 SS、TP流失量和雨强相关性分析不同坡度下,径流中SS、TP单位面积流失量与雨强的线性回归方程见表2.从表2可以看出,在各坡度条件下,雨强和SS、TP流失量都有较强的线性关系,雨强越大,污染物流失量越大.0°时,随雨强增大,SS和TP增加不明显,这是因为不具坡度条件下,降雨垂直撞击土壤表面,土壤入渗能力增大,只有在入渗达到饱和或大雨强入渗速度小于降雨强度才产生径流,雨强增大时,仅使雨滴对土壤的击溅力增大,而对径流量及污染物流失量的影响很小.2.5.2 SS、TP流失量和坡度相关性分析不同雨强下,径流中SS、TP单位面积流失量与坡度的线性回归方程见表3.由表3可以看出,在小雨强时,坡度与SS、TP有较为明显的线性关系.随雨强增大,SS、TP流失量和坡度的线性关系明显减弱.这是因为,雨强增大到一定程度,土壤被剧烈冲刷的同时产生大量径流,径流流速快,使表层土壤颗粒物被迅速带入径流流失,这时坡度对流速的影响逐渐减小[34],不是主要影响因素,5°和10°坡度SS及TP流失量相差不大甚至会出现5°坡度高于10°坡度流失量的情况.此外,对比表2和表3中直线斜率的变化可以看出,雨强相较于坡度,对污染物流失量有更大的影响.2.5.3 雨强、坡度对SS、TP流失量的综合影响不同坡度和雨强下,裸地径流中的颗粒物及磷流失量有显著差别,因此本文考察了雨强和坡度对污染物流失量的综合影响,结果见表4.由于0°坡度下,径流污染物流失规律和有坡度条件下的流失规律明显不同,因此表4中未考虑0°条件下的实验数据.从表中可发现,在有坡度条件下,雨强、坡度和颗粒物及磷素流失量的线性相关性很好,相关系数高于0.942. 由于雨强、坡度直接影响裸地径流量,为了能够通过径流量预测裸地的污染物流失量,本文研究了次降雨径流量与径流污染物流失量之间的关系,结果见表5.从表中可看出,径流量与污染物流失量存在明显的线性关系,相关系数均在0.911以上.表4中的线性回归方程可用于预测不同雨强、坡度条件下北方砂壤土裸地径流中颗粒物及磷素的单位面积流失量.当已知某次降雨的径流总量时,则可采用表5中的方程来预测污染物流失量.以上方程为预测一定条件下北方砂壤土裸地径流中颗粒物及磷素单位面积流失量提供了简便的计算方法和科学依据,对磷素的非点源污染模型预测及面源污染控制有重要意义.3.1 坡度为0°~10°,雨强为30~100mm/h条件下,雨强和坡度越大,SS和TP 的流失量越大,且雨强相较于坡度,对污染物流失量有更大的影响.3.2 径流中SS、TP、PP的单位面积流失量有很强的线性关系,TP与SS、PP与TP的相关系数分别为0.946、0.999,径流中的磷素主要以颗粒形态流失,有坡度条件下颗粒态磷占总磷的80%以上.3.3 0°<坡度<10°时,径流颗粒物及磷素单位面积流失量与雨强、坡度以及次降雨径流量之间有明显的线性关系,相关系数大于0.911.方程为预测砂壤土裸地径流中颗粒物及磷素单位面积流失量提供简便的计算方法.【相关文献】[1]金相灿,辛玮光,卢少勇,等.入湖污染河流对受纳湖湾水质的影响[J]. 环境科学研究,2007,(4):52-56.[2]翟丽华,刘鸿亮,席北斗,等.沟渠系统氮、磷输出特征研究[J].环境科学研究, 2008,(2):35-39.[3]李强坤,李怀恩,孙娟,等.基于有限资料的水土流失区非点源污染负荷估算[J]. 水土保持学报, 2008,(5):181-185.[4] Wang Q, Horton R, Shao M. Effective raindrop kinetic energy influence on soil potassium transport into runoff [J]. Soil Science,2002,167(6):369-376.[5]单保庆,尹澄清,于静,等.降雨-径流过程中土壤表层磷迁移过程的模拟研究[J]. 环境科学学报, 2001,(1):7-12.[6]彭琳,王继增,卢宗藩.黄土高原旱作土壤养分剖面运行与坡面流失的研究[J]. 西北农业学报, 1994,(1):62-66.[7] Anbumozhi V, Radhakrishnan J,Yamaji E. Ⅰmpact of riparian buffe r zones on water quality and associated management considerations [J]. Ecological Engineering,2005,24(5):517-523.[8]傅涛,倪九派,魏朝富,等.不同雨强和坡度条件下紫色土养分流失规律研究[J]. 植物营养与肥料学报, 2003,(1):71-74,101.[9]康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究[J]. 土壤学报, 1999,(4):536-543.[10]马琨,王兆骞,陈欣,等.不同雨强条件下红壤坡地养分流失特征研究[J]. 水土保持学报, 2002,(3):16-19.[11] Shi Z, Fang N, Wu F, et al. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes [J]. Journal of Hydrology, 2012,454:123-130.[12]王晓燕,王静怡,欧洋,等.坡面小区土壤-径流-泥沙中磷素流失特征分析[J]. 水土保持学报, 2008,(2):1-5.[13]杨丽霞,杨桂山;苑韶峰.施磷对太湖流域典型蔬菜地磷素流失的影响[J]. 中国环境科学,2007,27(4):518-523.[14]梁斐斐,蒋先军,袁俊吉,等.降雨强度对三峡库区坡耕地土壤氮、磷流失主要形态的影响[J]. 水土保持学报, 2012,(4):81-85.[15]马东,杜志勇,吴娟,等.强降雨下农田径流中溶解态氮磷的输出特征——以崂山水库流域为例[J]. 中国环境科学,2012,32(7):1228-1233.[16]林超文,陈一兵,黄晶晶,等.不同耕作方式和雨强对紫色土养分流失的影响[J]. 中国农业科学, 2007,(10):2241-2249.[17] Ziadat F, Taimeh A. Effect of rainfall intensity, slope, land use and antecedentsoil moisture on soil erosion in an arid environment [J]. Land Degradation and Development, 2013,24(6):582-590.[18] Kateb HE, Zhang H, Zhang P, et al. Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in Southern Shaanxi Province,China [J]. Catena,2013,105(5):1-10.[19]褚素贞,张乃明.坡度对云南红壤径流中磷素浓度的影响研究[J]. 中国农学通报,2015,(28):173-178.[20] Qian J, Zhang L P, Wang W Y, et al. Effects of vegetation cover and slope length on nitrogen and phosphorus loss from a sloping land under simulated rainfall [J]. Polish Journal of Environmental Studies, 2014,23(3):835-843.[21]陈娟.总磷测定中两种稀释方法的对照[J]. 环境监测管理与技术, 2002,(5):28-29. [22]李小如,王学俭.测定地表水中总磷时去除浊度干扰的方法比较[J]. 环境监测管理与技术,2006,(6):50.[23]段小丽,张富林,张继铭,等.江汉平原棉田地表径流氮磷养分流失规律[J]. 水土保持学报, 2012,(2):49-53.[24]张燕,李永梅,张怀志,等.滇池流域农田径流磷素流失的土壤影响因子[J]. 水土保持学报, 2011,(4):41-45.[25]徐向舟,刘大庆,张红武,等.室内人工模拟降雨试验研究[J]. 北京林业大学学报,2006,(5):52-58.[26]王小燕,李朝霞,蔡崇法.砾石覆盖紫色土坡耕地水文过程[J].水科学进展, 2012,(1):38-45.[27]谷博轩,梁鹏锋,彭红涛,等.砂田降雨入渗过程的模拟实验研究[J]. 中国农学通报,2011,(32):281-286.[28]申丽勤,车伍,李海燕,等.我国城市道路雨水径流污染状况及控制措施[J]. 中国给水排水, 2009,(4):23-28.[29]王闪.城市下凹式绿地和草地对降雨径流磷污染控制效果研究[D]. 北京:北京林业大学,2015.[30]魏复盛.水和废水监测方法:第四版[M]. 北京:中国环境科学出版社, 2002:106-108,246-248.[31] Roth C, Eggert T. Mechanisms of aggregate breakdown involved in surface sealing, runoff generation and sediment concentration on loess soils [J]. Soil and Tillage Research, 1994,32(2):253-268.[32] Lebissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: Ⅰ. Theory and methodology [J]. European Journal of Soil Science, 1996,47:425-437.[33]Shainberg Ⅰ, Levy G, Rengasamy P, et al. Aggregate stability and seal formation as affected by drops' impact energy and soil amendments [J]. Soil Science,1992,154(2):113-119.[34]张小娜,冯杰,高永波,等.不同雨强条件下坡度对坡地产汇流及溶质运移的影响[J]. 水土保持通报, 2010,(2):119-123.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SOILS,SEC 3•REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS •RESEARCH ARTICLEFlooding-enhanced immobilization effect of sepiolite on cadmium in paddy soilQi-Hong Zhu &Dao-You Huang &Shou-Long Liu &Bin Zhou &Zun-Chang Luo &Han-Hua ZhuReceived:10July 2011/Accepted:29October 2011/Published online:15November 2011#Springer-Verlag 2011AbstractPurpose Little is known of the effect of sepiolite on the transformation of Cd in anthropogenically contaminated paddy soil under different moisture conditions;therefore,we studied the effects of sepiolite and flooding on the extractability and fractionation of Cd in paddy soils.Materials and methods The dynamics of soil Eh,pH,DTPA-extractable Cd,and different Cd soil fractions were studied in two typical paddy soils from south China that were spiked with 10mg kg –1Cd following amendment with sepiolite at 5and 10gkg –1soil during a 30-day incubation period at 25°C,with either no flooding or continuous flooding conditions.Results and discussion The addition of sepiolite at two rates of 5and 10gkg –1soil resulted in an average reduction in soil Eh of 76and 93mV ,increase in soil pH of 1.2and 2.3pH units,and decrease in DTPA-extractable Cd in soils of 1.43and 2.53mg kg –1under continuous flooding conditions,respectively.Sepiolite addition resulted in a significantdecrease in the exchangeable Cd in the soils,and a significant increase,in the carbonate-bound and Fe/Mn oxide-bound Cd in the soils under both moisture conditions.Cadmium was also immobilized by flooding and by interactions between sepiolite application and flooding;these effects were greater in sandy paddy soil than in clay paddy soil.Conclusions The immobilization of Cd in typical paddy soils was related mainly to changes in Eh and pH caused by the addition of sepiolite and flooding.Sepiolite can be used in the remediation of Cd-contaminated paddy soils,espe-cially in sandy paddy soils,and flooding enhances the stabilization of Cd in paddy soils by sepiolite.Keywords Cadmium .Extractability .Flooding .Fractionation .Paddy soil .Sepiolite1IntroductionElevated Cd levels in agricultural soils,resulting from mining activities,industrial emissions,and the application of sewage sludge or phosphorus fertilizer,are becoming a major environmental problem due to its great toxicity and high mobility from soil to plants and thereby into the food chain (Wang and Xing 2002;Wei et al.2009).In China,the national rice yield of 2009was 1.95×108t year –1which constitutes about 40%of the national grain yield (4.82×108t year –1),and rice is a staple food for more than 60%of the population (National Bureau of Statistics of China 2010;Yang et al.2006).Approximately 2.8×105hm 2of farmland in China is contaminated with Cd (State Environmental Protection Agency 2003).The maximum Cd content in contaminated paddy field varies from 5.0to 145.0mg kg –1,resulting in the maximum accumulation of Cd in brown rice at levels from 1.9to 9.4mg kg –1(Zhang 2008),therebyResponsible editor:Jaco VangronsveldQ.-H.Zhu (*):D.-Y .Huang (*):S.-L.Liu :B.Zhou :H.-H.ZhuKey Laboratory of Agro-ecological Processes in Subtropical Region,Institute of Subtropical Agriculture,Chinese Academy of Sciences,Changsha,Hunan,People ’s Republic of China e-mail:qhzhu@ e-mail:dyhuang@B.ZhouGraduate University of Chinese Academy of Sciences,Beijing,People ’s Republic of ChinaZ.-C.LuoHunan Soil and Fertilizer Institute,Changsha,Hunan,People ’s Republic of ChinaJ Soils Sediments (2012)12:169–177DOI 10.1007/s11368-011-0444-2posing a risk to human and animal health(Jalloh et al.2009). However,the maintenance of Cd levels within physiological ranges in plants does not depend exclusively on the total soil Cd concentration it also depends on the distribution of Cd among various chemical fractions(Chen et al.2000).In China,rice is generally cultured by rotation through flooded and unflooded conditions to meet its needs for growth.The submergence of soils has been reported to cause the redistribution of Cd into different chemical fractions and to reduce the availability of Cd in soils.This reduce of availability is attributed to the increased adsorption of the metal to hydrous Mn and Fe oxides and to the formation of insoluble CdS(Kashem and Singh2001;Sun et al.2007).Moreover,the bioavailability and mobility of Cd in soils can be reduced by chemical and biological immobilization (Hong et al.2008).Recently,there has been keen interest in the immobilization of heavy metals using clay minerals, such as sepiolite(Xu et al.2007;Zhu et al.2010),bentonite (Cheng and Hseu2002;van Herwijnen et al.2007), montmorillonite(Badora et al.1998),and Penghu soil (Cheng and Hseu2002).Sepiolite is a layered silicate clay mineral found in many soils in arid and semiarid regions,in association with carbonates or quartz(Özdemir et al.2007). It has a ribbon-like structure formed from two inverted silica tetrahedral sheets with a magnesium octahedral sheet between them,producing alternating hollow channels that allow the penetration of the structure by solutes.Some isomorphic substitutions in the tetrahedral layer,such as Al3+for Si4+,also produce negatively charged adsorption sites that can electrostatically adsorb cations(Xu and Hseung1983).Previous studies have reported that sepiolite has a high sorption capacity for Cd and the ability to reduce the mobility of Cd in soils polluted by mining activities(Álvarez-Ayuso and García-Sánchez 2003;Shirvani et al.2006a,b).Consequently,sepiolite has been recommended for the remediation of Cd-contaminated paddy soils(Zhu et al.2010).However,few studies have examined the effects of sepiolite on the transformation of Cd in artificially contaminated paddy soil under different moisture condi-tions.Therefore,the objective of this study was to investigate the extractability and fractionation of Cd in soils in relation to changes in the soil properties caused by the application of sepiolite and continuous flooding.2Materials and methods2.1Soil and sepiolite preparationA sepiolite sample(particle diameter≤74μm)was purchased from Hongyan Ltd.(Xiangtan,Hunan Province,China), consisting of sepiolite(mainly as Mg4SiO15(OH)2·H2O and 2MgOSiO2·H2O)and accessory minerals such as quartz,as observed by X-ray diffraction.A sample of clayey paddy soil (0–20cm depth)derived from Quaternary red clay,classified as reddish yellow clayey paddy soil(RY;Chinese Soil Taxonomy),and a sample of sandy paddy soil(0–20cm depth)derived from arenaceous shale,classified as reddish sandy paddy soil(RS;Chinese Soil Taxonomy),were collected from Taoyuan County,Hunan Province,China. The selected properties of the soils[e.g.,soil pH,organic carbon,cation exchange capacity(CEC),texture,total Cd] were measured using routine analytical methods and are listed in Table1.After collection,the soils were air-dried, ground,and passed through a2-mm mesh sieve.Cadmium (10mg kg–1soil,as a CdCl2solution)was added to each soil sample(7,200g),and the samples were mixed thoroughly.Next,deionized water was added to soil during mixing until the level of standing water was at a height of2.0±0.5cm above the soil surface(flooding). The flooded soil samples were then incubated at room temperature(25±1°C),and the soil water was added to the flooding level every2days.After a7-day incubation,the soils were air-dried and rehomogenized by sieving.2.2IncubationFor each soil,we employed a2×3factorial design with two levels of moisture condition and three levels of sepiolite addition,making a total of six treatments,denoted NF0[no flooding(45%water holding capacity(WHC))with sepiolite added at0gkg–1soil],NF5(no flooding with sepiolite added at5gkg–1soil),NF10(no flooding with sepiolite added at 10gkg–1soil),F0(continuous flooding with sepiolite added at0gkg–1soil),F5(continuous flooding with sepiolite added at5gkg–1soil),and F10(continuous flooding with sepiolite added at10gkg–1soil).Four replicates of each treatment were tested.Each subsample(300g)was placed in an open plastic jar(diameter13cm×height15cm).The jars wereTable1Basic properties of the two paddy soils studiedSoil pH SOC(g kg–1)TN TP Olsen P(mg kg–1)AK CEC(cmol(+)kg–1)Sand(%)Silt Clay TCd(mg kg–1)RY 5.017.9 2.20 1.2418.18313.321.650.827.6NDRS 5.116.1 1.70.6827.48911.859.622.018.4NDRY reddish yellow clayey paddy soil,RS reddish sandy paddy soil,SOC soil organic carbon,TN total nitrogen,TP total phosphorus,AK available K,TCd total cadmium,ND not detectableplaced in polypropylene barrels(100L)with500mL of water to maintain100%humidity.The barrels were sealed, and the soil samples were incubated at25±1°C for30days. In continuous flooding culture,deionized water was added to soil during mixing until the level of standing water was at a height of2.0±0.5cm above the soil surface,whereas in no flooding culture the soil moisture was adjusted to45±5%of WHC and both cultures were maintained by periodic(every 2days)addition of deionized water throughout the30-day incubation period.After2,5,10,15,20,and30days,the barrels were opened and oxidation–reduction potential(Eh) of soil was determined and a subsample was taken from each jar to measure the amount of diethylenetriaminepentaacetic acid(DTPA)-extractable Cd(Lindsay and Norvell1978) in the soil and soil pH.For the subsamples tested at the end of incubation(day30),the Cd soil fractions present in the soil were determined with sequential extraction (Tessier et al.1979).2.3AnalysisThe DTPA extraction method is described briefly:20.00g of soil in40mL of0.05M DTPA+0.01M CaCl2+0.01M triethylolamine(TEA,pH7.3)was shaken for2h.The sequential extraction method of Tessier et al.(1979)was performed in five steps,assuming that the Cd soil fractions extracted were as follows:1.Fraction1(water soluble plus exchangeable,EX-Cd):1.000g of soil(dry weight)was extracted with8mL of1M MgCl2solution and shaken for1h at25±1°C,and the extract was separated from the solid residue by centrifugation at3,000×g for20min.2.Fraction2(carbonate bound,CB-Cd):to the fraction1residue was added8mL of1M CH3COONa solution (pH5,adjusted with acetic acid),which was shaken for 5h at25±1°C;the extract was then centrifuged as for fraction1.3.Fraction3(Fe/Mn oxide bound,OX-Cd):to thefraction2residue was added20mL of0.04M NH2OH·HCl in25%acetic acid.The mixture was refluxed at96±3°C with occasional agitation for6h, and then the extract was centrifuged as for fraction1.4.Fraction4(organic matter bound,OC-Cd):to thefraction3residue were added3mL of0.02M HNO3 and5mL of30%H2O2,and the pH was adjusted to2.0 with HNO3.The mixture was refluxed at85±2°C for 2h.A second5-mL aliquot of30%H2O2(pH2)was added,and the sample was again refluxed for3h.After cooling,5mL of3.2M ammonium acetate in20%(v/v) HNO3was added.The sample was diluted to20mL and agitated continuously for30min,and then the extract was centrifuged as for fraction1.5.Fraction5(residual,RES-Cd):the residue of fraction4was digested(open system)using a mixture of15mL aqua regia and3mL of HClO4.The Cd concentrations in the solutions were determined by atomic absorption spectroscopy(AAS;GBC,Australia). Organic C and total N in soil were measured by dry combustion in a CN auto-analyser(Vario MAX C/N, Germany),total P was measured by the NaOH fusion method(Olsen and Somers1982),and Olsen P and available K were extracted with0.5M NaHCO3and1M CH3COONH4,respectively.The CEC was determined with the ammonium acetate method(Chapman1965).Soil texture(sand,silt,and clay)was determined with the hydrometer method(Gee and Bauder1986).The total content of Cd in soil was determined with aqua regia and HClO4digest.Briefly,1.000g soil samples(dried weight) were digested(open system)using a mixture of20mL aqua regia and3mL HClO4,and concentrations of Cd in digested solution were determined by AAS for the total content of Cd.Three certified reference materials, GBW070011Chinese soil samples,three spikes and three blanks were used for quality control.Soil Eh was measured during incubation using an ORP combination Pt-band electrode(ORP431;Shanghai Dapu Instrument,China). The soil and sepiolite pH was determined in water at a soil-to-solution ratio of1:2.5(w/v)using a pH meter(PHS-3C; Shanghai Dapu Instrument,China).Analysis of variance was used to compare means,employing SPSS statistical software(SPSS11.5system for Windows).3Results3.1Effect of sepiolite and flooding on soil Eh,pH,and DTPA-extractable Cd in soil3.1.1No flooding soilsFor the no flooding treatments,soil Eh ranged from242to 355mV and from227to376mV for soils RY and RS, respectively(Fig.1).The addition of sepiolite significantly (p<0.01)decreased soil Eh by about47and80mV on average after the NF5and NF10treatments,respectively. Moreover,during the30-day incubation period,the soil Eh remained essentially constant for the three no flooding treatments of both soils.Therefore,the differences in the soil Eh between the NF0,NF5,and NF10treatments remained generally constant throughout the30-day incuba-tion period in both soils.However,the addition of sepiolite significantly(p<0.01) increased soil pH by about0.9and2.0pH units on average for the NF5and NF10treatments in soil RY,and by about1.6and2.6pH units on average for the NF5and NF10treatments in soil RS,respectively (Fig.2).During the 30-day incubation period,the soil pH of both soils,treated and untreated with sepiolite,showed a gradual decline.The differences in soil pH of NF5,NF10,and NF0were gradually reducing during the incubation period.The amount of DTPA-extractable Cd in soil showed a significant decrease (p <0.01)with sepiolite addition,by 0.26and 0.85mg kg –1for the NF5and NF10treatments in soil RY ,and by 1.76and 3.90mg kg –1for the NF5and NF10treatments in soil RS,respectively (Fig.3).During the 30-day incubation period,DTPA-extractable Cd in both soils,treated and untreated with sepiolite,showed a steady increase.By the end of incubation period,the amount of soil DTPA-extractable Cd had increased by 0.51–1.51mg kg –1compared with the values on day 2.For soil RY,the differences in DTPA-extractable Cd between sepiolite-treated soils (NF5and NF10)and untreated soils (NF0)declined continuously during days 2to 30.While,for soil RS,these differences remained generally constant throughout the incubation period and were much larger than these for soil RY .3.1.2Continuous flooding soilsFor both soils under continuous flooding condition,the effect of sepiolite on soil Eh was similar to that in the no flooding soils (see Fig.1).The addition of sepiolite significantly (p <0.01)decreased the soil Eh by 76and 93mV on average for the F5and F10treatments,respectively.However,the soil Eh of sepiolite-treated and untreated soils (F0,F5,and F10)showed a sharp decrease by 206–348mV and 119–292mV for soils RY and RS,respectively,during days 2to 30.Moreover,the differences in soil Eh between sepiolite-treated soils (F5and F10)and untreated soil F0markedly reduced during the incubation period.Soil pH,as measured in continuous flooding soils,ranged from 4.5to 7.2and from 4.8to 7.7for soils RY and RS,respectively (see Fig.2).The addition of sepiolite resulted in a significant (p <0.01)increase in soil pH by about 1.2and 2.3pH units on average after the F5and F10treatments,respectively.The increase in soil pH after the addition of sepiolite was much larger in soil RS than in soil RY .During the 30-day incubation period,the soil pH firstly declined and then gradually increased.By day 5,soil pHin-300-200-1000100200300400051015202530051015202530Incubation time (d)E h (m V )-300-200-1000100200300400E h (m V)Incubation time (d)Fig.1Changes in soil Eh with and without sepiolite under different moisture conditions.NF0,no sepiolite applied with no flooding (○);NF5,sepiolite applied at 5.0gkg –1soil with no flooding (△);NF10,sepiolite applied at 10.0gkg –1soil with no flooding (◇);F0,no sepiolite applied with continuous flooding (●);F5,sepiolite applied at5.0gkg –1soil with continuous flooding (▲);F10,sepiolite applied at 10.0gkg –1soil with continuous flooding (◆).RY reddish yellow clayed paddy soil,RS reddish sandy paddy soil.Bars indicate the standard deviation of themean4.05.06.07.08.0Incubation time (d)S o i l pH4.05.06.07.08.0Incubation time (d)S o i l p H 051015202530051015202530Fig.2Changes in soil pH with and without sepiolite under dif-ferent moisture conditions.See Fig.1for definitions of NF0,NF5,NF10,F0,F5,F10,RY ,and RS.Bars indicate the stan-dard deviation of the meansepiolite-treated soils had decreased by 0.3–0.5pH units compared with day 2.Following this initial decline,the soil pH gradually increased by 0.7–0.8,0.4–0.6,and 0.3–0.4pH units for the F0,F5,and F10treatments,respectively,between days 5and 30.Furthermore,the differences in soil pH among the F0,F5,and F10treatments in soil RY showed a steady decrease throughout the incubation period,whereas they remained generally constant in soil RS.Relative to the DTPA-extractable Cd levels after the F0treatment,the F5and F10treatments showed a decrease of 0.59–1.15and 1.15–1.90mg kg –1in soil RY ,and 1.13–2.49and 2.50–4.29mg kg –1in soil RS,respectively (see Fig.3).During the incubation period,the amount of DTPA-extractable Cd in the three treatment groups gradually declined by 31–39%in soil RY ,and by 19–33%in soil RS (p <0.01).Furthermore,the differences between the amounts of DTPA-extractable Cd after the F0,F5,and F10treatments in soil RS showed a steady decline throughout the 30-day incubation period.However,noregular change in the response to treatment in soil RY was observed over the incubation period.Table 2lists the mean values of soil Eh,pH,and DTPA-extractable Cd in all treatments of both soils on day 30.Following the addition of sepiolite,we observed a significant decrease (p <0.001)in soil Eh and DTPA-extractable Cd,and a significant increase (p <0.001)in soil pH in soils RY and RS.For both soils,continuous flooding resulted in a significant decrease (p <0.001)in soil Eh and DTPA-extractable Cd,and a significant increase (p <0.001)in soil pH.Furthermore,we observed significant interactions (p <0.001)between sepiolite addition and continuous flooding in terms of soil Eh,pH,and DTPA-extractable Cd in soils.3.2Effects of sepiolite and flooding on the fractionation of Cd in paddy soilsFigure 4shows the proportions of Cd chemical fractions in the two paddy soils before and after incubation.Inthe0.01.53.04.56.07.59.0Incubation time (d)D T P A -C d (m g k g -1)0.01.53.04.56.07.59.0D T P A -C d (m g k g -1)051015202530Incubation time (d)051015202530Fig.3Changes in DTPA-extractable Cd in soil with and without sepiolite under different moisture conditions.See Fig.1for definitions of NF0,NF5,NF10,F0,F5,F10,RY ,and RS.Bars indicate the standard devi-ation of the meanTable 2Mean values of Eh,pH,and DTPA-extractable Cd in soils treated by sepiolite under both moisture conditions at day 30(n =4for each treatment)TreatmentsSoil RY RS Eh (mV)pH DTPA-Cd (mg kg −1)Eh (mV)pH DTPA-Cd (mg kg −1)NF0304.5a 4.40f 7.95a 343.3a 5.00e 8.37a NF5281.5b 4.99e 7.89a 281.5b 6.60c 6.67b NF10252.0c 6.16b 7.33b 239.8c 7.56a 4.38d F0−158.0d 5.35d 5.04c −178.3d 5.62d 4.91c F5−181.0e 6.05c 4.18d −200.5e 6.84b 3.68e F10−186.5e6.81a3.52e−205.0e7.63a2.42fSource of variation Sepiolite ******Flooding******Sepiolite ×flooding******Means (n =4)followed by the same letter within a row are not significantly different (LSD p <0.01)*p <0.001significancenonincubated soils (day 0),Cd occurred predominantly in the exchangeable fraction,and this fraction represented about 80%of the total Cd in the two soils.After 30days incubation,the proportion of EX-Cd relative to total Cd showed a substantial decrease by 3.6–46.1%,and the proportions of CB-Cd and OX-Cd increased by 3.8–21.6%and 1.1–26.0%,respectively,for the two soils compared with nonincubated soils under no flooding condition.Similarly,after 30days incubation,the propor-tion of EX-Cd relative to total Cd decreased by 25.4–54.8%,and the proportions of CB-Cd and OX-Cd increased by 4.8–21.6%and 19.4–32.0%,respectively,for the two soils compare with nonincubated soils under continuous flooding condition.Moreover,at the end of the incubation period,EX-Cd had decreased significantly (p <0.01)where-as CB-Cd and OX-Cd had increased after the addition of sepiolite (5.0and 10.0gkg –1)compared with the levels after no sepiolite addition under both no flooding and continuous flooding conditions.The differences in the proportions of EX-Cd,CB-Cd and OX-Cd between no sepiolite and sepiolite treatments were much larger for continuous flooding soils than for no flooding soils.However,no regular change in OC-Cd or RES-Cd caused by sepiolite treatments under neither no flooding nor continuous flooding conditions was observed.4DiscussionFor both soils considered in this study,the application of sepiolite and continuous flooding resulted in significant increases (p <0.01)in soil pH and decreases in soil Eh (see Figs.1and 2;Table 2).Our previous field experiment also yielded an increase in soil pH with the application of sepiolite for remediation of Cd-contaminated paddy soil(soil pH=5.4,Zhu et al.2010).These changes reflect the high pH of sepiolite (pH=9.3)relative to that of the soils studied.The decrease in soil Eh that accompanies the application of sepiolite may be related to an increase in soil pH (Hu 2006).Previous studies have reported similar changes in soil Eh and pH for soils subjected to continuous flooding (Bjerre and Schierup 1985;Kashem and Singh 2001;Sun et al.2007).In flooded soil,O 2is consumed by microbial activity (Eh decrease)and most reduction reactions consume H +,resulting in an increase in pH in acid soils (Kashem and Singh 2001).For both of the paddy soils examined in the present study,the application of sepiolite and continuous flooding resulted in a decrease in DTPA-extractable Cd and redistribution of Cd in soils (see Figs.3and Fig.4;Table 2).Furthermore,significantly interaction (p <0.001)between sepiolite addi-tion and flooding on immobilization of Cd in both soils were also observed (see Table 2).Previous studies have also reported the immobilization of Cd in soils by sepiolite.For example,Keller et al.(2005)reported that the application of 5%sepiolite markedly reduced DTPA-extractable Cd within the soil in pot experiments and that the application of 1%and 5%sepiolite reduced DTPA-extractable Cd by 13–26%in batch experiments.Álvarez-Ayuso and García-Sánchez (2003)reported similar results in leaching experiments.Our previous field experiment demonstrated that the application of sepiolite to Cd-contaminated paddy soil resulted in a substantial decrease in DTPA-extractable Cd (by 14.5%),and a decrease in EX-Cd,and an increase in CB-Cd,OX-Cd,and RES-Cd;the accumulation of Cd in brown rice decreased by 37.5%as a result of the decreases in DTPA-extractable Cd and in EX-Cd (Zhu et al.2010).In the present study,the results obtained using a sequential extraction method are in agreement with those obtained using a single extraction (DTPA method).With the application of sepiolite,RYC d d i s t r i b u t i o nRSC d d i s t r i b u t i o nFig.4Changes in Cd fractions in soil with and without sepiolite under different moisture conditions.EX-Cd,exchangeable fraction of Cd in soil (□);CB-Cd,carbonate-bound fraction of Cd in soil ();OX-Cd,Fe/Mn oxides-bound fraction of Cd in soil ();OC-Cd,organic-matter-bound fraction of Cd in soil ();RES-Cd,residual fraction of Cd in soil (■).See Fig.1for definitions of NF0,NF5,NF10,F0,F5,F10,RY ,and RSthe concentration of EX-Cd decreased in proportion to the increasing fractions of Cd bound to carbonate or Fe/Mn oxides,under both moisture conditions.A similar redistri-bution of Cd in the soil has been reported in previous studies of the effects of sepiolite in both pot and field experiments (Xu et al.2007;Zhu et al.2010).The findings of these previous studies suggested that the addition of sepiolite to treated soils shifts the solid phases of metals away from their mobile forms to their immobile or less available forms. However,the magnitude of immobilization in our Cd–salt-treated soils was clearly larger than that in the real contaminated soil(as determined in our previous field experiment);this discrepancy may reflect the difference in Cd availability and sepiolite application rate between Cd–salt-treated soils and real Cd-contaminated soils.Earlier studies have also shown that flooding causes a reduction in the amount of extractable Cd and a redistribution of Cd into different fractions in the soil. For example,Kashem and Singh(2001)reported that during50days under flooding conditions,the soluble Cd in the soil decreased by36–90%.Bjerre and Schierup (1985)found that flooding for75days significantly(p< 0.05)reduced the CaCl2-extractable Cd in sandy loam soil and sandy soil in pot experiments.In the present study, sequential extraction showed that EX-Cd decreased sig-nificantly(p<0.01)with increasing CB-Cd and OX-Cd in the soils.Sun et al.(2007)reported similar changes in the proportions of Cd in the different fractions.These results indicate that flooding can cause the immobilization of Cd in paddy soils.However,few studies have examined the interaction between amendment application and flooding in terms of heavy metal availability.The present results indicate that flooding enhances the stabilization effect of sepiolite on Cd in paddy soils.Soil pH and Eh are important factors in terms of the availability of heavy metals in the soil(Bjerre and Schierup 1985;Hooda and Alloway1998).In present study,the amounts of DTPA-extractable Cd and EX-Cd in soil showed significant(p<0.01)positive correlation with Eh and negative correlation with pH,in both the no flooding and continuous flooding soils(Table3).These results clearly indicate that Cd solubility in the two soils decreased with decreasing Eh and increasing pH.Flooding and the application of sepiolite,as well as the interaction of the two factors,caused the pH to increase and Eh to decrease, which may result in an increased negative charge on the soil particles,and would allow the greater adsorption of metals and consequently a reduction in their mobility (Kashem and Singh2001;Sun et al.2007).The affinity of Cd for soil solid phase increases at high pH because Cd tends to form Cd(OH)+with hydrolysis(Elliott et al.1986; Sun et al.2007).Moreover,under the indirect effects of flooding conditions(low Eh),sulfate ions are reduced to the sulfide form,which may form complexes with Cd and immobilize this element as CdS(Van Den Berg et al.1998; Kashem and Singh2001).In the present study,these pH-and Eh-dependent mechanisms may have been active after the application of sepiolite to flooded soils,thereby immobilizing Cd.Consistent with the results of the present results,previous studies reported that sepiolite produces new adsorptive surfaces that immobilize Cd in the soil by specific adsorption or chemisorptions;once Cd substitutes for Mg on the edges of the octahedral sheet in sepiolite and is sorbed to the mineral surface,complexation of Cd may occur on surface functional groups(Álvarez-Ayuso and García-Sánchez2003;Shirvani et al.2006a,b).Interestingly,the two tested soils in the present study have similar soil pH,organic matter,and total Cd contents and even distribution of Cd in nonincubated soils;however, the effects of sepiolite application on decrease in DTPA-extractable Cd in soils and a redistribution of Cd in soils were much larger in sandy soil(RS)than in clay soil(RY). Ahmad et al.(2011)also reported that the immobilization effect of alkaline amendments(gypsum and lime)on Cd is greater in sandy loam soil than in sandy clay loam soil.This effect may be attributed to the less buffering capacity of sandy soil than clay soil.In present study,the changes in soil Eh and pH related to sepiolite application and flooding were much larger in sandy soil than in clay soil.These results may indicate that the application of sepiolite as an amendment for Cd is more effective in contaminated sandy soils than in clay soils.Table3Correlation coefficients between the concentration of Cd and soil Eh and pH under different moisture conditions at day30Soil RY RSMoisture condition NF F NF FExtractable Cd DTPA EX DTPA EX DTPA EX DTPA EXEh0.885*0.967*0.942*0.900*0.972*0.888*0.868*0.678** pH0.944*0.988*0.973*0.984*0.973*0.914*0.974*0.841*NF no flooding,F continuous flooding,DTPA DTPA-extractable Cd in soil,EX exchangeable Cd in soil*p<0.01significance;**p<0.05significance。

相关文档
最新文档