2.2最大值、最小值问题

合集下载

学案2:2.2 第2课时 基本不等式的应用

学案2:2.2 第2课时 基本不等式的应用

2.2 第2课时 基本不等式的应用不等式与最大(小)值阅读教材,完成下列问题. x ,y 都为正数时,下面的命题成立(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最 值 ; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最 值 . 思考:(1) 函数y =x +1x 的最小值是2吗?(2)设a >0,2a +3a取得最小值时,a 的值是什么?初试身手1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =log 3x +log x 812.当x >0时,x +9x 的最小值为________.3.当x ∈(0,1)时,x (1-x )的最大值为________.4.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.【例1】 (1)已知x >2,则y =x +4x -2的最小值为________.(2)若0<x <12,则函数y =12x (1-2x )的最大值是________.规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1.(1)已知t>0,则函数y=t2-4t+1t的最小值为________.(2)设0<x≤2,则函数ƒ(x)=x(8-2x)的最大值为________.类型2利用基本不等式解实际应用题【例2】如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(如图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?规律方法在应用基本不等式解决实际问题时,要注意以下四点:(1)先理解题意,设变量时一般把要求最值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)在定义域内,求出函数的最值;(4)写出正确答案.跟踪训练2.(1)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则当每台机器运转________年时,年平均利润最大,最大值是________万元.(2)用一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?[1.(1)当x >0时,x 2+1x 有最大值,还是最小值?(2)当x >0时,xx 2+1有最大值,还是最小值?2.(1)设a >0,b >0,(a +b )⎝⎛⎭⎫1a +2b 的最小值是什么?(2)设a >0,b >0,且a +b =1,1a +2b 的最小值是什么?【例3】 (1)若对任意的x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.(2)设a >0,b >0,若3是3a 与3b 的等比中项,求1a +1b 的最小值.母体探究1.(变条件)(1)在例3(2)中,若3是3a 与3b 的等比中项,求1a +1b的最小值.(2)在例3(2)中,把条件换为“2a 和1b 的等差中项是12”,求2a +b 的最小值.2.(变条件)把例3(2)的条件换为“a >0,b >0,且a +b +ab =1”,求a +b 的最小值.规律方法最值法解答恒成立问题将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .课堂小结1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义. 当堂达标1.若x >0,y >0且2(x +y )=36,则xy 的最大值为( )A .9B .18C .36D .812.一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.3.求函数f (x )=x x +1的最大值.参考答案新知初探不等式与最大(小)值 阅读教材,完成下列问题.(1)大 s 24;(2)小思考:(1) [提示] 不是,只有当x >0时,才有x +1x ≥2,当x <0时,没有最小值.(2) [提示] 2a +3a≥22a ×3a =26,当且仅当2a =3a ,即a =62时,取得最小值.初试身手1.【答案】C【解析】A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C . 2.【答案】6【解析】因为x >0,所以x +9x ≥2x ×9x =6,当且仅当x =9x,即x =3时等号成立. 3.【答案】14【解析】因为x ∈(0,1),所以1-x >0, 故x (1-x )≤⎝⎛⎭⎫x +1-x 22=14,当x =1-x , 即x =12时等号成立.4.【答案】8【解析】由已知点A 在直线mx +ny +1=0上所以2m +n =1,所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 【例1】【答案】(1)6 (2)116【解析】(1)因为x >2,所以x -2>0,所以y =x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.所以y =x +4x -2的最小值为6.(2)因为0<x <12,所以1-2x >0,所以y =12x ·(1-2x )=14×2x ×(1-2x )≤14⎝⎛⎭⎫2x +1-2x 22=14×14=116,当且仅当2x =1-2x ,即当x =14时,y max =116. 规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1.【答案】(1)-2 (2)22 【解析】(1)依题意得y =t +1t -4≥2t ·1t -4=-2,等号成立时t =1,即函数y =t 2-4t +1t(t >0)的最小值是-2.(2)因为0<x ≤2,所以0<2x ≤4,8-2x ≥4>0,故ƒ(x )=x (8-2x ) =12·2x ·(8-2x ) =12·2x ·(8-2x )≤12×82=22, 当且仅当2x =8-2x ,即x =2时取等号, 所以当x =2时,ƒ(x )=x (8-2x )的最大值为2 2.【例-20) cm ,⎝⎛⎭⎫y -252cm ,其中x >20,y >25,则两栏面积之和为2(x -20)×y -252=18 000,由此得y=18 000x -20+25, 所以广告牌的面积S =xy = x ⎝⎛⎭⎫18 000x -20+25=18 000x x -20+25x , 整理得S =360 000x -20+25(x -20)+18 500.因为x -20>0,所以S ≥2360 000x -20×25(x -20)+18 500=24 500. 当且仅当360 000x -20=25(x -20)时等号成立,此时有(x -20)2=14 400,解得x =140, 代入y =18 000x -20+25,得y =175.即当x =140,y =175时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小. 法二:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000,其中a >0,b >0. 易知广告牌的高为(a +20) cm ,宽为(2b +25)cm.广告牌的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18 500+25a +40b ≥18 500+225a ·40b =24 500,当且仅当25a =40b 时等号成立,此时b =58a ,代入ab =9 000得a =120,b =75.即当a =120,b =75时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小.规律方法在应用基本不等式解决实际问题时,要注意以下四点: (1)先理解题意,设变量时一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最值问题; (3)在定义域内,求出函数的最值; (4)写出正确答案. 跟踪训练2.【答案】(1)5 8【解析】每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,且x >0,故yx ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.(2)[解] 设矩形菜园的长为x m 、宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2.由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y ,即x =y =9时,等号成立.因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2.[1.[提示] (1)当x >0时,x 2+1x =x +1x ≥2x ×1x=2, 当x =1时等号成立,即x 2+1x有最小值2.(2)当x >0时,x x 2+1=1x +1x ,因为x +1x ≥2,所以x x 2+1≤12,故x x 2+1有最大值12.2.[提示] (1)(a +b )⎝⎛⎭⎫1a +2b =3+b a +2ab ≥3+22,当b =2a 时等号成立; (2)由于a +b =1,所以1a +2b=(a +b )⎝⎛⎭⎫1a +2b ≥22+3, 当b =2a ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【例3】[解] (1)设f (x )=xx 2+3x +1=1x +1x+3,∵x >0,∴x +1x ≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.(2)由题意得,3a ·3b =(3)2,即a +b =1,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.母体探究1.[解] (1)由3是3a 与3b 的等比中项,得3a +b =32,即a +b =2,故12(a +b )=1,所以1a +1b =12(a +b )⎝⎛⎭⎫1a +1b =12⎝⎛⎭⎫2+b a +a b ≥12⎝⎛⎭⎫2+2b a ×a b =2, 当a =b =1时等号成立.(2)由于2a 和1b 的等差中项是12,则2a +1b=1,故2a +b =(2a +b )⎝⎛⎭⎫2a +1b =5+2b a +2ab ≥5+22b a ×2ab=9. 当a =b =3时等号成立.2.[解] a +b +ab =1,得b =1-aa +1>0,故0<a <1,故a +b =a +1-a a +1=a +-1-a +2a +1=a +2a +1-1=a +1+2a +1-2≥2(a +1)×2a +1-2=22-2,当a +1=2a +1,即a =2-1时等号成立.当堂达标 1.【答案】A【解析】由2(x +y )=36得x +y =18.所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立. 2.【答案】8【解析】设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝⎛⎭⎫v 202v=400v +16v400≥2400v ×16v 400=8(小时),当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时. 3.[解] f (x )=xx +1=1x +1x ,因为x +1x≥2x ×1x =2,当x =1时等号成立,所以f (x )≤12.。

§2 2.2 最大值、最小值问题

§2 2.2  最大值、最小值问题
2.2 最大值、最小值问题
一、预习教材·问题导入 1.问题:如何确定你班哪位同学最高? 提示:方法很多,可首先确定每个学习小组中最高的同学, 再比较每组的最高的同学,便可确定班中最高的同学.
2.如图为 y=f(x),x∈[a,b]的图像.
问题 1:试说明 y=f(x)的极值. 提示:f(x1),f(x3)为函数的极大值,f(x2),f(x4)为函数的极 小值. 问题 2:你能说出 y=f(x),x∈[a,b]的最值吗? 提示:函数的最小值是 f(a),f(x2),f(x4)中最小的,函数的 最大值是 f(b),f(x1),f(x3)中最大的. 问题 3:根据问题 2 回答函数 y=f(x),x∈[a,b]的最值可能 在哪些点取得. 提示:在极值点或端点中.
令 f′(x)=0,解得 x=59或 x=3(舍去). 当 0<x<59时,f′(x)>0,当59<x<1 时,f′(x)<0, 所以 x=59时,f(x)有最大值 f59=20 000. 所以当 x=59时,本年度的年利润最大,最大年利润为 20 000 万元.
[类题通法] 利用导数解决优化问题的一般步骤 (1)抽象出实际问题的数学模型,列出函数关系式 y=f(x). (2)求函数 f(x)的导数 f′(x),并解方程 f′(x)=0,即求函数 可能的极值点. (3)比较函数 f(x)在区间端点的函数值和可能极值点的函数 值的大小,得出函数 f(x)的最大值或最小值. (4)根据实际问题的意义给出答案.
二、归纳总结·核心必记 1.最值点 (1)最大值点:函数 y=f(x)在区间[a,b]上的最大值点 x0 指 的是:函数在这个区间上所有点的函数值都 不超过 f(x0). (2)最小值点:函数 y=f(x)在区间[a,b]上的最小值点 x0 指 的是:函数在这个区间上所有点的函数值都 不小于 f(x0). 2.最值 函数的 最大值 与 最小值 统称为最值.

第四章 §2 2.2 最大值、最小值问题

第四章  §2  2.2  最大值、最小值问题

面积、体积(容积)的最值问题
[例 3] 某地政府为科技兴市,欲将如图所示的 一块不规则的非农业用地规划建成一个矩形的高科 技工业园.已知 AB⊥BC,OA∥BC,且|AB|=|BC| =4 km,|AO|=2 km,曲线段 OC 是以点 O 为顶点 且开口向上的抛物线的一段.如果要使矩形的两边分别落在 AB,BC 上,且一个顶点落在曲线段 OC 上,应如何规划才能使矩形工业园 的用地面积最大?并求出最大的用地面积(精确到 0.1 km2).
(2)当 x∈[-1,2]时,f(x)<m 恒成立,只需使 f(x)在[-1,2]上的 最大值小于 m 即可.
由(1)知 f(x)极大值=f(-23)=5+2227, f(x)极小值=f(1)=72. 又 f(-1)=121,f(2)7. 所以 m>7,即 m 的取值范围为(7,+∞).
求函数的最值 [例 1] 求下列函数的最值. (1)f(x)=4x3+3x2-36x+5,x∈[-2,+∞); (2)f(x)=12x+sin x,x∈[0,2π] [思路点拨] 先求函数在给定区间的极值,然后再与端点 值比较,即可确定函数的最值.
[精解详析] (1)f′(x)=12x2+6x-36,
元,则总造价的最小值为
()
A.400 元
B.1 200 元
C.1 600 元
D.2 800 元
解析:设总造价为 y 元,池底的一边长 x 米,池底的面积为 8÷2 =4(平方米),池底的另一边长为4x米,池壁的面积为 4x+4x平 方米,故有 y=4×300+4x+4x×100=400x+4x+1 200(x> 0).y′=4001-x42, 令 y′=0 得 x=2,由 y′ >0 得 x >2,由 y′<0 得 0<x<2, 即 y 在(0,2)上是减少的,在(2,+∞)上是增加的,所以当 x=2 时,y 取得最小值,且 ymin=2 800. 答案:D

第3章 2.2 第2课时 最大值、最小值的实际应用

第3章  2.2 第2课时 最大值、最小值的实际应用

第2课时 最大值、最小值的实际应用学习目标 1.了解导数在解决实际问题中的作用.2.能利用导数解决一些简单的恒成立问题.3.掌握利用导数解决简单的实际生活中的优化问题的方法.知识点 生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. (2)利用导数解决优化问题的实质是求函数最值. (3)解决优化问题的基本思路上述解决优化问题的过程是一个典型的数学建模过程.类型一 与最值有关的恒成立问题例1 已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求实数c 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,因为⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f ′⎝⎛⎭⎫-23=43-43a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =-2,所以f ′(x )=3x 2-x -2=(3x +2)(x -1), 令f ′(x )=0,得x =-23或x =1,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调增区间为⎝⎛⎭⎫-∞,-23,(1,+∞);单调减区间为⎝⎛⎭⎫-23,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值, 因为f (2)=2+c ,所以f (2)=2+c 为最大值. 要使f (x )<c 2(x ∈[-1,2])恒成立, 只需c 2>f (2)=2+c , 解得c <-1或c >2.故实数c 的取值范围为(-∞,-1)∪(2,+∞). 引申探究若本例中条件不变,“把(2)中对x ∈[-1,2],不等式f (x )<c 2恒成立”改为“若存在x ∈[-1,2],不等式f (x )<c 2成立”,结果如何?解 由例题解析知当x =1时,f (1)=c -32为极小值,又f (-1)=12+c >c -32,所以f (1)=c -32为最小值.因为存在x ∈[-1,2],不等式f (x )<c 2成立, 所以只需c 2>f (1)=c -32,即2c 2-2c +3>0,解得c ∈R .故实数c 的取值范围为R .反思与感悟 分离参数求解不等式恒成立问题的步骤跟踪训练1 已知函数f (x )=2x ln x ,g (x )=-x 2+ax -3对一切x ∈(0,+∞),f (x )≥g (x )恒成立,则a 的取值范围是________. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 答案 (-∞,4]解析 由2x ln x ≥-x 2+ax -3, 得a ≤2ln x +x +3x.设h (x )=2ln x +3x +x (x >0).则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的. ∴h (x )min =h (1)=4. ∴a ≤4.类型二 实际生活中的最值问题 命题角度1 几何中的最值问题例2 请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.点E ,F 在边AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.跟踪训练2 已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案6πS 3π解析 设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh . ∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS 3π. 命题角度2 利润最大(或费用最少)问题例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎨⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9(或x =-9舍),当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得极大值也为最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38.综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)由题设知,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为 f (x )=20C (x )+C 1(x )=20×403x +5+6x=8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400(3x +5)2.令f ′(x )=0,即 2 400(3x +5)2=6,解得x =5,x =-253(舍去). 当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题题点 利用导数求解生活中的其他最值问题 答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.当x ∈(0,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,+∞) B .[-6,-5] C .[-6,+∞)D .[-4,-3]考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 C解析 ∵x >0,∴a ≥1x -4x 2-3x 3恒成立.令1x =t ,∵x ∈(0,1],∴t ≥1, ∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,则g ′(t )=1-8t -9t 2, 易知g ′(t )图像的对称轴是t =-818=-49,∴函数g ′(t )在[1,+∞)上是减少的.又g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立, ∴g (t )在[1,+∞)上是减少的, ∴g (t )max =g (1)=-6,∴a ≥-6.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700 =-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍).所以当P =30时,f (P )取得极大值也为最大值. 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是____元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x +10×1×⎝⎛⎭⎫2x +2×4x , 即y =20x +80x +80,y ′=20-80x 2,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.已知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,求a 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 解 由2x ln x ≥-x 2+ax -3(x >0), 得a ≤2ln x +x +3x.设h (x )=2ln x +3x +x (x >0).则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的. ∴h (x )min =h (1)=4.∴a ≤h (x )min =4.1.恒成立问题可转化为函数最值问题. 2.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值.一、选择题1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cmB.2033 cmC.1633cmD.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝⎛⎭⎫0,2033时,V ′>0,当h ∈⎝⎛⎭⎫2033,20时,V ′<0,故当h =2033时,体积最大.2.某工厂生产的机器销售收入y 1(万元)与产量x (千台)的函数关系为y 1=17x 2,生产总成本y 2(万元)与产量x (千台)的函数关系为y 2=2x 3-x 2(x >0),为使利润最大,应生产( ) A .9千台 B .8千台 C .7千台 D .6千台 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题答案 D解析 设利润为y ,则y =17x 2-2x 3+x 2=-2x 3+18x 2(x >0),∴y ′=-6x 2+36x =-6x (x -6),易知递增区间为(0,6),递减区间为(6,+∞),∴当x =6时,利润最大.3.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ) A .m ≥32B .m >32C .m ≤32D .m <32考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围答案 A解析 由f ′(x )=2x 3-6x 2=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32. 4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <12考点 利用导数求函数中参数的取值范围题点 最值存在性问题答案 B解析 f ′(x )=3x 2-3a ,①当a ≤0时,f ′(x )≥0,这表明f (x )在(0,1)上是增加的,所以f (x )在(0,1)内无最值,显然不可能.②当a >0时,令f ′(x )=0,解得x =±a ,易知f (x )在x =a 处取得唯一的极小值,故极小值点在(0,1)内,所以0<a <1,即0<a <1.综上所述,a 的取值范围为(0,1).5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的距离的最小值为( )A .1 B. 2 C.22D. 3 考点 与最值有关的其他问题题点 与最值有关的其他问题答案 B解析 设P (x ,x 2-ln x ),则点P 到直线y =x -2的距离d =|x -x 2+ln x -2|12+12=|x 2-x -ln x +2|2. 设g (x )=x 2-x -ln x +2(x >0),则g ′(x )=2x 2-x -1x =(2x +1)(x -1)x. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )在(0,1)上是减少的,在(1,+∞)上是增加的,则当x =1时,g (x )取得极小值也是最小值,且g (1)=2,所以d min = 2.6.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12 C.52 D.22考点 与最值有关的其他问题题点 与最值有关的其他问题答案 D解析 令F (x )=f (x )-g (x )=x 2-ln x (x >0),则F ′(x )=2x -1x. 令F ′(x )=0,得x =22(负值舍去), 易知F (x )在x =22处取得最小值,即当|MN |取最小值时,t 的值为22. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( )A .2∶1B .1∶2C .1∶4D .4∶1考点 利用导数求解生活中的最值问题题点 用料、费用最少问题答案 A解析 设其体积为V ,高与底面半径分别为h ,r ,则V =πr 2h ,即h =V πr 2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πr V πr 2=2πr 2+2V r. 令S ′=4πr -2V r 2=0,得r =3V 2π, 当r =3V 2π时,h =V π⎝ ⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小.二、填空题8.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少.考点 利用导数求解生活中的最值问题题点 用料、费用最少问题答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎫1128 000x 3-380x +8·100x= 1 1 280x 2+800x -154(0<x ≤120). 则y ′=x 640-800x 2=x 3-803640x 2(0<x ≤120). 令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数是减少的;当x ∈(80,120]时,y ′>0,该函数是增加的,所以当x =80时,y 取得最小值.9.已知函数f (x )=x 3-3x 2+2,x 1,x 2是区间[-1,1]上任意两个值,M ≥|f (x 1)-f (x 2)|恒成立,则M 的最小值是________.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立中参数的取值范围答案 4解析 f ′(x )=3x 2-6x =3x (x -2),当-1≤x <0时,f ′(x )>0,f (x )是增加的,当0<x ≤1时,f ′(x )<0,f (x )是减少的,所以当x =0时,f (x )取得极大值,也为最大值,f (0)=2,又f (-1)=-2,f (1)=0,所以f (x )的最小值为-2,对[-1,1]上任意x 1,x 2,|f (x 1)-f (x 2)|≤f (x )max -f (x )min =4,所以M ≥|f (x 1)-f (x 2)|恒成立,等价于M ≥4,即M 的最小值为4.10.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈(0,1],都有f (x )≥0成立,则实数a 的值为________.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围答案 [4,+∞)解析 当x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3, 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝⎛⎦⎤0,12上是增加的,在区间⎣⎡⎦⎤12,1上是减少的, 因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为________件时总利润最大.考点 利用导数求解生活中的最值问题题点 利用导数求解最大利润问题答案 25解析 由题意知502=k 100,解得k =25×104. ∴产品的单价P =25×104x =500x. ∴总利润L (x )=x 500x-1 200-275x 3 =500x -1 200-275x 3, L ′(x )=250x -12-225x 2, 令L ′(x )=0,得x =25,∴当x =25时,总利润最大.三、解答题12.已知函数f (x )=ax 4ln x +bx 4-c (x >0)在x =1处取得极值-3-c ,其中a ,b ,c 为常数.(1)试确定a ,b 的值;(2)讨论函数f (x )的单调区间;(3)若对任意x >0,不等式f (x )≥-2c 2恒成立,求实数c 的取值范围.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围解 (1)由f (x )在x =1处取得极值-3-c ,知f (1)=b -c =-3-c ,得b =-3.又f ′(x )=4ax 3ln x +ax 4·1x+4bx 3 =x 3(4a ln x +a +4b ),由f ′(1)=0,得a +4b =0,所以a =-4b =12.(2)由(1)知f ′(x )=48x 3ln x (x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0,f (x )为减函数;当x >1时,f ′(x )>0,f (x )为增函数.因此,f (x )的单调减区间为(0,1),单调增区间为(1,+∞).(3)由(2)知f (1)=-3-c 既是极小值,也是(0,+∞)内的最小值,要使f (x )≥-2c 2(x >0)恒成立,只需-3-c ≥-2c 2,即2c 2-c -3≥0.从而(2c -3)(c +1)≥0,解得c ≥32或c ≤-1. 故实数c 的取值范围为(-∞,-1]∪⎣⎡⎭⎫32,+∞. 13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用.考点 利用导数求解生活中的最值问题题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米, 所以4πr 33+πr 2l =64π3,解得l =643r 2-43r , 所以圆柱的侧面积为2πrl =2πr ⎝⎛⎭⎫643r 2-43r =128π3r -8πr 23,两端两个半球的表面积之和为4πr 2,所以y =⎝⎛⎭⎫128π3r -8πr 23×3+4πr 2×4=128πr+8πr 2. 又l =643r 2-43r >0,即r <432, 所以定义域为(0,432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r 2, 令y ′>0得2<r <432;令y ′<0得0<r <2,所以当r =2米时,该容器的建造费用最小为96π千元,此时l =83米. 四、探究与拓展14.函数f (x )=x 3-12x +3,g (x )=3x -m ,若对任意x 1∈[-1,5],存在x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的最小值是________.考点 与最值有关的其他问题题点 与最值有关的其他问题答案 14解析 f ′(x )=3x 2-12=3(x -2)(x +2),易知f (x )在[-1,2]上是减少的,在[2,5]上是增加的,所以f (x )min =f (2)=8-24+3=-13,g (x )=3x -m 在[0,2]上是增加的,所以g (x )min =g (0)=1-m ,由题意知-13≥1-m ,即m ≥14.所以m 的最小值为14.15.设f (x )=ln x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值.(2)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立. 考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围解 (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x ,g (x )=ln x +1x(x >0), 所以g ′(x )=x -1x 2. 令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的递减区间;当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的递增区间.因此,x =1是g (x )在(0,+∞)上的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (a )-g (x )<1a对任意x >0成立, 即ln a <g (x )对任意x >0成立. 由(1)知,g (x )的最小值为1, 所以ln a <1,解得0<a <e. 即a 的取值范围是(0,e).。

高中数学第四章导数应用22最大值最小值问题课件北师大版选修11

高中数学第四章导数应用22最大值最小值问题课件北师大版选修11
二、最值的概念 函数的__最__大__值__和__最__小__值__统称最值.
三、最值点的可能位置
函数的最值可能在__极__值__点__取得,也可能在_区__间__的__端__点___取得.
四、求函数最大(小)值的步骤 设 y=f(x)是定义在[a,b]上的函数,y=f(x)在(a,b)内可导,求函数 y=f(x)在[a,b]上的 最大(小)值,可分两步进行:
令f′(x)=0,即b2x2-a2(1-x)2=0,
解得x=a+a b.
当x变化时,f′(x),f(x)的变化情况如下表:
x
0,a+a b
f′(x) -
a a+b
0
a+a b,1 +
f(x)
极小值
从上表看出,函数在x=
a a+b
处取得极小值,且f
a a+b
=(a+b)2.所以函数f(x)
在区间(0,1)内的极小值也就是最小值,即函数f(x)=
1.求下列各函数的最值. (1)f(x)=x3-3x2+6x-2,x∈[-1,1]; (2)f(x)=x24+x 1,x∈[-2,2]; (3)f(x)=1-x x+ln x,x∈12,2.
解析:(1)f′(x)=3x2-6x+6=3(x2-2x+2)=3(x-1)2+3,x∈[-1,1]. ∵f′(x)在[-1,1]上恒大于0, ∴f(x)在[-1,1]上为增函数. ∴当x=-1时,f(x)取得最小值-12, 当x=1时,f(x)取得最大值2. ∴f(x)的最小值为-12,最大值为2.
2.求下列函数的最大值与最小值: (1)f(x)=2sin x-x(x∈[-π2,π2]); (2)f(x)=x3-3x+3(x∈[0,t]).
解析:(1)∵f′(x)=2cos x-1,

高中数学4.2.2最大值、最小值值问题二 教案 (北师大选修1-1)

高中数学4.2.2最大值、最小值值问题二 教案 (北师大选修1-1)

4。

2。

2 最大值、最小值值问题教学过程:一、创设情境,铺垫导入1.问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使材料最省、时间最少、效率最高等问题,这往往可以归结为求函数的最大值与最小值.如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm且不大于20cm.设长方体的高为xcm,体积为V cm3.问x为多大时,V最大?并求这个最大值.解:由长方体的高为xcm,可知其底面两边长分别是(80-2x)cm,(60-2x)cm,(10≤x≤20).所以体积V与高x有以下函数关系V=(80-2x)(60-2x)x=4(40-x)(30-x)x.2.引出课题:分析函数关系可以看以实例引发思考,有利于学生感受到数学来源于现实生活,培养学生用数学的意识,同时营造出宽松、和谐、积极主动的课堂氛围,在新旧知识的矛盾冲突中,激发起学生的探究热情.通过运用几何画板演示,增强直观性,帮助学生迅速准确地发现相关的数量关系.提出问题后,引导学生发现,所列函数的最大值是以前学习过三、指导应用,鼓励创新例2如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm不大于20cm,设长方体的高为xcm,体积为V cm3.问x为多大时,V最大?并求这个最大值.分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最小,可用本节课学习的导数法加以解决.“问起于疑,疑源于思",思考题的研究,旨在培养学生的探究意识及创新精神,提高学生分析和解决问题的能力.例题2则让学生认识到现实生活中蕴含着大量的数学信息.教学环节教学内容设计意图本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的具体体现.1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能力性.3.在教学手法上,制作CAI课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.4.关于教学法,为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中.。

2.2 最大值、最小值问题

2.2  最大值、最小值问题

w=-x3+24x2-45x-10
(2)求w=w(x)的导函数
(x≥0)
w(x) 3x 2 48x 45. 解方程w(x) 0, 得x1 1, x 2 15.
根据x1,x2列表分析导函数的符号得到函数的单 调性与极值点.
x w′(x) w(x)
(0,1) -
1 0 极小值
回顾本节课你有什么收获?
1.函数f(x)在[a,b]上的最值的步骤: (1)求f(x)在(a,b)内的极值. (2)将f(x)的各极值与f(a)、f(b)比较,其中最 大的一个是最大值,最小的一个是最小值.
2.会利用导数解决生活中的最值问题.
每一个成功者都有一个开始。勇
于开始,才能找到成功。
(2)区间(0,24)上任意点的函数值都不超过
f(8),因此x=8是函数的最大值点.此时
V=f(8)=8 192(cm3)
即当截去的小正方形的边长为8cm时,得到的 容器容积最大,最大容积为8 192 cm3.
例6
产量与利润
对于企业来说,生产成本、销售收
入和利润之间的关系是个重要的问题.对一家药品生产 企业的研究表明,该企业的生产成本y(单位:万元)和 生产收入z(单位:万元)都是产量x(单位:t)的函数,
a x1 o
X2 X3
b
x
探究点2
求函数f(x)在区间[a,b]的最值
问题1: f(x)=x+1在以下区间上 的最小值与最大值: ①x∈ [-2,0] f(-2),f(0) ②x∈ [2,4]
f(2),f(4)
③x∈ [-2,4] f(-2),f(4)
问题2
f(x)=x2-2x-3在以下区间上的
(1)随着x的变化,容积V是如何变化的?

2.2最大值、最小值问题

2.2最大值、最小值问题

第二问转化为:
a

(2 x) ex (x 1)2
有两个解
参量分离法
我们处理函数问题,使用参数分离法后。 问题往往转化为是画出一个新函数的 图像。对于稍复杂的函数图像问题, 我们可以考虑从“导数”角度,尝试 画出函数的大致图像。
利用导数及相关函数性质作出
f (x) 1 的图像 x
尝试作出下列函数图像
阜阳三中 数学组 李晶晶
引例1(周考试题16)
已知函数 y ax (a 1, a R) 的图像与函数 y x2 的图像有三个交点,则实数 a 的取值范围为_____
问题转化为: ln a ln x 有两个交点 2x
进而,问题转化为:
函数 y ln a 图像与函数 y ln x 图像有两个交点
2
x
y ln x图像如何画??? x
引例2
转化为:
k 2(x 1) 在区间 (0,1) (1, ) 无解 x ln x
引例3
(2016 全国卷 1)已知函数 f (x) (x 2)ex a(x 1)2
(I)讨论 f (x) 的单调性;
(II)若 f (x) 有两个零点,求 a 的取值范围.
1. f (x) x ln x
2. f (x) ln x x
3. f (x) x ln x
方法总结提升
作图的关键
(1)定义域 (2)函数性质 (3)特殊点(特殊线、端点值)
特别注意: 1、导数与函数的单调性的关系 2、极限思想 3、洛必达法则的正确使用
回顾引例2、引例3:
k 2(x 1) 在区间 (0,1) (1, ) 无解 x ln x
a

(2 x) ex (x 1)2

2.2函数的最大值、最小值

2.2函数的最大值、最小值

在边长为 60cm 的正方形铁皮的四角切去相等的正方形,再把它的 边沿虚线折起,做成一个无盖的方底箱子,箱底边长 x (单位:cm) 为多少时,箱子容积 V(单位: cm3 )最大?最大容积是多少?
解:由长方体的宽为 xcm, 可知其高为(
60 −x 2
)cm (0≤x ≤60).
所以体积 V 与宽 x 有以下函数关系 V=x (
1 2 2 60 − x 2

=− x 3+30x 2
y
观察右列函数在闭区间[a,b]图形,找出 函数的最值的规律.
a x1 O x2 x3 b x
x (1)图 1 中:函数在 x 3 处取得最大值, x 在 x 2 处取得最小值;
(2)图 2 中:函数在 x b 处取得最大值, 在 x a 处取得最小值; (3)图 3 中:函数在 x a 处取得最大值, 在 x x1 处取得最小值.
a
图1
y
O y
连续函数在[a,b]上必有最值; 并且在极值点或端点处取到.
x1 a O x2
x3 b x
图3
a, b
f ( x)
注意: 1.在定义域内, 最值唯一;极值不唯一;
2.最大值一定比最小值大.
(1)函数在一个闭区间上的极大(小)值可能有多个,而最 大(小)值只有唯一的一个;
§2.2 最大值、最小值问题
授课班级:高二11班 授课教师:白治军 2016.12.27
函数的极值
y
极小值点 a
o
b 极大值点
x
y f ( x)
定义域—求导—令y'=0—列表—求极值
最值的概念 如果在函数定义域I内存在x0,使 得对任意的x∈I,总有f(x) ≤f(x0), 则称f(x0)为函数f(x)在定义域上的 最大值.

(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)

(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)

第2课时函数的最大值、最小值1.函数的最值(1)定义.前提函数f(x)的定义域为D,且x0∈D,对任意x∈D 条件都有f(x)≤f(x0)都有f(x)≥f(x0)结论最大值为f(x0),x0为最大值点最小值为f(x0),x0为最小值点最大值和最小值统称为最值,最大值点和最小值点统称为最值点①配方法:主要适用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围;②换元法:用换元法时一定要注意新变元的取值范围;③数形结合法:对于图像较容易画出的函数的最值问题,可借助图像直观求出;④利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.最值点是点吗?提示:不是,是实数值,是函数值取得最值时的自变量x 的值.2.直线的斜率(1)直线斜率的定义.平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),①当x 1≠x 2时,称y 2-y 1x 2-x 1 为直线的斜率,记作Δy Δx ; ②当x 1=x 2时,称直线的斜率不存在.(2)直线的斜率与函数单调性的关系①函数递增的充要条件是其图像上任意两点连线的斜率都大于0. ②函数递减的充要条件是其图像上任意两点连线的斜率都小于0.3.函数的平均变化率(1)平均变化率的定义:若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I ,且x 1≠x 2,记y 1=f (x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1 , 称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.(2)函数的平均变化率与函数的单调性y =f (x )在I 上是增函数⇔Δy Δx >0在I 上恒成立y =f (x )在I 上是减函数⇔Δy Δx <0在I 上恒成立函数图像上任意两点连线的斜率大于0时,函数图像从左向右的变化趋势是什么?提示:函数图像从左向右逐渐上升.1.辨析记忆(对的打“√”,错的打“×”).(1)任何函数都有最大值、最小值.( × )提示:如函数y =1x 既没有最大值,也没有最小值.(2)一个函数的最大值是唯一的,最值点也是唯一的.( × )提示:函数的最大值是唯一的,但最值点不唯一,可以有多个最值点.(3)直线不一定有斜率,过函数图像上任意两点的直线也不一定有斜率.( × )提示:过函数图像上任意两点的直线一定有斜率,因为根据函数的定义,一定有x 1≠x 2.2.过函数图像上两点A (-1,3),B (2,3)的斜率Δy Δx =________.【解析】Δy Δx =3-32+1=0. 答案:03.已知函数f (x )=x -1x +1,x ∈[1,3],则函数f (x )的最大值为________,最小值为________.【解析】f (x )=x -1x +1 =1-2x +1,x ∈[1,3], 因为f (x )在[1,3]上为增函数,所以f(x)max=f(3)=1=f(1)=0.2,f(x)min答案:120类型一利用函数的图像求最值(数学运算、直观想象)1.(2021·太原高一检测)如图是函数y=f(x),x∈[-4,3]的图像,则下列说法正确的是()A.f(x)在[-4,-1]上单调递减,在[-1,3]上单调递增B.f(x)在区间(-1,3)上的最大值为3,最小值为-2C.f(x)在[-4,1]上有最小值-2,有最大值3D.当直线y=t与y=f(x)的图像有三个交点时-1<t<2【解析】选C.A选项,由函数图像可得,f(x)在[-4,-1]上单调递减,在[-1,1]上单调递增,在[1,3]上单调递减,故A错;B选项,由图像可得,f(x)在区间(-1,3)上的最大值为f(1)=3,无最小值,故B错;C选项,由图像可得,f(x)在[-4,1]上有最小值f(-1)=-2,有最大值f(1)=3,故C正确;D选项,由图像可得,为使直线y=t与y=f(x)的图像有三个交点,只需-1≤t≤2,故D错.2.已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.则f (x )的最小值、最大值点分别为________,________.【解析】作出函数f (x )的图像(如图).由图像可知,当x =±1时,f (x )取最大值,最小值为0,故f (x )的最小值为0,最大值点为±1.答案:0 ±13.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5], (1)如图所示,在给定的直角坐标系内画出f (x )的图像.(2)由图像指出函数f (x )的最值点,求出最值.【解析】(1)由题意,当x ∈[-1,2]时,f (x )=-x 2+3,为二次函数的一部分;当x ∈(2,5]时,f (x )=x -3,为一次函数的一部分;所以,函数f (x )的图像如图所示:(2)由图像可知,最大值点为0,最大值为3;最小值点为2,最小值为-1.图像法求最值、最值点的步骤【补偿训练】 已知函数f(x)=⎩⎨⎧x 2-x (0≤x≤2),2x -1(x >2),求函数f(x)的最大值、最小值. 【解析】作出f(x)的图像如图:由图像可知,当x =2时,f(x)取最大值为2;当x =12 时,f(x)取最小值为-14 .所以f(x)的最大值为2,最小值为-14 .【拓展延伸】求二次函数最值的常见类型及解法求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,当开口方向或对称轴位置不确定时,还需要进行分类讨论.求二次函数f (x )=ax 2+bx +c (a >0)在区间[m ,n ]上的最值一般分为以下几种情况:(1)若对称轴x =-b 2a 在区间[m ,n ]内,则最小值为f ⎝ ⎛⎭⎪⎫-b 2a ,最大值为f (m ),f (n )中较大者(或区间端点m ,n 中与直线x =-b 2a 距离较远的一个对应的函数值为最大值).(2)若对称轴x =-b 2a <m ,则f (x )在区间[m ,n ]上是增函数,最大值为f (n ),最小值为f (m ).(3)若对称轴x =-b 2a >n ,则f (x )在区间[m ,n ]上是减函数,最大值为f (m ),最小值为f (n ).【拓展训练】1.定轴定区间上的最值问题【例1】已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值.(1)R .(2)[0,3].(3)[-1,1].【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图像法求解.【解析】f (x )=3x 2-12x +5=3(x -2)2-7.(1)当x ∈R 时,f (x )=3(x -2)2-7≥-7,当x =2时,等号成立.故函数f (x )的最小值为-7,无最大值.(2) 函数f (x )=3(x -2)2-7的图像如图所示,由图可知,在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5;在x =2时取得最小值,最小值为-7.(3)由图可知,函数f (x )在[-1,1]上是减函数,在x =-1时取得最大值,最大值为20;在x =1时取得最小值,最小值为-4.(1)函数y =ax 2+bx +c (a >0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是增函数,当x =-b 2a 时,函数取得最小值. (2)函数y =ax 2+bx +c (a <0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是减函数,当x =-b 2a 时,函数取得最大值. 2.动轴定区间上的最值问题【例2】已知函数f (x )=x 2-2ax +2,x ∈[-1,1],求函数f (x )的最小值.【思路导引】二次函数开口方向确定,对称轴不确定,需根据对称轴的不同情况分类讨论.可画出二次函数相关部分的简图,数形结合解决问题.【解析】f(x)=x2-2ax+2=(x-a)2+2-a2的图像开口向上,且对称轴为直线x=a.当a≥1时,函数图像如图(1)所示,函数f(x)在区间[-1,1]上是减函数,最小值为f(1)=3-2a;当-1<a<1时,函数图像如图(2)所示,函数f(x)在区间[-1,1]上是先减后增,最小值为f(a)=2-a2;当a≤-1时,函数图像如图(3)所示,函数f(x)在区间[-1,1]上是增函数,最小值为f(-1)=3+2a.3.定轴动区间上的最值问题【例3】已知函数f(x)=x2-2x+2,x∈[t,t+1],t∈R的最小值为g(t),试写出g(t)的函数表达式.【思路导引】二次函数的解析式是确定的,但定义域是变化的,需依据t的大小情况画出对应的简图(二次函数的一段),从而求解.【解析】f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,对称轴为x=1.当t +1<1,即t <0时,函数图像如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图像如图(2)所示,最小值为g (t )=f (1)=1;当t >1时,函数图像如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为g (t )=f (t )=t 2-2t +2.综上可得g (t )=⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.本题中给出的区间是变化的,从运动的观点来看,让区间从左向右沿x 轴正方向移动,分析移动到不同位置时对最值有什么影响.借助图形,可使问题的解决显得直观、清晰.类型二 函数的平均变化率与单调性、最值(数学运算、逻辑推理)【典例】已知函数f (x )=2x -3x +1. (1)判断函数f (x )在区间[0,+∞)上的单调性,并用平均变化率证明其结论.【思路导引】任取x1,x2∈[0,+∞)⇒Δf(x)Δx>0⇒函数单调递增【解析】f(x)在区间[0,+∞)上是增函数.证明如下:任取x1,x2∈[0,+∞),且x1≠x2,f(x2)-f(x1)=2x2-3x2+1-2x1-3x1+1=(2x2-3)(x1+1)(x1+1)(x2+1)-(2x1-3)(x2+1)(x1+1)(x2+1)=5(x2-x1)(x1+1)(x2+1).所以Δf(x)Δx=5(x2-x1)(x1+1)(x2+1)x2-x1=5(x1+1)(x2+1).因为x1,x2∈[0,+∞),所以(x1+1)(x2+1)>0,所以Δf(x)Δx>0,所以函数f(x)在区间[0,+∞)上是增函数.(2)求函数f(x)在区间[2,9]上的最大值与最小值.【思路导引】由第(1)问可知f(x)在[2,9]上是增函数⇒f(2)是最小值,f(9)是最大值【解析】由(1)知函数f(x)在区间[2,9]上是增函数,故函数f(x)在区间[2,9]上的最大值为f(9)=2×9-39+1=32,最小值为f(2)=2×2-32+1=13.利用函数的平均变化率证明单调性的步骤(1)任取x 1,x 2∈D ,且x 1≠x 2.(2)计算f (x 2)-f (x 1),Δf (x )Δx .(3)根据x 1,x 2的范围判断Δf (x )Δx 的符号,确定函数的单调性.已知函数f (x )=x +1x -2,x ∈[3,7]. (1)判断函数f (x )的单调性,并用平均变化率加以证明.【解析】函数f(x)在区间[3,7]内单调递减,证明如下: 在[3,7]上任意取两个数x 1和x 2,且x 1≠x 2,因为f(x 1)=x 1+1x 1-2 ,f(x 2)=x 2+1x 2-2, 所以f(x 2)-f(x 1)=x 2+1x 2-2 -x 1+1x 1-2 =3(x 1-x 2)(x 1-2)(x 2-2). 所以Δf (x )Δx =3(x 1-x 2)(x 1-2)(x 2-2)x 2-x 1 =-3(x 1-2)(x 2-2), 因为x 1,x 2∈[3,7],所以x 1-2>0,x 2-2>0,所以Δf (x )Δx <0,函数f(x)为[3,7]上的减函数.(2)求函数f (x )的最大值和最小值.【解析】由单调函数的定义可得f(x)max =f(3)=4,f(x)min =f(7)=85 .类型三 常见函数的最值问题(直观想象、数学运算)不含参数的最值问题【典例】函数f(x)=-2x 2+x +1在区间[-1,1]上最小值点为________,最大值为________.【思路导引】求出一元二次函数的对称轴,利用对称轴和区间的关系解题.【解析】函数f(x)=-2x 2+x +1的对称轴为x =-12×(-2) =14 ,函数的图像开口向下,所以函数的最小值点为-1,最大值为f ⎝ ⎛⎭⎪⎫14 =-2×116 +14 +1=98 .答案:-1 98含参数的最值问题【典例】设a 为实数,函数f(x)=x 2-|x -a|+1,x ∈R .(1)当a =0时,求f (x )在区间[0,2]上的最大值和最小值.【思路导引】代入a 的值,化简后求最值.【解析】当a =0,x ∈[0,2]时函数f (x )=x 2-x +1,因为f (x )的图像开口向上,对称轴为x =12 ,所以,当x =12 时f (x )值最小,最小值为34 ,当x =2时,f (x )值最大,最大值为3.(2)当0<a <12 时,求函数f (x )的最小值.【思路导引】讨论对称轴与区间的位置关系求最值.【解析】f (x )=⎩⎪⎨⎪⎧x 2-x +a +1,x ≥a ,x 2+x -a +1,x <a .①当x ≥a 时,f (x )=x 2-x +a +1=⎝ ⎛⎭⎪⎫x -12 2 +a +34 . 因为0<a <12 ,所以12 >a ,则f (x )在[a ,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫12 =34 +a ; ②当x <a 时,函数f (x )=x 2+x -a +1=⎝ ⎛⎭⎪⎫x +12 2 -a +34 .因为0<a <12 ,所以-12 <a ,则f (x )在(-∞,a )上的最小值为f ⎝ ⎛⎭⎪⎫-12 =34 -a .综上,f (x )的最小值为34 -a .将本例的函数改为f (x )=x 2-2ax +1,试求函数在区间[0,2]上的最值.【解析】函数的对称轴为x =a ,(1)当a <0时,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=1;当0≤a ≤2时,f (x )min =f (a )=-a 2+1;当a >2时,f (x )在区间[0,2]上是减函数,所以f (x )min =f (2)=5-4a ,所以f (x )min =⎩⎪⎨⎪⎧1,a <0,-a 2+1,0≤a ≤2,5-4a ,a >2.(2)当a ≤1时,f (x )max =f (2)=5-4a ;当a >1时,f (x )max =f (0)=1,所以f (x )max =⎩⎨⎧5-4a ,a ≤1,1,a >1.一元二次函数的最值(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值点,代入函数解析式求最值.(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x =m ,区间[a ,b ]为例,①最小值:f (x )min =⎩⎪⎨⎪⎧f (a ),m ≤a ,f (m ),a ≤m ≤b ,f (b ),m ≥b .②最大值:f (x )max =⎩⎨⎧f (a ),m ≥a+b 2,f (b ),m <a +b 2. 当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.(1)已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值.【解析】因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a 2 ,当a 2 ≤12 ,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2 >12 ,即a >1时,f (x )的最大值为f (0)=1.(2)已知函数f (x )=x 2-x +1,求f (x )在[t ,t +1](t ∈R )上的最小值.【解析】f (x )=x 2-x +1,其图像的对称轴为x =12 , ①当t ≥12 时,f (x )在[t ,t +1]上是增函数,所以f (x )min =f (t )=t 2-t +1; ②当t +1≤12 ,即t ≤-12 时,f (x )在[t ,t +1]上是减函数,所以f (x )min =f (t +1)=t 2+t +1;③当t <12 <t +1,即-12 <t <12 时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12 上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1 上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12 =34 .1.(2020·西安高一检测)函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 2【解析】选A.因为a >0,所以f (x )=9-ax 2开口向下,以y 轴为对称轴,所以f (x )=9-ax 2在[0,3]上单调递减,所以x =0时,f (x )最大值为9.2.函数f (x )=x +2x -1 ( )A .有最小值12 ,无最大值B .有最大值12 ,无最小值C .有最小值12 ,有最大值2D .无最大值,也无最小值 【解析】选A.f (x )=x +2x -1 的定义域为⎣⎢⎡⎭⎪⎫12,+∞ ,在定义域内单调递增,所以f (x )有最小值f ⎝ ⎛⎭⎪⎫12 =12 ,无最大值. 3.(2021·菏泽高一检测)设f (x )=x 2-2ax +a 2,x ∈[0,2],当a =-1时,f (x )的最小值是________,若f (0)是f (x )的最小值,则a 的取值范围为________.【解析】当a =-1时,f (x )=x 2+2x +1,开口向上,对称轴为x =-1, 所以函数f (x )=x 2+2x +1在(0,2)上单调递增,所以函数在x ∈[0,2]上的最小值f (x )min =f (0)=1.若f (0)是f (x )的最小值,说明对称轴x =a ≤0,则a ≤0,所以a 的取值范围为(-∞,0].答案:1 (-∞,0]【补偿训练】二次函数f (x )=12 x 2-2x +3在[0,m ]上有最大值3,最小值1,则实数m 的取值范围是________.【解析】因为f (x )=12 x 2-2x +3在[0,2]上单调递减,在[2,+∞)上单调递增.则当0<m <2时,⎩⎨⎧f (0)=3,f (m )=1, 此时无解;当2≤m ≤4时,x =2时有最小值1,x =0时有最大值3,此时条件成立; 当m >4时,最大值必大于f (4)=3,此时条件不成立.综上可知,实数m 的取值范围是[2,4].答案:[2,4]备选类型 函数最值的应用(数学建模)【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:厘米)满足关系式:C (x )=k 3x +5 (0≤x ≤10).若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式.(2)隔热层修建多厚时,总费用f (x )最小?并求其最小值.【思路导引】【解析】(1)由题意知C(0)=8,代入C(x)的关系式,得k =40,因此C(x)=403x +5 (0≤x≤10),而每厘米厚的隔热层建造成本为6万元, 所以隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+6x =8003x +5+6x(0≤x≤10). (2)令t =3x +5,由0≤x≤10,得5≤t≤35,从而有函数h(t)=800t +2t -10(5≤t≤35).令5≤t 1<t 2≤35,则h(t 1)-h(t 2)=(t 1-t 2)⎝ ⎛⎭⎪⎫2-800t 1t 2 , 当5≤t 1<t 2≤20时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)>0; 当20≤t 1<t 2≤35时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)<0. 所以h(t)=800t +2t -10(5≤t≤35)在区间[5,20]上单调递减,在区间[20,35]上单调递增,所以当t =20时,h(t)min =70,即当t =3x +5=20,x =5时,f(x)min =70.所以当隔热层修建5厘米厚时,总费用达到最小,为70万元.(1)通过换元,使函数式变得简单,易于研究其单调性.(2)以20为分界点将[5,35]分成两个单调区间,可结合对勾函数的单调性规律来理解.(2020·枣庄高一检测)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20 000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=⎩⎨⎧400x -12x 2,0<x ≤400,80 000,x>400,x 是“玉兔”的月产量(单位:件),总收益=成本+利润. (1)试将利润y 表示为月产量x 的函数.(2)当月产量为多少件时利润最大?最大利润是多少?【解析】(1)依题设,总成本为20 000+100x ,则y =⎩⎪⎨⎪⎧-12x 2+300x -20 000,0<x≤400,且x ∈N ,60 000-100x ,x >400,且x ∈N .(2)当0<x ≤400时,y =-12 (x -300)2+25 000,则当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,则y <60 000-100×400=20 000,所以当月产量为300件时,有最大利润25 000元.1.函数f (x )的图像如图,则其最大值、最小值点分别为( )A .f ⎝ ⎛⎭⎪⎫32 ,-32B .f (0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32 ,f (0) D .f (0),32 【解析】选D.观察函数图像,f (x )最大值、最小值点分别为f (0),32 .2.已知函数f (x )=x 2+2x +a (x ∈[0,2])有最小值-2,则f (x )的最大值为( )A .4B .6C .1D .2【解析】选B.f (x )=x 2+2x +a (x ∈[0,2])为增函数,所以最小值为f (0)=a =-2,最大值f (2)=8+a =6.3.(2021·大冶高一检测)若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(2,+∞)B .⎝⎛⎭⎪⎫-∞,12 ∪[2,+∞) C .(-∞,2] D .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 【解析】选D.因为函数y =2x -1在(-∞,1)和[2,5)上都是单调递减函数,当x <1时,y <0,x =2时,y =2,x =5时,y =12 ,所以函数的值域是(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 . 4.(教材练习改编)函数y =1x -3在区间[4,5]上的最小值为________. 【解析】作出图像可知y =1x -3在区间[4,5]上是减函数(图略),所以其最小值为15-3=12 . 答案:125.定义在R 上的函数f (x )对任意两个不等实数a ,b ,总有f (a )-f (b )a -b>0成立,且f (-3)=a ,f (-1)=b ,则f (x )在[-3,-1]上的最大值是________.【解析】由f (a )-f (b )a -b>0,得f (x )在R 上是增函数, 则f (x )在[-3,-1]上的最大值是f (-1)=b .答案:b6.已知函数f (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.(1)求a ,b 的值;(2)若不等式f (x )-kx ≤0在x ∈[2,3]上恒成立,求实数k 的取值范围.【解析】(1)因为f (x )=ax 2-2ax +1+b (a >0)的图像开口向上,且对称轴为x =1,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (x )min =f (2)=4a -4a +1+b =1f (x )max =f (3)=9a -6a +1+b =4. 所以a =1,b =0; (2)由(1)得f (x )=x 2-2x +1,所以不等式f (x )-kx ≤0,即x 2-(2+k )x +1≤0在x ∈[2,3]上恒成立, 令g (x )=x 2-(2+k )x +1,g (x )的图像开口朝上, 则要使g (x )≤0在x ∈[2,3]上恒成立,所以⎩⎨⎧g (2)=4-4-2k +1≤0g (3)=9-6-3k +1≤0,解得k ≥43 , 所以实数k 的取值范围为k ≥43 .。

物理力学求最值问题的常用方法_概述及解释说明

物理力学求最值问题的常用方法_概述及解释说明

物理力学求最值问题的常用方法概述及解释说明1. 引言1.1 概述物理力学是研究物体在力的作用下运动的学科,它是自然科学中最基础、最基本的学科之一。

在物理力学的研究过程中,求最值问题经常会出现并引起广泛关注。

求最值问题一直以来都是数学和物理领域中重要的研究方向之一。

通过求解最大值或最小值,可以找到使得某个函数取得极值时的变量取值情况,从而获得系统或者过程的优化解。

1.2 文章结构本文旨在概述和解释物理力学中常见的求最值问题的方法。

文章将分为五个部分进行探讨。

首先,在引言部分,我们将介绍文章所要涉及的主题以及相关背景知识。

其次,我们将在第二部分简要概述物理力学求最值问题的基本概念、最大和最小值的定义与性质,并介绍数学建模在物理力学研究中的应用。

接着,在第三部分,我们将对微积分法进行示例解析,包括极值点与拐点判定方法、高阶导数在求极值问题中的应用,并通过实例进行具体分析。

第四部分将介绍约束条件法的示例解析,包括约束条件下求最值问题的基本思路和拉格朗日乘数法在力学中的应用,并结合实例进行详细分析。

最后,在第五部分,我们将对已掌握的方法及其适用场景进行总结,并展望未来可能的研究方向。

1.3 目的本文的目的是为读者提供物理力学求最值问题常用方法的概述和解释说明。

通过阅读本文,读者将了解到微积分法和约束条件法这两种常用方法在求最值问题中的应用,并能够运用所学知识进行实际问题的解答。

此外,文章还将讨论不同方法在不同情境下的适用性,以及未来可能开展的相关研究方向,为读者提供更深入探索该领域的启示和引导。

2. 物理力学求最值问题的常用方法概述2.1 求最值问题的基本概念在物理力学中,求最值问题是指通过数学方法确定某个物理量在特定情境下所能达到的最大或最小值。

这些问题通常涉及力、速度、加速度、位移等物理量的变化与相互关系。

2.2 最大值和最小值的定义与性质在数学中,一个函数可能具有多个局部极大值或局部极小值,并且还可能存在全局极大值或全局极小值。

高中数学知识点精讲精析 最大值,最小值问题

高中数学知识点精讲精析 最大值,最小值问题

2.2 最大值,最小值问题1.函数的最大值和最小值观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,1.求函数593)(23+--=x x x x f 在]4,2[-上的最大值和最小值。

【解析】)3)(1(3963)(2-+=+-='x x x x x f令0)(='x f ,得3,121=-=x x , 由于15)4(,3)2(,22)3(,10)1(-==--==-f f f f所以,)(x f 在在]4,2[-上的最大值是10)1(=-f ,最小值是22)3(-=f 。

2. 已知某商品的需求函数为x Q 1001000-=,从成本函数为Q C 31000+=。

2019-2020学年苏教版必修一 第2章 2.2 2.2.1 第2课时 函数的最大值、最小值 课件(48张)

2019-2020学年苏教版必修一 第2章 2.2 2.2.1 第2课时 函数的最大值、最小值  课件(48张)
栏目导航
【例 3】 求二次函数 f(x)=x2-2ax+2 在[2,4]上的最小值. 思路点拨:f(x)的对称轴是 x=a,a 是运动变化的,故求最值时, 应该讨论 a 与区间[2,4]的关系,进而确定单调性和最值.
栏目导航
[解] ∵函数图象的对称轴是 x=a,∴当 a<2 时,f(x)在[2,4]上 是增函数,∴f(x)min=f(2)=6-4a.

(2)函数 f(x)=2,1<x<2, 3,x≥2
的最大值是________.
栏目导航
(1)1 (2)3 [(1)f(x)=2x在[1,2]上的图象是单调递减的,∴A=f(1) =2,B=f(2)=1,∴A-B=1.
(2)作出 f(x)的图象如图所示,∴f(x)max=3.
]
栏目导航
利用单调性求函数的最值 【例 2】 已知函数 f(x)=x-x 1. (1)用函数单调性定义证明 f(x)=x-x 1在(1,+∞)上是单调减函 数; (2)求函数 f(x)=x-x 1在区间[3,4]上的最大值与最小值.
(-∞,0)∪12,2 [函数 f(x)在(-∞,1)上是减函数,在(1,+ ∞)上也是减函数,而 x∈(-∞,1)∪[2,5),
所以 y∈(-∞,0)∪12,2.]
栏目导航
3.函数 y=x2-2x-1 在闭区间[0,3]上的最大值与最小值的和是 ________.
栏目导航
[提示] (1)×.因为在定义域内找不到 x 使得 x2=-1 成立. (2)×.因为“无数”并非“所有”,故不正确. (3)×.“+∞”不是一个具体数.
栏目导航
2.函数 f(x)在[-2,2]上的图象如图所示,则此函数的最小值是 _________.

2020-2021学年北师大版数学选修2-2课件:第三章 2.2 最大值、最小值问题

2020-2021学年北师大版数学选修2-2课件:第三章 2.2 最大值、最小值问题
2.2 最大值、最小值问题
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
[自主梳理]
函数的最大值与最小值 1.函数 y=f(x)在区间[a,b]上的最大值点 x0 指的是:函数在这个区间上所有点 的函数值都不超过 f(x0). 2. 最大值或者在_极__大__值__点___取得,或者在_区__间__的_ 端点__取得.
(2)由(1)知 f(x)在区间[-34,14]上的最小值为 f(-12)=ln 2+14. 又因为 f(-34)-f(14)=ln32+196-ln72-116 =ln37+12=12(1-ln499)<0, 所以 f(x)在区间[-34,14]上的最大值为 f(14)=116+ln72.
探究二 求含参数的函数的最值 [例 2] 已知 a 是实数,函数 f(x)=x2(x-a). (1)若 f′(1)=3,求 a 的值及曲线 y=f(x)在点(1,f(1))处的切线方程; (2)求 f(x)在区间[0,2]上的最大值.
大时,在四角截去的正方形的边长为( )
A.6 cm
B.8 cm
C.10 cm
D.12 cm
解析:设截去的小正方形的边长为 x cm,铁盒的容积为 V cm3,由题意,
得 V=x(48-2x)2(0<x<24),V′=12(24-x)(8-x).
令 V′=0,则在(0,24)内有解 x=8,
故当 x=8 时,V 有最大值. 答案:B
1.设函数 f(x)=ln(2x+3)+x2. (1)讨论 f(x)的单调性; (2)求 f(x)在区间[-34,14]上的最大值和最小值. 所以 f(x)在区间(-32,-1),(-12,+∞)上是增加的,在区间(-1,-12)上是减少的. 解析:f(x)的定义域为(-32,+∞). (1)f′(x)=2x+ 2 3+2x=4x22+x+6x3+2=22x+2x1+3x+1. 当-32<x<-1 时,f′(x)>0;当-1<x<-12时,f′(x)<0;当 x>-12时,f′(x)>0.

函数的最大值和最小值例子

函数的最大值和最小值例子

函数的最大值和最小值例子1.引言1.1 概述在数学中,函数的最大值和最小值是非常重要的概念。

函数是一种对应关系,它将一个或多个输入值映射到一个输出值。

函数的最大值和最小值分别指的是函数在定义域范围内取得的最大和最小的输出值。

最大值和最小值在很多实际问题中都有着重要的应用。

例如,在经济学中,我们经常需要找到某个函数表示的利润、成本或效益的最大值或最小值。

在物理学中,我们可能需要找到某个函数描述的物理量的最大或最小值,比如速度、加速度等。

要找到函数的最大值和最小值,需要使用微积分的一些基本概念和方法。

其中,一阶导数和二阶导数对于确定函数的极值点非常重要。

通过求解导数为零的方程,我们可以确定可能的最大值和最小值的位置。

然后,通过求解二阶导数的符号,我们可以确定这些极值点是最大值还是最小值。

在本文的正文部分,我们将介绍一些函数的最大值和最小值的例子,并详细说明如何求解这些极值点。

通过这些例子,读者将更加深入地理解函数的最大值和最小值的概念,以及如何在实际问题中应用它们。

总之,函数的最大值和最小值是数学中非常重要的概念,它们在各个领域都有广泛的应用。

通过研究函数的极值点,我们可以更好地理解函数的特性,并在实际问题中做出准确的判断和决策。

下面,我们将详细介绍函数的最大值和最小值的例子,以帮助读者更好地掌握这个概念。

1.2 文章结构文章结构部分的内容可以写成如下形式:文章结构:本文主要分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个小节。

在概述中,我们可以简要介绍函数的最大值和最小值的概念以及其在数学和实际问题中的重要性。

在文章结构中,我们将展示本文的整体结构,为读者提供一个全局的认知。

在目的部分,我们将明确说明本文旨在通过例子来介绍函数的最大值和最小值的求解方法,以帮助读者更好地理解和应用这一概念。

正文部分分为函数的最大值和函数的最小值两个小节。

在函数的最大值小节中,我们将通过具体的例子来介绍最大值的概念,并阐述求解最大值的方法,如导数法和二次函数法。

2.2最大值、最小值问题

2.2最大值、最小值问题
(1) 求f(x)在区间(a,b)内极值;
(2) 将 y=f(x) 的各极值与 f(a )、 f(b)(端点 值)
比较 ; (3) 其中最大的为最大值 ,最小的为最小值.
探 究三
y
图1
结合图像和极值特点,
你能说出极值与最值 的区别和联系吗?
y
a x1O y x2 x3 b
x
图2
图3
a
O
x1 x1 x2
2 a 2
小结:
求函数最值的一般方法
一.是利用函数性质
二.是利用不等式 三.是利用导数
f '( x) 3x 2ax 4
2
(Ⅱ)若 f ( 1) 0 ,求 f ( x ) 在[-2,2]上的 最大值和最小值; (Ⅲ)若 f ( x ) 在( - ∞, -2] 和 [2 ,+∞)上 都是递增的,求a的取值范围。
ቤተ መጻሕፍቲ ባይዱ
1 9 4 50 a f max f (1) , f min f ( ) 2 2 3 27 f '( x) 3x2 2ax 4 0两个根在[ 2, 2]
1 m, 1 m,内是 答:(1)斜率为1; (2) f x 在 ,
1 m,1 m内是增函数. 减函数,在
f x 极大 2 3 1 m m2 3 3
f x 极小
2 3 1 2 m m ; 3 3
(04浙江文21)(本题满分12分) 2 f ( x ) ( x 4)( x a) 已知a为实数, (Ⅰ)求导数 f ( x ) ;
bx
a
O
x2
x3 b
x
探 究四 思考1 如果连续函数f(x)在开区间(a,b)上 只有一个极值点,那么这个极值点一定是 最值点?试用图像表示! 思考2 如果连续函数f(x)在开区间(a,b)上 有两个极值点,那么极值点一定是最值点? 试用图像表示!

初三数学最值问题模型

初三数学最值问题模型

初三数学最值问题模型数学中的最值问题是非常经典的数学问题之一,初三学生也需要掌握这一基本知识。

下面,我将为大家介绍初三数学中的最值问题模型。

一、最大值问题最大值问题是指,在所有条件下使某一问题要求的数值最大的数,即为该问题的最大值。

初三数学中最大值问题多表现为以下几种:1.1 一次函数最大值问题一次函数可以表示为y = kx + b的形式,其中k为斜率,b为截距。

最大值问题就是要让y最大。

解题步骤:(1)求出y的表达式,设最大值点为(x0,y0)(2)化简y的表达式,得出x0的值(3)将x0的值带入y的表达式,得出y0的值(4)最大值为(y0, x0)1.2 二次函数最大值问题二次函数一般可以写成 y = ax^2 + bx + c 的形式。

指数为 2 的函数图像是一个抛物线,有一个最值点。

求二次函数的最大值就是求最值点。

解题步骤:(1)求出函数的导函数(2)将函数的导函数等于 0,求得所有的极值点(3)求出函数在每个极值点的函数值(4)最大值就是所有函数值中最大的一个1.3 正比例函数最大值问题正比例函数可以表示为 y = kx ,其中k为比例常数。

最大值问题就是要让y最大。

解题步骤:(1)求出y的表达式,设最大值点为(x0,y0)(2)化简y的表达式,得出x0的值(3)将x0的值带入y的表达式,得出y0的值(4)最大值为(y0, x0)1.4 平方差最大值问题平方差最大值问题是指,已知两个实数a和b,在满足a+b=k(k为常数)的条件下,使(a-b)的平方最大。

该问题也可以通过求导的方法解决。

二、最小值问题最小值问题与最大值问题非常相似,只是将最大值的条件改为最小值。

2.1 一次函数最小值问题解题步骤与一次函数最大值问题类似。

2.2 二次函数最小值问题解题步骤与二次函数最大值问题类似。

2.3 反比例函数最小值问题反比例函数可以表示为 y = k/x ,其中k为比例常数。

最小值问题就是要让y最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的最值是一个整体性的概念,函数的 最值是比较某个区间内的函数值得出的;
函数的极值是函数的局部性质,是比较极 值点附近的函数值得出的?
思考尝试:
1函数的极大值一定是函数的最大值。 (╳ ) 2若函数在其定义域内有极值,则一定有最值(╳) 3若函数在其定义域内有唯一的极值,则此极值一
定是最值。(√ )
2.2
极值反映的是函数在某一点附近的局部 性质,而不是函数在整个定义域内的性质。
但是我们往往更关心函数在某个区间上 哪个值最大,哪个值最小。
问题1、图1,区间[a,b]上极大值f(x2),f(x4),f(x6)极小值 f(x1),f(x3),f(x5 。) 区间[a,b]上最大值 f ( a ) 最小值 f ( x 3 ) 。 区间(a,b)上最大值 无 最小值 f ( x 3 ) 。
变式训练2、已知函数f(x)=-x3+3x2+9x+a; 若f(x)在区间[-2,2]上的最大值为20, 求它在该区间上的最小值。
解: f (x) =-3x2+6x+9
令f ' (x)=0 解 得 x1或 x3
x
-2 (-2,-1)
-1
(-1,2) 2
f (x)

0
+
f(x)
2+a
单调递减↘
例 1、求函数 f(x)= 1 x3 4x 4 在[0, 3]上 的最大值与最小值 3
例 1、求函数 f(x)= 1 x3 4x 4 在[0, 3]上 的最大值与最小值 3
解:f'(x)x24
令 f'(x)=0, x24=0, 即 x2
x 0 (0,2)
2
(2,3) 3
极小值 5 a
单调递增↗
22+a
f ( 2 ) 2 a ,f ( 1 ) 5 a , ( f2 ) = 2 2 + a
Q最 大 值 ( f 2) =22+a20, a2
最 小 值 f(1)5a527
课后思考:含参数的函数的最值问题:
已 知 a 是 常 数 , 求 函 数 f ( x ) x 3 3 a x 在 0 , 的 最 大 值
4若函数在给定区间上有最大(小)值,则有且只 有一个最大(小)值,但若有极值,则可有多个
极值。 (√ )
问题(5):怎样求函数y=f (x) 在[a,b]内的 最大值和最小值?
一般地,如果在区间[a,b]上函数y=f (x) 的图象是一条连续不断的曲线,那么 它必有最大值和最小值。
只需要把函数的所有极值和端点的函数值 比较即可
f (x)

0
+
f(x)
单调递减↘ 极小值 单调递增↗
f(0)4,f(2)4,f(3)1
3ቤተ መጻሕፍቲ ባይዱ
所以f(x)
=
1 3
x3

4x

4
在[0, 3]上的最大值在为4,最小值为
4 3
求函数y=f(x)在[a,b]上的最大值与最小值 的步骤如下:
(1)求函数的定义域;
(2)求f (x) ,解 f (x) =0; (3)列出关于x, f (x) , f(x) 的变化表;
总结:
求函数y=f(x)在[a,b]上的最大值与最小值步骤 如下 ①求函数y=f(x)在(a,b)内的极大值与极小值; ②将函数y=f(x)的各极值与f(a)、f(b)(即端点 的函数值)作比较,其中最大的一个为最大值, 最小的一个为最小值.
(4)求极值、端点值,确定最值。
即将函数y=f(x)的各极值与f(a)、f(b)(即 端点的函数值)作比较,其中最大的一个 为最大值,最小的一个为最小值.
变式训练 1:求函数f(x)=ln x-x的最值。
变式训练2:已知函数 f(x) x33 x29xa 若f(x)在区间[-2,2]上的最大值为20,求它在 该区间上的最小值.
问题2、如图2,区间[a,b]上最大值 f ( a ) 最小值 f ( b ) 。
y
yf(x)
ao
b
x
问题3、如图3,区间[a,b]上最大值 f ( x 3 ) 最小值 f ( x 4 。)
y
y f (x)
a x1 x 2 ox 3
x4
b
x5 x
问题(4): 函数的极值和最值有什么区别 和联系?
相关文档
最新文档