2016年长春市中考综合学习评价与检测数学试卷(五)
2016年吉林省长春市中考数学试卷及答案
2016年吉林省长春市中考数学试卷及答案数 学一、选择题(本大题共8小题,每小题3分,共24分)1.5-的相反数是( )(A )15- (B )15 (C )5- (D )5【解析】-5的相反数为5.选故D.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名.45000这个数用科学记数法表示为( )(A )34510⨯ (B )44.510⨯ (C )54.510⨯ (D )50.4510⨯【解析】科学记数法的表示形式为10n a ⨯,其中1≤|a|<10,n 为整数,45000=44.510⨯.故选B.3.左图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )【解析】俯视图是物体上方向下做正投影得到的视图,看到的是C.故选C.4.不等式组的解集在数轴上表示正确的是( )【解析】由x +2>0,得x >-2,由2x -6≤0,得x ≤3,所以原不等式组的解集为-2<x ≤3.故选C.5.把多项式269x x -+分解因式,结果正确的是( )(A )2(3)x - (B )2(9)x -(C )(3)(3)x x +- (D )(9)(9)x x +-【解析】269x x -+=22332+⋅⋅-x x =2(3)x -.故选A.6.如图,在Rt △ABC 中,∠BAC=90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △''A B C ,点A 在边'B C 上,则∠'B 的大小为( )(A )42° (B )48°(C )52° (D )58°【解析】由旋转可知∠BCA =48°,所以∠'B =∠B =90°-48°=42°.故选A.7.如图,P A 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°,则的长为( )(A )23π (B )π (C )43π (D )53π【解析】因为PA 、PB 为切线,所以∠PAO =∠PBO =90°,所以∠AOB =360°-90°-90°-60°=120°,的长为1202180π⨯=43π.故选C. 8.如图,在平面直角坐标系中,点P (1,4)、Q (m,n )在函数(0)k y x x=>的图象上, 当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ;过点Q 分别作x 轴、 y 轴的垂线,垂足分别为点C 、D. QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积( )(A )减小 (B )增大(C )先减小后增大 (D )先增大后减小【解析】因为点P (1,4)在函数(0)k y x x=>的图象上,所以k =4, 又点Q (m ,n )也在函数图象上,所以mn =4,QE =m -1,QC =n ,所以四边形ACQE 的面积为(m -1)n =mn -n =-n +4,是一次函数,当m 增大时,n 减小,-n +4增大.故选B. 二、填空题(本大题共6小题,每小题3分,共18分)9.计算3()ab = .【解析】积的乘方,等于积中每个因式分别乘方,所以3()ab =a ³b³.故填a ³b³.10.关于x 的一元二次方程220x x m ++=有两个相等的实数根,则m 的值是 .【解析】依题意,得Δ=4-4m =0,解得m =1.故填1.11.如图,在△ABC 中,AB >AC .按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ;作直线MN 交AB 于点D ;连结CD .若AB =6,AC =4,则△ACD 的周长为 .【解析】由作图可知MN 为线段BC 的垂直平分线,所以DB =DC ,所以△ACD 的周长为AC +AD +DC =AC +AD +DB =AC +AB =10.故填10.12.如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限.若点B 在直线3y kx =+上,则k 的值为 .【解析】因为点A (-1,1),正方形ABCD 的中心与原点重合,所以由对称性,可知B (1,1), 由点B 在直线y=kx+3上,可得1=k +3,解得k =-2.故填-2.13.如图,在⊙O 中,AB 是弦,C 是AB 上一点.若∠OAB=25°,∠OCA=40°,则∠BOC 的大小为 度.【解析】因为OA =OC ,所以∠O AC =∠C =40°,所以∠BAC =40°-25°=15°,所以 ∠B O C =2∠BAC =30°.故填30.14.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为 (4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的面积的最大值为 .【解析】因为点C (4,3),所以菱形OABC 的边长为2234+=5,因为三角形BCD 的底边BC =5,为定值,所以要使三角形BCD 的面积最大,只需点D 到BC 的距离最大,当点D 在抛物线的顶点时,符合,抛物线26y x x =-+的顶点坐标为(3,9),此时三角形BCD 的面积为15(93)2S =⨯⨯-=15.故填15. 三、解答题(本大题共10小题,共78分)15.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 【解】原式=a²-4+4a -a² =4a -4.当a =41时,原式=﹣3. 16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2.每个小球除数字不同外其余均相同.小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字.用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.【解】如下图及表所示.和 0 1 2 1 2 3 2 3 4∴P (取出的两个小球上的数字之和为3)=92. 17.A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.求A 型机器每小时加工零件的个数.【解】设A 型机器每小时加工零件x 个,由题意,得 ,解得x =80经检验,x =80是原方程的解,且符合题意.答:A 型机器每小时加工零件80个.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n 名学生进行调查,并将调查结果绘制成如下条形统计图.根据统计图提供的信息解答下列问题:(1)求n 的值.(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.【解】(1)n =6+33+26+20+15=100.答:n 的值为100.(2)11002015100+⨯=385(人). 答:估计该校1100名学生中一年的课外阅读量超过10本的有385人.19.如图,为了测量长春解放纪念碑的高度AB ,在与纪念碑底部B 相距27米的C 处,用高1.5米的测角仪DC 测得纪念碑顶端A 的仰角为47°,求纪念碑的高度.(结果精确到0.1米.)【参考数据:sin 47°≈0.731,cos 47°≈0.682,tan 47°≈1.072】【解】过D 作直线DE ∥BC 与AB 交于点E ,在△ADE 中,tan ∠ADE =tan 47°=DE AE =27AE ≈1.072, AE≈28.9, EB =1.5,∴AB≈30.4.答:纪念碑的高度约为30.4米.20.如图,在ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若,32=GC DG BE=4,求EC 的长.(1)【证明】在ABCD 中,AD ∥BC ,∴DF ∥BE ,又∵DF=BE ,∴四边形DBEF 为平行四边形,∴BD ∥EF.(2)【解】由(1)可得DF ∥EC ,∴△DFG ∽△CEG , ∴32==EC DF GC DG ,∵BE=4,∴DF=4,∴EC=6. 21.甲、乙两车分别从A 、B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示.(1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)求乙车到达A 地时甲车距A 地的路程.【解】(1)180÷1.5=120(千米/时),300÷120=2.5(小时).答:甲车从A 地到达B 地行驶了2.5小时.(2)设所求函数关系式为y =kx +b (k≠0),将点(2.5,300),(5.5,0)代入,得: ⎩⎨⎧=+=+,05.5,3005.2b k b k 解得⎩⎨⎧=-=,550,100b k ∴y =﹣100x +550(2.5≤x ≤5.5). (3)(300-180)÷1.5=80(千米/时),300÷80=3.75(小时).当x =3.75时,y 甲=175.答:乙车到达A 地时,甲车距离A 地175千米.22.感知:如图①,AD 平分∠BAC ,∠B+∠C=180°,∠B=90°.易知DB =DC .探究:如图②,AD 平分∠BAC ,∠ABD+∠ACD=180°,∠ABD<90°.求证: DB =DC . 应用:如图③,四边形ABDC 中,∠B =45°,∠C =135°,DB =DC =a ,则AB-AC=____. (用含a 的代数式表示)(第22题)【解】探究:如图④,在AB 边上取点E ,作∠AED =∠C.∵AD 平分∠BAC ,∴∠CAD =∠EAD.∵AD =AD ,∠AED =∠C ,∴△ACD ≌△AED ,∴DC =DE.∵∠C +∠B =180°,∠AED =∠C,∠AED +∠DEB =180°, 图④ ∴∠DEB =∠B,∴DE =DB, 图④∴DB =DC.应用:23.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =8,∠BAD =60°.点E 从点A出发,沿AB 以每秒2个单位长度的速度向终点B 运动.当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD (或AD 的延长线)于点H ,得到矩形EFHG .设点E 运动的时间为t 秒.(1)求线段EF 的长;(用含t 的代数式表示)(2)求点H 与点D 重合时t 的值;(3)设矩形EFHG 与菱形ABCD 重叠部分的面积为S 平方单位,求S 与t 之间的函数关系式;(4)矩形EFHG 的对角线EH 与FG 相交于点'O .当'OO ∥AD 时,t 的值为______;当'OO ⊥AD 时,t 的值为______.【解】(1)EF =. (2)t =38 . (3)当0<t ≤38时, ()23233t t t t S =-⨯=.当38<t ≤4时, ().332324325832332222-+-=--=t t t t S(4)矩形EFHG 的对角线EH 与FG 相交于点O′,当OO′∥AD 时,t 的值为4.当OO′∥AD 时,点O 与点O′为所在线段中点.当OO′⊥AD 时,t 的值为3.AF+FM+MD=t+t+2=8,t=3.24.如图,在平面直角坐标系中,有抛物线2(3)4y a x =-+和2()y a x h =-.抛物线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连接'PQ .设点P 的横坐标为m .(1)求a 的值;(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分的周长为l .①求'PQ QQ 的值. ②求l 与m 之间的函数关系式.(3)当h 为何值时,存在点P ,使以点O ,A ,Q ,'Q 为顶点的四边形是轴对称图形?直接写出h 的值.【解】(1)把O (0,0)代入y=a (x-3)²+4,得0=9a +4,∴a=.(2)①当y=a (x-h )² 经过原点时,y=x²,将y=(x-3)²+4化为y=x²+.设P(m ,),Q (m ,), ∴PQ =m 38, QQ′=2m,∴.②1)当0<m ≤3时, .43534m m m m l =++= 2)当3<m <6时,如图,设PQ 与AB 交于点M ,与x 轴交于点E ,PQ ′与AB 交于点N ,与x 轴交于点D ,则DE =⎪⎭⎫ ⎝⎛+-m m 3894432=,ME =,834)6(34+-=-m m∴∠NPM=∠AME=∠NMP ,∴PN=MN ,DN+MN=DN+NP=DP , DP=⎪⎭⎫ ⎝⎛+-⨯m m 3894452 =m m 310952+-, ∴l =-m +8-m m 310952+=84982++-m m . 3)当m >6时,l =0.(3)h1=3,h2=3-2,h3=3+2.。
吉林省长春市中考数学试卷及答案解析版
2016年长春市初中毕业生学业考试数 学一、选择题(本大题共8小题,每小题3分,共24分) 1.5-的相反数是 (A )15-.(B )15. (C )5-. (D )5.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45 000多名.45 000这个数用科学记数法表示为(A )34510⨯ (B )44.510⨯. (C )54.510⨯. (D )50.4510⨯. 3.右图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是4.不等式组20260x x +⎧⎨-≤⎩> 的解集在数轴上表示正确的是5.把多项式269x x -+分解因式,结果正确的是(A )2(3)x -. (B )2(9)x -. (C )(3)(3)x x +-.(D )(9)(9)x x +-.6.如图,在Rt △ABC 中,∠BAC=90°.将Rt △ABC 绕点C 按逆时针 方向旋转48°得到Rt △''A B C ,点A 在边'B C 上,则∠'B 的大小为 (A )42°. (B )48°. (C )52°. (D )58°.7.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°, 则AB 的长为(A )23π. (B )π. (C )43π. (D )53π.8.P (1,4)在函数(0)ky x x=>的图象上, 当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ;过点Q 分别作x 轴、 y 轴的垂线,垂足 为点C 、D. QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 (A )减小. (B )增大 (C )先减小后增大 (D )先增大后减小.二、填空题(本大题共6小题,每小题3分,共18分) 9.计算:3()ab = .10.关于x 的一元二次方程220x x m ++=有两个相等的实数根,则m 的值是 .11.如图,在△ABC 中,AB >AC .按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ;作直线MN 交AB 于点D ;连结CD .若AB =6,AC =4,则△ACD 的周长为 . 12.如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限.若点B 在直线3y kx =+上,则k 的值为 .13.如图,在⊙O 中,AB 是弦,C 是AB 上一点.若∠OAB=25°,∠OCA=40°,则∠BOC 的大小为 度. 14.如图,在平面直角坐标系中,菱形O A B C 的顶点A 在x 轴正半轴上,顶点C 的坐标为 (4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 . 三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字0,1,2.每个小球除数字不同外其余均相同.小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字.用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.(6分)A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.求A 型机器每小时加工零件的个数.18.(6分)某中学为了解该校学生一年的课外阅读量,随机抽取了n 名学生进行调查,并将调查结果绘制成如下条形统计图.根据统计图提供的信息解答下列问题:(1)求n 的值.(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.(7分)如图,为了测量长春解放纪念碑的高度AB ,在与纪念碑底部B 相距27米的C 处,用高1.5米的测角仪DC 测得纪念碑顶端A 的仰角为47°,求纪念碑的高度.(结果精确到0.1米.) 【参考数据:sin 470.731︒=,cos470.682︒=,tan 47 1.072︒=】20.(7分)如图.在□ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE .EF 与CD 交于点G . (1)求证:BD ∥EF . (2)若23DG GC =,BE =4,求EC 的长.21.(9分)甲、乙两车分别从A 、B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示. (1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)求乙车到达A 地时甲车距A 地的路程.22.(9分)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC=____.(用含a的代数式表示)(第22题)23.(10分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°.点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFGH.设点E运动的时间为t秒.(1)求线段EF的长.(用含t的代数式表示)(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积为S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点'O.当'OO∥AD时,t的值为______;当'OO⊥AD时,t 的值为______.24.(12分)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物 线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m . (1)求a 的值.(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .①求'PQQQ 的值. ②求l 与m 之间的函数关系式.(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.2016年长春市初中毕业生学业考试数 学一、选择题(本大题共8小题,每小题3分,共24分) 1.5-的相反数是 (A )15-.(B )15. (C )5-. (D )5.【解答】:D【考点】:考查相反数。
2016年吉林省长春市中考数学模拟试卷(五)
2016年吉林省长春市中考数学模拟试卷(五)一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•丽水)在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.32.(3分)(2016•长春模拟)不等式3x+10≤1的解集在数轴上表示正确的是()A.B.C. D.3.(3分)(2015•丽水)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)(2016•长春模拟)一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)5.(3分)(2015•衢州)某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.46.(3分)(2006•泰安)下列轴对称图形中,对称轴最多的是()A.B.C.D.7.(3分)(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.108.(3分)(2016•长春模拟)如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2016•长春模拟)若2x+1=3,则6x+3的值为.10.(3分)(2016•长春模拟)表格描述的是y与x之间的函数关系:x …﹣2 0 2 4 …y=kx+b … 3 ﹣1 m n …则m与n的大小关系是.11.(3分)(2016•长春模拟)如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA=58°,则∠GFB的大小为°.12.(3分)(2016•长春模拟)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为(结果保留π).13.(3分)(2016•长春模拟)如图,平面直角坐标中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相交,则平移的距离d的取值范围是.14.(3分)(2016•长春模拟)如图,抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B 两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为.三、解答题(共10小题,满分78分)15.(5分)(2015•南昌)先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.(5分)(2015•岳池县模拟)一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?17.(6分)(2015•徐州)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?18.(7分)(2016•长春模拟)如图,在△ABC中,D、E分别是边AB、AC的中点,延长BC至点F,使得CF=BC,连结CD、DE、EF.(1)求证:四边形CDEF是平行四边形.(2)若四边形CDEF的面积为8,则△ABC的面积为.19.(7分)(2016•长春模拟)如图,某高楼CD与处地面垂直,要在高楼前的地面A处安装某种射灯,安装后,射灯发出的光线与地面的最大夹角∠DAC为70°,光线与地面的最小夹角∠DAB为35°,要使射灯发光时照射在高楼上的区域宽BC为50米,求A处到高楼的距离AD.(结果精确到0.1米)【参考数据:sin70°=0.94,cos70°=0.34,tan70°=2.75,sin35°=0.57,cos35°=0.82,tan35°=0.70】20.(8分)(2016•长春模拟)某校随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查进行了统计,并绘制了如下不完整的条形统计图和扇形统计图.结合图中信息,解答下列问题:(1)求本次共调查的学生人数.(2)求被调查的学生中,最喜爱丁类图书的学生人数.(3)求被调查的学生中,最喜爱甲类图书的人数占本次被调查人数的百分比.(4)该学校共有学生1600人,估计该校最喜爱丁类图书的人数.21.(8分)(2016•长春模拟)探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.22.(10分)(2016•长春模拟)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h,他在乙地休息了h.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.23.(10分)(2016•长春模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,连结BC.点P是BC上方抛物线上一点,过点P作y轴的平行线,交BC于点N,分别过P、N两点作x轴的平行线,交抛物线的对称轴于点Q、M,设P点的横坐标为m.(1)求抛物线所对应的函数关系式.(2)当点P在抛物线对称轴左侧时,求四边形PQMN周长的最大值.(3)当四边形PQMN为正方形时,求m的值.24.(12分)(2016•长春模拟)如图①,平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B的坐标为(2,4),将矩形OABC绕着点A顺时针旋转90°得到矩形AFED,直线y=kx+b经过点G(4,0),交y轴于点H.(1)点D、E的坐标分别为.(2)当直线GH经过EF中点K时,如图②,动点P从点C出发,沿着折线C﹣B﹣D以每秒1个单位速度向终点D运动,连结PH、PG,设点P运动的时间为t(秒),△PGH的面积为S(平方单位).①求直线GH所对应的函数关系式.②求S与t之间的函数关系式.(3)当直线GH经过点E时,如图③,点Q是射线B﹣D﹣E﹣F上的点,过点Q作QM⊥GH 于点M,作QN⊥x轴于点N,当△QMN为等腰三角形时,直接写出点Q的坐标.2016年吉林省长春市中考数学模拟试卷(五)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•丽水)在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.3【解答】解:根据0大于负数,小于正数,可得0在﹣1和2之间,故选:C.2.(3分)(2016•长春模拟)不等式3x+10≤1的解集在数轴上表示正确的是()A.B.C. D.【解答】解:由3x+10≤1,解得x≤﹣3,故选:C.3.(3分)(2015•丽水)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选A.4.(3分)(2016•长春模拟)一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)【解答】解:当x=0时,y=﹣2;当y=0时,x=2,因此一次函数y=x﹣2的图象经过点(0,﹣2)、(2,0).故选:D.5.(3分)(2015•衢州)某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.4【解答】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7﹣4﹣4﹣5﹣6﹣6﹣7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选C.6.(3分)(2006•泰安)下列轴对称图形中,对称轴最多的是()A.B.C.D.【解答】解:A有四条对称轴,B有六条,C有三条,D有两条.故选:B.7.(3分)(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.8.(3分)(2016•长春模拟)如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20【解答】解:∵过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,∴点B的纵坐标为5,点C的横坐标为4,将y=5代入y=﹣x+6,得x=1;将x=4代入y=﹣x+6得,y=2,∴点B的坐标为(1,5),点C的坐标为(4,2),∵函数y=(x>0)的图象与△ABC的边有公共点,点A(4,5),点B(1,5),∴1×5≤k≤4×5即5≤k≤20,故选A.二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2016•长春模拟)若2x+1=3,则6x+3的值为9.【解答】解:∵2x+1=3,∴原式=3(2x+1)=9,故答案为:910.(3分)(2016•长春模拟)表格描述的是y与x之间的函数关系:x …﹣2 0 2 4 …y=kx+b … 3 ﹣1 m n …则m与n的大小关系是m>n.【解答】解:∵当x=﹣2,y=3,x=0,y=﹣1,∴y随着x的增大而减小,∵2<4,∴m>n.故答案为:m>n.11.(3分)(2016•长春模拟)如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA=58°,则∠GFB的大小为61°.【解答】解:∵∠ECA=58°,∴∠ECD=180°﹣∠ECA=122°,∵CD平分∠ECF,∴∠DCF=∠ECF=×122°=61°,∵CD∥GF,∴∠GFB=∠DCF=61°.故答案为61°.12.(3分)(2016•长春模拟)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为3π(结果保留π).【解答】解:连接OC,OE,分别交BD,DF于点M,N,∵正六边形ABCDEF内接于⊙O,∴∠BOC=60°,∠BCD=∠COE=120°,∵OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠OCD=∠OCB,∵BC=CD,∴∠CBD=∠CDM=30°,BM=DM,∴∠OBM=30°,S△DCM=S△BCM,∴∠OBM=∠CBD,∴OM=CM,∴S△OBM=S△BCM,∴S△OBM=S△DCM,同理:S△OFN=S△DEN,∴S阴影=S扇形OCE==3π.故答案为:3π.13.(3分)(2016•长春模拟)如图,平面直角坐标中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相交,则平移的距离d的取值范围是1<d<5.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故平移的距离d的取值范围是1<d<5.故答案为:1<d<5.14.(3分)(2016•长春模拟)如图,抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B 两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为0.16.【解答】解:∵抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B两点,∴点A、B两点的坐标分别是:(,0)、(﹣,0);又∵抛物线y=ax2﹣4和y=﹣ax2+4的顶点分别为C、D.∴点C、D的坐标分别是(0,4)、(0,﹣4);∴CD=8,AB=,∴S四边形ABCD=S△ABD+S△ABC=AB•OD+AB•OC=AB•CD=×8×=40,即×8×=40,解得,a=0.16;故答案是:0.16.三、解答题(共10小题,满分78分)15.(5分)(2015•南昌)先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.【解答】解:原式=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=1﹣12=﹣11.16.(5分)(2015•岳池县模拟)一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?【解答】解:设普通公路长为x(km),高速公路长为y(km).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.17.(6分)(2015•徐州)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为25%(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?【解答】解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12=.18.(7分)(2016•长春模拟)如图,在△ABC中,D、E分别是边AB、AC的中点,延长BC至点F,使得CF=BC,连结CD、DE、EF.(1)求证:四边形CDEF是平行四边形.(2)若四边形CDEF的面积为8,则△ABC的面积为8.【解答】(1)证明:∵如图,在△ABC中,D、E分别是边AB、AC的中点,∴DE∥BC且DE=BC.又∵CF=BC,∴DE=CF,∴四边形CDEF是平行四边形.(2)解:∵DE∥BC,∴四边形CDEF与△ABC的高相等,设为h,又∵CF=BC,∴S△ABC=BC•h=CF•h=8,故答案是:8.19.(7分)(2016•长春模拟)如图,某高楼CD与处地面垂直,要在高楼前的地面A处安装某种射灯,安装后,射灯发出的光线与地面的最大夹角∠DAC为70°,光线与地面的最小夹角∠DAB为35°,要使射灯发光时照射在高楼上的区域宽BC为50米,求A处到高楼的距离AD.(结果精确到0.1米)【参考数据:sin70°=0.94,cos70°=0.34,tan70°=2.75,sin35°=0.57,cos35°=0.82,tan35°=0.70】【解答】解:∵CD⊥AD,∴∠CDA=90°,∴在Rt△ADB中,BD=ADtan∠BAD,在Rt△ADC中,CD=ADtan∠CAD,∴AD•tan70°﹣AD•tan35°=50,∴2.75AD﹣0.70AD=50,解得:AD=≈24.4,答:A处到高楼的距离AD为24.4米.20.(8分)(2016•长春模拟)某校随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查进行了统计,并绘制了如下不完整的条形统计图和扇形统计图.结合图中信息,解答下列问题:(1)求本次共调查的学生人数.(2)求被调查的学生中,最喜爱丁类图书的学生人数.(3)求被调查的学生中,最喜爱甲类图书的人数占本次被调查人数的百分比.(4)该学校共有学生1600人,估计该校最喜爱丁类图书的人数.【解答】解:(1)40÷20%=200(名)答:共调查的学生人为200名;(2)根据题意得:丁类学生数为200﹣(80+65+40)=15(名);(3)最喜爱甲类图书的人数占本次被调查人数的80÷200×100%=40%;(4)1600×=120(人)答:该校最喜爱丁类图书的人数为120人.21.(8分)(2016•长春模拟)探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.【解答】解:探索:BE=CD,理由:∵∠BAD=∠CAE=90°,∴∠CAD=∠EAB,在△CAD和△EAB中∵,∴△CAD≌△EAB(SAS);应用:如图②,过点A作AD⊥AB,且AD=AB,连接BD,由探索,得△CAD≌△EAB,∴BE=DC,∵AD=AB=100m,∠DAB=90°,∴∠ABD=45°,BD=100m,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100m,BD=100m,∴CD==100(m),则BE=100m,答:BE的长为100m.22.(10分)(2016•长春模拟)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为15km/h,他在乙地休息了0.1h.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.【解答】解:(1)小明骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),小明平路上的速度为:10+5=15(km/h),小明下坡的速度为:15+5=20(km/h),小明平路上所用的时间为:2(4.5÷15)=0.6h,小明下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小明在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h).故答案为:15,0.1;(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y=4.5+20(x﹣0.9).即y=20x﹣13.5(0.9≤x≤1).(3)由题意可知:小明第一次经过丙地在AB段,第二次经过丙地在EF段,设小明出发a小时第一次经过丙地,则小明出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5解得:a=.=1(千米).答:丙地与甲地之间的路程为1千米.23.(10分)(2016•长春模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,连结BC.点P是BC上方抛物线上一点,过点P作y轴的平行线,交BC于点N,分别过P、N两点作x轴的平行线,交抛物线的对称轴于点Q、M,设P点的横坐标为m.(1)求抛物线所对应的函数关系式.(2)当点P在抛物线对称轴左侧时,求四边形PQMN周长的最大值.(3)当四边形PQMN为正方形时,求m的值.【解答】解:(1)当x=0时,y=ax2+bx+2=2,则C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得a•1•(﹣3)=2,解得a=﹣,所以抛物线的解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+2;(2)∵抛物线与x轴分别交于点A(﹣1,0)、B(3,0),∴抛物线的对称轴为直线x=1,设直线BC的解析式为y=px+q,把C(0,2),B(3,0)代入得,解得,所以直线BC的解析式为y=﹣x2+2,设P(m,﹣m2+m+2),则N(m,﹣m+2),∴PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,而PQ=1﹣m,∴四边形PQMN周长=2(﹣m2+2m+1﹣m)=﹣m2+2m+2=﹣(m﹣)2+(0<m<1),∴当m=时,四边形PQMN周长有最大值,最大值为;(3)当0<m<1时,PQ=1﹣m,若PQ=PN时,四边形PQMN为正方形,即﹣m2+2m=1﹣m,整理得2m2﹣9m+3=0,解得m1=(舍去),m2=,当1<m<3时,PQ=m﹣1,若PQ=PN时,四边形PQMN为正方形,即﹣m2+2m=m﹣1,整理得2m2﹣3m﹣3=0,解得m1=(舍去),m2=,综上所述,当m=或m=时,四边形PQMN为正方形.24.(12分)(2016•长春模拟)如图①,平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B的坐标为(2,4),将矩形OABC绕着点A顺时针旋转90°得到矩形AFED,直线y=kx+b经过点G(4,0),交y轴于点H.(1)点D、E的坐标分别为D(2,2),E(6,2).(2)当直线GH经过EF中点K时,如图②,动点P从点C出发,沿着折线C﹣B﹣D以每秒1个单位速度向终点D运动,连结PH、PG,设点P运动的时间为t(秒),△PGH的面积为S(平方单位).①求直线GH所对应的函数关系式.②求S与t之间的函数关系式.(3)当直线GH经过点E时,如图③,点Q是射线B﹣D﹣E﹣F上的点,过点Q作QM⊥GH 于点M,作QN⊥x轴于点N,当△QMN为等腰三角形时,直接写出点Q的坐标.【解答】(1)解:∵矩形OABC绕着点A顺时针旋转90°得到矩形AFED,且B(2,4),∴OA=AD=2,OC=AF=4,∴D(2,2),E(6,2);故答案为D(2,2),E(6,2);(2)①解:∵E(6,2),G(4,0),∴K(6,1),∵直线y=kx+b经过点G,K,∴,∴,∴直线GH的解析式为y=x﹣2,②当0≤t≤2时,延长CB交HG于W,如图1,S△PHG=S△SHW﹣S△HCP﹣S△PGW=[[6×12﹣6t﹣4(12﹣t)]=﹣t+12,②当2<t≤4时,延长BA交HG于T,如图2,S△PHG=S△PTH+S△PGT=×4(7﹣t)=﹣2t+14,(3)解;①当0≤t≤2时,如图3,由题意,得N(2,0),Q(2,4﹣t),M(,),∴QN2=(4﹣t)2,MN2=+,QM2=,(Ⅰ)、当QN=QM时,即QN2=QM2,∴(4﹣t)2=+,∴t=(舍),(Ⅱ)、当QN=QM时,方法同(Ⅰ)的一样,得t=(舍),(Ⅲ)、当MN=QM时,方法同(Ⅰ)的一样,得到方程无解,②当2<t≤6时,由题意,得N(t,0),Q(t,2),M(,),方法和①(Ⅰ)一样,分三种情况,(Ⅰ)、当QN=QM时,t=6+2(舍),或t=6﹣2∴Q(6﹣2,2);(Ⅱ)、当QN=MN时,t=﹣8(舍)或t=2,∴Q(2,2);(Ⅲ)、当QM=MN时,t=4,∴Q(4,2);②当6<t≤8时,由题意,得N(6,0),Q(6,8﹣t),M(,﹣),方法和①(Ⅰ)一样,分三种情况,(Ⅰ)、当QN=QM时,t=10+2(舍),或t=10﹣2∴Q(6,2﹣2);(Ⅱ)、当QN=MN时,t=6(舍)或t=10(舍)(Ⅲ)、当QM=MN时,t=8(舍);∴Q(6﹣2,2)或Q(2,2)或Q(4,2)或Q(6,2﹣2);参与本试卷答题和审题的老师有:sdwdmahongye;2300680618;王学峰;73zzx;CJX;438011;郝老师;gsls;zgm666;sks;弯弯的小河;zcx;1987483819;dbz1018;放飞梦想;nhx600;gbl210;星月相随(排名不分先后)菁优网2016年5月16日。
长春市近五年中考数学试卷及答案解析
长春市近五年中考数学试卷及答案解析2016年数学试卷及答案解析试卷内容:1. 选择题:包括单选题和多选题,涵盖整个数学知识点。
2. 解答题:包括计算题和证明题,要求学生掌握基本的计算方法和推理能力。
3. 应用题:涉及到实际生活中的问题,要求学生能够运用数学知识解决实际问题。
答案解析:1. 对于选择题,给出每个选项的解释和正确答案的理由。
2. 对于解答题,给出详细的解题步骤和答案。
3. 对于应用题,给出解题思路和关键步骤,帮助学生理解如何应用数学知识解决实际问题。
2017年数学试卷及答案解析试卷内容:1. 选择题:包括单选题和多选题,涵盖整个数学知识点。
2. 解答题:包括计算题和证明题,要求学生掌握基本的计算方法和推理能力。
3. 应用题:涉及到实际生活中的问题,要求学生能够运用数学知识解决实际问题。
答案解析:1. 对于选择题,给出每个选项的解释和正确答案的理由。
2. 对于解答题,给出详细的解题步骤和答案。
3. 对于应用题,给出解题思路和关键步骤,帮助学生理解如何应用数学知识解决实际问题。
2018年数学试卷及答案解析试卷内容:1. 选择题:包括单选题和多选题,涵盖整个数学知识点。
2. 解答题:包括计算题和证明题,要求学生掌握基本的计算方法和推理能力。
3. 应用题:涉及到实际生活中的问题,要求学生能够运用数学知识解决实际问题。
答案解析:1. 对于选择题,给出每个选项的解释和正确答案的理由。
2. 对于解答题,给出详细的解题步骤和答案。
3. 对于应用题,给出解题思路和关键步骤,帮助学生理解如何应用数学知识解决实际问题。
2019年数学试卷及答案解析试卷内容:1. 选择题:包括单选题和多选题,涵盖整个数学知识点。
2. 解答题:包括计算题和证明题,要求学生掌握基本的计算方法和推理能力。
3. 应用题:涉及到实际生活中的问题,要求学生能够运用数学知识解决实际问题。
答案解析:1. 对于选择题,给出每个选项的解释和正确答案的理由。
2016年吉林长春中考真题数学
2016年吉林省长春市中考真题数学一、选择题:本大题共8小题,每小题3分,共24分1.-5的相反数是( )A.-1 5B.1 5C.-5D.5解析:只有符号不同的两个数互为相反数.-5的相反数是5.答案:D.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为( )A.45×103B.4.5×104C.4.5×105D.0.45×103解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.45000这个数用科学记数法表示为4.5×104.答案:B.3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A.B.C.D.解析:从上面看到的平面图形即为该组合体的俯视图.从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形. 答案:C.4.不等式组20260xx+⎧⎨-≤⎩>,的解集在数轴上表示正确的是( )A. B. C. D.解析:20260xx+⎧⎨-≤⎩>①,②,由①得,x>-2,由②得,x≤3,故不等式组的解集为:-2<x≤3.在数轴上表示如下.答案:C.5.把多项式x2-6x+9分解因式,结果正确的是( )A.(x-3)2B.(x-9)2C.(x+3)(x-3)D.(x+9)(x-9)解析:x2-6x+9=(x-3)2.答案:A6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为( )A.42°B.48°C.52°D.58°解析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°-∠ACA′=42°.答案:A.7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则AB的长为( )A.2 3πB.πC.4 3πD.5 3π解析:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴AB的长l=120214380π⨯=π.答案:C8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小解析:AC=m-1,CQ=n,则S四边形ACQE=AC·CQ=(m-1)n=mn-n.∵P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC·CQ=4-n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4-n随m的增大而增大.答案:B.二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3= .解析:原式=a3b3.答案:a3b310.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是 . 解析:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22-4m=0,∴m=1. 答案:1.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为 .解析:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.答案:10.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为 .解析:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=-2.答案:-2.13.如图,在⊙O中,AB是弦,C是AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.解析:∵∠BAO=25°,OA=OB,∴∠B=∠BAO=25°,∴∠AOB=180°-∠BAO-∠B=130°,∵∠ACO=40°,OA=OC,∴∠C=∠CAO=40°,∴∠AOC=180°-∠CAO-∠C=100°,∴∠BOC=∠AOB-∠AOC=30°.答案:3014.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-x2+6x上一点,且在x轴上方,则△BCD面积的最大值为 .解析:∵D是抛物线y=-x2+6x上一点,∴设D(x,-x2+6x),∵顶点C的坐标为(4,3),∴,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=12×5×(-x2+6x-3)=-52(x-3)2+152,∵-52<0,∴S△BCD有最大值,最大值为152.答案:152.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a-2)+a(4-a),其中a=14.解析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.答案:(a+2)(a-2)+a(4-a)=a2-4+4a-a2=4a-4,当a=14时,原式=4×14-4=1-4=-3.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.解析:列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是3的概率.答案:列表得:∴P(和为3)=29.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.解析:关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.答案:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x-20)个.根据题意列方程得:40030020x x=-,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数. 解析:(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的百分比,继而求得答案.答案:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100.(2)根据题意得:2015100×1100=385(人),答:估计该校1100名学生中一年的课外阅读量超过10本的人数为:385人.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】解析:作DE⊥AB于E,根据正切的概念求出AE的长,再结合图形根据线段的和差计算即可求解.答案:作DE⊥AB于E,由题意得DE=BC=27米,∠ADE=47°,在Rt△ADE中,AE=DE·tan∠ADE=27×1.072=28.944米,AB=AE+BE≈30.4米,答:纪念碑的高度约为30.4米.20.如图,在平行四边形ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE 与CD交于点G.(1)求证:BD ∥EF ; (2)若23DG GC =,BE=4,求EC 的长. 解析:(1)根据平行四边的判定与性质,可得答案; (2)根据相似三角形的判定与性质,可得答案. 答案(1)∵四边形ABCD 是平行四边形,∴AD ∥BC. ∵DF=BE ,∴四边形BEFD 是平行四边形,∴BD ∥EF ; (2)∵四边形BEFD 是平行四边形,∴DF=BE=4. ∵DF ∥EC ,∴△DFG ∽CEG ,∴DG DF CG CE =,∴CE=2·43DF CG DG =⨯=6.21.甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y(千米),甲车行驶的时间为x(时),y 与x 之间的函数图象如图所示.(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)求乙车到达A 地时甲车距A 地的路程. 解析:(1)根据题意列算式即可得到结论; (2)根据题意列方程组即可得到结论; (3)根据题意列算式即可得到结论.答案:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A 地到达B 地的行驶时间是2.5小时.(2)设甲车返回时y 与x 之间的函数关系式为y=kx+b , ∴300 2.50 5.5k b k b =+=+⎧⎨⎩,,解得:100550k b =-⎧⎨=⎩,,∴甲车返回时y 与x 之间的函数关系式是y=-100x+550. (3)300÷[(300-180)÷1.5]=3.75小时, 当x=3.75时,y=175千米,答:乙车到达A 地时甲车距A 地的路程是175千米.22.解决问题.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC= (用含a的代数式表示)解析:探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合即可解决问题.答案:探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,F DEBFCD BDF DB∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△DFC≌△DEB,∴DC=DB.应用:如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,F DEBFCD BDC DB∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,AD ADDE DF=⎧⎨=⎩,,∴△ADF≌△ADE,∴AF=AE ,∴AB-AC=(AE+BE)-(AF-CF)=2BE ,在RT △DEB 中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a ,∴BE=2a ,∴AB-AC=23.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=8,∠BAD=60°,点E 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动,当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD(或AD 的延长线)于点H ,得到矩形EFHG ,设点E 运动的时间为t 秒.(1)求线段EF 的长(用含t 的代数式表示); (2)求点H 与点D 重合时t 的值;(3)设矩形EFHG 与菱形ABCD 重叠部分图形的面积与S 平方单位,求S 与t 之间的函数关系式;(4)矩形EFHG 的对角线EH 与FG 相交于点O ′,当OO ′∥AD 时,t 的值为 ;当OO ′⊥AD 时,t 的值为 .解析:(1)由题意知:AE=2t ,由锐角三角函数即可得出;(2)当H 与D 重合时,FH=GH=8-t ,由菱形的性质和EG ∥AD 可知,AE=EG ,解得t=83; (3)矩形EFHG 与菱形ABCD 重叠部分图形需要分以下两种情况讨论:①当H 在线段AD 上,此时重合的部分为矩形EFHG ;②当H 在线段AD 的延长线上时,重合的部分为五边形;(4)当OO ′∥AD 时,此时点E 与B 重合;当OO ′⊥AD 时,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,然后分别求出O ′M 、O ′F 、FM ,利用勾股定理列出方程即可求得t 的值. 答案:(1)由题意知:AE=2t ,0≤t ≤4,∵∠BAD=60°,∠AFE=90°,∴sin ∠BAD=EFAE,∴(2)∵AE=2t ,∠AEF=30°,∴AF=t ,当H 与D 重合时,此时FH=8-t ,∴GE=8-t , ∵EG ∥AD ,∴∠EGA=30°,∵四边形ABCD 是菱形,∴∠BAC=30°, ∴∠BAC=∠EGA=30°, ∴AE=EG ,∴2t=8-t ,∴t=83; (3)当0≤t ≤83时, 此时矩形EFHG 与菱形ABCD 重叠部分图形为矩形EFHG , ∴由(2)可知:AE=EG=2t ,∴S=EF ··2,当83<t ≤4时,如图1,设CD 与HG 交于点I ,此时矩形EFHG 与菱形ABCD 重叠部分图形为五边形FEGID ,∵AE=2t ,∴AF=t ,,∴DF=8-t , ∵AE=EG=FH=2t ,∴DH=2t-(8-t)=3t-8, ∵∠HDI=∠BAD=60°,∴tan ∠HDI=HIDH,∴HI=3DH ,∴S=)2221··382EF EG DH HI t -=-=+-(4)当OO ′∥AD 时,如图2,此时点E 与B 重合,∴t=4;当OO ′⊥AD 时,如图3,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,由(2)可知:AF=t ,AE=EG=2t ,∴FN=3t ,FM=t ,∵O ′O ⊥AD ,O ′是FG 的中点,∴O ′O 是△FNG 的中位线,∴O ′O=12FN =,∵AB=8,∴由勾股定理可求得:O ′M=t ,∵,EG=2t ,∴由勾股定理可求得:FG 2=7t 2,∴由矩形的性质可知:O ′F 2=14FG 2,∵由勾股定理可知:O ′F 2=O ′M 2+FM 2,∴74t 2=()2+t 2,∴t=3或t=-6(舍去).24.如图,在平面直角坐标系中,有抛物线y=a(x-h)2.抛物线y=a(x-3)2+4经过原点,与x轴正半轴交于点A ,与其对称轴交于点B ,P 是抛物线y=a(x-3)2+4上一点,且在x 轴上方,过点P 作x 轴的垂线交抛物线y=(x-h)2于点Q ,过点Q 作PQ 的垂线交抛物线y=(x-h)2于点Q ′(不与点Q 重合),连结PQ ′,设点P 的横坐标为m.(1)求a 的值;(2)当抛物线y=a(x-h)2经过原点时,设△PQQ ′与△OAB 重叠部分图形的周长为l. ①求PQQQ '的值; ②求l 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O ,A ,Q ,Q ′为顶点的四边形是轴对称图形?直接写出h 的值.解析:(1)把(0,0)代入y=a(x-3)2+4即可解决问题. (2)①用m 的代数式表示PQ 、QQ ′,即可解决问题. ②分0<m ≤3或3<m <6两种情形,画出图形,利用相似三角形或锐角三角函数求出相应线段即可解决.(3)①当h=3时,两个抛物线对称轴x=3,四边形OAQQ ′是等腰梯形.②当四边形OQ ′1Q 1A 是菱形时,求出抛物线对称轴即可解决问题.答案:(1)∵抛物线y=a(x-3)2+4经过原点,∴x=0时,y=0,∴9a+4=0,∴a=-49.(2)∵抛物线y=a(x-h)2经过原点时,∴h=0,∵a=-49,∴y=-49x2.①∵P(m,-49m2+83m),Q(m,-49m2),∴PQ=-49m2+83m-(-49m2)=83m,QQ′=2m,∴84323mPQQQ m=='.②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,∵PQQQ′=BMOM,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵EF OFBM OM=,∴EF=43m,OE=53m,∴l=OF+EF+OE=m+43m+53m=4m,当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA 于F,作HM⊥OA于M.∵AF=6-m,tan∠EAF=43EFAF=,∴EF=43(6-m),AE=53(6-m),∵tan∠PGF=43PFFG=,PF=24983m m-+,∴GF=-2716m2+2m,∴AG=-2716m 2+m+6, ∴GM=AM=21732223m m -++, ∵HG=HA=24555cos 326AM m m HAG =-++∠, ∴l=GH+EH+EF+FG=-92m 2+4m+8.综上所述l=2403483))6(9(2m m m m m ≤⎧⎪⎨-++⎪⎩<,<<.(3)如图3中,①当h=3时,两个抛物线对称轴x=3,∴点O 、A 关于对称轴对称,点Q ,Q ′关于对称轴对称,∴OA ∥QQ ′,OQ ′=AQ ,∴四边形OAQQ ′是等腰梯形,属于轴对称图形. ②当四边形OQ ′1Q 1A 是菱形时,OQ ′1=OA=6, ∵Q ′1Q 1=OA=6,∴点Q 1的纵坐标为4,在RT △OHQ ′1,中,OH=4,OQ ′1=6,∴HQ ′1综上所述h=3或O ,A ,Q ,Q ′为顶点的四边形是轴对称图形.。
吉林省长春市年中考数学试卷(解析版)
2016年吉林省长春市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是( )A. B.C.﹣5 D.52.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×1033.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A. B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B. C.D.5.把多项式x2﹣6x+9分解因式,结果正确的是( )A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交P A于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3= .10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B 在第一象限,若点B在直线y=kx+3上,则k的值为.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G(1)求证:BD∥EF;(2)若=,BE=4,求EC的长.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC= (用含a的代数式表示)23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t 的值为.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.ﻬ2016年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B. C.﹣5D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:45000这个数用科学记数法表示为4.5×104,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的平面图形即为该组合体的俯视图,据此求解.【解答】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.【点评】本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3) D.(x+9)(x﹣9)【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42° B.48°C.52° D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′, ∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.πB.π C.D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小 B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4﹣n随m的增大而增大.四边形ACQE故选B.【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3= a3b3.【考点】幂的乘方与积的乘方.【专题】计算题;整式.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=a3b3,故答案为:a3b3【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m 的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为10 .【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC+AB来解决,属于基础题,中考常考题型.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B 在第一象限,若点B在直线y=kx+3上,则k的值为﹣2 .【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B点坐标,再代入直线y=kx+3,求出k的值即可.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为30度.【考点】圆周角定理.【分析】由∠BAO=25°,利用等腰三角形的性质,可求得∠AOB的度数,又由∠OCA=40°,可求得∠CAO的度数,继而求得∠AOC的度数,则可求得答案.【解答】解:∵∠BAO=25°,OA=OB,∴∠B=∠BAO=25°,∴∠AOB=180°﹣∠BAO﹣∠B=130°,∵∠ACO=40°,OA=OC,∴∠C=∠CAO=40°,∴∠AOC=180°﹣∠CAO﹣∠C=100°,∴∠BOC=∠AOB﹣∠AOC=30°.故答案为30°.【点评】本题考查了圆周角定理以及等腰三角形的性质.注意利用等腰三角形的性质求解是关键.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.【考点】二次函数的性质;菱形的性质.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,然后根据三角形面积公式得出∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,BCD∵﹣<0,∴S△BC有最大值,最大值为,D故答案为.【点评】本题库存了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.【考点】整式的混合运算—化简求值.【专题】计算题;探究型.【分析】根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.【解答】解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是3的概率.【解答】解:列表得:1 2 3和1 2 3 42 3 4 53 4 5 6∴P(和为3)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题的关键是要区分放回实验还是不放回实验.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【考点】分式方程的应用.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.【考点】条形统计图;用样本估计总体.【分析】(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的百分比,继而求得答案.【解答】解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;(2)根据题意得:×1100=385(人),答:估计该校1100名学生中一年的课外阅读量超过10本的人数为:385人.【点评】此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】【考点】解直角三角形的应用-仰角俯角问题.【分析】作DE⊥AB于E,根据正切的概念求出AE的长,再结合图形根据线段的和差计算即可求解.【解答】解:作DE⊥AB于E,由题意得DE=BC=27米,∠ADE=47°,在Rt△ADE中,AE=DE•tan∠ADE=27×1.072=28.944米,AB=AE+BE≈30.4米,答:纪念碑的高度约为30.4米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2)∵四边形BEFD是平行四边形,∴DF=BE=4.∵DF∥EC,∴△DFG∽CEG,∴=,∴CE==4×=6.【点评】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.【考点】一次函数的应用.【分析】(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A地时甲车距A地的路程是175千米.【点评】本题考查了待定系数法一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC= a (用含a的代数式表示)【考点】全等三角形的判定与性质.【分析】探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC= a.故答案为a.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为4;当OO′⊥AD时,t的值为3.【考点】四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴E F=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0≤t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI =DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t 2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.【点评】本题考查四边形的综合问题,涉及矩形和菱形的性质,勾股定理,锐角三角函数,解方程等知识,综合程度较高,考查学生灵活运用知识的能力.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.【考点】二次函数综合题.【分析】(1)把(0,0)代入y=a(x﹣3)2+4即可解决问题.(2)①用m的代数式表示PQ、QQ′,即可解决问题.②分0<m≤3或3<m<6两种情形,画出图形,利用相似三角形或锐角三角函数求出相应线段即可解决.Q1A是菱形时,求(3),①当h=3时,两个抛物线对称轴x=3,四边形OAQQ′是等腰梯形.②当四边形OQ′1出抛物线对称轴即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣3)2+4经过原点,∴x=0时,y=0,∴9a+4=0,∴a=﹣.(2)∵抛物线y=a(x﹣h)2经过原点时,∴h=0,∵a=﹣,∴y=﹣x2.①∵P(m,﹣+m),Q(m,﹣),∴PQ=﹣+m﹣(﹣)=m,QQ′=2m,∴==.②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,∵=,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵=,∴EF=,OE=,∴l=OF+EF+OE=m++m=4m,当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HM⊥O A于M.∵AF=6﹣m,tan∠EAF==,∴EF=m,AE=,∵tan ∠PGF ==,PF=﹣+, ∴GF =﹣m2+2m , ∴AG=﹣m 2+m+6,∴GM=AM =﹣m 2+m+3,∵HG =HA=,=﹣m 2+m+5, ∴l=G H+EH+EF+FG=﹣m 2++10. 综上所述l=.(3)如图3中,①当h=3时,两个抛物线对称轴x=3,∴点O 、A 关于对称轴对称,点Q,Q ′关于对称轴对称,∴OA ∥QQ ′,O Q′=AQ,∴四边形OAQQ ′是等腰梯形,属于轴对称图形.②当四边形O Q′1Q 1A 是菱形时,OQ ′1=OA=6,∵Q ′1Q 1=OA=6,∴点Q1的纵坐标为4,在RT △OH Q′1,中,OH=4,OQ ′1=6,∴HQ ′1=2, ∴h=3﹣2或3+2,综上所述h=3或3﹣2或3+2时点O ,A,Q ,Q ′为顶点的四边形是轴对称图形.【点评】本题考查二次函数的综合题、相似三角形的性质和判定、菱形的性质、等腰梯形的性质,锐角三角函数等知识,解题的关键是学会分类讨论,需要正确画出图象解决问题,属于中考压轴题.。
吉林省长春市二道区2016届九年级5月中考模拟数学试题解析(解析版)
一、选择题(共8小题,每小题3分,满分24分)1.﹣34的倒数是()A.﹣43B.43C.﹣34D.34【答案】A 【解析】试题分析:﹣34的倒数是﹣43.故选A.考点:倒数.2.保护水资源,人人有责,我国是缺水国家,目前可利用淡水资源总量仅约为899000亿立方米,899000亿用科学记数法表示为()A.8.99×1013B.0.899×1014C.8.99×1012D.89.9×1011【答案】A【解析】试题分析:将899000亿=89900000000000用科学记数法表示为:8.99×1013.故选:A.考点:科学记数法—表示较大的数.3.由6个完全相同的小正方体搭成的几何体如图所示,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:俯视图从左到右分别是1,2,1个正方形.故选:C.考点:简单组合体的三视图.4.下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(2a)2=4a2D.a6÷a3=a2【答案】C【解析】试题分析:A、a3﹣a2不是同类项不能合并,故错误;B、a2•a3=a5,故错误;C、(2a)2=4a2,故正确;D、a6÷a3=a3,故错误;故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【答案】B【解析】试题分析:∵a=1,b=﹣4,c=2代,∴△=b2﹣4ac=(﹣4)2﹣4×1×2=8>0,∴方程有两个不相等的实数根.故选:B.考点:根的判别式.6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C..4【答案】D【解析】试题分析:菱形对角线互相垂直平分,∴BO=OD=2,AO=OC=3,∴∴菱形的周长为故选:D.考点:菱形的性质.7.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27°B.34°C.36°D.54°【答案】C考点:切线的性质.8.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【答案】D【解析】试题分析:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.考点:正比例函数的性质.二、填空题(共6小题,每小题3分,满分18分)9(填“<“,“=“或“>“).【答案】<【解析】试题分析:∵2,故答案为:<.考点:实数大小比较.10.不等式组2026xx-≥⎧⎨≥⎩的解集为.【答案】x≥3 【解析】试题分析:20 26xx-≥⎧⎨≥⎩①②由①得,x≥2,由②得,x≥3,故不等式组的解集为x≥3.故答案为x≥3.考点:解一元一次不等式组.11.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB=.【答案】70°【解析】试题分析:∵AB∥CD,∴∠A+∠MDN=180°,∴∠A=180°﹣∠MDN=45°,在△ABM中,∠AMB=180°﹣∠A﹣∠B=70°.故答案为:70°.考点:平行线的性质;三角形的外角性质.12.一个扇形的圆心角为60°,半径是10cm,则这个扇形的弧长是cm.【答案】10 3π【解析】试题分析:弧长是:6010180π∙=103πcm.考点:弧长的计算.13.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过点B(3,0),C(4,3),将抛物线y=ax2+bx+3向上平移,使顶点E落在平移,使顶点E落在x轴上的点F处,则由两条抛物线、线段EF和y轴围成的图形(图中阴影部分)面积S=.【答案】2【解析】试题分析:∵抛物线y=ax2+bx+3经过点B(3,0),C(4,3),∴93+c0 16433 a ba b+=⎧⎨++=⎩解得14 ab=⎧⎨=-⎩,∴抛物线的函数表达式为y=x2﹣4x+3;∴y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∴EF=1,阴影部分的面积等于平行四边形AEFD的面积,平行四边形AEFD的面积=1×2=2,∴阴影部分的面积=2.故答案是:2.考点:二次函数图象与几何变换.14.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=kx(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是.【答案】(94,0)【解析】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,23),∴n=2+m,即E点坐标为(2+m,23),∴k=2•m=23(2+m),解得m=1,∴E点坐标为(3,23),设直线GF的解析式为y=ax+b,把E(3,23),G(0,﹣2)代入得2332a bb⎧+=⎪⎨⎪=-⎩,解得892 ab⎧=⎪⎨⎪=-⎩,∴直线GF的解析式为y=89x﹣2,当y=0时,89x﹣2=0,解得x=94,∴点F的坐标为(94,0).考点:反比例函数与一次函数的交点问题.三、解答题(共10小题,满分78分)15.先化简,再求值:(224242xx x+---)2x÷,其中2.【答案】原式=22 x+,当2时,原式【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=242(2)2(2)(2)x xx x x+-+∙+-=(2)2(2)(2)x xx x x-∙+-=22x+,当2时,原式考点:分式的化简求值.16.把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.【答案】取出的2个乒乓球上面数字之和为偶数的概率=5 9.【解析】试题分析:先画树状图展示所有9种等可能的结果数,再找出取出的2个乒乓球上面数字之和为偶数的结果数,然后根据概率公式求解.试题解析:画树状图为:共有9种等可能的结果数,其中取出的2个乒乓球上面数字之和为偶数的结果数为5,所以取出的2个乒乓球上面数字之和为偶数的概率=5 9.考点:列表法与树状图法.17.供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?【答案】摩托车的速度是40km/h,抢修车的速度是60km/h.【解析】考点:分式方程的应用.18.如图,在△AEF中,点D,B分别在边AF和AF的延长线上,已知FB=AD,BC∥AE,且BC=AE,连结CD,CF,DE.求证:四边形CDEF是平行四边形.【答案】证明见解析【解析】试题分析:首先证明△AEF ≌△BCD 可得CD=EF ,∠EFD=∠CDB ,进而可证明ED ∥CF ,根据一组对边平行且相等的四边形是平行四边形可得结论.试题解析:∵BC ∥AE ,∴∠A=∠B ,∵FB=AD ,∴FB +DF=AD +DF ,∴AF=BD ,在△AEF 和△BCD 中,AE BC A B AF BD =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BCD (SAS ),∴CD=EF ,∠EFD=∠CDB ,∴CD ∥EF ,∴四边形CDEF 是平行四边形.考点:平行四边形的判定.19.如图,甲、乙两栋大楼相距78米,一测量人员从甲楼AC 的顶部看乙楼BD 的顶部其仰角为27°.如果甲楼的高为34米,求乙楼的高度是多少米?(结果精确到0.1米)【参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51】【答案】乙楼的高度约为73.8米【解析】试题分析:首先分析图形:根据题意构造直角三角形△ABE,解其可得BE的长,进而借助BD=ED+BE可解即可求出答案.试题解析:如图,在△ABE中,有BE=tan27°×AE=0.51×78=39.78(米),故BD=ED+BE=34+39.78≈73.8(米).答:乙楼的高度约为73.8米.考点:解直角三角形的应用-仰角俯角问题.20.今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,某校学生会为了调查学生对雾霾天气知识的了解程度,随机抽取了该校的n名学生做了一次跟踪调查,将调查结果分为四个等级:(A)非常了解.(B)比较了解.(C)基本了解.(D)不了解,并将调查结果绘制成如下两幅不完整统计图.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)在调查的n名学生中,对雾霾天气知识不了解的学生有人,并将条形统计图补充完整.(3)估计该校1500名学生中,对雾霾天气知识比较了解的学生人数.【答案】(1)n=20÷5%=400(人)(2)140;(3)该校1500名学生中,对雾霾天气知识比较了解的学生人数有225人.【解析】试题分析:(1)根据条形统计图和扇形统计图得到人数和百分比,计算即可;(2)根据样本容量等于频数之和计算;(3)用样本估计总体即可.试题解析:(1)由条形图可知,非常了解的人数是20人,由扇形统计图可知,非常了解的人数占5%,则n=20÷5%=400(人);(2)400﹣20﹣60﹣180=140,则对雾霾天气知识不了解的学生有140人.故答案为:140;(3)1500×60400=225(人).答:该校1500名学生中,对雾霾天气知识比较了解的学生人数有225人.考点;条形统计图;用样本估计总体;扇形统计图.21.某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y与甲的生产时间x(时)的函数图象如图所示.(1)甲车间每小时生产产品件,a=.(2)求乙车间更换新设备之后y与x之间的函数关系式,并求m的值.(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?【答案】(1)60,52小时;(2)乙车间更换新设备之后y与x之间的函数关系式为:y=160x﹣190,∴m=450件;(3)两个车间完成原任务量需要的时间是72小时.【解析】试题分析:(1)由开始甲、乙两个车间工作效率相同,于是得到开始甲、乙两个车间工作效率是每小时生产产品60个,即可得到结论;(2)设乙车间更换新设备之后y与x之间的函数关系式为:y=kx+b,把(52,210),(3,290)代入y=kx+b列方程组即可得到结论;(3)根据两个车间完成原任务量需要的时间=乙车间更换新设备前的时间+乙车间更换新设备中的时间+乙车间更换新设备后的时间,即可得到结论.试题解析:(1)∵开始甲、乙两个车间工作效率相同,∴开始甲、乙两个车间工作效率是每小时生产产品60个,∴a=21012060-+1=52小时,故答案为:60,52小时;(2)设乙车间更换新设备之后y与x之间的函数关系式为:y=kx+b,把(52,210),(3,290)代入y=kx+b得:521022903k bk b⎧=+⎪⎨⎪=+⎩,∴160190 kb=⎧⎨=-⎩,∴乙车间更换新设备之后y与x之间的函数关系式为:y=160x﹣190,当x=4时,y=450,∴m=450件;(3)两个车间完成原任务量需要的时间=乙车间更换新设备前的时间+乙车间更换新设备中的时间+乙车间更换新设备后的时间,即1+(52﹣1﹣12)﹣51450120601227120602⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦=+答:两个车间完成原任务量需要的时间是72小时.考点:一次函数的应用.22.阅读发现:(1)如图①,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD ,AE .易证:△BCD ≌△BAE .(不需要证明)提出问题:(2)在(1)的条件下,当BD ∥AE 时,延长CD 交AE 于点F ,如图②,求AF 的长. 解决问题:(3)如图③,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD ,AE .当∠BAE=45°时,点E 到AB 的距离EF 的长为2,求线段CD 的长为 .【答案】(2)1;(3)3.【解析】试题分析:(2)由△BCD ≌△BAE ,得到∠OAF=∠OCB ,根据“8字型”证明∠AFO=∠CBO=90°,在RT △BDC 中利用勾股定理求出CD ,再证明BD=EF 即可解决问题.(3)根据两边成比例夹角相等两三角形相似,可以证明△ABE ∽△CBD ,得AE BECD BD==AE 即可解决问题.试题解析:(2)如图②中,AB 与CF 交于点O . 由(1)可知:△BCD ≌△BAE ,∴∠OAF=∠OCB,CD=AE,∵∠AOF=∠COB,∴∠AFO=∠CBO=90°,∴CF⊥AE,∵BD∥AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE﹣1.∴AF=EF=2,∴=CD∴CD=.3考点:全等三角形的判定与性质;等腰直角三角形.23.如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,P、Q两点同时从点M出发,点P沿射线MA向右运动;点Q沿线段MD先向左运动至点D后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与△ABC重叠部分的面积为S.(1)当点R在线段AC上时,求出t的值.(2)求出S与t之间的函数关系式,并直接写出取值范围.(求函数关系式时,只须写出重叠部分为三角形时的详细过程,其余情况直接写出函数关系式.)(3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从C向B运动,当t为何值时,△LRE 是等腰三角形.请直接写出t的值或取值范围.【答案】(1)t=12 11;(2)S 与t 之间的函数关系式为:()()2222120,(0)111211212116,()24115223,35212,343318,488t t t t S t t t t t t t t t ⎧<≤⎪⎪⎪-+<≤⎪⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪-+<≤⎪⎪-++<≤⎪⎪⎩.(3)t 的取值范围是4≤t ≤8时,△LRE 是等腰三角形;当t=4s ,或t=8s 或136t =s或5t =-时,△LRE 是等腰三角形. 【解析】试题分析:(1)根据三角形相似可得RP CD AP AD =,即2648t t =-,解答即可;(2)根据点P 和点Q 的运动情况分情况讨论解答即可; (3)根据△LRE 是等腰三角形满足的条件. 试题解析:(1)当点R 在线段AC 上时,应该满足:RP DCAP AD=, 设MP 为t ,则PR=2t ,AP=4﹣t ,∴可得:RP DC AP AD =,即2648t t =-,解得:t=1211;(2)当12011t <≤时,正方形PRLQ 与△ABC 没有重叠部分,所以重叠部分的面积为0;当1212115t <≤时,正方形PRLQ 与△ABC 重叠部分的面积为直角三角形KRW 的面积=211141112133116243424t t t t ⎛⎫⎛⎫⨯-⨯⨯-=-+ ⎪ ⎪⎝⎭⎝⎭, 212111624S t t =-+;当1235t <≤时,正方形PRLQ 与△ABC 重叠部分的面积=12×(2t ﹣3)2t=2t 2﹣3t .当3<t ≤4时,正方形PRLQ 与△ABC 重叠部分的面积=12×(12﹣2t )×2t=﹣2t 2+12t . 当4<t ≤8时,正方形PRLQ 与△ABC 重叠部分的面积为S=233+188t t -+;综上所述S 与t 之间的函数关系式为:()()2222120,(0)111211212116,()24115223,35212,343318,488t t t t S t t t t t t t t t ⎧<≤⎪⎪⎪-+<≤⎪⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪-+<≤⎪⎪-++<≤⎪⎪⎩.(3)在点P 、点Q 运动的同时,有一点E 以每秒1个单位的速度从C 向B 运动,①当点E 是BC 的中点时,点E 在LR 的中垂线线上时,EL=ER .此时t=4s ,△LRE 是等腰三角形; 当点E 与点B 重合时,点E 在LR 的中垂线线上时,EL=ER .此时t=8s ,△LRE 是等腰三角形; 综上所述,t 的取值范围是4≤t ≤8; ②当EL=LR 时,如图所示:LR=2t ,CF=NL=4﹣t ,则EF=2t ﹣4.FL=CN=6﹣2t ,则在直角△EFL 中,由勾股定理得到:EL 2=EF 2+FL 2=(2t ﹣4)2+(6﹣2t )2. 故由EL=LR 得到:EL 2=LR 2,即4t 2=10t 2﹣40t +52, 整理,得 t 2﹣10t +13=0,解得 t 1=5+t 2=5﹣所以当t=5﹣s )时,△LRE 是等腰三角形; 同理,当ER=LR 时,13t 6=.综上所述,t 的取值范围是4≤t ≤8时,△LRE 是等腰三角形;当t=4s ,或t=8s 或13t 6=s 或t 5=-时,△LRE 是等腰三角形. 考点;四边形综合题.24.如图,在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A 、C 的坐标分别为(0,、(0),将矩形OABC 绕点O 顺时针旋转45°得到矩形OA ′B ′C ′,边A ′B ′与y 轴交于点D ,经过坐标原点的抛物线y=ax 2+bx 同时经过点A ′、C ′. (1)求抛物线所对应的函数表达式; (2)写出点B ′的坐标;(3)点P 是边OC ′上一点,过点P 作PQ ⊥OC ′,交抛物线位于y 轴右侧部分于点Q ,连接OQ 、DQ ,设△ODQ 的面积为S ,当直线PQ 将矩形OA ′B ′C ′的面积分为1:3的两部分时,求S 的值;(4)保持矩形OA ′B ′C ′不动,将矩形OABC 沿射线CO 方向以每秒1个单位长度的速度平移,设平移时间为t 秒(t >0).当矩形OABC 与矩形OA ′B ′C ′重叠部分图形为轴对称多边形时,直接写出t 的取值范围.【答案】(1)抛物线的解析式为y=﹣23x 2+13x ; (2)B ′(1,﹣3);(3)S △ODQ ′=12×2(4)0≤t ≤2或1≤t ≤矩形OABC 与矩形OA ′B ′C ′重叠部分图形为轴对称多边形. 【解析】试题分析:(1)求出A 、C 两点坐标,把A 、C 两点坐标代入y=ax 2+bx 解方程组即可. (2)如图1中,连接A ′C ′,OB ′交于点E .求出点E 坐标,根据中点坐标公式即可解决问题.(3)分两种情形①当OP:PC′=1:3时,P(12,﹣12),求出直线PQ的解析式,利用方程组求出点Q坐标即可.②当OP′:P′C′=3:1时,P′(32,﹣32),方法类似.(4)分别求出①如图3中,当AB经过点C′时,②如图4中,当O′C′=O′③如图5中,当点A在直线B′C′上时的时间t,观察图象即可解决问题.试题解析:(1)如图1中,由题意A′(﹣1,﹣1),C′(2,﹣2),把A′(﹣1,﹣1),C′(2,﹣2)代入y=ax2+bx得1 422 a ba b-=-⎧⎨+=-⎩,解得2313ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的解析式为y=﹣23x2+13x.(2)如图1中,连接A′C′,OB′交于点E.∵四边形OA′B′C′是矩形,∴A′E=EC′,OE=EB′,∵A′(﹣1,﹣1),C′(2,﹣2),∴E(12,﹣32),∴B′(1,﹣3).(3)如图2中,∵直线PQ将矩形OA′B′C′的面积分为1:3的两部分,∴OP:PC′=1:3或OP′:P′C′=3:1.①当OP :PC ′=1:3时,P (12,﹣12),直线PQ 的解析式为y=x ﹣1, 由212133y x y x x =-⎧⎪⎨=-+⎪⎩,解得12x y ⎧-+=⎪⎪⎨⎪=⎪⎩12x y ⎧-=⎪⎪⎨⎪=⎪⎩Q 在第四象限, ∴QD (0,﹣2),∴S △ODQ =12×2②当OP ′:P ′C ′=3:1时,P ′(32,﹣32),∴直线P ′Q ′的解析式为y=x ﹣3, 由232133y x y x x =-⎧⎪⎨=-+⎪⎩解得72x x ⎧=⎪⎪⎨-⎪=⎪⎩或72y y ⎧=⎪⎪⎨--⎪=⎪⎩, ∴Q ′(12-+,72-S △ODQ ′=12×2×12-=12-.(4)如图3中,当AB 经过点C ′时,2, 如图4中,当O ′C ′=O ′A=时,AB 与B ′C ′交于点M ,连接O ′M ,则△O ′MA ≌△O ′MC ′,此时t=OO ′如图5中,当点A 在直线B ′C ′时上,t=OO ′1.综上所述,观察图形可知0≤t ≤2或1≤t ≤OABC 与矩形OA ′B ′C ′重叠部分图形为轴对称多边形.考点:二次函数综合题,考查矩形的性质、三角形的面积、中点坐标公式、平移变换。
吉林省长春市中考数学试卷有答案
2016年吉林省长春市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.52.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×1033.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a 的代数式表示)23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD 时,t的值为.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.2016年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:45000这个数用科学记数法表示为4.5×104,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的平面图形即为该组合体的俯视图,据此求解.【解答】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.【点评】本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选B.【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=a3b3.【考点】幂的乘方与积的乘方.【专题】计算题;整式.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=a3b3,故答案为:a3b3【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC+AB来解决,属于基础题,中考常考题型.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B点坐标,再代入直线y=kx+3,求出k的值即可.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为30度.【考点】圆周角定理.【分析】由∠BAO=25°,利用等腰三角形的性质,可求得∠AOB的度数,又由∠OCA=40°,可求得∠CAO 的度数,继而求得∠AOC的度数,则可求得答案.【解答】解:∵∠BAO=25°,OA=OB,∴∠B=∠BAO=25°,∴∠AOB=180°﹣∠BAO﹣∠B=130°,∵∠ACO=40°,OA=OC,∴∠C=∠CAO=40°,∴∠AOC=180°﹣∠CAO﹣∠C=100°,∴∠BOC=∠AOB﹣∠AOC=30°.故答案为30°.【点评】本题考查了圆周角定理以及等腰三角形的性质.注意利用等腰三角形的性质求解是关键.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.【考点】二次函数的性质;菱形的性质.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,然后根据三角形面积公式得出∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,∵﹣<0,∴S△BCD有最大值,最大值为,故答案为.【点评】本题库存了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.【考点】整式的混合运算—化简求值.【专题】计算题;探究型.【分析】根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.【解答】解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是3的概率.【解答】解:列表得:∴P(和为3)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题的关键是要区分放回实验还是不放回实验.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【考点】分式方程的应用.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.【考点】条形统计图;用样本估计总体.【分析】(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的百分比,继而求得答案.【解答】解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;(2)根据题意得:×1100=385(人),答:估计该校1100名学生中一年的课外阅读量超过10本的人数为:385人.【点评】此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】【考点】解直角三角形的应用-仰角俯角问题.【分析】作DE⊥AB于E,根据正切的概念求出AE的长,再结合图形根据线段的和差计算即可求解.【解答】解:作DE⊥AB于E,由题意得DE=BC=27米,∠ADE=47°,在Rt△ADE中,AE=DE•tan∠ADE=27×1.072=28.944米,AB=AE+BE≈30.4米,答:纪念碑的高度约为30.4米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2)∵四边形BEFD是平行四边形,∴DF=BE=4.∵DF∥EC,∴△DFG∽CEG,∴=,∴CE==4×=6.【点评】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.【考点】一次函数的应用.【分析】(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A地时甲车距A地的路程是175千米.【点评】本题考查了待定系数法一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=a(用含a的代数式表示)【考点】全等三角形的判定与性质.【分析】探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案为a.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为4;当OO′⊥AD时,t 的值为3.【考点】四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0≤t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.【点评】本题考查四边形的综合问题,涉及矩形和菱形的性质,勾股定理,锐角三角函数,解方程等知识,综合程度较高,考查学生灵活运用知识的能力.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.【考点】二次函数综合题.【分析】(1)把(0,0)代入y=a(x﹣3)2+4即可解决问题.(2)①用m的代数式表示PQ、QQ′,即可解决问题.②分0<m≤3或3<m<6两种情形,画出图形,利用相似三角形或锐角三角函数求出相应线段即可解决.(3),①当h=3时,两个抛物线对称轴x=3,四边形OAQQ′是等腰梯形.②当四边形OQ′1Q1A是菱形时,求出抛物线对称轴即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣3)2+4经过原点,∴x=0时,y=0,∴9a+4=0,∴a=﹣.(2)∵抛物线y=a(x﹣h)2经过原点时,∴h=0,∵a=﹣,∴y=﹣x2.①∵P(m,﹣+m),Q(m,﹣),∴PQ=﹣+m﹣(﹣)=m,QQ′=2m,∴==.②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,∵=,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵=,∴EF=,OE=,∴l=OF+EF+OE=m++m=4m,当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HM⊥OA 于M.∵AF=6﹣m,tan∠EAF==,∴EF=m,AE=,∵tan∠PGF==,PF=﹣+,∴GF=﹣m2+2m,∴AG=﹣m2+m+6,∴GM=AM=﹣m2+m+3,∵HG=HA=,=﹣m2+m+5,∴l=GH+EH+EF+FG=﹣m2++10.综上所述l=.(3)如图3中,①当h=3时,两个抛物线对称轴x=3,∴点O、A关于对称轴对称,点Q,Q′关于对称轴对称,∴OA∥QQ′,OQ′=AQ,∴四边形OAQQ′是等腰梯形,属于轴对称图形.②当四边形OQ′1Q1A是菱形时,OQ′1=OA=6,∵Q′1Q1=OA=6,∴点Q1的纵坐标为4,在RT△OHQ′1,中,OH=4,OQ′1=6,∴HQ′1=2,∴h=3﹣2或3+2,综上所述h=3或3﹣2或3+2时点O,A,Q,Q′为顶点的四边形是轴对称图形.【点评】本题考查二次函数的综合题、相似三角形的性质和判定、菱形的性质、等腰梯形的性质,锐角三角函数等知识,解题的关键是学会分类讨论,需要正确画出图象解决问题,属于中考压轴题.。
【中考真题】吉林省长春市2016年中考数学试题(附答案)
2016年长春市初中毕业生学业考试数 学本试卷包括三道大题,共24道小题,共6页。
全卷满分120分.考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一、选择题(本大题共8小题,每小题3分,共24分)1.5-的相反数是(A )15-. (B )15. (C )5-. (D )5. 2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45 000多名.45 000这个数用科学记数法表示为(A )34510⨯ (B )44.510⨯. (C )54.510⨯. (D )50.4510⨯.3.右图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是(A ) (B ) (C ) (D )4.不等式组226x x +⎧⎨-⎩的解集在数轴上表示正确的是(A ) (B )(C ) (D )5.把多项式269x x -+分解因式,结果正确的是(A )2(3)x -.(B )2(9)x -. (C )(3)(3)x x +-.(D )(9)(9)x x +-. 6.如图,在Rt △ABC 中,∠BAC=90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △''A B C ,点A 在边'B C 上,则∠'B 的大小为(A )42°. (B )48°.(C )52°. (D )58°.(第6题)7.如图,P A 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°,则»AB 的长为(A )23π. (B )π. (C )43π. (D )53π.(第7题) (第8题)(第3题) >0 ≤08.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数(0)ky xx=>的图象上,当1m>时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D. QD 交PA于点E,随着m的增大,四边形ACQE的面积(A)减小.(B)增大.(C)先减小后增大.(D)先增大后减小.二、填空题(本大题共6小题,每小题3分,共18分)9.计算:3()ab= .10.关于x的一元二次方程220x x m++=有两个相等的实数根,则m的值是.11.如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,A C=4,则△ACD的周长为.(第11题) (第12题) (第13题)12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线3y kx=+上,则k的值为.13.如图,在⊙O中,AB是弦,C是»AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.14.如图,在平面直角坐标系中,菱形O A B C的顶点A在x轴正半轴上,顶点C的坐标为(4,3).D是抛物线26y x x=-+上一点,且在x轴上方.则△BCD的最大值为.(第14题)三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2)(2)(4)a a a a+-+-,其中14a=.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字0,1,2.每个小球除数字不同外其余均相同.小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字.用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.(6分)A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.求A型机器每小时加工零件的个数.18.(6分)某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图.根据统计图提供的信息解答下列问题:(1)求n的值.(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.n名学生一年的课外阅读量的人数条形统计图(第18题)19.(7分)如图,为了测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度.(结果精确到0.1米.)【参考数据:sin470.731︒=,cos470.682︒=,tan47 1.072︒=】(第19题)20.(7分)如图.在□ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE.EF与CD交于点G.(1)求证:BD∥EF.(2)若23DGGC=,BE=4,求EC的长.(第20题)21.(9分)甲、乙两车分别从A、B两地同时出发.甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间.(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围.(3)求乙车到达A地时甲车距A地的路程.(第21题)22.(9分)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC=____.(用含a的代数式表示)图①图②图③(第22题)23.(10分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°.点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFGH.设点E运动的时间为t秒.(1)求线段EF的长.(用含t的代数式表示)(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积为S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点'O.当'OO∥AD时,t的值为______;当'OO⊥AD时,t的值为______.(第23题)24.(12分)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物 线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m .(1)求a 的值.(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .①求'PQ QQ 的值. ②求l 与m 之间的函数关系式.(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.(第24题)2016长春市中考数学题参考答案一、选择题1.D2.B3.C4.C5.A6.A7.C8.B二、填空题9.a³b³ ; 10.1 ; 11.10 ;12.﹣2;13.30;14.15三、解答题15.原式=a -4+4a -a²=4a -4当a =错误!未找到引用源。