(全国通用)2020版高考数学二轮复习第二层提升篇专题七选考系列第1讲坐标系与参数方程讲义
高考数学二轮复习练习-专题七数学文化练典型习题提数学素养
一、选择题1.我国古代数学著作《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人解析:选 B.由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.故选B. 2.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B.法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B.法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B.3.(2019·山东淄博模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7解析:选C.由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎨⎧a 1=1516,d =18.所以该金箠的总重量 M =10×1516+10×92×18=15. 因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C.4.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D.因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D.5.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A.先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A.6.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A.五寸B.二尺五寸C.三尺五寸D.四尺五寸解析:选B.设从夏至到冬至的晷长依次构成等差数列{a n},公差为d,a1=15,a13=135,则15+12d=135,解得d=10.所以a2=15+10=25,所以小暑的晷长是25寸.故选B.7.(2019·江西七校第一次联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{a n}称为“斐波那契数列”,则a2 017·a2 019-a22 018等于()A.1 B.-1C.2 017 D.-2 017解析:选A.因为a1a3-a22=1×2-1=1,a2a4-a23=1×3-22=-1,a3a5-a24=2×5-32=1,a4a6-a25=3×8-52=-1,…,由此可知a n a n+2-a2n+1=(-1)n+1,所以a2 017a2 019-a22 018=(-1)2 017+1=1,故选A.8.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B.由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.9.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A.依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A.10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B.设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B. 11.(多选)(2019·济南模拟)如图是谢宾斯基三角形,在所给的四个三角形图案中,黑色的小三角形个数构成数列{a n }的前4项,则( )A .a n =3n -1 B .a n =2n -1C .a 4=27D .a n -a n -1=2·3n -2(n ≥2) 解析:选ACD.黑色的小三角形个数构成数列{a n }的前4项,分别为a 1=1,a 2=3,a 3=3×3=32,a 4=32×3,因此{a n }的通项公式可以是a n =3n -1.12.(多选)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里C .此人第三天走的路程占全程的18D .此人后三天共走了42里路解析:选ABD.设此人第n 天走a n 里路,前n 天共走S n 里路.由题意可知,{a n }是首项为a 1,公比q =12的等比数列,由等比数列前n 项和公式得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192. 在A 中,a 2=192×12=96,故A 正确; 在B 中,378-192=186,192-186=6,故B 正确;在C 中,a 3=192×14=48,48378>18,故C 错误; 在D 中,a 4+a 5+a 6=192×⎝⎛⎭⎫18+116+132=42,故D 正确.13.(多选)中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,下列命题正确的是( )A .对于任意一个圆O ,其“太极函数”有无数个B .函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”C .正弦函数y =sin x 可以同时是无数个圆的“太极函数”D .函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形解析:选AC.过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O ,其“太极函数”有无数个,故A 正确;函数f (x )=ln(x 2+x 2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故B 错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故C 正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故D 错误.二、填空题14.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)解析:表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R ,(2R )2=62+22+12,解得R 2=414,所以该球形容器的表面积的最小值为4πR 2=41π.答案:41π15.《九章算术》是我国古代内容极为丰富的数学名著,其中“勾股”章讲述了“勾股定理”及一些应用.直角三角形的三条边分别称为“勾”“股”“弦”.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,若线段PF 2,PF 1分别是Rt △F 1PF 2的“勾”“股”,则点P 的横坐标为________.解析:由题意知半焦距c =3,又PF 1⊥PF 2,故点P 在圆x 2+y 2=3上,设P (x ,y ),联立,得⎩⎪⎨⎪⎧x 2+y 2=3,x 24+y 2=1,得P ⎝⎛⎭⎫263,33. 故点P 的横坐标为263. 答案:26316.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了黄金分割,其比值约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n 2cos 227°-1=________. 解析:由题设n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=2·(2sin 18°cos 18°)cos 54°=2sin 36°sin 36°=2. 答案:217.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:262-1。
高考物理二轮总复习精品课件 第一编 核心专题突破 专题7 热学(选考) 专题七 热学(选考)
(2)若气体质量一定,p、V、T均发生变化,则选用理想气体状态方程列式求
解。
命题角度2关联气体问题
与活塞、液柱相联系的“两团气”问题,要注意寻找“两团气”之间的压强、
体积或位移关系,列出辅助方程,最后联立求解。
命题角度3气体状态变化的图像问题
命题角度4与热力学第一定律综合问题
温馨提示气体等压膨胀(压缩)时,气体对外界(外界对气体)做功W=pΔV。
0
可知当体积
增大时,单位体积内分子个数变少,分子的密集程度变小,A错误;气体压强
产生的原因是大量气体分子对容器壁的持续的、无规则撞击,压强增大并
不是因为分子间斥力增大,B错误;普通气体在温度不太低、压强不太大的
情况下才能看作理想气体,C错误;温度是气体分子平均动能的标志,大量气
体分子的速率呈现“中间多、两边少”的规律,温度变化时,大量分子的平均
板和冷热两端管等构成。高压氮气由喷嘴切向流入涡流室中,然后以螺旋
方式在环形管中向右旋转前进,分子热运动速率较小的气体分子将聚集到
环形管中心部位,而分子热运动速率较大的气体分子将聚集到环形管边缘
部位。气流到达分离挡板处时,中心部位气流与分离挡板碰撞后反向,从A
端流出,边缘部位气流从B端流出。下列说法正确的是(
内外气体对活塞的压力差大于重力沿汽缸壁的分力,故汽缸内气体缓慢地
将活塞往外推,最后汽缸水平,缸内气压等于大气压。汽缸、活塞都是绝热
的,故缸内气体与外界没有发生热传递,汽缸内气体压强作用将活塞往外推,
气体对外做功,根据热力学第一定律ΔU=Q+W得:气体内能减小,故缸内理
想气体的温度降低,分子热运动的平均速率减小,并不是所有分子热运动的
高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版
典例3 (2020·南平三模)在平面直角坐标系 xOy 中,以原点
O 为极点,以 x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为
ρ=1-c2os
θ,直线
l1
的参数方程为xy==ttcsions
α α
(t 为参数),π2<α<π,点 A
为直线 l1 与曲线 C 在第二象限的交点,过 O 点的直线 l2 与直线 l1 互相垂 直,点 B 为直线 l2 与曲线 C 在第三象限的交点.
19
1.(2020·中原区校级模拟)在平面直角坐标系 xOy 中,以坐标原点为 极点,x 轴正半轴为极轴建立极坐标系,曲线 C1:ρ=4sin θ,曲线 C2:ρ =4cos θ.
(1)求曲线 C1 与 C2 的直角坐标方程; (2)若直线 C3 的极坐标方程为 θ=π3(ρ∈R),设 C3 与 C1 和 C2 的交点 分别为 M,N,求|MN|.
25
典例2 (2020·河南模拟)在平面直角坐标系 xOy 中,曲线 C
的
参
数
方
程
为
x=2cos α y= 3sin α
(α
为参数),直线
l 的参数方程为
x=1+tcos α y=tsin α
(t 为参数).
(1)求曲线 C 和直线 l 的一般方程;
(2)已知点 P(1,0),直线 l 和曲线 C 交于 A,B 两点,若|PA|·|PB|=152,
14
典例1 (2020·沙坪坝区校级模拟)在平面直角坐标系 xOy 中, 以原点 O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C1 的极坐标
方程为
ρ=2acosθ,曲线
C2
的极坐标方程为
专题七 数学建模 2023高考数学二轮复习课件
角度一 指数、对数运算模型
【例1】 某人喝了一定量的酒后,其血液中的酒精含量上升到0.8 mg/mL,此
时他停止饮酒,其血液中的酒精含量以每小时20%的速度减少,经过n小
时后他血液中的酒精含量在0.2 mg/mL以下,则n的最小整数值为(参考数
据:lg 2≈0.30,lg 3≈0.48)
(B )
cos 45°=22ar=22ab= 22,即ba= 22,故离心率 e=ac= 故选 B.
1-ba2=
1-12=
2 2.
目录
02
类型2 构造新模型求解
目录
角度一 构造函数模型
【例4】 f(x)在(0,+∞)上的导函数为f′(x),xf′(x)>2f(x),则下列不等式成
立的是
(A)
A.2 0212f(2 022)>2 0222f(2 021)
以下,所以 n 的最小值为 7,故选 B.
目录
|技法点拨| 先计算出100 mL血液中酒精含量,再构建指数型函数模型,根据 n小时后血液中酒精含量列出不等式即可求解.
目录
在流行病学中,基本传染数是指每个感染者平均可传染的人数.当基本传染
数高于 1 时,每个感染者平均会感染一个以上的人,从而导致感染这种疾病
B.2 0212f(2 022)<2 0222f(2 021)
C.2 021f(2 022)>2 022f(2 021)
D.2 021f(2 022)<2 022f(2 021)
目录
解析
令
g(x)
=
f(x) x2
(x>0)
,
则
g′(x)
=
x2f′(x)-2xf(x) x4
=
第1讲 平面直角坐标系与函数(题型精练)(解析版)
第1讲 平面直角坐标系与函数(精练)A 基础训练B 能力提升 A 基础训练一、单选题1.(2022秋·北京西城·七年级期中)若0m <,则点(3,2)P m -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【详解】∵0m <,∴20m ,∴点(3,2)P m -所在的象限是第三象限.故选:C 2.(2022春·八年级单元测试)在平面直角坐标系中,点()23,关于y 轴对称的点的坐标是( ) A .()23--,B .()23-,C .()23-,D .()23,【答案】C 【详解】解:点()23,关于y 轴对称的点的坐标是()23-, . 故选:C .3.(2022春·八年级单元测试)如图,若在象棋盘上建立直角坐标系,使“将”位于点()01-,,“象”位于()21-,,则“炮”位于点( )A .()32-,B .()43-,C .()30-,D .()11-, 【答案】A 【详解】解:由“将”位于点(0,﹣1),“象”位于(2,﹣1),得,“炮”位于点(﹣3,2).故选:A . 4.(2022春·福建莆田·八年级统考期中)如图,笑脸盖住的点的坐标可能为( )A .()4,3--B .()4,3C .()4,3-D .()4,3-【答案】C 【详解】解:A .()4,3--在第三象限,故A 错误;B .()4,3在第一象限,故B 错误;C .()4,3-在第二象限故,C 正确;D .()4,3-在第四象限,故D 错误.故选:C .5.(2022秋·四川泸州·七年级统考期末)“十里绿荫岸,千亩桂圆林”,有关部门对张坝桂圆林古树实行分级保护和标准认定,百年以上古树均有窝位图,经纬坐标等详细信息.如图是其中的三棵古树A ,B ,C 的平面分布图.如果A 的位置用坐标表示为(1,0),C 的位置用坐标表示为(2,1)-,则B 的位置用坐标表示为( )A .(0,1)-B .(2,0)-C .(1,1)--D .(1,2)-【答案】C 【详解】解:由(1,0)A ,(2,1)C -判断坐标原点,如图所示,∴(1,1)B --,故选:C .6.(2022·全国·七年级专题练习)中国象棋是中华民族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1,2)--,“马”位于点(2,2)-,则“兵”位于点( )A .(1,1)-B .(2,1)-C .(3,1)-D .(2,1)--【答案】C 【详解】如图所示,根据题意可建立如图所示平面直角坐标系,则“兵”位于点(-3,1).故选:C .7.(2022秋·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考期中)下列各表达式不是表示y 是x 的函数的是( )A .23y x =B .1y x =C .2y x =()0x >D .23y x = 【答案】C【详解】解:∵对于x 的每一个取值,y 都有唯一确定的值,∴23y x =,1y x =,23y x =,对于x 的每一个取值,y 有唯一的值对应,所以y 是x 的函数,A 、B 、D 不符合题意; 2y x =()0x >,对于x 的每一个取值,y 不是唯一的值对应,如当1x =时,2y =±,所以y 不是x 的函数,C 符合题意.故答案为:C .8.(2022春·全国·八年级专题练习)已知函数52y x =-,则自变量x 的取值范围是( ) A .2x >B .2x <C .2x ≠-D .2x ≠ 【答案】D【详解】解:20x -≠,∴2x ≠. 故选:D .9.(2022春·黑龙江哈尔滨·九年级统考期中)周日,东东从家步行到图书馆查阅资料,查完资料后,东东立刻按原路回家.已知回家时的速度是去时速度的1.5倍,在整个过程中,东东离家的距离s (单位:m )与他所用的时间t (单位:min )之间的关系如图所示,则东东在图书馆查阅资料的时间为( )A .55minB .40minC .30minD .25min【答案】C【详解】解:根据图象可知,东东从家步行到图书馆的速度为:120080m/min 15=,∵回家时的速度是去时速度的1.5倍,∴回家时的速度为:1.580120m/min ⨯=,则回家所用的时间为:120010m/min 120=,∴东东在图书馆查阅资料的时间为:()55151030min -+=,故选:C .10.(2022春·安徽合肥·八年级统考期中)函数129y x x =+--中,自变量x 的取值范围是()A .2x ≥B .2x ≥且9x ≠C .9x ≠D .29x ≤<【答案】B【详解】解:9020x x -≠⎧⎨-≥⎩,解得2x ≥且9x ≠.故选:B .11.(2022春·八年级单元测试)以下是甲、乙、丙三人看地图时对四个地标的描述:甲∶从学校向北直走500米,再向东直走100米可到新华书店.乙:从学校向西直走300米,再向南直走200米可到市政府.丙:市政府在火车站西方200米处.根据三人的描述,若从新华书店出发,则下列走法中,终点是火车站的是( )A .向南直走700米,再向西直走200米B .向南直走700米,再向西直走600米C .向南直走300米,再向西直走200米D .向南直走300米,再向西直走600米【答案】A 【详解】解:如图,以学校为坐标原点画出直角坐标系,1个单位长表示100米,A .从新华书店出发,向南直走700米,再向西直走200米可到火车站,符合题意;B ,C ,D 的走法不能到达火车站.故选:A .12.(2022春·八年级单元测试)已知点()32M -,与点()M x y ',在同一条平行于x 轴的直线上,且M '到y 轴的距离等于4,那么点M '的坐标是( )A .()42,或()42-, B .()42-,或()42-,- C .()42-,或()52--, D .()42-,或()12--, 【答案】B 【详解】解:∵点()32M ,-与点()M x y ',在同一条平行于x 轴的直线上, ∴M '的纵坐标=2y -,∵M '到y 轴的距离等于4,∴M '的横坐标为4或4-.所以点M '的坐标为()42-,或()42--, 故选:B .13.(2022春·广东梅州·八年级校考阶段练习)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如 ()1,0,()2,0,()2,1,()1,1,()1,2,()2,2,,根据这个规律,第 334 个点的坐标为( )A .()817, B .()8,16 C .()7,17 D .()7,18【答案】A 【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,右下角的点的横坐标为1,共有1个点,211=右下角的点的横坐标为2时,共有2个点,242=,右下角的点的横坐标为3时,共有9个点,293=,右下角的点的横坐标为4时,共有16个点,2164=,右下角的点的横坐标为n 时,共有2n 个点,218324=,∴第324个点的坐标为()18,17,∵18是偶数,再往左数10个点得到第334个点的坐标,为()817, ∴第334个点是()817,,故选:A .14.(2022春·陕西西安·八年级校考期中)在平面直角坐标系中,将直线31y x =-向上平移()0m m >个单位长度,使其与直线24y x =-+的交点位于第二象限,则m 的取值范围为( )A .3m >B .4m >C .5m >D .6m >【答案】C【详解】解:将直线31y x =-向上平移()0m m >个单位长度,可得:31y x m =-+, 联立两直线解析式得3124y x m y x =-+⎧⎨=-+⎩, 解得15225m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩, 即交点坐标为21255m m ⎛⎫-+ ⎪⎝⎭,, 交点在第二象限,1052205m m ⎧-<⎪⎪∴⎨⎪+>⎪⎩, 解得:5m >.故选:C .15.(2022秋·北京顺义·八年级阶段练习)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程()km y 与它们的行驶时间()h x 之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了1.6h ;②快车速度比慢车速度多10km/h ;③图中350a =;④慢车先到达目的地.其中正确的是( )A .①④B .②③C .②④D .①③【答案】A【详解】当2h t =时,表示两车相遇,2~2.5h 表示两车都在休息,没有前进,2.5~3.6时,其中一车行驶,其速度为88080km/h 3.6 2.5-=-,设另一车的速度为km/h x ,依题意得()280360,x +=解得100km/h x =,故快车途中停留了3.62 1.6h -=,①正确;快车速度比慢车速度多20km/h ,②错误;5h t =时,慢车行驶的路程为()50.580360km -⨯=,即得到目的地,比快车先到,故④正确;5h t =时,快车行驶的路程为()5 1.6100340km -⨯=,即340a =,故③错误;故选:A .16.(2022秋·湖南衡阳·八年级衡阳市第十五中学校考期末)如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图像大致为( )A .B .C .D .【答案】A【详解】当点P 在AB 边上时,如图1所示:设菱形的高为h ,12y AP h =⋅, ∵AP 随x 的增大而增大,h 不变,∴y 随x 的增大而增大,故选项C 和D 不正确;当点P 在BC 边上时,如图2所示:12y AD h =⋅, ∵AD 和h 不变,∴在这个过程中y 不变,故选项B 不正确;当点P 在CD 边上时,如图3所示:12y PD h =⋅, ∵PD 随x 的增大而减小,h 不变,∴y 随x 的增大而减小,∵P 点从点A 出发沿A B C D →→→路径匀速运动到点D ,∴P 在三条线段上运动的时间相同,故选项A 正确;故选:A .二、填空题17.(2022·全国·七年级专题练习)已知点()5,6A -,()3,2B -,AC x ∥轴,∥BC y 轴,则点C 的坐标是_____.【答案】()3,6【详解】因为点()5,6A -,AC x ∥轴,所以点C 的纵坐标为6;因为()3,2B -, ∥BC y 轴,所以点C 的横坐标为3;所以点C 的坐标是()3,6.故答案为:()3,6.18.(2022秋·北京·七年级校考期中)在平面直角坐标系中,已知点()2,1A ,直线AB 与x 轴平行,若4AB =,则点B 的坐标为___________.【答案】()2,1-或()6,1【详解】解:在平面直角坐标系中,已知点()2,1A ,直线AB 与x 轴平行,∴B 点的纵坐标与A 点纵坐标相同,4AB =,分两种情况讨论:①若B 在A 点左侧,相当于将()2,1A 向左数4个单位长度,得到()2,1B -;②若B 在A 点右侧,相当于将()2,1A 向右数4个单位长度,得到()6,1B ;故答案为:()2,1-或()6,1.19.(2022·全国·八年级专题练习)如图是一台雷达探测相关目标得到的结果,若记图中目标A 的位置为(2,90︒),目标B 的位置为(4,30︒),现有一个目标C 的位置为(3,m ︒),且与目标B 的距离为5,则目标C 的位置为______.【答案】(3,300°)或(3,120°)【详解】解:如图:设中心点为点O,在BOC中,===,4,3,5OB OC BC222∴+=,OB OC BC∴是直角三角形,且90BOC∠=BOC∴C的位置为:(3,300︒)或(3,120︒).20.(2022秋·辽宁沈阳·七年级沈阳市南昌初级中学(沈阳市第二十三中学)阶段练习)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间()s x之间的关系如图所示则当甲到达终点时,乙跑了______米.【答案】1380【详解】解:由题意得÷=(米/秒),乙的速度:18001200 1.5甲的速度:1.5300300 2.5+÷=(米/秒),∴两人相距300米时,甲跑的路程是2.5300750⨯=(米),此时离终点距离为180********-=(米),∴从会合点到终点甲的用时是1050 2.5420÷=(秒)乙从会合点跑420秒路程是420 1.5630⨯=(米),∴当甲到终点时,乙跑的总路程是7506301380+=(米).故答案为:1380.21.(2022春·广东梅州·九年级校考阶段练习)某条河受暴雨袭击,水位的变化情况如下表:时间/h 0 4 8 12 16 20 24水位/m 2 2.5 3 45 6 8 (1)上表反映了___________和___________之间的关系,自变量是___________,因变量是___________. (2)12h 时,水位是___________m .(3)___________h 至___________h 水位上升最快.【答案】 水位 时间 时间 水位 4 20 24【详解】解:(1)由表可知:反映了时间和水位之间的关系,自变量是时间,因变量是水位; (2)由表可以看出:12时,水位是4米;(3)由表可以看出:在相等的时间间隔内,20时至24时水位上升最快.故答案为:水位;时间;时间;水位;4;20;24.三、解答题22.(2022春·陕西宝鸡·八年级统考期中)已知点()2,31A a a +是平面直角坐标系中的点.(1)若点A 在第二象限的角平分线上,求a 的值;(2)若点A 在第三象限,且到两坐标轴的距离和为9,请确定点A 的坐标.【答案】(1)15a =- (2)()4,5A --【详解】(1)解:∵点A 在第二象限的角平分线上,∴2310a a ++=,∴15a =-. (2)∵点A 在第三象限,且到两坐标轴的距离和为9,∴()2319a a -+-+=⎡⎤⎣⎦,∴()2319a a --+=,∴2319a a ---=,∴2a =-,∴()4,5A --.23.(2022春·吉林长春·八年级吉林省第二实验学校校考阶段练习)如图,在甲、乙两同学进行400米跑步比赛中,路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OAB 和线段OC ,请根据图上信息回答下列问题:(1)______先到达终点;(2)第______秒时,______追上______;(3)比赛全程中,______的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s (米)与时间t (秒)之间的函数关系式及自变量取值范围______.【答案】(1)乙(2)40,乙,甲(3)乙(4)()8050s t t =<≤【详解】(1)根据图像可知,线段OC 表示先到达终点,即乙先到达终点.故答案为:乙.(2)两人相遇,即两者距离为0,由图像可知在40s 时两人相遇,甲在前,即乙追上甲.故答案为:40,乙,甲.(3)乙的图像为一条直线,表示速度不变.故答案为:乙.(4)乙为优胜者,50s 时乙到达终点,路程为400,设速度为v ,则50400v =,解得:8v =,∴相应函数解析式为8s t =.故答案为:()8050s t t =<≤.B 能力提升24.(2022秋·北京·七年级校考期中)在平面直角坐标系xOy 中,长方形ABCD 的四个顶点分别为()2,1A ,()2,3B ,()1,3C -,()11D -,.对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘以同一个实数a ,纵坐标都乘以3-,再将得到的点向左平移m (0m >)个单位,向上平移2个单位,得到长方形A B C D ''''及其内部的点,其中点A ,B ,C ,D 的对应点分别为A ',B ',C ',D .(1)点A '的横坐标为___________(用含a ,m 的式子表示).(2)点A '的坐标为()3,1-,点C '的坐标为()3,7--,①求a ,m 的值;②在长方形ABCD 内部和边界中是否存在点()0,E y 进行上述操作后,得到的对应点E '仍然在长方形ABCD 内部和边界,如果存在,求y 的取值范围;如果不存在,请说明理由.【答案】(1)2a m -(2)①2a =,1m =;②不存在,理由见解析【详解】(1)解:()21A ,→()23a -,→()21A a m '--,, 即点A '的横坐标为2a m -;故答案为:2a m -(2)解:①由()13C -,,()37C '--,可得3a m --=-①, 由()21A ,,()31A '-,可得23a m -=②, 由①,②得323a m a m +=⎧⎨-=⎩, 解得21a m =⎧⎨=⎩, 2a ∴=,1m =;②不存在.理由:根据题意,得()1,32E y '--+.可知无论y 取何值,点E '一定落在CD 上.所以不存在满足题意的y 值.25.(2022春·山西太原·八年级阶段练习)甲、乙两人分别乘不同的冲锋舟同时从A 地匀速行驶前往B 地,甲到达B 地立即沿原路匀速返回A 地,图中的折线OMC 表示甲乘冲锋舟离开A 地的距离(y 千米)与所用时间(x 分钟)之间的函数关系;图中的线段ON 表示乙乘冲锋舟离开A 地的距离(y 千米)与所用时间(t 分钟)之间的函数关系.根据图象解答问题:信息读取:(1)A 、B 两地之间的距离为___________千米,线段OM 对应的函数关系式为___________,线段MC 对应的函数关系式为___________,线段ON 对应的函数关系式为___________;图象理解:(2)求图中线段ON 和MC 的交点D 的坐标,并说明其横、纵坐标的实际意义;问题解决:(3)直接写出整个行驶过程中,甲、乙两人所乘坐的冲锋舟之间的距离为5千米时,对应的行驶时间x 的值.【答案】(1)20, 56y x =, 5406y x =-+,12y x = (2)()3015,,见解析 (3)15x =或1054或1354【详解】(1)解:由图象可知,AB 两地之间的距离为20千米.设OM 解析式为y kx =,把()2420M ,代入得到56k =,∴线段OM 解析式为56y x =, 设线段ON 解析式为y mx =把()4020N ,代入得到12m =, ∴线段ON 解析式为12y x =, 设线段CM 解析式为y k x b '=+,把()2420M ,,()480C ,代入得: 2420480k b k b +=⎧⎨+=''⎩,解得5640k b ⎧=-⎪⎨⎪=⎩', ∴线段CM 解析式为5406y x =-+. 故答案为:20,5406y x =-+,12y x =. (2)由125406y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得3015x y =⎧⎨=⎩, ∴点D 坐标()3015,.表示甲出发30分钟后,两人相遇,此时离A 地15km .(3)由题意可知51562x x -=①时,15x =, 5140562x x -+-=②时,1054x =, 1540526x x ⎛⎫--+= ⎪⎝⎭③时,1354x =, 综上所述15x =或1054或1354分钟时,甲、乙两人所乘坐的冲锋舟之间的距离为5千米. 26.(2022春·广东佛山·九年级校考阶段练习)阅读与应用:同学们,你们已经知道()20a b -≥,即2220a ab b -+≥.所以222a b ab +≥(当且仅当a b =时取等号).阅读1:若a ,b 为实数,且0a >,0b >,()20a b -≥,20a ab b ∴-+≥,2a b ab ∴+≥(当且仅当=a b 时取等号).阅读2:若函数m y x x =+(0m >,0x >,m 为常数).由阅读1结论可知:2m m x x x x +≥⋅即2m x m x +≥∴当m x x =即2x m =,x m ∴=(0m >)时,函数m y x x=+的最小值为2m . 阅读理解上述内容,解答下列问题:(1)问题1:若数91y a a =+-(1a >),则=a 时,函数91y a a =+-(1a >)的最小值为 . (2)问题2:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x = 时,矩形周长的最小值为 .(3)问题3:求代数式2251m m m +++(1m >-)的最小值. (4)问题4:建造一个容积为8立方米,深2米的长方体无盖水池,池底和池壁的造价分别为每平方米120元和80元,设池长为x 米,水池总造价为y (元),求当x 为多少时,水池总造价y 最低?最低是多少?【答案】(1)4,6(2)2,8(3)4(4)当2x =时,水池总造价y 最低,最低为1760元.【详解】(1)∵91(1)1y a a a =+->-, ∴91(1)1y a a a =-+>-, ∴由阅读2结论可知,()9912111a a a a -+≥-⋅--即9161a a -+≥-, ∴当911a a -=-即()219a -=, ∴13a -=,13a -=-(不合题意舍去),∴当4a =时,函数91(1)1y a a a =+->-的最小值为6; 故答案为:4,6(2)设矩形周长为y ,根据题意得42y x x ⎛⎫=+ ⎪⎝⎭, ∵442x x x x +≥⋅, ∴44x x+≥, ∴当4x x =即2x =-(不合题意舍去),2x =时,函数42y x x ⎛⎫=+ ⎪⎝⎭有最小值8; 故答案为:2,8(3)∵设225(1)1m m y m m ++=>-+, ∴()222521441111m m m m y m m m m +++++===+++++, ∵()4141m m ++≥+, ∴当411m m +=+即3m =-(不合题意舍去),1m =时,函数225(1)1m m y m m ++=>-+有最小值4, ∴代数式225(1)1m m m m ++>-+的最小值为4; (4)∵根据题意得长方体的宽为4x米, ∴44412022802280480320y x x x x x x ⎛⎫=⨯⨯+⨯⨯⨯+⋅⨯⨯=++ ⎪⎝⎭, ∵44x x+≥, ∴当4x x =即2x =-(不合题意舍去),2x =时,函数4480320y x x ⎛⎫=++ ⎪⎝⎭的最小值为1760, ∴当2x =时,水池总造价y 最低,最低为1760元.。
高考数学二轮复习 第二篇 专题通关攻略 专题2 三角函数及解三角形 专题能力提升练七 2.2.2 三
专题能力提升练七三角恒等变换与解三角形(45分钟80分)一、选择题(每小题5分,共30分)1.cos15°-4sin215°cos15°=()A. B. C.1D.【解析】选D.cos 15°-4sin215°cos 15°=cos 15°-2sin 15°×2sin 15°cos 15°=cos 15°-2sin 15°sin 30°=cos 15°-sin 15°=2cos(15°+30°)=.2.(2018·永州二模)已知△ABC的内角A,B,C的对边分别是a,b,c,若+=2a,则△ABC是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形【解析】选 C.因为+=2a,所以由正弦定理可得,+=2sinA≥2=2,所以sin A=1,当=时,“=”成立,所以A=,b=c,所以△ABC是等腰直角三角形.3.(2018·全国卷Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB= ( )A.4B.C.D.2【解析】选A.cos C=2cos2-1=2×-1=-,在△ABC中,由余弦定理AB2=CA2+CB2-2CA·CB·cos C,得AB2=25+1-2×1×5×=32,所以AB=4.4.若向量a=,向量b=(1,sin22.5°),则a·b=( )A.2B.-2C.D.-【解析】选A.由题得a·b=tan67.5°+=tan 67.5°+=tan 67.5°-tan 22.5°=tan 67.5°-==2×=2×=2.【加固训练】(2018·会宁一中一模)已知x为锐角,=,则a的取值X围为( ) A.[-2,2] B.(1,)C.(1,2]D.(1,2)【解析】选C.由=,可得:a=sin x+cos x=2sin,又x∈,所以x+∈,所以a的取值X围为(1,2].5.在锐角△ABC中,A=2B,则的取值X围是( )A.(-1,3)B.(1,3)C.(,)D.(1,2)【解析】选D.====3-4sin2B.因为△ABC是锐角三角形,所以得<B<⇒sin2B∈.所以=3-4sin2B∈(1,2).6.(2018·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C= ()A. B. C. D.【解析】选C.由题意S△ABC=absin C=,即sin C=,由余弦定理可知sin C=cos C,即tan C=1,又C∈(0,π),所以C=.【加固训练】(2018·某某一模) 已知△ABC中,sinA,sinB,sinC成等比数列,则的取值X围是( )A. B.C.(-1,]D.【解析】选 B.由已知可知sin2B=sin A·sin C,即b2=ac,cos B==≥=,即0<B≤,sin B+cos B=sin∈(1,],原式==,设t=sin B+cos B,即原式==t-(1<t≤),函数是增函数,当t=1时,函数等于0,当t=时,函数等于,所以原式的取值X围是.二、填空题(每小题5分,共10分)7.(2018·全国卷Ⅱ)已知tan=,则tanα=________.【解析】因为tan=tan=,所以=,解得tan α=.答案:【加固训练】(2018·某某市一模) 已知cos=,则sin2α=________.【解析】sin 2α=sin=-cos2=1-2cos2=1-2×=-.答案:-8.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC 比AB长0.5米,为了稳定广告牌,要求AC越短越好,则AC最短为________.【解题指南】首先根据余弦定理找出边BC与AC之间的关系,用边BC表示出边AC,结合函数知识即可求解.【解析】由题意设BC=x(x>1)米,AC=t(t>0)米,依题设AB=AC-0.5=(t-0.5)米,在△ABC中,由余弦定理得:AB2=AC2+BC2-2AC·BCcos 60°,即(t-0.5)2=t2+x2-tx,化简并整理得:t=(x>1),即t=x-1++2,因为x>1,故t=x-1++2≥2+,当且仅当x=1+时取等号,此时取最小值2+. 答案:2+三、解答题(每小题10分,共40分)9.(2018·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB.(2)若DC=2,求BC.【解析】(1)在△ABD中,由正弦定理得=.由题设知,=,所以sin∠ADB=.由题意知,∠ADB<90°,所以cos∠ADB==.(2)由题意及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2×=25. 所以BC=5.10.如图,在△ABC中,AB=2,cosB=,点D在线段BC上.(1)若∠ADC=,求AD的长.(2)若BD=2DC,△ACD的面积为,求的值.【解题指南】(1)首先利用同角三角函数间的基本关系求得sin B的值,然后利用正弦定理即可求得AD的长.(2)首先利用三角形面积间的关系求得S△ABC,然后利用三角形面积公式结合余弦定理即可求得的值.【解析】(1)在三角形中,因为cos B=,所以sin B=,在△ABD中,由正弦定理得=,又AB=2,∠ADB=,sin B=.所以AD=.(2)因为BD=2DC,所以S△ABD=2S△ADC,S△ABC=3S△ADC,又S△ADC=,所以S△ABC=4,因为S△ABC=AB·BCsin∠ABC,所以BC=6,因为S△ABD=AB·ADsin∠BAD,S△ADC=AC·ADsin∠CAD,S△ABD=2S△ADC,所以=2·,在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC.所以AC=4,所以=2·=4.11.已知函数f(x)=2sinxcosx+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间上的最大值和最小值.(2)若f(x0)=,x0∈,求cos2x0的值.【解析】(1)f(x)=2sin xcos x+2cos2x-1=(2sin xcos x)+(2cos2x-1)=sin 2x+cos 2x=2sin,所以函数f(x)的最小正周期为π;因为x∈,所以2x+∈,sin∈,所以函数f(x)=2sin在区间上的最大值为2,最小值为-1.(2)由(1)可知f(x0)=2sin,又因为f(x0)=,所以sin=,由x0∈,得2x0+∈,从而cos=-=-,所以cos 2x0=cos=cos cos +sin sin =12.在△ABC中,D是边BC上的点,AB=AD=,cos∠BAD=.(1)求sinB.(2)若AC=4,求△ADC的面积.【解题指南】(1)直接利用余弦定理和正弦定理求出结果.(2)利用(1)的结论和余弦定理求出三角形的面积.【解析】(1)在△ABD中,BD2=AB2+AD2-2AB·AD·cos∠BAD=7+7-2×××=12,得BD=2.由cos∠BAD=,得sin∠BAD=,在△ABD中,由正弦定理得=,所以sin B=×=.(2)因为sin B=,B是锐角,所以cos B=,设BC=x,在△ABC中,AB2+BC2-2AB·BC·cos B=AC2,即7+x2-2·x··=16,化简得:x2-2x-9=0,解得x=3或x=-(舍去),则CD=BC-BD=3-2=,由∠ADC和∠ADB互补,得sin∠ADC=sin∠ADB=sin B=,所以△ADC的面积S=·AD·DC·sin∠ADC=×××=.【加固训练】(2018·某某二模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为acsin2B.(1)求sinB的值.(2)若c=5,3sin2C=5sin2B·sin2A,且BC的中点为D,求△ABD的周长.【解析】(1)由S△ABC=acsinB=acsin2B,得sin B=2sin B·cos B,因为0<B<π,所以sin B>0,故cos B=,又sin2B+cos2B=1,所以sin B=.(2)由(1)和3sin2C=5sin2B·sin2A得16sin2C=25sin2A,由正弦定理得16c2=25a2,因为c=5,所以a=4,BD=a=2,在△ABD中,由余弦定理得:AD2=c2+BD2-2c·BD·cos B=52+22-2×5×2×=24,所以AD=2.所以△ABD的周长为c+BD+AD=7+2.(建议用时:50分钟)1.(2018·某某一模)南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S=,c>b>a),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A.82平方里B.83平方里C.84平方里D.85平方里【解析】选C.由题意可得:a=13,b=14,c=15代入:S===84,则该三角形田面积为84平方里.2.已知△ABC的三个内角A,B,C的对边分别为a,b,c,若2sin=1,且a=2,则△ABC 的面积的最大值为( )A. B. C. D.2【解析】选B.sin=,-=,A=,由于a=2为定值,由余弦定理得4=b2+c2-2bccos ,即4=b2+c2+bc.根据基本不等式得4=b2+c2+bc≥2bc+bc=3bc,即bc≤,当且仅当b=c时,等号成立.S△=bcsin A≤··=.3.在△ABC中,a,b,c分别是内角A,B,C的对边,sinAcosB-(c-cosA)·sinB=0,则边b=________.【解析】由sin Acos B-(c-cos A)·sin B=0,得sin Acos B+cos Asin B=csin B,所以sin C=csin B,即=sin B,由正弦定理=,故b==1.答案:14.在△ABC中,角A,B,C的对边分别为a,b,c,设△ABC的面积为S,若3a2=2b2+c2,则的最大值为________.【解析】因为3a2=2b2+c2,所以3a2=3b2-b2+3c2-2c2,所以b2+2c2=3(b2+c2-a2)=6bccos A,所以==tan A.由题得a2=,所以 cos A===≥=,所以tan A=≤=,当且仅当b=c时取等号.所以的最大值为.答案:【加固训练】(2018·某某中学模拟)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知a=,(b2+c2-3)tanA=bc,2cos2=(-1)cosC,则△ABC的面积等于________.【解析】条件(b2+c2-3)tan A=bc即为(b2+c2-a2)tan A=bc,由余弦定理得2bccos Atan A=bc,所以得sin A=,又A为锐角,所以A=.又2cos2=1+cos(A+B)=1-cos C=(-1)cos C,所以cos C=,得C=,故B=.在△ABC中,由正弦定理得=,所以c===.故△ABC的面积S=acsin B=×××sin =.答案:5.△ABC的内角A,B,C的对边分别为a,b,c,已知(b-c)2=a2-bc.(1)求sinA.(2)若a=2,且sinB,sinA,sinC成等差数列,求△ABC的面积.【解析】(1)由(b-c)2=a2-bc,得b2+c2-a2=bc,即=,由余弦定理得cos A=,因为0<A<π,所以sin A=.(2)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A,由正弦定理得b+c=2a=4,所以16=(b+c)2,所以16=b2+c2+2bc.由(1)得16=a2+bc,所以16=4+bc,解得bc=,所以S△ABC=bcsin A=××=.6.(2018·某某一模)△ABC的内角为A,B,C的对边分别为a,b,c,已知=+.(1)求sin(A+B)+sinAcosA+cos(A-B)的最大值.(2)若b=,当△ABC的面积最大时,求△ABC的周长.【解题指南】(1)先根据正弦定理将边角关系转化为角的关系,再根据三角公式转化为二次函数求解.(2)根据余弦定理利用基本不等式求解.【解析】(1)由=+得:=,a=bcos C+csin B,即sin A=sin Bcos C+sin Csin B,所以cos B=sin B,B=;由sin(A+B)+sin Acos A+cos(A-B)=(sin A+cos A)+sin Acos A,令t=sin A+cos A,原式=t2+t-,当且仅当A=时,上式取最大值,最大值为.(2)S=acsin B=ac,b2=a2+c2-2accos B,即2=a2+c2-ac≥(2-)ac,ac≤2+,当且仅当a=c=等号成立;S max=,周长L=a+b+c=2+.7.(2018·某某二模) 如图,在平面四边形ABCD中,AB=2,AC=2,∠ADC= ∠CAB=90°,设∠DAC=θ.(1)若θ=60°,求BD 的长度;(2)若∠ADB=30°,求tanθ.【解题指南】(1)在△ABD中,利用余弦定理直接求出BD.(2)在△ABD中,写出正弦定理再化简即得解.【解析】(1)由题意可知,AD=1.在△ABD中,∠DAB=150°,AB=2,AD=1,由余弦定理可知,BD2=(2)2+12-2×2×1×=19,BD=.(2)由题意可知,AD=2cos θ,∠ABD=60°-θ,在△ABD中,由正弦定理可知,=,所以=4,所以tan θ=.。
数学二轮专题7选考部分第1讲坐标系与参数方程
高考二轮专题复习
返回目录
命题角 度
素养清单
真题示例
2019·全国卷
极坐 标、极
Ⅱ,22 2019·全国卷
坐标方 逻辑推理 Ⅲ,22 程的求 数学运算 2018·全国卷
解及其 应用
Ⅰ,22 2017·全国卷
Ⅱ,22
典例回顾
(1)求C2的直角坐标 方程; (2)若C1与C2有且仅 有三个公共点,求C1 的方程.
所以θ的取值范围是π4,π2. 所以P点轨迹的极坐标方程为ρ=4cos θ,θ∈π4,π2.
高考二轮专题复习
返回目录
2.(2017·全国卷Ⅱ)在直角坐标系xOy中,以坐标原
点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1
的极坐标方程为ρcos θ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足
为xy= =a1+ -4t t, (t为参数). (1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为 17,求a.
高考二轮专题复习
返回目录
解析 (1)曲线C的普通方程为x92+y2=1.
当a=-1时,直线l的普通方程为x+4y-3=0.
x+4y-3=0, 由x92+y2=1,
高考二轮专题复习
返回目录
在Rt△OPQ中,ρcosθ-π3=|OP|=2, 经检验,点P2,π3在曲线ρcosθ-π3=2上, 所以l的极坐标方程为ρcosθ-π3=2.
高考二轮专题复习
返回目录
(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ= 4cos θ,即 ρ=4cos θ.因为P在线段OM上,且AP⊥OM,
高考二轮专题复习
返回目录
中考数学第二轮总复习课件专题07创新作图题在正多边形中作图(全国通用)
(1)在图1中,画出一个以AB为边的平行四边形;
(2)在图2中,画出一个以AF为边的菱形.
G
G
A
F
A
F
M
B
E
B
E
C 图1 D 如图1,四边形ABDM即为所求;
M C 图2 D 如图2,四边形AMDF即为所求.
当堂训练
按要求构造图形
知识点三
1.如图,由三个形状完全相同的菱形组成一个正六边形,请仅用无刻度的
典例精讲
利用常用技巧作图
知识点一
【例1】在图1中,AB=AC,BD=CD;在图2中,AB=AC,EB=FC;在图3中,五边形
是正五边形;请你只用无刻度的直尺画出四个图形中BC边的垂直平分线.
A
A
利用轴对称 的性质作图
E
D
A
D
E
F
B 图1
CB
图2
C B 图3 C
当堂训练
利用常用技巧作图
知识点一
如图,在五边形ABCDE中,AB=AE=DE,CD=CB,∠ABC=120º.请仅用无刻度的直
(1)正奇数边形中的平行线段:_B_G_∥__C_F_∥__D_E_,_A_C_∥__D_G_∥__E_F___;
(2)正奇数边形中的相等线段:_B_M_=_A_M_,_M_G_=_M_C_=_C_N_=_N_G_(_菱__形__)_;
(3)正偶数边形中的平行线段:_A_F_∥__B_E_∥__C_D_,_A_C_∥__D_F_______;
(2)在图2中的图形外部画一个直角三角形.
A
B
A
C
B 图1 C 如图1,△ABC即为所求
图2 如图2,△ABC即为所求
高考数学:专题七 第一讲 函数与方程思想配套限时规范训练
A.{a|1<a≤2}B.{a|a≥2}
C.{a|2≤a≤3}D.{2,3}
3.(2012·浙江)设a>0,b>0,则下列命题正确的是()
A.若2a+2a=2b+3b,则a>b
所以x1x2+y1y2=0,而y1y2=x1x2-(x1+x2)+1,
所以2x1x2-(x1+x2)+1=0.
由即(a2+b2)x2-2a2x+a2(1-b2)=0.
又直线与椭圆相交于两点,所以Δ=(-2a2)2-4(a2+b2)·a2(1-b2)>0,整理得a2b2(a2+b2-1)>0,即a2+b2>1.
12.若数列{an}的通项公式为an=×n-3×n+n(其中n∈N*),且该数列中最大的项为am,则m=______.
三、解答题
13.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈,求a的最大值.
14.(2012·山东)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
A.B.2C.4D.8
6.定义在R上的偶函数f(x)在[0,+∞)上递增,f=0,则满足f(logx)>0的x的取值范围是()
A.(0,+∞)B.(0,)∪(2,+∞)
C.(0,)∪(,2)D.
7.设函数f(x)=x3+sinx,若0≤θ≤时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是()
A.(0,1)B.(-∞,0)
C.(-∞,1)D.
高考二轮总复习课件(适用于老高考旧教材)数学(理)专题七 选做大题
解题心得
1.无论是将参数方程化为极坐标方程,还是将极坐标方程化为参数方程,都
要先化为普通方程,再由普通方程化为需要的方程.
2.求解与极坐标方程有关的问题时,可以转化为熟悉的普通方程求解.若最
终结果要求用极坐标表示,则需将普通方程转化为极坐标.
两圆的圆心分别为( 2,0),(3- 2,0),半径分别为 2和 2,两圆心的距离是 3-2 2,
半径之差为 2- 2,显然 3-2 2<2- 2,所以两圆没有公共点.
知识精要
1.极坐标与直角坐标的互化
(1)互化的前提:①直角坐标系的原点与极点重合;②x轴的正半轴与极轴重
合;③在两种坐标系中取相同的长度单位.
对点练1(2022·河南焦作一模)在直角坐标系xOy中,直线l的参数方程是
= -,
(t为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆O
= 2-
的极坐标方程为ρ2-8=2ρ(cos θ+sin θ).
(1)求直线l的普通方程和圆O的直角坐标方程;
(2)当θ∈[
π
,π]时,求直线l与圆O的公共点的极坐标.
极坐标系,求这两条切线的极坐标方程.
= 2 + cos,
解 (1)☉C 的参数方程为
(θ 为参数).
= 1 + sin
(2)☉C的直角坐标方程为(x-2)2+(y-1)2=1.
①当直线斜率不存在时,直线方程为x=4,此时圆心到直线的距离d=2,有
d>r(r为圆C的半径),不合题意,舍去;
和(1,2),C3 与 C2 的交点为(-1,-2)和
2020高考化学江苏专用提分大二轮复习(课件+讲义+训练):专题七 大题题型突破(一)
解析
液态产品中含有
NO
-
2
和
NO
-
3
,
流
程
中
先
除
去
Ca2 + , 然 后 再 除 去
NO
-
2
,
用
(NH4)2Fe(SO4)2 与 NO- 3 反应,过量的(NH4)2Fe(SO4)2 与 K2Cr2O7 反应,根据 K2Cr2O7 的消耗 量可以计算出过量的(NH4)2Fe(SO4)2,然后得出与 NO- 3 反应的(NH4)2Fe(SO4)2,进而得出 NO- 3 的物质的量。提醒要注意的是从 250 mL 溶液中只取出 10 mL 进行滴定实验,计算时 需要统一在一个标准下进行。
解析 由已知信息知,[Fe(C2O4)3]3-与SCN-反应的平衡常数很小,所以用KSCN不 易检验出[Fe(C2O4)3]3-中的Fe3+。
12345
(4)某研究小组通过如下实验步骤测定晶体A的化学式。 步骤1:准确称取A样品4.910 0 g,干燥脱水至恒重,残留物质量为4.370 0 g。 步骤2:准确称取A样品4.910 0 g置于锥形瓶中,加入足量的3.000 mol·L-1H2SO4溶液 和适量蒸馏水,用0.500 0 mol·L-1 KMnO4溶液滴定,当MnO-4恰好完全被还原为Mn2+ 时,消耗KMnO4溶液的体积为24.00 mL。 步骤3:将步骤1所得固体溶于水,加入铁粉0.280 0 g,恰好完全反应。 通过计算确定晶体A的化学式(写出计算过程)。
12345
2.(2019·常州高三期末)用硫酸亚铁铵[(NH4)2SO4·FeSO4·6H2O]为原料通过下列流程可以制备 晶体A。
已知:25 ℃时,[Fe(C2O4)3]3-(aq)+SCN-(aq) [Fe(SCN)]2+(aq)+3C2O24-(aq),K=10-16。
高考数学二轮复习7大专题、62个高频考点
高考数学二轮复习7大专题、62个高频考点七大专题专题一函数与不等式以函数为主线,不等式和函数综合题型是考点。
函数的性质:着重掌握函数的单调性、奇偶性、周期性、对称性。
这些性质通常会综合起来一起考查,并且有时会考查具体函数的这些性质,有时会考查抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向、与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间、极值及最值的目的。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法、均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列以等差、等比数列为载体,考查等差、等比数列的通项公式、求和公式、通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法。
这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形三角函数是每年必考的知识点,难度较小。
选择、填空、解答题中都有涉及。
有时候考查三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考查三角函数与解三角形,向量的综合性问题,当然正弦、余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考查建立空间直角坐标系,通过向量这一手段求空间距离、线面角、二面角等。
另外,需要掌握棱锥、棱柱的性质。
在棱锥中,着重掌握三棱锥、四棱锥;棱柱中,应该掌握三棱柱、长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考查的方法为间接证明。
专题五:解析几何直线与圆锥曲线的位置关系,动点轨迹的探讨,求定值、定点、最值这些为近年来考的热点问题。
(全国通用版)数学大二轮复习第二部分高考22题各个击破
1.6 逻辑推理小题专项练
-2-
1.两种合情推理的思维过程 (1)归纳推理的思维过程:试验、观察→概括、推广→猜测一般性 结论 (2)类比推理的思维过程:试验、观察→联想、类推→猜测新的结 论 2.合情推理的解题思路 (1)在进行归纳推理时,要根据已知的部分个体,把它们适当变形, 找出它们之间的联系,从而归纳出一般结论. (2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然 后通过类比,推导出类比对象的性质.
优秀一位良好,所以甲、丁的成绩也是一位优秀一位良好.又因为丁知道
甲的成绩,所以丁也知道自己的成绩,故选D.
关闭
D
解析 答案
-9-
一、选择题 二、填空题
7.(2018宁夏银川一中一模,理8)根据需要安排甲、乙、丙三人在某
月1日至12日值班,每人4天.
甲说:我在1日和3日都有值班;
乙说:我在8日和9日都有值班;
根据题意:若甲同学猜对了3—c,则乙同学猜对3—c,丁同学猜对了3—c,丙 同学猜对了4—b,这与乙同学猜对的2—b相矛盾.综上所述4号门里是a,故 选A.
关闭
A
解析 答案
-8-
一、选择题 二、填空题
6.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老
师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,
(新高考)高考数学冲刺专项课件:专题七 解析几何 第一讲 直线与圆
3 4 a 8 3 4 ,得 5 a 7 .故 D 正确.
2 33
『规律总结』
求圆的方程有两类方法: (1) 几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系, 进而求得圆的半径和圆心,得出圆的方程; (2) 代数法,求圆的方程必须具备三个独立条件, 利用“待定系数法”求出圆心和半径.
(2)三种距离公式 ①两点间的距离:若 A(x1,y1),B(x2,y2), 则|AB|= x2-x1 2+ y2-y1 2. ②点到直线的距离:点 P(x0,y0)到 直线 Ax+By+C=0 的距离 d=|Ax0+By0+C|.
A2+B2 ③两平行线的距离: 若直线 l1,l2 的方程分别为 l1:Ax+By+C1=0,l2:Ax+By+C2=0, 则两平行线的距离 d= |C2-C1| .
[跟踪训练]
2.已知过抛物线 C : y2 4x 的焦点 F 的直线 l
与抛物线交于 A x1, y1 , B x2 , y2 两点,若 x1 x2 x1x2 y1 y2 0 ,
2019-2020年全国通用2017年高考数学大二轮专题复习第二编专题整合突破专题七概率与统计第一讲计数原理二项
(2)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b
=0 有实数解的有序数对(a,b)的个数为( )
A.14
B.13
C.12
D.10
[解析] 方程 ax2+2x+b=0 有实数解的情况应分类讨
论.当 a=0 时,关于 x 的方程为 2x+b=0,此时有序数对
(0,-1),(0,0),(0,1),(0,2)均满足要求;当 a≠0 时,Δ=
2.[2015·天津五区县一模] 如图,用四种不同的颜色给 图中的 A,B,C,D,E,F 六个点涂色,要求每个点涂一 种颜色,且图中每条线段的两个端点涂不同颜色,则不同的 涂色方法有( )
A.288 种 C.240 种
B.264 种 D.168 种
解析 解法一:先涂 A,D,E 三个点,共有 4×3×2 =24(种)涂法,然后再按 B,C,F 的顺序涂色,分为两类:
4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),
(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-
1),(2,0).综上,满足要求的有序数对共有 4+9=13(个),
故选 B.
应用两个计数原理解题的方法 (1)在应用分类计数原理和分步计数原理时,一般先分类 再分步,每一步当中又可能用到分类计数原理. (2)对于复杂的两个原理综合使用的问题,可恰当列出示 意图或表格,使问题形象化、直观化.
专题七 解析几何 第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)
专题七 解析几何 第一讲 直线与圆1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.52.下列说法中不正确的是( )A.平面上任一条直线都可以用一个关于,x y 的二元一次方程0Ax By C ++=(,A B 不同时为0)表示B.当0C =时,方程0Ax By C ++=(,A B 不同时为0)表示的直线过原点C.当0,0,0A B C =≠≠时,方程0Ax By C ++=表示的直线与 x 轴平行D.任何一条直线的一般式方程都能与其他四种形式互化3.已知设点M 是圆224690C x y x y +--+=上的动点,则点M 到直线240x y ++=距离的最小值为( )2 2- 2+ 2 4.已知直线1l ,2l 分别过点(1,3)P -,(2,1)Q -,若它们分别绕点P ,Q 旋转,但始终保持平行,则1l ,2l 之间的距离d 的取值范围为( )A.(0,5]B.(0,5)C.(0,)+∞D.5.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A.[2,6]B.[4,8]C.D.6.已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,过点()1,A a -作圆C 的一条切线,切点为B ,则AB =( ) A.1B.2C.4D.87.已知点(2,0),(1,1)A B --,射线AP 与x 轴的正方向所成的角为π4,点Q 满足||1QB =,则||PQ 的最小值为( )1 B.1 C.1 18.(多选)已知直线12:210,:20l ax y a l x ay a --+=+--=,圆22:4240E x y x y +-+-=,则以下命题正确的是( )A.直线12,l l 均与圆E 不一定相交B.直线1l 被圆E 截得的弦长的最小值C.直线2l 被圆E 截得的弦长的最大值6D.若直线1l 与圆E 交于2,,A C l 与圆E 交于,B D ,则四边形ABCD 面积最大值为14 9. (多选)已知圆221:()1C x a y ++=,圆2222:()(2)2C x a y a a -+-=,下列说法正确的是( )A.若12C OC △(O 为坐标原点)的面积为2,则圆2C 的面积为2πB.若a ,则圆1C 与圆2C 外离C.若a ,则y x =1C 与圆2C 的一条公切线D.若a 1C 与圆2C 上两点间距离的最大值为610. (多选)已知直线11:0l ax y -+=,2:10l x ay ++=,a ∈R ,则下列结论中正确的是( )A.不论a 为何值,1l ,2l 都互相垂直B.当a 变化时,1l ,2l 分别经过定点(0,1)A 和(1,0)B -C.不论a 为何值,1l ,2l 都关于直线0x y +=对称D.若1l ,2l 相交于点M ,则MO11.过两直线10x +=0y +的交点,并且与原点的最短距离为12的直线的方程为________________.12.圆221:2120C x y x ++-=与圆222:440C x y x y ++-=的交点为A ,B ,则弦AB 的长为_____.13.已知圆22:2410C x y x y ++-+=,若存在圆C 的弦AB ,使得AB =,且其中点M 在直线20x y k ++=上,则实数k 的取值范围是___________.14.已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点;(2)若以20,5E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.15.已知半圆224(0)x y y +=≥,动圆与此半圆相切(内切或外切,如图),且与x 轴相切.(1)求动圆圆心的轨迹方程,并画出其轨迹.(2)是否存在斜率为13的直线l ,它与(1)中所得的轨迹由左至右顺次交于A ,B ,C ,D 四点,且满足||2||AD BC =?若存在,求出直线l 的方程;若不存在,请说明理由.答案以及解析1.答案:B解析:设圆心为()00,P x y ,半径为r ,圆与x 轴,y 轴都相切,00x y r ∴==,又圆经过点(2,1),00x y r ∴==且()()2220021x y r -+-=,222(2)(1)r r r ∴-+-=,解得1r =或5r =.①1r =时,圆心(1,1)P ,则圆心到直线230x y --=的距离d ==②5r =时,圆心(5,5)P ,则圆心到直线230x y --=的距离d ==故选B. 2.答案:D解析:对于选项A,在平面直角坐标系中,每一条直线都有倾斜角α,当90α≠︒时,直线的斜率k 存在,其方程可写成y kx b =+,它可变形为0kx y b -+=,与0Ax By C ++=比较,可得,1,A k B C b ==-=;当90α=︒时,直线的斜率不存在,其方程可写成1x x =,与0Ax B C ++=比较,可得11,0,A B C x ===-,显然,A B 不同时为0,所以此说法是正确的.对于选项B,当0C =时,方程0Ax By C ++=(,A B 不同时为0),即0Ax By +=,显然有000A B ⨯+⨯=,即直线过原点()0,0,故此说法正确.对于选项C,因为当0A =,0,0B C ≠≠时,方程0Ax By C ++=可化为Cy B=-,它表示的直线与x 轴平行,故此说法正确.D 说法显然错误. 3.答案:B解析:由题意可知圆心(2,3)C ,半径2r =,则点M 到直线240x y ++=距离的最小值min22d =-=-,故选B. 4.答案:A解析:易知两直线之间的最大距离为P ,Q 两点间的距离,由两点间的距离公式得||5PQ .故1l ,2l 之间的距离d 的取值范围为(0,5].5.答案:A解析:由圆22(2)2x y -+=可得圆心坐标为()2,0,半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有1||2S AB d =⋅.易知||AB =max d ==,min d =26S ≤≤,故选A.6.答案:C解析:已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,圆心()3,1C ,半径3r =,所以直线l 过圆心()3,1C ,故310a +-=,故2a =-.所以点()1,2A --,||5AC =,||4AB ==.故选C.7.答案:A解析:因为||1QB =,所以点Q 在以点B 为圆心,1为半径的圆上, 显然当射线AP 在x 轴的下方时||PQ 取得最小值,此时直线:20AP x y ++=,点B 到AP 的距离d ==所以||PQ 1,故选A. 8.答案:BCD解析:由题意,直线1:210l ax y a --+=,即(2)10a x y --+=.令20x -=,得2,1x y ==,即直线1l 过定点()2,1;直线2:20l x ay a +--=,即2(1)0x a y -+-=,令10y -=,得2,1x y ==,即直线2l 过定点()2,1,所以直线12,l l 过同一个定点()2,1,记为点M .圆22:4240E x y x y +-+-=可化为22(2)(1)9x y -++=,而点()2,1M 在圆E 内部,所以直线12,l l 均与圆E 相交,所以A 选项错误;对于直线1l ,当0a =时,直线1l 被圆E 截得的弦长最小,且最小值为所以B 选项正确;对于直线2l ,当0a =时,直线2l 被圆E 截得的弦长最大,且最大值恰好为圆E 的直径6,所以C 选项正确;又当0a ≠时,直线1l 的斜率为a ,直线2l 的斜率为1a-,即直线12l l ⊥.设圆心E 到直线12,l l 的距离分别为12,d d ,则12d d ==又22212||4d d EM +==,即22||||99444AC BD -+-=,所以22||||56AC BD +=,所以2211||||||||14222ABCDAC BD S AC BD +=⋅≤⨯=四边形,当且仅当||||AC BD ==,等号成立,故四边形ABCD 面积最大值为14,所以D 选项正确,故选BCD. 9.答案:BC解析:本题考查圆与圆的位置关系.依题意1(,0)C a -,2(,2)C a a ,圆1C 半径11r =,圆2C 半径2|r a =.对于选项A ,1221|||2|22C OC S a a a =-⋅==△,则a =2|2r a ==,则圆2C 的面积为22π4πr =,选项A 错误;对于选项B,12|C C a,121|r r a +=+,若圆1C 与圆2C 外离,则1212C C r r >+,即|1|a a >,得2a >或2a <,选项B 正确;对于选项C ,当a =时,1C ⎛⎫ ⎪ ⎪⎝⎭,2C ⎝,121r r ==,1212|2C C a r r ===+,所以圆1C 与圆2C 外切,且121C C k =,所以两圆的公切线中有两条的斜率为1,设切线方程为0x y b -+=1=,解得2b =-或2b =,则一条切线方程为0x y -=,即y x =,选项C 正确;对于选项D,当a =1(C,2C ,11r =,22r =,12|4C C a ==,圆1C 与圆2C 上两点间距离的最大值为1247r r ++=,选项D 错误.故选BC.10.答案:ABD解析:因为110a a ⨯-⨯=,所以无论a 为何值,1l ,2l 都互相垂直,故A 正确;1l ,2l 分别经过定点(0,1)A 和(1,0)B -,故B 正确;1:10l ax y -+=关于直线0x y +=对称的直线方程为10ay x -++=,不是2:10l x ay ++=,故C 错误;由10,10,ax y x ay -+=⎧⎨++=⎩解得221,11,1a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO =≤MO的最大值是D 正确.故选ABD.11.答案:12x =或10x +=解析:联立10,0,x y ⎧+=⎪+解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩即两直线的交点为12⎛ ⎝⎭.当直线的斜率不存在时,12x =,到原点的距离等于12,符合题意;当直线的斜率存在时,设直线的方程为12y k x ⎛⎫=- ⎪⎝⎭,即220kx y k -+=.因为直线与原点的最短距离为12,所以12=,解得k =,所以所求直线的方程为10x +=,所以所求直线的方程为12x =或10x +=. 12.答案:解析:圆221:2120C x y x ++-=与圆222:440C x y x y ++-=联立可得: 公共弦的方程为260x y -+=,222:440C x y x y ++-=变形为()()222:228C x y ++=-,故222:440C x y x y ++-=的圆心为()22,2C -,半径为, 而()22,2C -满足260x y -+=,故弦AB 的长为圆2C 的直径, 故弦AB的长为.故答案为:. 13.答案:k 解析:圆C 的方程可化为22(1)(2)4x y ++-=,圆心(1,2)C -,半径2r =,由于弦AB满足||AB =M,则||1CM , 因此M 点在以(1,2)C -为圆心,1为半径的圆上, 又点M 在直线20x y k ++=上,故直线20x y k ++=与圆22(1)(2)1x y ++-=1≤,解得k ≤14.答案:(1)见解析(2)当0t =时,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭ 解析:(1)证明:依题意,可设:AB y kx b =+,1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,()()2212,B x y x x ≠.联立2,2,x y y kx b ⎧=⎪⎨⎪=+⎩消去y 得2220x kx b --=. 2480k b ∆=+>,122x x k +=,122x x b =-.又直线DA 与抛物线相切,则2111122x x x t+=-, 所以211210x tx --=,同理222210x tx --=. 所以1222k x x t =+=,1221b x x -=⋅=-, 所以k t =,12b =,则直线1:2AB y tx =+,必过定点10,2⎛⎫⎪⎝⎭. (2)解法一:由(1)得直线AB 的方程为12y tx =+.由21,22y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩可得2210x tx --=. 于是122x x t +=,()21212121y y t x x t +=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 解法二:设M 为线段AB 的中点,由(1)可知212,M t t ⎛+⎫ ⎪⎝⎭.所以()2,2EM t t =-,()2,FM t t =,又EM FM ⊥,则()2220t t t t ⋅+-⋅=, 解得0t =或1t =或1t =-.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 15.答案:(1)见解析(2)不存在满足题意的直线l .理由见解析解析:(1)设动圆圆心(,)M x y ,作MN x ⊥轴于点N . ①若动圆与半圆外切,则||2||MO MN =+,2y +, 两边平方得22244x y y y +=++,化简得211(0)4y x y =->. ②若动圆与半圆内切,则||2||MO MN =-,2y =-, 两边平方得22244x y y y +=-+,化简得211(0)4y x y =-+>.综上,当动圆与半圆外切时,动圆圆心的轨迹方程为211(0)4y x y =->; 当动圆与半圆内切时,动圆圆心的轨迹方程为211(0)4y x y =-+>. 动圆圆心的轨迹如图所示.(2)假设满足题意的直线l 存在,可设l 的方程为13y x b =+.依题意,可得直线l 与曲线211(0)4y x y =->交于A ,D 两点,与曲线211(0)4y x y =-+>交于B ,C 两点.由21,3114y x b y x ⎧=-+⎪⎪⎨⎪=-⎪⎩与21,311,4y x b y x ⎧=+⎪⎪⎨⎪=-+⎪⎩消去y 整理可得23412120x x b ---=①与23412120x x b ++-=②. 设(),A A A x y ,(),B B B x y ,(),C C C x y ,(),D D D x y ,则43A D x x +=,12123A D b x x --=,43B C x x +=-,12123B C b x x -=.又||A D AD x =-,||B C BC x -,且||2||AD BC =,2A D B C x x x x ∴-=-,即()()22444A D A D B C B C x x x x x x x x ⎡⎤+-=+-⎣⎦, 整理得2244(1212)44(1212)43333b b ⎡⎤+-⎛⎫⎛⎫+=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得23b =.将23b =代入方程①,得2A x =-,103D x =. 函数211(0)4y x y =->的定义域为(,2)(2,)-∞-+∞,∴假设不成立,即不存在满足题意的直线l .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 坐标系与参数方程[全国卷3年考情分析](1)坐标系与参数方程是高考的选考内容之一,高考考查的重点主要有两个方面:一是简单曲线的极坐标方程;二是参数方程、极坐标方程与曲线的综合应用.(2)全国课标卷对此部分内容的考查以解答题形式出现,难度中等,备考此部分内容时应注意转化思想的应用.[例1] (2019·全国卷Ⅱ)在极坐标系中,O 为极点,点M(ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A(4,0)且与OM 垂直,垂足为P .(1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. [解] (1)因为M(ρ0,θ0)在曲线C 上, 当θ0=π3时,ρ0=4sin π3=2 3.由已知得|OP |=|OA |cos π3=2.设Q (ρ,θ)为l 上除P 外的任意一点.连接OQ , 在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2. 经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2. [解题方略]1.直角坐标与极坐标方程的互化(1)直角坐标方程化极坐标方程时,可以直接将x =ρcos θ,y =ρsin θ代入即可. (2)极坐标方程化直角坐标方程时,一般需要构造ρ2,ρsin θ,ρcos θ,常用的技巧有式子两边同乘以ρ,两角和与差的正弦、余弦展开等.2.求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想结合使用.(2)转化为直角坐标系,用直角坐标求解.若结果要求的是极坐标,还应将直角坐标化为极坐标.[跟踪训练](2019·安徽省考试试题)在直角坐标系xOy 中,直线l 1:x =0,圆C :(x -1)2+(y -1-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 1和圆C 的极坐标方程;(2)若直线l 2的极坐标方程为θ=π4(ρ∈R ),设l 1,l 2与圆C 的公共点分别为A ,B ,求△OAB 的面积.解:(1)∵x =ρcos θ,y =ρsin θ,∴直线l 1的极坐标方程为ρcos θ=0,即θ=π2(ρ∈R ),圆C 的极坐标方程为ρ2-2ρcos θ-2()1+2ρsin θ+3+22=0.(2)设A ⎝ ⎛⎭⎪⎫π2,ρ1,B ⎝ ⎛⎭⎪⎫π4,ρ2,将θ=π2代入ρ2-2ρcos θ-2()1+2ρsin θ+3+22=0,得ρ2-2()1+2ρ+3+22=0,解得ρ1=1+ 2.将θ=π4代入ρ2-2ρcos θ-2()1+2ρsin θ+3+22=0,得ρ2-2()1+2ρ+3+22=0,解得ρ2=1+ 2.故△OAB 的面积为12×()1+22×sin π4=1+324.[例2] (2019·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. [解] (1)因为-1<1-t21+t2≤1,且x 2+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1, 所以C 的直角坐标方程为x 2+y 24=1(x ≠-1),l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7. [解题方略]参数方程化为普通方程消去参数的方法(1)代入消参法:将参数解出来代入另一个方程消去参数,直线的参数方程通常用代入消参法.(2)三角恒等式法:利用sin 2α+cos 2α=1消去参数,圆的参数方程和椭圆的参数方程都是运用三角恒等式法.(3)常见消参数的关系式:①t ·1t=1;②⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4;③⎝ ⎛⎭⎪⎫2t 1+t 22+⎝ ⎛⎭⎪⎫1-t 21+t 22=1.[跟踪训练](2019·南昌市第一次模拟测试)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+t ,y =1+3t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4+2cos α,y =3+2sin α(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)设点M (2,1),直线l 与曲线C 相交于A ,B 两点,求|MA |·|MB |的值.解:(1)由参数方程⎩⎪⎨⎪⎧x =4+2cos α,y =3+2sin α得普通方程(x -4)2+(y -3)2=4,所以曲线C 的极坐标方程为ρ2-8ρcos θ-6ρsin θ+21=0.(2)设点A ,B 对应的参数分别为t 1,t 2,将⎩⎨⎧x =2+t ,y =1+3t(t 为参数)代入(x -4)2+(y -3)2=4,得t 2-()3+1t +1=0,所以t 1t 2=1,直线l :⎩⎨⎧x =2+t ,y =1+3t(t 为参数),可化为⎩⎪⎨⎪⎧x =2+12(2t ),y =1+32(2t ),所以|MA |·|MB |=|2t 1||2t 2|=4|t 1t 2|=4.[例3] (2019·福建省质量检查)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+35t ,y =1+45t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=21+sin 2θ,点P 的极坐标为⎝⎛⎭⎪⎫2,π4. (1)求C 的直角坐标方程和P 的直角坐标;(2)设l 与C 交于A ,B 两点,线段AB 的中点为M ,求|PM |.[解] (1)由ρ2=21+sin 2θ得ρ2+ρ2sin 2θ=2 ①,将ρ2=x 2+y 2,y =ρsin θ代入①并整理得,曲线C 的直角坐标方程为x 22+y 2=1.设点P 的直角坐标为(x ,y ),因为点P 的极坐标为⎝ ⎛⎭⎪⎫2,π4, 所以x =ρcos θ=2cos π4=1,y =ρsin θ=2sin π4=1.所以点P 的直角坐标为(1,1).(2)法一:将⎩⎪⎨⎪⎧x =1+35t ,y =1+45t代入x22+y 2=1,并整理得41t 2+110t +25=0,Δ=1102-4×41×25=8000>0,故可设方程的两根分别为t 1,t 2,则t 1,t 2为A ,B 对应的参数,且t 1+t 2=-11041.依题意,点M 对应的参数为t 1+t 22,所以|PM |=⎪⎪⎪⎪⎪⎪t 1+t 22=5541.法二:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧x =1+35t ,y =1+45t消去t ,得y =43x -13.将y =43x -13代入x 22+y 2=1,并整理得41x 2-16x -16=0,因为Δ=(-16)2-4×41×(-16)=2880>0,所以x 1+x 2=1641,x 1x 2=-1641.所以x 0=841,y 0=43x 0-13=43×841-13=-341,即M ⎝ ⎛⎭⎪⎫841,-341.所以|PM |=⎝ ⎛⎭⎪⎫841-12+⎝ ⎛⎭⎪⎫-341-12=⎝ ⎛⎭⎪⎫-33412+⎝ ⎛⎭⎪⎫-44412=5541.[解题方略]极坐标方程与参数方程综合问题的解题策略(1)求交点坐标、距离、线段长.可先求出直角坐标方程,然后求解. (2)判断位置关系.先转化为平面直角坐标方程,然后再作出判断.(3)求参数方程与极坐标方程综合的问题.一般是先将方程化为直角坐标方程,利用直角坐标方程来研究问题.[跟踪训练]1.(2019·东北四市联合体模拟)在平面直角坐标系xOy 中,直线l 1的倾斜角为30°,且经过点A (2,1).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 2:ρcosθ=3.从坐标原点O 作射线交l 2于点M ,点N 为射线OM 上的点,满足|OM |·|ON |=12,记点N 的轨迹为曲线C .(1)写出直线l 1的参数方程和曲线C 的直角坐标方程;(2)设直线l 1与曲线C 交于P ,Q 两点,求|AP |·|AQ |的值.解:(1)直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t cos30°,y =1+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =2+32t ,y =1+12t (t 为参数).设N (ρ,θ),M (ρ1,θ1)(ρ>0,ρ1>0), 则⎩⎪⎨⎪⎧ρρ1=12,θ=θ1,又ρ1cos θ1=3,所以ρ·3cos θ=12,即ρ=4cos θ,所以曲线C 的直角坐标方程为x 2-4x +y 2=0(x ≠0).(2)设P ,Q 对应的参数分别为t 1,t 2,将直线l 1的参数方程代入曲线C 的直角坐标方程中,得⎝ ⎛⎭⎪⎫2+32t 2-4⎝ ⎛⎭⎪⎫2+32t +⎝ ⎛⎭⎪⎫1+12t 2=0,即t 2+t -3=0,Δ=13>0,t 1,t 2为方程的两个根,所以t 1t 2=-3,所以|AP |·|AQ |=|t 1t 2|=|-3|=3.2.(2019·贵阳市第一学期监测)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =22t +42(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ+π4.(1)判断直线l 与曲线C 的位置关系;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围. 解:(1)由⎩⎪⎨⎪⎧x =22t ,y =22t +42消去t 得y =x +42, 由ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4得ρ=2cos θ-2sin θ,由x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2得⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y +222=1,即C 是以⎝ ⎛⎭⎪⎫22,-22为圆心,1为半径的圆,圆心⎝ ⎛⎭⎪⎫22,-22到直线y =x +42的距离d =⎪⎪⎪⎪⎪⎪22+22+422=5>1,所以直线l 与曲线C 相离.(2)圆的参数方程为⎩⎪⎨⎪⎧x =22+cos θ,y =-22+sin θ(θ为参数),则x +y =sin θ+cos θ=2sin ⎝⎛⎭⎪⎫θ+π4,又由θ∈R 可得-1≤sin ⎝⎛⎭⎪⎫θ+π4≤1,则-2≤x +y ≤2,所以x +y 的取值范围为[-2,2]. [专题过关检测]大题专攻强化练1.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求半圆C 的参数方程;(2)若半圆C 与圆D :(x -5)2+(y -3)2=m (m 是常数,m >0)相切,试求切点的直角坐标.解:(1)半圆C 的普通方程为(x -2)2+y 2=4(0≤y ≤2),则半圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos t ,y =2sin t (t 为参数,0≤t ≤π).(2)C ,D 的圆心坐标分别为(2,0),(5,3), 于是直线CD 的斜率k =3-05-2=33. 由于切点必在两个圆心的连线上, 故切点对应的参数t 满足tan t =33,t =π6, 所以切点的直角坐标为⎝ ⎛⎭⎪⎫2+2cos π6,2sin π6, 即(2+3,1).2.(2019·全国卷Ⅲ)如图,在极坐标系Ox 中,A (2,0),B ⎝⎛⎭⎪⎫2,π4,C ⎝⎛⎭⎪⎫2,3π4,D (2,π),弧AB ︵,BC ︵,CD ︵所在圆的圆心分别是(1,0),⎝ ⎛⎭⎪⎫1,π2,(1,π),曲线M 1是弧AB ︵,曲线M 2是弧BC ︵,曲线M 3是弧CD ︵.(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP |=3,求P 的极坐标.解:(1)由题设可得,弧AB ︵,BC ︵,CD ︵所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sinθ,ρ=-2cos θ.所以M 1的极坐标方程为ρ=2cos θ⎝⎛⎭⎪⎫0≤θ≤π4,M 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π4≤θ≤3π4,M 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫3π4≤θ≤π.(2)设P (ρ,θ),由题设及(1)知若0≤θ≤π4,则2cos θ=3,解得θ=π6;若π4≤θ≤3π4,则2sin θ=3,解得θ=π3或θ=2π3; 若3π4≤θ≤π,则-2cos θ=3,解得θ=5π6. 综上,P 的极坐标为⎝⎛⎭⎪⎫3,π6或⎝ ⎛⎭⎪⎫3,π3或⎝ ⎛⎭⎪⎫3,2π3或⎝ ⎛⎭⎪⎫3,5π6.3.(2019·福州市第一学期抽测)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+t cos α,y =y 0+t sin α(t 为参数,α为l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线E 的极坐标方程为ρ=4sin θ,直线θ=β,θ=β+π3,θ=β-π3(ρ∈R )与曲线E 分别交于不同于极点O 的三点A ,B ,C .(1)若π3<β<2π3,求证:|OB |+|OC |=|OA |;(2)当β=5π6时,直线l 过B ,C 两点,求y 0与α的值.解:(1)证明:依题意,|OA |=|4sin β|,|OB |=⎪⎪⎪⎪⎪⎪4sin ⎝ ⎛⎭⎪⎫β+π3,|OC |=⎪⎪⎪⎪⎪⎪4sin ⎝ ⎛⎭⎪⎫β-π3, ∵π3<β<2π3, ∴|OB |+|OC |=4sin ⎝ ⎛⎭⎪⎫β+π3+4sin ⎝⎛⎭⎪⎫β-π3=4sin β=|OA |.(2)当β=5π6时,直线θ=β+π3与曲线E 的交点B 的极坐标为⎝⎛⎭⎪⎫2,π6,直线θ=β-π3与曲线E 的交点C 的极坐标为⎝⎛⎭⎪⎫4,π2,从而,B ,C 两点的直角坐标分别为B (3,1),C (0,4), ∴直线l 的方程为y =-3x +4, ∴y 0=1,α=2π3.4.(2019·江西八所重点中学联考)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线M 的极坐标方程为ρ=2cos θ,若极坐标系内异于O 的三点A (ρ1,φ),B ⎝⎛⎭⎪⎫ρ2,φ+π6,C ⎝ ⎛⎭⎪⎫ρ3,φ-π6(ρ1,ρ2,ρ3>0)都在曲线M 上.(1)求证:3ρ1=ρ2+ρ3;(2)若过B ,C 两点的直线的参数方程为⎩⎪⎨⎪⎧x =2-32t ,y =12t (t 为参数),求四边形OBAC 的面积.解:(1)证明:由题意得ρ1=2cos φ,ρ2=2cos ⎝ ⎛⎭⎪⎫φ+π6,ρ3=2cos ⎝ ⎛⎭⎪⎫φ-π6,则ρ2+ρ3=2cos ⎝ ⎛⎭⎪⎫φ+π6+2cos ⎝⎛⎭⎪⎫φ-π6=23cos φ=3ρ1.(2)由曲线M 的极坐标方程得曲线M 的直角坐标方程为x 2+y 2-2x =0,将直线BC 的参数方程代入曲线M 的直角坐标方程得t 2-3t =0,解得t 1=0,t 2=3,∴在平面直角坐标中,B ⎝ ⎛⎭⎪⎫12,32,C (2,0),则ρ2=1,ρ3=2,φ=π6,∴ρ1= 3.∴四边形OBAC 的面积S =S △AOB +S △AOC =12ρ1ρ2·sin π6+12ρ1ρ3sin π6=334.5.在平面直角坐标系xOy 中,倾斜角为α的直线l 过点M (-2,-4).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,且在两坐标系中长度单位相同,曲线C 的极坐标方程为ρsin 2θ=2cos θ.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 与C 交于A ,B 两点,且|MA |·|MB |=40,求倾斜角α的值. 解:(1)因为倾斜角为α的直线过点M (-2,-4),所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-2+t cos α,y =-4+t sin α(t 是参数).因为曲线C 的极坐标方程为ρsin 2θ=2cos θ,所以ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程是y 2=2x .(2)把直线的参数方程代入y 2=2x ,得t 2sin 2α-(2cos α+8sin α)t +20=0,由题意知,Δ>0,设t 1,t 2为方程t 2sin 2α-(2cos α+8sin α)t +20=0的两根,则t 1+t 2=2cos α+8sin αsin 2α,t 1t 2=20sin 2α,根据直线参数方程的几何意义知|MA |·|MB |=|t 1t 2|=20sin 2α=40,故α=π4或α=3π4,又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4.6.(2019·湖南省五市十校联考)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t +2(t是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ+π4.(1)求圆C 的直角坐标方程;(2)过直线l 上的点向圆C 引切线,求切线长的最小值. 解:(1)由ρ=2cos ⎝⎛⎭⎪⎫θ+π4,得ρ2=ρcos θ-ρsin θ,∴x 2+y 2-x +y =0,即圆C 的直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +122=12.(2)设l 上任意一点P (t ,t +2),过P 向圆C 引切线,切点为Q ,连接PC ,CQ , ∵圆C 的圆心为C ⎝ ⎛⎭⎪⎫12,-12,半径r =22,∴|PQ |=|PC |2-|CQ |2=⎝ ⎛⎭⎪⎫t -122+⎝ ⎛⎭⎪⎫t +2+122-⎝ ⎛⎭⎪⎫222=2(t +1)2+4≥2, 即切线长的最小值为2.7.(2019·石家庄市模拟(一))在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =r cos α+2,y =r sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=π3. (1)求曲线C 的极坐标方程;(2)当0<r <2时,若曲线C 与射线l 交于A ,B 两点,求1|OA |+1|OB |的取值范围. 解:(1)由题意知曲线C 的普通方程为(x -2)2+y 2=r 2, 令x =ρcos θ,y =ρsin θ, 化简得ρ2-4ρcos θ+4-r 2=0.(2)法一:把θ=π3代入曲线C 的极坐标方程中,得ρ2-2ρ+4-r 2=0.令Δ=4-4(4-r 2)>0,结合0<r <2,得3<r 2<4.方程的解ρ1,ρ2分别为点A ,B 的极径,ρ1+ρ2=2,ρ1ρ2=4-r 2>0, ∴1|OA |+1|OB |=1ρ1+1ρ2=ρ1+ρ2ρ1ρ2=24-r 2. ∵3<r 2<4,∴0<4-r 2<1, ∴1|OA |+1|OB |∈(2,+∞). 法二:射线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =32t (t 为参数,t ≥0),将其代入曲线C 的方程(x -2)2+y 2=r 2中得,t 2-2t +4-r 2=0,令Δ=4-4(4-r 2)>0结合0<r <2,得3<r 2<4,方程的解t 1,t 2分别为点A ,B 对应的参数,t 1+t 2=2,t 1t 2=4-r 2,t 1>0,t 2>0, ∴1|OA |+1|OB |=1t 1+1t 2=t 1+t 2t 1t 2=24-r 2. ∵3<r 2<4,∴0<4-r 2<1, ∴1|OA |+1|OB |∈(2,+∞). 8.(2019·洛阳市统考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =-2+t(t 是参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2=41+3sin 2θ. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程; (2)设曲线C 2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=y得到曲线C 3,M (x ,y )是曲线C 3上任意一点,求点M 到曲线C 1的距离的最大值.解:(1)根据⎩⎪⎨⎪⎧x =1+2t ,y =-2+t 消参可得曲线C 1的普通方程为x -2y -5=0,∵ρ2=41+3sin 2θ,∴ρ2+3ρ2sin 2θ=4, 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,x 2+y 2=ρ2代入可得:x 2+4y 2=4.故曲线C 2的直角坐标方程为x 24+y 2=1.(2)曲线C 2:x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=y 得到曲线C 3的方程为x ′216+y ′2=1,∴曲线C 3的方程为x 216+y 2=1.设M (4cos α,sin α),根据点到直线的距离公式可得 点M 到曲线C 1的距离d =|4cos α-2sin α-5|12+(-2)2=|2sin α-4cos α+5|5=|25sin (α-φ)+5|5≤25+55=2+5(其中tan φ=2),∴点M 到曲线C 1的距离的最大值为2+ 5.。