高三数学综合提升练习

合集下载

同角三角函数基本关系式及诱导公式(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

同角三角函数基本关系式及诱导公式(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点23同角三角函数基本关系式及诱导公式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解同角三角函数的基本关系式sin2α+cos2α=1,sin αcos α=tan α(α≠π2+kπ,k∈Z).2.掌握诱导公式,并会简单应用.【知识点】1.同角三角函数的基本关系(1)平方关系:.(2)商数关系:.2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α-tan α口诀奇变偶不变,符号看象限常用结论同角三角函数的基本关系式的常见变形sin2α=1-cos2α=(1+cos α)(1-cos α);cos2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.【核心题型】题型一 同角三角函数基本关系(1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.【例题1】(2024·河南信阳·一模)若πcos()2sin2aa-=44sin cosa a+=()A B C D【变式1】(多选)(2023·海南·模拟预测)已知sin0a<,则()A.tan1a>-B.tan21a<C.sin20a>D.cos20a<【变式2】(2024高三·全国·专题练习)已知5cos13a=-,则13sin5tanaa+=.【变式3】(2024·山西朔州·一模)若πtan26aæö-=ç÷èø,则2ππ1tan cos362a aæöæö-+--=ç÷ç÷èøèø.题型二 诱导公式诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了;(2)化简:统一角,统一名,同角名少为终了.【例题2】(23-24高三上·江苏南通·期末)已知π0,,sin cos4x x xéùÎ+=êúëû,则3πtan4xæö-=ç÷èø()A.3B.3-C.D.2【变式1】(多选)(22-23高一下·河南焦作·阶段练习)已知角,A B,C是锐角三角形ABC的三个内角,下列结论一定成立的有()A.()sin sinB C A+=B.sin cos22A B C+æö=ç÷èøC.()cos cosA B C+<D.sin cosA B<【变式2】(2024·全国·模拟预测)在ABCV中,tan A,tan B是方程2670x x-+=的两个根,则C的值是.【变式3】(2023·湖南邵阳·模拟预测)在ABCV中,角A,B,C所对的边分别是a,b,c,若()3cos cos22A B C+=+.(1)求角C的大小;(2)若6c=,求ABCV的面积S的最大值.题型三 同角三角函数基本关系式和诱导公式的综合应用(1)利用同角三角函数基本关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数值符号的影响.【例题3】(22-23高三上·陕西安康·阶段练习)在ABC V 中,“tan tan 1A B =”是“22sin sin 1A B +=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式1】(2024·广西·二模)已知2sin sin2a a =,则πtan 4a æö+=ç÷èø.【变式2】(2024·全国·模拟预测)已知点()()()cos ,sin A b a b a --与点5π5πcos ,sin 1212B b b æöæöæö++ç÷ç÷ç÷èøèøèø关于原点对称,则sin cos a a += .【变式3】(23-24高三上·北京·阶段练习)已知a 是第二象限内的角,tan a =(1)求 πcos 22a æö-ç÷èø的值;(2)已知函数()21sin cos sin 2222x x x f x =-+,求π12f a æö+ç÷èø的值.【课后强化】【基础保分练】一、单选题1.(2024·江苏扬州·模拟预测)若ππ44a b -<<<,且1cos sin 2a b =,tan 2tan 3a b =,则()cos a b -=( )A B .C D .2.(2024·广东·二模)tan 7.5tan82.52tan15°-°+°=( )A .2-B .4-C .-D .-3.(2024·全国·模拟预测)已知3π4cos 47a æö-=ç÷èø,则22sin 1cos 22tan sin a a a a++-=( )A .B .C .D .4.(2024·辽宁沈阳·二模)已知()0,πa Î,且1sin cos 5a a +=,则tan2a =( )A .127B .127-C .247D .247-二、多选题5.(23-24高三上·江西·阶段练习)下列结论正确的是( )A .若π2a b -=,则sin cos a b =B .2π2sin 212sin 23a a a æö=+-ç÷èøC .若1sin cos 2a a -=,则3sin 24a =D .若锐角a 满足cos a =,则πtan 34a æö+=-ç÷èø6.(2024·河南周口·模拟预测)设π(0,)2a Î,π(0,)2b Î,则下列计算正确的是( )A .()()cos cos a b a b +<-B .若1sin(cos 6ππ(44a a ++=-,则tan 2a =C .若1tan tan cos a b a +=,则22πb a -=D .若cos 2101sin 2tan a a b +=+,则3π4a b +=三、填空题7.(2024·全国·二模)已知6cos tan 7sin aa a=-,则cos2a = .8.(2024·广东惠州·一模)若角a 的终边在第四象限,且4cos 5a =,则πtan 4a æö-=ç÷èø.9.(2024·全国·模拟预测)已知πtan 7x x æö+=ç÷èø为第二象限角,则10πsin 21x æö+=ç÷èø.四、解答题10.(2023·广东珠海·模拟预测)在三角形ABC 中,内角A 、B 、C 对应的边分别是a 、b 、c ,已知1a =,2b =,c 求:(1)sin B 的值:(2)()cos 2sin B A C -+的值.11.(2023·河南·模拟预测)已知函数()()2cos sin f x x x x =(1)若π10413f a æö+=ç÷èø,求π212f a æö-ç÷èø的值;(2)设()ππ1ππ1262126g x f x f x f x f x æöæöæöæö=++--+-ç÷ç÷ç÷ç÷èøèøèøèø,求函数()g x 的最小值.【综合提升练】一、单选题1.(2024高三·全国·专题练习)已知sin a =3πcos 22tan a a æö-ç÷èø=( )A .74-B .74C .14D .14-2.(2024·河南·二模)已知1sin cos 3x x +=,则πcos 22x æö-=ç÷èø( )A .35-B .35C .89D .89-3.(2024·全国·模拟预测)若sin cos 1sin cos 15a a a a =-++,则sin2a =( )A .1625B .1625-C .925D .925-4.(2024·江西·二模)已知()()()cos 140cos 200sin 130a a a °-=°++°-,求tan a =( )AB.CD.5.(2024·山东济南·三模)若sin cos a a -=,则tan a =( )A .1B .1-C .2D .2-6.(2024·湖南岳阳·二模)已知ππ1Z,sin cos 223a a æöæöÎ++-=ç÷ç÷èøèøn n n ,则( )A .1cos sin 3a a +=B .1cos sin 3a a +=-C .8sin29a =-D .8sin29a =7.(2024高三下·全国·专题练习)已知角a 为第三象限角,tan a =πcos 6a æö-=ç÷èø( )A .BCD .8.(2024·新疆·一模)已知: ()()()sin 20sin 20sin 400q q q -+++-=o o o,则tan q =( )A .B .CD 二、多选题9.(23-24高一上·广东清远·期末)已知()tan tan tan a b a b -=-,其中()π2k k a ¹ÎZ 且()π2m m b ¹ÎZ ,则下列结论一定正确的是( )A .sin sin 0a b =B .()sin 0a b -=C .()cos 1a b -=D .22sin cos 1a b +=10.(2024·云南·一模)为得到函数π6sin 23y x æö=+ç÷èø的图象,只需要将函数6sin2y x =的图象( )A .向左平行移动π6个单位B .向左平行移动π3个单位C .向右平行移动5π6个单位D .向右平行移动11π6个单位11.(2023·广东·模拟预测)如图是函数()f x 的部分图象,则下列结论正确的是( )A .()π2sin 24f x x æö=+ç÷èøB .()3π2sin 24f x x æö=--ç÷èøC .()3π2cos 24f x x æö=+ç÷èøD .()π2cos 24f x x æö=-ç÷èø三、填空题12.(2024·黑龙江·二模)已知函数()f x 满足:()1tan cos 2f x x=,则111(2)(3)(2024)232024f f f f f f æöæöæö+++++++=ç÷ç÷ç÷èøèøèøL L .13.(2023·青海·模拟预测)如图,直径10AB =的半圆,D 为圆心,点C 在半圆弧上,sin 0.8,ADC P Ð=为 AB 的中点,AP 与BC 相交于点E ,则cos PEC Ð=.14.(2024·江苏·一模)已知π,0,2a b æöÎç÷èø,且1sin sin 2a b -=-,1cos cos 2a b -=,则tan tan a b += .四、解答题15.(2024·广东深圳·模拟预测)在锐角ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan 24C =-.(1)求cos C ;(2)若4c =,求ABC V 面积的最大值.16.(2024·全国·模拟预测)已知ABC V 为锐角三角形,且()sin 3cos 3cos C C A B +=-.(1)求tan tan A B +的值;(2)求1sin sin sin A B C的最小值.17.(2024·湖北·一模)在ABC V 中,已知π4AB AC C ===.(1)求B 的大小;(2)若BC AC >,求函数()()()sin 2sin 2f x x B x A C =--++在[]π,π-上的单调递增区间.18.(2024·四川内江·三模)在斜ABC V 中,角A 、B 、C 所对的边分别为π,cos()02a b c B A C æö+++=ç÷èø,.(1)求cos 2B 的值;(2)若π,2A C b =+=ABC V 的面积.19.(2022·浙江·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 1sin tan AA B=+.(1)若A B =,求C ;(2)求sin sin 2cos a B b Ab B+的取值范围.【拓展冲刺练】一、单选题1.(2024·福建南平·二模)已知π1tan 62a æö+=ç÷èø,则2πcos 23a æö-=ç÷èø( )A .35-B .34C .45-D .452.(2024·辽宁丹东·一模)已知π(0,2a Î1=,则sin 2a =( )ABCD3.(2024·河南南阳·一模)已知三个锐角,,a b g满足1sin cos cos 2a b b g ==,则sin cos g a 的最大值是( )A .14BC D4.(23-24高三上·浙江·阶段练习)若3sin cos q q +=,则π1tan π8tan 8q q æö+-ç÷æöèø+ç÷èø的值为( )A .7-B .14-C .17D .27二、多选题5.(2024·全国·模拟预测)已知()sin sin 2024a =°,()sin cos 2024b =°,()cos sin 2024c =°,()cos cos 2024d =°,则( )A .a c<B .b d<C .a b<D .d c<6.(2024·湖北·模拟预测)设sin 52t °=,则( )A .2cos 7612t °=-B.sin1042°=C.tan 38°=D.sin 64°=三、填空题7.(21-22高二下·浙江金华·阶段练习)已知3πsin(3π)2sin(2a a -=-+,求3πsin(π)5sin()22cos(2π)sin()a a a a ---=--- .8.(2023·广东惠州·二模)函数π()tan()0,||2f x x w j w j æö=+><ç÷èø经过点π,16æö-ç÷èø,图象如图所示,图中阴影部分的面积为6π,则2023π3f æö=ç÷èø.9.(2022·重庆沙坪坝·模拟预测)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为 .四、解答题10.(2024·全国·模拟预测)在ABC V 中,已知22,,tan sin AB AC BD DC CAD BAC l ===Ð=Ðuuu r uuu r.(1)若2l =,证明:ABC V 为直角三角形;(2)若1l =,求ABC V 的面积.11.(22-23高三上·陕西商洛·期中)在非Rt ABC △中,已知()2sin sin sin sin A B C C q l -=,其中3πtan 042q q æö=<<ç÷èø.(1)若tan 2C =,1l =,求11tan tan A B+的值;(2)是否存在l 使得112tan tan tan A B C++为定值?若存在,求l 的值,并求出该定值为多少;若不存在,请说明理由.。

2020届高考数学(理)一轮复习考点综合提升训练:考点21数列的概念与简单表示法

2020届高考数学(理)一轮复习考点综合提升训练:考点21数列的概念与简单表示法

高三一轮综合提升 考点21数列的概念与简单表示法一、选择题1.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5等于( ) A.56B.65C.130 D .302.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3) D.⎝⎛⎦⎤-∞,92 3.定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 019a 2 017等于( ) A .4×2 0192-1B .4×2 0182-1C .4×2 0172-1D .4×2 01724.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n =( )A.15n 2-25n +65B .n 3-5n 2+9n -4C .n 2-2n +2D .2n 2-5n +45.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 0246.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15二、填空题 7.已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________.8.已知数列{a n }的前n 项和S n =n 2+1(n ∈N *),则a n =________.9.已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =________.10.若数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n ,则此数列的最大项是第________项.11.若数列{a n }满足a n +1=⎩⎨⎧ 2a n ,0≤a n ≤12,2a n -1,12<a n <1,a 1=35,则数列{a n }的第2 019项为________.三、解答题12.[与函数零点交汇]已知二次函数f (x )=x 2-ax +a (a >0,x ∈R)有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.13.设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.14.已知数列{a n}的各项均为正数,记数列{a n}的前n项和为S n,数列{a2n}的前n项和为T n,且3T n=S2n+2S n,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.参考答案1. 答案:D解析:当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),所以1a 5=5×6=30. 2. 答案:C解析:因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.3. 答案:C解析:由题知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1, 所以a 2 019a 2 017=a 2 019a 2 018·a 2 018a 2 017=(2×2 018-1)(2×2 017-1) =(2×2 017+1)(2×2 017-1)=4×2 0172-1.4. 答案:C解析:由题意得(a n +2-a n +1)-(a n +1-a n )=2,因此数列{a n +1-a n }是以1为首项,2为公差的等差数列,a n +1-a n =1+2(n -1)=2n -1, 当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+…+(2n -3)=1+(1+2n -3)(n -1)2=(n -1)2+1=n 2-2n +2, 又a 1=1=12-2×1+2,因此a n =n 2-2n +2.5. 答案:C解析:在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.6. 答案:A解析:由题意知,a 1+a 2+…+a 10=-1+4-7+10-…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.n +2解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得2(1-a n +1)a n +1-2(1-a n )a n =1a n +1-1a n +1,整理,得1a n +1-1a n=1,即⎩⎨⎧⎭⎬⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2. 8. 答案:⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2 解析:当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2. 9. 答案:3×2n -1-2 解析:由a n +2+2a n -3a n +1=0,得a n +2-a n +1=2(a n +1-a n ), ∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1, ∴n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3, 将以上各式累加得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1), ∴a n =3×2n -1-2(n ≥2), 经检验,当n =1时,a n =1,符合上式.∴a n =3×2n -1-2. 10. 答案:9或10解析:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ;当n =9时,a n +1-a n =0,即a n +1=a n ;当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项.5解析:由已知可得,a 2=2×35-1=15, a 3=2×15=25, a 4=2×25=45, a 5=2×45-1=35, ∴{a n }为周期数列且T =4,∴a 2 019=a 504×4+3=a 3=25. 12. 解析:(1)依题意,Δ=a 2-4a =0, 所以a =0或a =4.又由a >0得a =4,所以f (x )=x 2-4x +4.所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2. (2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n }的变号数为3.13. 解析:(1)令n=1,T1=2S1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时,a1=S1=1也满足上式,所以S n=2a n-2n+1(n∈N*),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,2为公比的等比数列.所以a n+2=3×2n-1,所以a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.14. 解析:(1)由3T1=S21+2S1,得3a21=a21+2a1,即a21-a1=0.因为a1>0,所以a1=1.(2)因为3T n=S2n+2S n,①所以3T n+1=S2n+1+2S n+1,②②-①,得3a2n+1=S2n+1-S2n+2a n+1.因为a n+1>0,所以3a n+1=S n+1+S n+2,③所以3a n+2=S n+2+S n+1+2,④④-③,得3a n+2-3a n+1=a n+2+a n+1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2, 所以对n ∈N *,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.。

高三数学基础差适合做的练习题

高三数学基础差适合做的练习题

高三数学基础差适合做的练习题在高三的数学学习过程中,有些同学可能会发现自己的数学基础较差,对于一些难题掌握得不够好。

这时候,合适的练习题可以帮助我们加强基础知识,提高解题能力。

本文将介绍一些适合高三数学基础较差的练习题。

一、基础知识巩固题1. 线性方程组题目:求解线性方程组```2x + 3y = 74x - y = 1```2. 四则运算题目:计算下列表达式的值```(3 + 4) × 2 - 5 ÷ 5```3. 三角函数题目:计算角度的正弦、余弦和正切值```已知角度A的正弦值sin(A) = 0.6,求A的余弦值cos(A)和正切值tan(A)。

4. 平方根题目:计算下列数的平方根```√16 + √25```二、知识点拓展题1. 解析几何题目:求两点之间的距离和中点坐标```已知两点A(3, 4)和B(7, 8),求线段AB的长度和中点M的坐标。

```2. 概率题目:计算事件的概率```一个骰子投掷两次,求第一次投得奇数,第二次投得偶数的概率。

```3. 函数题目:求函数的定义域、值域和极值点```已知函数f(x) = x² + 3x,求函数的定义域、值域,并判断是否存在极值点。

4. 导数题目:求函数的导数和极值点```已知函数f(x) = 2x³ - 3x² + 2,求函数的导数f'(x)和极值点。

```三、综合应用题1. 三角形题目:判断三角形的形状和大小关系```已知三角形ABC的三边长分别为a = 4cm,b = 5cm,c = 6cm,判断该三角形的形状和大小关系。

```2. 二次函数题目:求解二次函数的零点和顶点坐标```已知二次函数f(x) = x² - 4x + 3,求函数的零点和顶点坐标。

```3. 排列组合题目:计算排列和组合的个数```从5个数中取出3个数的所有排列和组合的个数。

4. 等差数列题目:求等差数列的公差和前n项和```已知等差数列的首项a₁ = 1,公差d = 2,求前n项和Sn。

考点05一元二次方程、不等式(2种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点05一元二次方程、不等式(2种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点05一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.【知识点】1.二次函数y =ax 2+bx +c (a >0)与一元二次方程ax 2+bx +c =0(a >0),不等式ax 2+bx +c >0(a >0)的解的对应关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数的图象方程的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b 2a没有实数根不等式的解集{x |x ≠-b2a}R 2.分式不等式与整式不等式(1)f (x )g (x )>0(<0)⇔ ;(2)f (x )g (x )≥0(≤0)⇔ .3.简单的绝对值不等式|x |>a (a >0)的解集为,|x |<a (a >0)的解集为.【核心题型】题型一 一元二次不等式的解法对含参的不等式,应对参数进行分类讨论,常见的分类有(1)根据二次项系数为正、负及零进行分类.(2)根据判别式Δ与0的关系判断根的个数.(3)有两个根时,有时还需根据两根的大小进行讨论.命题点1 不含参数的不等式【例题1】(2024·青海·一模)已知集合(){}2lg 23A x y x x ==-++,{}240B x x =-<,则A B È=( )A .()1,3-B .()1,2-C .()2,3-D .()2,2-【变式1】(2024·全国·模拟预测)已知集合{}2|680,{|13}M x x x N x x =-+<=<£,则M N Ç=( )A .{|23}x x ££B .{|23}x x <£C .{|24}x x <£D .{|13}x x <£【变式2】(2024·山东济宁·一模)设集合{}2|60A x x x =--<,{|}B x a x a =-££,若A B Í,则实数a 的取值范围是 .【变式3】(2024·安徽合肥·一模)已知集合{}{}24,11A xx B x a x a =£=-££+∣∣,若A B Ç=Æ,则a 的取值范围是.命题点2 含参数的一元二次不等式【例题2】(2024·云南红河·二模)已知,a b 均为正实数,则“11a b>”是“2223a b ab +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式1】(23-24高三下·陕西安康·阶段练习)在区间[]05,内随机取一个实数a ,则关于x 的不等式()2220x a x a +--<仅有2个整数解的概率为( )A .25B .310C .15D .110【变式2】(2023·江西南昌·三模)函数22e ,0()(2)2,0x ax x f x x a x a x ì->=í-+-+£î,若关于x 的不等式()0f x ³的解集为[2,)-+¥,则实数a 的取值范围是( )A .e 2,2æù-çúèûB .e 0,2éùêúëûC .20,4éùêúëûe D .2e {0},4¥éö+÷êëøU 【变式3】.(2023·湖南·模拟预测)若关于x 的不等式()277x a a x +<+的解集恰有50个整数元素,则a 的取值范围是 ,这50个整数元素之和为 .题型二 一元二次不等式恒成立问题恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ;一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.命题点1 在R 上恒成立问题【例题3】(2024·浙江·模拟预测)若不等式()2620kx k x +-+>的解为全体实数,则实数k的取值范围是( )A .218k ££B .182k -<<-C .218k <<D .02k <<【变式1】(23-24高三上·河南·期中)“关于x 的不等式()()2232340a x a x ---+³的解集为R ”是“392a <<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式2】(2023·福建厦门·二模)“()0,4b Δ是“R x "Î,210bx bx -+>成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式3】(23-24高三上·河北邢台·阶段练习)“不等式2210ax ax +-<恒成立”的一个充分不必要条件是( )A .10a -£<B .0a £C .10a -<£D .10a -<<命题点2 在给定区间上恒成立问题【例题4】(2023·浙江宁波·一模)已知函数()2f x x ax b =++,若不等式()2f x £在[]1,5x Î上恒成立,则满足要求的有序数对(,)a b 有( )A .0个B .1个C .2个D .无数个【变式1】(2023·陕西咸阳·模拟预测)已知命题p :任意1,22x éùÎêúëû,使222log log 30x m x -×-£为真命题,则实数m 的取值范围为( )A .(],2-¥B .(],2-¥-C .[]22-,D .[)2,-+¥【变式2】(2023·辽宁鞍山·二模)已知当0x >时,不等式:2160x mx -+>恒成立,则实数m 的取值范围是( )A .()8,8-B .(],8¥-C .(),8¥-D .()8,+¥【变式3】(2024·全国·模拟预测)已知函数2()f x x ax b =++,若对任意[1,5],()2x f x Σ,则所有满足条件的有序数对(,)a b 是 .命题点3 在给定参数范围内的恒成立问题【例题5】(23-24高三上·河南信阳·阶段练习)若210mx -<对于[]0,2m Î恒成立,则实数x 的取值范围为 .【变式1】(2024高三·全国·专题练习)设函数()f x 是定义在(,)-¥+¥上的增函数.若不等式()21(2)--<-f ax x f a 对于任意[0,1]a Î恒成立,求实数x 的取值范围.【变式2】(22-23高三上·山东潍坊·阶段练习)若对于任意[]1,1m Î-,任意R y Î,使得不等式()23613x m x y y +--<-+-成立,则实数x 的取值范围是.【变式3】(2023高三·全国·专题练习)若不等式()2211x m x ->-对任意[]1,1m Î-恒成立,实数x 的取值范围是 .【课后强化】基础保分练一、单选题1.(2024高三·全国·专题练习)已知集合{}{}2450,34A x x x B x a x a =--³=-<<+,若A B =U R ,则实数a 的取值范围为( )A .{}1a a >B .{}12a a <<C .{}2a a <D .{}12a a ££2.(2024·浙江·模拟预测)若不等式()2620kx k x +-+>的解为全体实数,则实数k 的取值范围是( )A .218k ££B .182k -<<-C .218k <<D .02k <<3.(2024·云南红河·二模)已知,a b 均为正实数,则“11a b>”是“2223a b ab +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2024高三·全国·专题练习)若不等式()()222240a x a x -+--<对一切x ÎR 恒成立,则实数a 的取值范围是( )A .(],2-¥B .[]22-,C .(]2,2-D .(),2-¥-5.(23-24高三下·湖南衡阳·阶段练习)条件p 是q 的充分不必要条件是( )A .函数()y f x =定义域为A ,p :()0f x ¢³在A 上成立.q :()y f x =为增函数;B .p :2R,30x x x a "Î-+>成立,q :12a a +-最小值为4;C .p :函数2()2441f x ax x =+-在区间(1,1)-恰有一个零点,q : 1184a -<<;D .p :函数()cos 2cos sin 2sin f x x x j j =+为偶函数(x ÎR ),q :π(Z)k k j =Î6.(2024高三·全国·专题练习)已知,a b ÎR 且0ab ¹,若()()()20x a x b x a b ----³在0x ³上恒成立,则( )A .0a <B .0a >C .0b <D .0b >二、多选题1.(23-24高三上·湖南邵阳·阶段练习)已知0a >,0b >,且27a b +=,若223a b t +£恒成立,则实数t 的值可能为( )A .20B .21C .49D .502.(2024高三·全国·专题练习)(多选)下列命题正确的是( )A .若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0B .若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为RC .不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0D .若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集三、填空题1.(23-24高三下·上海·阶段练习)设0a >,若关于x 的不等式20x ax -<的解集是区间()0,1的真子集,则a 的取值范围是 .2.(23-24高三下·河北保定·开学考试)已知集合(){}(){}2log 32,540A x x B x x x =-<=--³,则A B =I .四、解答题1.(2024·全国·模拟预测)已知函数()2f x x a =-,且()f x b £的解集为[]1,3-.(1)求a 和b 的值;(2)若()f x x t £-在[]1,0-上恒成立,求实数t 的取值范围.2.(2024高三·全国·专题练习)(1)解关于实数x 的不等式:2(1)0x a x a -++<.(2)解关于实数x 的不等式:210x ax -+<.3.(2024·全国·模拟预测)已知函数()21f x x =+.(1)求不等式()()11f x f x -->的解集;(2)若()()()1h x f x f x =+-,且存在x ÎR 使不等式()221a a h x +-³成立,求实数a 的取值范围.综合提升练一、单选题1.(2023·辽宁鞍山·二模)若对任意的2(0,),10x x mx Î+¥-+>恒成立,则m 的取值范围是( )A .(2,2)-B .(2,)+¥C .(,2)-¥D .(,2]-¥2.(2023高三·全国·专题练习)已知命题p :“∀x ∈R ,(a +1)x 2-2(a +1)x +3>0”为真命题,则实数a 的取值范围是( )A .-1<a <2B .a ≥1C .a <-1D .-1≤a <23.(2024·陕西西安·模拟预测)已知集合{{}2N 40A x y B y y =Î==-£∣,∣,则集合A B Ç中元素的个数为( )A .1B .2C .3D .44.(23-24高三上·重庆长寿·期末)已知函数2()2f x ax x a =-+,对1,22x éùÎêúëû都有()0f x ³成立,则实数a 的取值范围是( )A .[)1,¥+B .4,5¥éö+÷êëøC .4,15éùêúëûD .4,5¥æù-çúèû5.(23-24高三上·内蒙古通辽·阶段练习)已知命题0:p x $ÎR ,()200110x a x +-+<,若命题p 是假命题,则a 的取值范围为( )A .13a ££B .13a -<<C .13a -££D .02a ££6.(23-24高三下·山东菏泽·阶段练习)已知条件q :“不等式()()224210a x a x -++-³的解集是空集”,则条件p : “21a -£<”是条件q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2024·天津河西·一模)“2x x £”是“11x³”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.(2023·广东广州·三模)定义{},max ,,p p q p q q p q³ì=í<î,设函数(){}2max 22,2x f x x ax a =--+,若R x $Î使得()0f x £成立,则实数a 的取值范围为( ).A .(][),01,-¥+¥U B .[][)1,01,-È+¥C .()(),11,-¥-È+¥D .[]1,1-二、多选题1.(23-24高三上·浙江绍兴·期末)已知R a Î,关于x 的一元二次不等式()()220ax x -+>的解集可能是( )A .2x x a ì>íî或}2x <-B .{}2x x >-C .22x x a ìü-<<íýîþD .22x x a ìü<<-íýîþ2.(2024·广东深圳·模拟预测)下列说法正确的是( )A .不等式24510x x -+>的解集是114x x x ìü><íýîþ或B .不等式2260x x --£的解集是322x x x ìü£-³íýîþ或C .若不等式28210ax ax ++<恒成立,则a 的取值范围是ÆD .若关于x 的不等式2230x px +-<的解集是(),1q ,则p q +的值为12-3.(22-23高三上·河北唐山·阶段练习)若()()240ax x b -+³对任意(],0x Î-¥恒成立,其中a ,b 是整数,则+a b 的可能取值为( )A .7-B .5-C .6-D .17-三、填空题1.(2024高三·全国·专题练习)已知R a Î,函数()2222,022,0x x a x f x x x a x ì++-£=í-+->î若对任意[)–3,x Î+¥,()f x x £恒成立,则a 的取值范围是.2.(23-24高三上·河南·阶段练习)若命题“x $ÎR ,()()221110a x a x -+--³”为假命题,则a 的取值范围为 .3.(23-24高三下·上海闵行·阶段练习)设集合2{|41}A x x =£,{|ln 0}B x x =<,则A B =I .四、解答题1.(2024高三·全国·专题练习)已知集合A ={x |x 2-4x -5≤0},B ={x |2x -6≥0},M =A ∩B .(1)求集合M ;(2)已知集合C ={x |a -1≤x ≤7-a ,a ∈R },若M ∩C =M ,求实数a 的取值范围.2.(23-24高三上·河南南阳·阶段练习)二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =(1)求()f x 的解析式;(2)在区间[1,1]-上,函数()y f x =的图象恒在直线y m =的上方,试确定实数m 的取值范围.3.(2024高三·全国·专题练习)设函数()f x ax =,其中0a >.解不等式()1f x £;4.(2024高三·全国·专题练习)已知f (x )=2,02,0xx x x ìïíï<î…求f (f (x ))≥1的解集.5.(2023·河南开封·模拟预测)已知函数()f x 满足()()()()2213221R f x f x x a x a x +-=+--+Î.(1)讨论()f x 的奇偶性;(2)设函数()()()ln 1h x x f x x éù=+³ëû,求证:[)(){}1,yy h x ¥+Í=∣.拓展冲刺练一、单选题1.(2024高三·全国·专题练习)已知集合{}2120A x x x =--<,(){}2R log 51B x x =Î-<,则()A B =R I ð( )A .{}34x x -<£B .{}34x x -£<C .{}4x x ³D .{}45x x £<2.(23-24高三下·陕西安康·阶段练习)在区间[]05,内随机取一个实数a ,则关于x 的不等式()2220x a x a +--<仅有2个整数解的概率为( )A .25B .310C .15D .1103.(2023·福建厦门·二模)不等式2210ax x -+>(R a Î)恒成立的一个充分不必要条件是()A .2a >B .1a ³C .1a >D .102a <<4.(2023·全国·模拟预测)已知函数()3sin f x x x =+,若不等式()220f x ax -+³恒成立,则实数a 的最大值为( )A B .2C .D .4二、多选题5.(2023·全国·模拟预测)已知平面向量,a b r r 满足||2a =r ,||4b =r ,且对任意的实数t ,都有b ta b a +³-r r r恒成立,则下列结论正确的是( )A .4a b -r r 与b r垂直B .(3)27a b b +×=r rrC .14a b a b l l -+-rr r r 的最小值为D .12a b a b l l ---r rr r 的最大值为6.(23-24高三上·辽宁葫芦岛·阶段练习)若关于x 的不等式()277x a a x +<+的解集恰有50个整数元素,则下列各选项正确的是( )A .a 的值可能为-43B .这50个整数元素之和可能为-925C .a 的值可能为57.5D .这50个整数元素之和可能为1625三、填空题7.(2022高三上·河南·专题练习)已知:11p x -<,()2:10q x a x a -++£,若p 是q 的必要不充分条件,则实数a 的取值范围是 .8.(23-24高三上·江苏·阶段练习)已知二次函数()()1y ax x a =--.甲同学:0y >的解集为()1,,a a æö-¥+¥ç÷èøU ;乙同学:0y <的解集为()1,,a a æö-¥+¥ç÷èøU ;丙同学:y 的对称轴大于零.在这三个同学的论述中,只有一个假命题,则a 的范围为 .9.(2024高三·全国·专题练习)已知函数2()f x x ax b =++,若对任意[]()1,5,2x f x Σ,则所有满足条件的有序数对(),a b 是 .10.(23-24高三上·全国·阶段练习)对任意的x ÎR ,不等式()()()2222714613817x x m x x x x -+³-+-+恒成立,则实数m 的取值范围为 .四、解答题11.(23-24高三上·福建莆田·阶段练习)解关于x 的不等式:()()2220R ax a x a -++<Î.12.(2024高三·全国·专题练习)设函数()21f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围;(2)若对于[]1,3x Î,()5f x m <-+恒成立,求实数m 的取值范围.13.(2023·陕西咸阳·模拟预测)已知函数21()32ln 2f x x x x =-+.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)(ⅰ)若对于任意12,[1,3]x x Î,都有12()()22f x f x m -£-,求实数m 的取值范围;(ⅱ)设21()()2g x f x x =+,且12()()0g x g x +=,求证:1272x x +>.14.(23-24高三上·天津南开·期中)设函数2()(0,1)x xa b f x a a a -=>¹且是定义域为R 的奇函数,且()y f x =的图象过点31,2æöç÷èø.(1)求a ,b 的值;(2)设2()()(),g x x p x q p q =--<,若(),(())()0x f g x f mxg x ¢"Î-+£R (()g x ¢为函数()g x 的导数),试写出符合上述条件的函数()g x 的一个解析式,并说明你的理由.。

名校高三数学理科数列解答题提升精练试题

名校高三数学理科数列解答题提升精练试题

1.已知214)(x x f +-=,数列}{n a 的前n 项和为n S , 点11(,)n n n P a a +-在曲线)(x f y =上)(*N n ∈,且11a =,0n a > (1)求数列}{n a 的通项公式;(2)数列}{n b 的前n 项和为n T ,且满足212211683n n n n T Tn n a a ++=+--,11=b ,求数列}{n b 的通项公式; (3)求证:*,11421N n n S n ∈-+>. 2.已知数列{}n a 的前n 项和为n S 满足2()n n S a n N *=-∈.(1)函数()y f x =与函数2x y =互为反函数,令()n n b f a =,求数列{}n n a b ⋅的前n 项和n T ; (2)已知数列{}n c 满足12[(1)]34n nn a c -=+-,证明:对任意的整数4k >,有4511189k c c c +++<. 3.设数列{}n a 的前n 项和为n S ,已知122n n n S a +=-(n ∈N*). (1)求数列{}n a 的通项公式; (2)求证:当x>0时,ln(1)1xx x +>+ (3)令11(1)l o g2nn n a n c ++=-,数列{}n c 的前2n 项和为2n T .利用(2)的结论证明:当n ∈N*且n ≥2时,22In T n <.4.设数列{}n a 的各项都是正数,且对任意*n N ∈都有33332123+2n n n a a a a S S ++++=,其中n S 为数列{}n a 的前n 项和.(1)求12a a ,;(2)求数列{}n a 的通项公式;(3)设13(1)2na nn n b λ-=+-⋅,对任意的*n N ∈,都有1n n b b +>恒成立,求实数λ的取值范围.5.已知数列{a n }为等差数列,且满足a n +1=a n 2-na n +1,n =1,2,3,…(1)求数列{a n }的通项公式; (2)求证:123211111ln 2.n n n n a a a a ++++++++<(3)当01λ<<时,设1(),(1)2n n n n b a c a λλ=-=-,数列1n n b c ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 求证:9143n n T n ->+. 6.已知数列{}n a 的前n 项和为n S ,且满足)(2121+∈--=N n a S n n (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足1+=n n a nb ,证明:对于一切正整数n ,不等式!2321n b b b b n ⨯<⋅⋅⋅恒成立。

高二高三数学专项练习题推荐

高二高三数学专项练习题推荐

高二高三数学专项练习题推荐数学在高中阶段是一门非常重要的学科,也是学生们常常觉得难以掌握的一门学科。

为了帮助高二高三的学生们更好地学习数学,提高数学水平,本文将推荐一些适合做专项练习的数学题。

一、代数与函数1. 二次函数的性质:求解二次函数的定义域、值域,以及最值等问题。

这些题目有助于理解和掌握二次函数的基本性质,并提高解题能力。

2. 三角函数的运算:包括角度和弧度的互相转化、正弦、余弦、正切等三角函数的定义、性质以及运算等。

这些题目有利于加深对三角函数概念的理解,并提高计算和推导的能力。

3. 幂函数与指数函数的应用:涉及到幂函数与指数函数的图像、性质及其应用问题。

这些题目可以帮助学生掌握幂函数与指数函数的特点,并培养抽象思维和数学建模能力。

二、几何与立体几何1. 平面几何基础:重点包括平面上的图形性质、直线、圆的性质、面积和周长的计算等。

这些题目能够帮助学生巩固和提高平面几何的基本概念和计算技巧。

2. 三角形的性质与判定:如三角形的内角和定理、外角和定理,以及三角形相似、全等的判定等。

这些题目可以加深对三角形性质和判定方法的理解。

3. 空间几何:包括立体图形的面积与体积的计算、平行四边形体的性质、球的性质和圆柱、圆锥、棱柱等立体图形的特点与计算等。

通过练习这些题目,学生可以提升对空间几何的理解和解题能力。

三、概率与统计1. 事件与概率:包括事件的概念、概率的性质、计算等。

这些题目有助于培养学生对事件与概率的敏感性和分析问题的能力。

2. 统计分析:主要涉及数据收集、整理、分析和解读等。

练习这些题目可以帮助学生提高统计分析的能力,并培养良好的数据处理和解读的思维习惯。

四、数列与数学归纳法1. 等差数列与等比数列:重点包括数列的通项公式、求和公式等。

这些题目能够帮助学生加深对数列的理解,并提高运用数学归纳法解题的能力。

2. 数列与函数的关系:涉及到数列与函数的图像、性质的联系与应用等。

练习这些题目可以加深对数列与函数的关系的理解,并提高数学建模能力。

2023年高考数学一轮复习提升专练(新高考地区用)3-5 幂函数与一元二次函数(精讲)(解析版)

2023年高考数学一轮复习提升专练(新高考地区用)3-5 幂函数与一元二次函数(精讲)(解析版)

3.5 幂函数与一元二次函数(精讲)(提升版)思维导图考点呈现考点一 幂函数及性质【例1-1】(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6 B .1 C .6 D .1或﹣6【答案】B【解析】∵幂函数223()(55)()mmf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∵2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数1m ∴=或6m =- 当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去因此:m =1故选:B【例1-2】(2022·全国·高三专题练习)幂函数2232m m y x --=是偶函数,在()0,∞+上是减函数,则整数m 的值为( ) A .0 B .1 C .0或1 D .2【答案】A【解析】因为幂函数2232m m y x --=在()0,∞+上是减函数,所以22320m m --<,解得122m -<<,又m Z ∈,所以0m =或1m =, 当0m =时,221yxx 定义域为()(),00,-∞⋃+∞,且()2211x x =-,所以2y x 是偶函数,满足题意;当1m =时,331y x x -==定义域为()(),00,-∞⋃+∞,而()3311x x =--,所以3y x -=是奇函数,不满足题意,舍去;综上,0m =.故选:A 【一隅三反】1.(2022·全国·高三专题练习)(多选)已知幂函数()f x x α=的图象经过点(16,4),则下列说法正确的有( )例题剖析A .函数是偶函数B .函数是增函数C .当1x >时,()1f x >D .当120x x <<时,1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭【答案】BCD【解析】因为幂函数()f x x α=的图象经过点(16,4),所以164α=,则12α=, 所以12()f x x ==[)0,+∞,不关于原点对称,所以该函数是非奇非偶函数,故A 错; 又102>,所以12()f x x =是增函数,故B 正确; 因此当1x >时,()(1)1f x f >=,故C 正确;当120x x <<时,因为12()()2f x f x +122x x f +⎛⎫ ⎪⎝⎭则22121212()()222f x f x x x x x f +⎡+⎤+⎡⎤⎛⎫-=-= ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦20=-<⎝⎭,所以1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭,故D 正确.故选:BCD. 2.(2022·全国·高三专题练习)(多选)已知函数()()2231mm f x m m x+-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-.若a ,b R ∈,且()()f a f b +的值为负值,则下列结论可能成立的有( )A .0a b +>,0ab <B .0a b +<,0ab >C .0a b +<,0ab <D .0a b +>,0ab >【答案】BC【解析】由于函数()f x 为幂函数,故211m m --=,即220m m --=,解得1,2m m =-=.当1m =-时,()21f x x =,当2m =时,()3f x x =.由于“对任意()12,0,,x x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-”知,函数在()0,∞+上为增函数,故()3f x x =.易见()()f x f x -=-,故函数()3f x x =是单调递增的奇函数.由于()()0f a f b +<,即()()()f a f b f b <-=-,得a b <-,所以0a b +<,此时,若当0a =时,0b <,故0ab =;当0a >时,0a b <<-,故0b <,故0ab <;当0a <时,由a b <-知,b a <-,故0b <或0b =或0b >,即0ab >或0ab =或0ab <.综上可知,0a b +<,且0ab >或0ab =或0ab <.故选:BC. 3.(2022·全国·高三专题练习(理))已知幂函数()223()mm f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________. 【答案】{}1,1,3-【解析】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤, 又m Z ∈,即{}1,0,1,2,3m ∈-,()223()mm f x x m Z --=∈的图像关于y 轴对称,即函数为偶函数,故223m m --为偶数,所以{}1,1,3m ∈-,故答案为:{}1,1,3-.4.(2022·上海·高三专题练习)已知函数()22()1a f x a a x +=-+为幂函数,且为奇函数,则实数a 的值_____.【答案】1【解析】因为函数()22()1a f x a a x +=-+为幂函数,所以2211,0,1a a a a a -+=∴-=∴=或0a =.当0a =时,()2f x x =为偶函数,不符合题意,所以舍去;当1a =时,()3f x x =为奇函数,符合题意.故答案为:1考点二 一元二次函数【例2-1】(2021·重庆市清华中学校高三阶段练习)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则实数m 的取值范围是( ) A .(]0,4 B .25,44⎡⎤--⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】函数234y x x =--的图象如图所示,因为223253424y x x x ⎛⎫=--=-- ⎪⎝⎭当0x =或3x =时,4y =-;当32x =时,254y =-,因为函数的定义域为[]0,m ,所以3,32m ⎡⎤∈⎢⎥⎣⎦.故选:C .【例2-2】(2022·宁夏·平罗中学模拟预测(理))已知,(0,1)a b ∈,则函数2()41f x ax bx =-+在[1,)+∞上是增函数的概率为( )A .45B .34C .25D .14【答案】D【解析】由题设()f x 对称轴为2bx a=,而,(0,1)a b ∈,函数开口向上, 所以()f x 的增区间为2[,)b a +∞,故在[1,)+∞上是增函数有201b a <≤,综上,01012a b b a<<⎧⎪<<⎨⎪≤⎩对应可行域如下阴影部分:所以阴影部分面积为14,而,(0,1)a b ∈的面积为1,故在[1,)+∞上是增函数的概率为14.故选:D 【例2-3】(2022·全国·高三专题练习)(多选)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( ) A .2B .3C .4D .5【答案】BC 【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确.故选: BC. 【一隅三反】1.(2022·全国·高三专题练习)若a ,b ,c 成等差数列,则二次函数22y ax bx c =-+的图象与x 轴的交点个数为( ) A .0 B .1 C .2 D .1或2【答案】D【解析】由a ,b ,c 成等差数列,可得2b a c =+, 所以()()2224440b ac a c ac a c ∆=-=+-=-≥,所以二次函数22y ax bx c =-+的图象与x 轴交点的个数为1或2.故选:D.2.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a a a ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数, 综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B3(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是( ) A .(),4-∞ B .()3,+∞C .()3,4D .(),3-∞【答案】C【解析】二次函数24y x x a =-+,对称轴为2x =,开口向上,在(),2-∞上单调递减,在()2,+∞上单调递增,要使二次函数2()4f x x x a =-+的两个零点都在区间()1,+∞内,需(1)140(2)480f a f a =-+>⎧⎨=-+<⎩,解得34a <<故实数a 的取值范围是()3,4故选:C4.(2022·全国·高三专题练习(理))若集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,则正实数a 的取值范围是___________ 【答案】12(,]23【解析】由题意,不等式2(2)20x a x a -++-<且0a >,即222(1)x x a x -+<+,令()()222,(1)f x x x g x a x =-+=+,所以()(){|,}A x f x g x x Z =<∈,所以()y f x =是一个二次函数,图象是确定的一条抛物线, 而()y g x =一次函数,图象是过一定点(1,0)-的动直线,作出函数()222f x x x =-+和()(1)g x a x =+的图象,如图所示,其中()()11,22f f ==,又因为,0x Z a ∈>,结合图象,要使得集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,可得()(1)122g g >⎧⎨≤⎩,即2132a a >⎧⎨≤⎩,解得1223a <≤.即正实数a 的取值范围是12(,]23.故答案为:12(,]23.考点三 一元二次函数与其他知识综合【例3】(2022·山东济宁·三模)已知二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则14a c+的最小值为( ) A .3- B .3 C .4- D .4【答案】B【解析】若0a =,则函数()f x 的值域为R ,不合乎题意,因为二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则0a >,且()min 44114ac ac f x a a --===,所以,1ac a -=,可得101a c =>-,则1c >,所以,144113c a c c +=+-≥=,当且仅当2c =时,等号成立,因此,14a c +的最小值为3.故选:B.【一隅三反】1.(2021·广东·湛江二十一中)若函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则a 的取值范围为( ) A .10,2⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .21,52⎛⎫ ⎪⎝⎭D .()1,2【答案】B【解析】令25212t x ax a =-+-,要使函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则内层函数25212t x ax a =-+-要有最小正值,且外层函数()log a f t t =为减函数,可知0<a <1.要使内层函数25212t x ax a =-+-要有最小正值,则2544(1)02a a ∆=--<,解得122a <<.综合得a 的取值范围为1,12⎛⎫⎪⎝⎭.故选:B.2.(2022·黑龙江)若关于x 的方程19310x x m ++-+=有解,则实数m 的取值范围是( ) A .()1,+∞ B .5,4⎡⎫-+∞⎪⎢⎣⎭C .(],3-∞D .(]1,3【答案】A【解析】方程19310x x m ++-+=有解,2(3)3310x x m ∴+⨯-+=有解, 令30x t =>,则可化为2310t t m +-+=有正根,则231t t m +=-在()0,∞+有解,又当()0,t ∈+∞时,230t t +>所以101m m ->⇒>,故选:A .3.(2022·全国·高三专题练习)函数y =R ,则实数a 的取值范围是( ) A .(][),22,-∞-+∞ B .[)()1,00,-⋃+∞ C .(,1)-∞-D .[)1,1-【答案】A【解析】因为函数y =R ,可得真数部分y = 即函数21y x ax =++取到所有的正数,所以(0,)+∞是函数21y x ax =++的值域的子集, 所以240a ∆=-≥解得:2a ≤-或2a ≥,所以实数a 的取值范围是:(][),22,-∞-+∞.故选:A.考点四 图像问题【例4-1】(2022·全国·高三专题练习)函数x y a =(0a >且1a ≠)与函数()2121y a x x =---(0a >且1a ≠)在同一个坐标系内的图象可能是( )A .B .C .D .【答案】C【解析】两个函数分别为指数函数和二次函数,其中二次函数图象过点(0,-1),故排除A ,D ; 二次函数图象的对称轴为直线11x a =-,当01a <<时,指数函数递减,101a <-,C 符合题意; 当1a >时,指数函数递增,101a >-,B 不符合题意.故选:C . 【例4-2】(陕西省部分地市学校2022届高三下学期高考全真模拟考试理科数学试题)函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C【解析】由题意,函数()2ln x f x x=的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x=,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增,所以排除D 选项,选项C 符合.故选:C.【一隅三反】1.(2021·山东·新泰市第一中学高三阶段练习)若不等式20ax x c -->的解集为1{|1}2x x -<<,则函数2y cx x a =--的图象可以为( )A .B .C .D .【答案】C【解析】由题可得1-和12是方程20ax x c --=的两个根,且0a <, 1112112a ca ⎧-+=⎪⎪∴⎨⎪-⨯=-⎪⎩,解得2,1a c =-=-,则()()22221y cx x a x x x x =--=--+=-+-, 则函数图象开口向下,与x 轴交于()()2,01,0,-.故选:C.2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( ) A . B . C . D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项;故选:A.3.(2022·全国·高三专题练习)函数43y x =的图象是( )A .B .C .D .【答案】A【解析】函数443()y f x x ===,满足()()f x f x -=,即函数是偶函数,图象关于y 轴对称,D 错误;该函数是幂函数y x α=,413α=>,故该函数是增函数,且增长得越来越快,故A 正确,BC 错误. 故选:A.4.(江西省2022届高三5月高考适应性大练兵联考数学(理)试题)函数()f x 的部分图象大致为( )A .B .C .D .【答案】C【解析】由题得()()f x f x -===,则f (x )为偶函数,排除A ;又()01f =,排除B ;当2,0x π⎛∈⎫ ⎪⎝⎭时()0f x >,当3(,)22x ππ∈时,()1f x =所以()11f x -<<排除D , 故选:C . 5.(安徽省十校联盟2022届高三下学期最后一卷文科数学试题)函数()3e 2x f x x x =-在R 上的图象大致为( )A . B . C . D .【答案】A【解析】由题意得,()()()33e 2e 2x x f x x x x x f x --=---=-+=-, 故函数()f x 为奇函数,图象关于原点对称,排除D ;()2322e 220f =-⨯<,排除B ;()()()30.10.10.10.1e 20.10.1e 0.020f =-⨯=->,排除C , 故选:A.。

高中数学总复习考点知识专题讲解与提升练习50 排列组合(解析版)

高中数学总复习考点知识专题讲解与提升练习50 排列组合(解析版)

高中数学总复习考点知识专题讲解与提升练习第50讲排列组合一.选择题(共6小题)1.(2021春•夏津县校级期中)有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有()不同的装法. A .240B .120C .600D .360【解答】解:第一步从5个球中选出2个组成复合元共有2510C =种方法. 第二步,再把4个元素装入4个不同的盒内有4424A =种方法, 根据分步计数原理装球的方法共有1024240⨯=种方法. 故选:A .2.(2021•铁东区校级三模)已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有()A .1880B .1440C .720D .256【解答】解:由题意可知,白颜色汽车按3,2分为2组,先从5辆白色汽车选3辆全排列共有35A 种,再将剩余的2辆白色汽车全排列共有22A 种,再将这两个整体全排列,共有22A 种,排完后有3个空,3辆不同的红颜色汽车插空共有33A 种, 由分步计数原理得共有有322352231440A A A A =种,故选:B.3.(2021春•杭州月考)有来自甲乙丙三个班级的5位同学站成一排照相,其中甲班2人,乙班2人,丙班1人,则仅有一个班级的同学相邻的站法种数有() A.96B.48C.36D.24【解答】解:根据题意,分2种情况讨论:①,甲班的2名同学相邻,先将这2名同学看成一个整体,考虑2人之间的顺序,有222A=种情况,将这个整体与丙班的1人全排列,有222A=种情况,排好后有3个空位可用,在3个空位中任选2个,安排乙班的2人,有236A=种情况,则甲班的2名同学相邻的站法有22624⨯⨯=种;②,乙班的2名同学相邻,同理有24种站法;则仅有一个班同学有的相邻站法有48种;故选:B.4.(2021春•张家港市期中)5名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有()A.60种B.90种C.150种D.240种【解答】解:根据题意,分2步进行分析:①将5名同学分为3组,若分为1、2、2的三组,有2215312215C C CA=种分组方法,若分为1、1、3的三组,有3510C=种分组方法,则有101525+=种分组方法,②将分好的三组安排到3个小区,有336A =种情况, 则有256150⨯=种不同的安排方法, 故选:C .5.(2021•西湖区校级模拟)将8本不同的书全部分发给甲、乙、丙三名同学,每名同学至少分到一本,若三名同学所得书的数量各不相同,且甲同学分到的书比乙同学多,则不同的分配方法种数为()A .1344B .1638C .1920D .2486【解答】解:8本不同的书全部分发给甲、乙、丙三名同学,每名同学至少分到一本,若三名同学所得书的数量各不相同,则有(1,2,5),(1,3,4)两种分组的方法, 由于甲同学分到的书比乙同学多,当乙分的1本时,此时的种数为12328772()896C C C A += 当丙分的1本时,此时的种数为123877()448C C C +=, 故不同的分配方法种数为8964481344+=种, 故选:A .6.(2021•镇海区校级模拟)在新冠病毒疫情爆发期间,口罩成为了个人的必需品.已知某药店有4种不同类型的口罩A ,B ,C ,D ,其中D 型口罩仅剩1只(其余3种库存足够).今甲、乙等5人先后在该药店各购买了1只口罩,统计发现他们恰好购买了3种不同类型的口罩,则所有可能的购买方式共有() A .330种B .345种C .360种D .375种【解答】解:根据题意可能的购买方式有如下两种:①5人中有人购买D 型口罩,有121322534324()210C C C C A C +=种购买方式;②5人中没有人购买D 型口罩,有1223354253()1502!C C C C A +=种购买方式;综合①②知共有210150360+=种购买方式. 故选:C .二.填空题(共24小题)7.(2021春•湖南月考)从1,3,5,7中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成396个没有重复数字的四位偶数.(用数字作答) 【解答】解:根据题意,分2种情况讨论:①从0,2,4,6中任取2个数字中没有0,有22133423216C C C A =个四位偶数; ②从0,2,4,6中任取2个数字中含有0,有1213234232()180C C C A A ⨯-=个四位偶数; 则有216180396+=个四位偶数; 故答案为:396.8.(2021•西湖区校级模拟)某公司有9个连在一起的停车位,现有5辆不同型号的轿车需停放,若停放后恰有3个空车位连在一起,则不同的停放方法有3600种.【解答】解:根据题意,某公司有9个连在一起的停车位,现有5辆不同型号的轿车需停放,则有4个空位: 分2步进行分析:①,5辆不同型号的车需停放,共有55120A =种方法,②,要求剩余的4个车位中恰有3个连在一起,利用插空法,有2630A =种方法, 则不同的停放方法有120303600⨯=种; 故答案为:3600.9.7人排队,其中甲、乙、丙3人顺序一定,共有840不同的排法. 【解答】解:根据题意,假设有7个位置,对应7个人,先在7个位置中任取4个,安排除甲、乙、丙之外的4人,有47840A=种情况,由于甲、乙、丙3人顺序一定,在剩余3个位置安排3人即可,有1种情况,则共有8401840⨯=种不同的排法;故答案为:840.10.(2021春•徐汇区校级期末)7个人站成一排,其中甲一定站在最左边,乙和丙必须相邻,一共有240种不同的排法.【解答】解:由题意知本题是一个排列组合及简单计数问题,甲要站在最左边,剩下6个位置,6个人排列,乙和丙必须相邻,∴把乙和丙看成一个元素,同另外4个人排列,乙和丙之间也有一个排列,根据乘法原理知共有5252240A A=种结果,故答案为:24011.把6名学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和并不能分到三车间,则不同的分法有9种.【解答】解:先安排进二车间实习的人,有233C=种方法,再安排进一车间的人有13C种方法,余下的2人进三车间.所以共有21339C C=种分法.故答案为:912.(2021•浙江二模)给如图染色,满足条件每个小方格染一种颜色,有公共边的小方格颜色不能相同,则用4种颜色染色的方案有252种,用5种颜色染色的方案共有种.【解答】解:(1)根据题意,若用4种颜色染色时,先对A、B区域染色有1143C C种,再对C 染色:①当C 同B 时,有1122C C 种;②当C 同A 时,有111322C C C +种;③当C 不同A 、B 时,有111232()C C C +种;综合①②③共有11111111114322322232[()]252C C C C C C C C C C ++++=种.(2)根据题意,若用5种颜色染色时,先对A 、B 区域染色有1154C C 种,再对C 染色:①当C 同B 时,有1133C C 种;②当C 同A 时,有111433C C C +种;③当C 不同A 、B 时,有11113423()C C C C +种; 综合①②③,共有1111111111154334333423[()]1040C C C C C C C C C C C ++++=种. 故填:252,1040.13.从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每个面恰染一种颜色,每两个具有公共棱的面染成不同的颜色.则不同的染色方法共有230种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.)【解答】解:由题意,至少3种颜色:6种颜色全用:上面固定用某色,下面可有5种选择,其余4面有(41)!6-=种方法,共计30种方法;用5种颜色:上下用同色:6种方法,选4色:45(41)!30C-=;630290⨯÷=种方法;.用4种颜色:226490C C=种方法.用3种颜色:3620C=种方法.∴共有230种方法故答案为:230.14.(2021•宁波期末)如图,对“田”字型的四个格子进行染色.每个格子均可从红、黄、蓝三种颜色中选一种,每个格子只染一种颜色,且相邻的格子不能都染红色,则满足要求的染色方法有56种.【解答】解:根据题意,分3种情况讨论:①,若4个格子中没有一格染红色,每格都染黄或蓝,有4216=种不同染法:②,若4个格子中恰有一格染红色,4格中选一格染红,其余3格染黄或蓝,有34232⋅=种不同染法;③,若4个格子中恰有两格染红色,有2种情况,其余2格染黄或蓝,有2228⋅=种不同所以不同染法.共有56种染法,故答案为:56.15.(2021春•孝南区校级期中)正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有276种.【解答】解:由题意知本题需要分类来解答, 首先A 选取一种颜色,有4种情况. 如果A 的两个相邻点颜色相同,3种情况; 这时最后两个边有2339A +=种情况;如果A 的两个相邻点颜色不同,236A =种情况; 这时最后两个边有22237A ++=种情况.∴方法共有4(3967)276⨯+⨯=种.故答案为:27616.从0,1,2,3,4,5,6,7,8,9这10个数中取出3个数,使其和为不小于10的偶数,不同的取法有51种.【解答】解:从这10个数中取出3个偶数的方法有35C 种,取出1个偶数,2个奇数的方法有1255C C 种,而取出3个数的和为小于10的偶数的方法有(0,2,4),(0,2,6),(0,1,3),(0,1,5),(0,1,7),(0,3,5),(2,1,3),(2,1,5),(4,1,3),共有9种,故不同的取法有1050951+-=种 故答案为:5117.(2021春•丽水期末)某城市街区如图所示,其中实线表示马路,如果只能在马路上行走,则从A 点到B 点的最短路径的走法有7种.【解答】解:要从A点到B点,至少需要走2条向下的路和3条向右的路,若下图,我们只需要从这5步路中选出其中2步走向下的路即可走到B点,故有2510C=条最短路径,要从A点到C点,至少需要走1条向下的路和2条向右的路,只需要从这3步路中选出其中1步走向下的路即可走到C点,故有133C=条最短路径故从A点到B点的最短路径的走法有1037-=种,故答案为:718.(2021春•田家庵区校级期中)来自甲、乙、丙三个班的5名同学站成一排照相,其中甲班有2人,乙班有2人,丙班有1人,仅有一个班同学有的相邻站法有48种.【解答】解:根据题意,分2种情况讨论:①,甲班的2名同学相邻,先将这2名同学看成一个整体,考虑2人之间的顺序,有222A=种情况,将这个整体与丙班的1人全排列,有222A=种情况,排好后有3个空位可用,在3个空位中任选2个,安排乙班的2人,有236A=种情况,则甲班的2名同学相邻的站法有22624⨯⨯=种;②,乙班的2名同学相邻,同理有24种站法;则仅有一个班同学有的相邻站法有48种;故答案为:48.19.(2021•浙江期中)高三年级有3名男生和3名女生共六名学生排成一排照相,要求男生互不相邻,女生也互不相邻,且男生甲和女生乙必须相邻,则这样的不同排法有40种(用数字作答).【解答】解:根据题意,分2种情况讨论:①,六名学生按男女男女男女排列,若男生甲在最左边的位置时,女生乙只能在其右侧,有1种情况,剩下的2名男生和女生都有222A=种情况,此时有1224⨯⨯=种安排方法,若男生甲不在最左边的位置时,女生乙可以在其左侧与右侧,有2种情况,剩下的2名男生和女生都有222A=种情况,此时有222216⨯⨯⨯=种安排方法;则此时有41620+=种安排方法;②,六名学生按女男女男女男排列,同理①,也有20种安排方法,则符合条件的安排方法有202040+=种;故答案为:40.20.(2021•浙江模拟)将A,B,C,D,E,F六个字母排成一排,其中A,B相邻,且C,D在A,B的两侧,则不同的排法共有80种.(用数字作答)【解答】解:根据题意,分3步进行分析:①A,B相邻,将AB看成一个整体,考虑其间的顺序,有2种情况,②将C,D安排在A,B的两侧,有2种情况,③四人排好后,有4个空位可用,在4个空位中任选一个,安排E,有4种情况,五人排好后,有5个空位可用,在5个空位中任选一个,安排E,有5种情况,则有224580⨯⨯⨯=种情况, 故答案为:8021.(2021•椒江区校级模拟)某学校将一块长方形空地分成如图所示的八块,计划在这八块空地上种花.已知空地1,2上已经种了a 花,其余空地需从A ,B ,C ,D ,E 这5种花中选择若干种进行种植,要求每块空地只种一种花,且有公共顶点的两块空地种的花不能相同,则不同的种植方案有1080种.【解答】解:若选用4种花,则不同的种植方案有4522480A ⨯⨯=种,若选用5种花,则不同的种植方案有4152(12)600A C +⨯=种, 故不同的种植方案共有4806001080+=种, 故答案为:1080.22.(2021•温州模拟)有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有15种. 【解答】解:先将6个球按甲1个,乙2个,丙3个进行分派; 剩余的4个球随机的分派给三个人,每个人可分可不分球; 相当于四个完全一样的东西形成的六个空中插入两个隔板; 即有2615=种;故他们所得的球数的不同情况有15种. 故答案为:15.23.(2012春•南岗区校级月考)5本不同的书,分给三名同学,每人至少一本,则不同的分配方法种数为150.【解答】解:将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有3353C A种分法,分成2、2、1时,有22353322C CAA种分法,所以共有223335353322150C CC A AA+=种方案,故答案为:150.24.(2021春•渝中区校级期中)方程11x y z++=的非负整数解共有78组.【解答】解:根据题意,对于方程11x y z++=,将11看成11个“1”,11个“1”中间有12个空,从12个空中选两个空进行插板,或从12个空中选1个空插2个板,即可以将11个“1”分为三组,每一组对应“1”的数目,依次为x、y、z的数值,则有21212121378C C C+==种分组方法,方程18x y z++=的非负整数解有78组,故选:78.25.(2021春•河西区期中)现用5种颜色,给图中的5个区域涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方法共有420.【解答】解:可以同色的区域为BD,CE,若都不同色,则有55120A=,若只有BD同色,则有45120A=,若只有CE同色,则有45120A=,若BD,CE两个同色,则有3560A=,共有12012012060420+++=,故答案为:420.26.(2004•浦东新区校级模拟)将红、黄、绿三种不同的颜色均涂入图中五个区域中,每个区域涂一种颜色,且相邻的区域不能涂同一种颜色,不同的涂色方法共有42种.(三种颜色必须用全,以数字作答)【解答】解:由题意,不妨从左至右按15-编号,由于三种颜色必须用全,第一步涂一号有三种涂法,第二步涂二号有二种涂法第三步涂三号时可分为两类研究,若三号与一号同则后两框必一框涂色与一号二号不同,与若三号与一号不同,由于三种颜色已全部用上,故后两框涂色只需要满足同色不相邻即可故总的涂色方法为32(111112122)42⨯⨯⨯⨯+⨯⨯+⨯⨯=种故答案为4227.(2017春•和平区期末)一名同学想要报考某大学,他必须从该校的7个不同专业中选出5个,并按第一志愿、第二志愿、⋯第五志愿的顺序填写志愿表.若A专业不能作为第一、第二志愿,则他共有1800种不同的填法(用数字作答).【解答】解:根据题意,分2步进行分析:①、由于A专业不能作为第一、第二志愿,需要在除A之外的6个专业中,任选2个,作为第一、二志愿,有2630A=种填法,②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,有3560A=种填法,则该学生有30601800⨯=种不同的填法;故答案为:1800.28.(2021•西湖区校级模拟)杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有52种不同的选拔志愿者的方案.(用数字作答)【解答】解:根据题意,分4种情况讨论:①甲乙都不参加志愿活动,在剩下4人中任选3人参加即可,有3424A=种选拔方法,②甲参加乙不参加志愿活动,甲只能参加C项目,在剩下4人中任选2人参加A、B项目即可,有2412A=种选拔方法,③乙参加甲不参加志愿活动,乙只能参加A项目,在剩下4人中任选2人参加B、C项目即可,有2412A=种选拔方法,④甲乙都参加志愿活动,甲只能参加C项目,乙只能参加A项目,在剩下4人中任选1人参加B项目,有144A=种选拔方法,则有241212452+++=种选拔方法;故答案为:5229.(2021•海淀区校级三模)从4男2女共6名学生中选出队长1人、副队长1人、普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有168种不同的选法.(用数字作答)【解答】解:根据题意,分2步进行分析:①,先从4男2女共6名学生选出4人,要求至少有1名女生,有446414C C-=种情况,②,在选出的4人中任选1人,作为队长,剩余3人中选出1人作为副队长,剩下2人作为队员,有114312C C=种情况,则有1412168⨯=种不同的选法;故答案为:168.30.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地区至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有30种.【解答】解:因为甲和丙同地,甲和乙不同地,所以有2、2、1和3、1、1两种分配方案,①2、2、1方案:甲、丙为一组,从余下3人选出2人组成一组,然后排列:共有:233318C A⨯=种;②3、1、1方案:在丁、戊中选出1人,与甲丙组成一组,然后排列:共有:132312C A⨯=种;所以,选派方案共有181230+=种.三.解答题(共10小题)31.现有8个人(5男3女)站成一排.(1)女生必须排在一起,共有多少种不同的排法?(2)其中甲必须站在排头有多少种不同排法?(3)其中甲、乙两人不能排在两端有多少种不同的排法?(4)其中甲、乙两人不相邻有多少种不同的排法?(5)其中甲在乙的左边有多少种不同的排法?(6)其中甲乙丙不能彼此相邻,有多少种不同排法?(7)男生在一起,女生也在一起,有多少种不同排法?(8)第3和第6个排男生,有多少种不同排法?(9)甲乙不能排在前3位,有多少种不同排法?(10)女生两旁必须有男生,有多少种不同排法?【解答】解:(1)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有3A种3情况,将这个整体与5名男生全排列,有6A种情况,6则女生必须排在一起的排法有36A A种;36(2)根据题意,甲必须站在排头,有1种情况,将剩下的7人全排列,有7A种情况,7则甲必须站在排头有7A种排法;7(3)根据题意,将甲乙两人安排在中间6个位置,有2A种情况,6将剩下的6人全排列,有6A种情况,6则甲、乙两人不能排在两端有26A A种排法;66(4)根据题意,先将出甲乙之外的6人全排列,有66A 种情况,排好后有7个空位, 则7个空位中,任选2个,安排甲乙二人,有27A 种情况, 则甲、乙两人不相邻有2676A A 种排法;(5)根据题意,将8人全排列,有88A 种情况, 其中甲在乙的左边与甲在乙的右边的情况数目相同, 则甲在乙的左边有8812A 种不同的排法;(6)根据题意,先将出甲乙丙之外的5人全排列,有55A 种情况,排好后有6个空位, 则6个空位中,任选3个,安排甲乙丙三人,有36A 种情况, 其中甲乙丙不能彼此相邻有5356A A 种不同排法;(7)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况, 再将5名男生看成一个整体,考虑5人之间的顺序,有55A 种情况, 将男生、女生整体全排列,有22A 种情况,则男生在一起,女生也在一起,有235235A A A 种不同排法;(8)根据题意,在5个男生中任选2个,安排在第3和第6个位置,有222525C A A 种情况, 将剩下的6人全排列,有66A 种情况, 则第3和第6个排男生,有2656A A 种不同排法;(9)根据题意,将甲乙两人安排在后面的5个位置,有25A 种情况, 将剩下的6人全排列,有66A 种情况, 甲乙不能排在前3位,有2656A A 种不同排法;(10)根据题意,将5名男生全排列,有55A 种情况,排好后除去2端有4个空位可选,在4个空位中任选3个,安排3名女生,有34A 种情况,则女生两旁必须有男生,有5354A A 种不同排法.32.把6名实习生分配到7个车间实习,共有多少种不同的分法?【解答】解:6名实习生分配到7个车间实习,每名实习生有7种分配方法,共有67种不同的分法.33.8人排成两排,每排4人,下列各有多少种不同的排法? (1)甲、乙在前排两端,丙在后排左端; (2)甲、乙在前排,丙在后排.【解答】解:(1)先排前排,除甲乙丙外选2人排在甲乙之间,再排后排,丙在后排左端,把剩下的3人全排列,故有223253240A A A =种;(2)先排前排,除甲乙丙外选2人和甲乙全排列,再排后排,丙和剩下的3人全排列,故有2445445760C A A =种;34.设有99本不同的书(用排列数、组合数作答).(1)分给甲、乙、丙3人,甲得96本,乙得2本,丙得1本,共有多少种不同的分法? (2)分给甲、乙、丙3人,甲得93本,乙、丙各得3本,共有多少种不同的分法? (3)平均分给甲、乙、丙3人,共有多少种不同的分法?(4)分给甲、乙、丙3人,一人得96本,一人得2本,一人得1本,共有多少种不同的分法?(5)分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法? (6)分成3份,一份96本,一份2本,一份1本,共有多少种不同的分法? (7)平均分成3份,共有多少种不同的分法?(8)分成3份,一份93本,另两份各3本,共有多少种不同的分法?【解答】解:(1)甲得96本,有方法9699C 种;乙得2本,有方法23C 种;丙得1本.有方法1种,不同的分法共有962993C C (种); (2)与(1)类似,不同的分法共有93339363C C C (种); (3)不同的分法共有333333996633C C C 种; (4)先把99本不同的书分成3份,一份96本,一份2本,一份1本;再将甲、乙、丙3人全排列,这是因为3人中谁都有得到96本、2本、1本的可能,不同的分法共有96239933()C C A (种);(5)99本不同的书,分给甲、乙、丙3人,一人得93本,另两人各得3本,3人中,谁都有得到93本的可能,不同的分法共有933339963322C C C A A ⋅(种). (6)99本不同的书,分成3份,一份96本,一份2本,一份1本,3份的数量互不相同,不同的分法共有962993C C (种); (7)99本不同的书,平均分成3份,每份33本.本问题是典型的平均分组问题,要排除重复,不同的分法共有33333339966333()C C C A ÷(种);(8)99本不同的书,分成3份,一份93本,另两份各3本,两份3本的有重复,不同的分法共有9333299632()C C C A ÷(种).35.本4本不同的书,下列情况各有多少种不同的分法? (1)分成2堆,一堆1本,一堆3本; (2)分成2堆,每堆2本.【解答】解:(1)由题意可得,144C =; (2)由题意可得,2242226C C A =.36.(1)4本不同的书平均分成2堆,有多少种不同的分法?平均分给2个人有多少种不同的分法?(2)4本不同的书分成2堆,每堆至少1本,有多少种不同的分法?分给2个人,每人至少1本,有多少种不同的分法?【解答】解:4本不同的书平均分成2堆,有2242223C CA=(种)分法;4本不同的书平均分给2个人,先分组有2242223C CA=(种)分法,将分好的2组全排列,对应2个人,有222A=(种)情况,则有326⨯=(种)不同的分法.(2)4本不同的书分成2堆,每堆至少1本,有2种情况:1本和3本,各2本,因此共有22314241227C CC CA+=(种)分法,分配给2个人,每人至少1本,有223124241222()14C CC C AA+=(种)分法.37.有12本不同的书.(1)分给甲、乙、丙、丁四人,每人3本,有几种分法?(2)若4堆依次为1本,3本,4本,4本,有几种分法?(3)若平均分成3堆,有几种方法(只要求列出算式)?【解答】解:(1)根据题意,分4步分析:①,在12本书中取出3本,分给甲,有312C种取法,②,在剩下的9本书中取出3本,分给乙,有39C种取法,③,在剩下的6本书中取出3本,分给丙,有36C种取法,④,将最后的3本书交给丁,有33C 种情况,则一共有333312963C C C C 种分法; (2)根据题意,分3步分析:①,在12本书中取出1本,作为第一堆,有112C 种取法,②,在剩下的11本书中取出3本,作为第二堆,有311C 种取法,③,在剩下的8本书中取出4本,作为第三堆,剩下的4本作为第四堆,有4812C 种分法;则一共有1341211812C C C 种分法;(3),根据题意,将12本不同的书,平均分成3堆,每堆有4本,则有444128433C C C A 种不同的分法. 38.(2021春•翠屏区校级期中)由数字0,1,2,3,4.回答下列问题: (1)从中任取两个数,求取出的两个数之积恰为偶数的不同取法有多少种? (2)可组成多少个无重复数字的五位数自然数?(3)在无重复数字的五位数的自然数中,任取两个数,求取出的两个数都是偶数的概率. 【解答】解:(1)两个数的积是偶数,则其中至少有一个偶数,分两类,第一类只有一个偶数有11326C C =种,第二类都是偶数有233C =种,根据分类计算原理得,639+=种; (2)0是特殊元素不能排在首位,所以先排首位,然后再排另外四位,有144496A A =个;(3)第一类0在末尾时有4424A =个,第二类0不在末尾时,末尾只能从2,4选一个,再排首位,首位不能是0,有11323336A A A =个,无重复数字的五位数的自然数中 偶数共有243660+=,(2)可知可组成96个无重复数字的五位数自然数,设取出的两个数都是偶数的概率为P (A ),则P (A )26029659152C C ==.39.某城市由n 条东西方向的街道和m 条南北方向的街道组成一个矩形街道网,要从A 处走到B 处,使所走的路程最短,有多少种不同的走法?【解答】解:由题意知本题是一个分步计数问题,将相邻两个交点之间的街道称为一段,那么从A 到B 需要走(2)n m +-段, 而这些段中,必须有东西方向的(1)n -段,其余的为南北方向的(1)m -段,∴共有1122m n m n m n C C --+-+-=种走法.40.用4种不同的颜色给图中的A ,B ,C ,D 四个区域涂色,要求每个区域只能涂一种颜色.(1)有多少种不同的涂法?(2)若相邻区域不能涂同一种颜色,有多少种不同的涂法?【解答】解:(1)分4步,依次为A ,B ,C ,D 各个区域,分别有4种涂法,共有44256=种不同的涂法,(2)由可分4步进行,第一步:A 有4种涂法,第二步B 有3种涂法,第三步C 有2种涂法,第四步D 有2种涂法有432248⨯⨯⨯=种不同的涂色。

新高考数学数列经典题型专题提升-第30讲 证明数列不等式:数学归纳法(解析版)

新高考数学数列经典题型专题提升-第30讲 证明数列不等式:数学归纳法(解析版)

ax ,则 F(x)
ex
1 ex
a
(ex )2
aex ex
1,
令 t ex (t 0) , u(t) t2 at 1,则 a2 4 (a 2)(a 2) ,
当 a 0 时, F(x) 0 , F (x) 在 R 上递增;
当 0 a 2 时, 0 ,则 u(t) 0 ,则 F(x)≥0 , F (x) 在 R 上递增;
(1)利用充分条件、必要条件的定义,结合数学归纳法可证得结论成立;
(2)分析可知:当 n 2 时,1 an 3c 1 an1 ,利用迭代法结合不等式的基本性质可证得不等式成立;
(3)分析得知:当 n 2 时, an 1 3cn1 0
,再利用不等式的基本性质结合等比数列的求和公式可证得结论成立. 【详解】
则 n=k+1 时,ak+1= ak 2 > 2 2 =2,所以 n=k+1 时,ak+1>2 成立.
故由①②及数学归纳法原理,知对一切的 n∈N*,都有 an>2 成立. (2){an}是单调递减的数列.
因为
a2 n1
an 2
=an+2-
an 2
=-(an-2)(an+1),

an>2,所以
a2 n1
当 a 2 时,当 t (0, a a2 4 ) ( a a2 4 , ) 时, u(t) 0 ,
2
2
即 x < ln a - a2 - 4 或 x > ln a + a2 - 4 时, F(x) 0 ;
2
2
F (x) 在 (, ln a a2 4 ) , (ln a a2 4 , ) 上递增;
a2 4 a , (ln

2023版高中数学新同步精讲精炼(选择性必修第二册) 本册综合测试(提升)(教师版含解析)

2023版高中数学新同步精讲精炼(选择性必修第二册) 本册综合测试(提升)(教师版含解析)

本册综合测试(提升)一、单选题(每题只有一个选项为正确答案。

每题5分,8题共40分)1.(2021·吉林高三开学考试(文))已知正项等比数列{a n }中,a 2a 8+a 4a 6=8,则log 2a 1+log 2a 2+…+log 2a 9=( ) A .10 B .9 C .8 D .7【答案】B【解析】由等比数列性质可知,192846a a a a a a ===,而a 2a 8+a 4a 6=8, 所以1928464a a a a a a ====,因为log 2a 1+log 2a 2+…+log 2a 9212921928465log log ()()()a a a a a a a a a a ==,所以log 2a 1+log 2a 2+…+log 2a 9= 92log 29=,故选:B2.(2021·黑龙江佳木斯一中)设等比数列{}n a 满足1310a a +=,245a a +=,则使12n a a a 最大的n 为( )A .72B .3C .3或4D .4【答案】C【解析】由题意,设等比数列{}n a 的公比为q ,则24131(),,2a a a a q q +=+∴=代入1310a a +=可得,11110,84a a a +=∴=, 故114118()22n n nn a a q ---==⨯=,则(34)(7)432(4)221232222222n nn n nn n a a a +---+++-⨯==⨯⨯==,由于2t y =为增函数,(7)2n nt -=为开口向下的二次函数,对称轴为 3.5n =, 又*n N ∈,故当3n =或4时,12n a a a 取得最大值.故选:C.3.(2021·西藏拉萨中学 )若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞【答案】D【解析】若()f x 在区间1(,2)2内存在单调递增区间,则1()0,(,2)2f x x '>∈有解,故21,2a x >-令21()2g x x =- 21()2g x x =-在1(,2)2递增 , 1()()2,2g x g ∴>=-故2 ,a ≥- 故选:D4.(2021·四川省乐山第一中学校 )设a ∈R ,若“1x >”是“ln ax x >”的充分不必要条件,则实数a 的取值范围是( ) A .(0,)+∞ B .1,e⎛⎫+∞ ⎪⎝⎭C .(1,)+∞D .(,)e +∞【答案】B【解析】由题意“1x >”是“ln ax x >”的充分不必要条件, 所以不等式ln ax x >在(1,)+∞上恒成立,即ln xa x>在(1,)+∞上恒成立, 令ln ()(1)x f x x x =>,则()21ln xf x x -'=, 当(1,)x e ∈时,()0f x '>;当(,)x e ∈+∞时,()0f x '<, 所以()f x 在(1,)e 上单调递增,在(,)e +∞上单调递减, 所以当x e =时,函数()f x 取得最小值()1f e e =,所以1a e>.故实数a 的取值范围是为1,e⎛⎫+∞ ⎪⎝⎭.故选:B.5.(2021·全国高二单元测试)已知数列:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,即此数列第一项是02,接下来两项是02,12,再接下来三项是02,12,22,依此类推,设n S 是此数列的前n 项和,则2021S =( )A .64234-B .63234-C .64248-D .63248-【答案】A【解析】将数列分组:第一组有一项,和为02;第二组有两项,和为0122+;……; 第n 组有n 项,和为011122222112n n n --++⋅⋅⋅+==--, 则前63组共有636420162⨯=(项), 所以()()001016201234202122222222222S =+++⋅⋅⋅+++⋅⋅⋅++++++()()()12630123421212122222=-+-+⋅⋅⋅+-+++++()()632636421222263313223412-=++⋅⋅⋅+-+=-=--,故选:A.6.(2021·北京市第十二中学 )已知函数()()20x f x a x a =>-在()1,2上单调递减,则实数a 的取值范围是( ) A .1a ≤或2a ≥ B .2a ≥ C .2a ≥或1a = D .1a ≥【答案】C【解析】由题意,0x a -≠在1,2恒成立,则()1,2a ∉, 又()22222()2()()x x a x x axf x x a x a ---'==--,∴()0f x '≤在1,2恒成立, ∴220x ax -≤即2xa ≥在1,2恒成立,∴1a ≥, 综上,2a ≥或1a =. 故选:C.7.(2021·陕西新城 )函数2()(2)e x f x x x =-的图像大致是( )A .B .C .D .【答案】B【解析】由()0f x =得,0x =或2x =,选项C ,D 不满足;由()()22e xf x x x =-求导得2()(2)e x f x x '=-,当x <x >()0f x '>,当x <()0f x '<,于是得()f x 在(,-∞和)+∞上都单调递增,在(上单调递减,()f x 在x =在x A 不满足,B 满足. 故选:B8.(2021·全国 专题练习)设正项数列{}n a 的前n 项和n S 满足()2114n n S a =+,记[]x 表示不超过x 的最大整数,212020n n a b ⎡⎤=+⎢⎥⎣⎦.若数列{}n b 的前n 项和为n T ,则使得2020n T ≥成立的n 的最小值为( ) A .1179 B .1178 C .2019 D .2020【答案】A 【解析】()2114n n S a =+①,令1n =,得()21141a a =+,解得11a =. ()211114n n S a --=+,2n ≥②, 由①-②可得()()2211111144n n n n n a S S a a --=-=+-+,整理得()()1120n n n n a a a a ----+=, 根据0n a >可知12(2)n n a a n --=≥,则数列{}n a 是首项为1,公差为2的等差数列,12(1)21n a n n =+-=-,*n ∈N .2421120202020n n a n b -⎡⎤⎡⎤=+=+⎢⎥⎢⎥⎣⎦⎣⎦,*n ∈N , 当[1,505]n ∈时,422018n -≤,1n b =;当[]506,1010n ∈时,2020424038n <-≤,2n b =; 当[]1011,1515n ∈时,4040426058n <-≤,3n b =. 因为101050550521515T =+⨯=,(20201515)3168.3-÷≈, 所以使2020n T ≥成立的n 的最小值为10101691179+=. 故选:A.二、多选题(每题不止一个选项为正确答案,每题5分,4题共20分)9.(2021·全国高二单元测试)定义在[]1,5-上的函数()f x 的导函数()f x '的图象如图所示,函数()f x 的部分对应值如下表.下列关于函数()f x 的结论正确的是( )A .函数()f x 的极值点的个数为3B .函数()f x 的单调递减区间为()()0,24,5C .若[]1,x t ∈-时,()f x 的最大值是2,则t 的最大值为4D .当12a ≤<时,方程()f x a =有4个不同的实根 【答案】AD【解析】对于A :由()f x '的图象可知,当0,2,4x =时,()0f x '=,且当10x -<<时,()>0f x ',当02x <<时,()0f x '<,当24x <<时,()>0f x ',当45x <<时,()0f x '<,所以0,2,4是函数()f x 的极值点,故A 选项正确;对于B :由导函数()f x '的正负与函数()f x 之间的关系可知,当02x <<时,()0f x '<,当45x <<时,()0f x '<,所以函数()f x 的单调递减区间为()0,2,()4,5,故B 选项错误;对于C :当[1,5]x ∈-时,函数()f x 的最大值是2,而t 的最大值不是4,故C 选项错误;对于D :作出函数()f x 的大致图象如图所示,当12a ≤<时,直线y a =与函数()f x 的图象有4个交点,故D 选项正确. 故选:AD .10.(2021·宁德市第九中学高二月考)若数列{}n a 满足113,33(2),nn n a a a n -==+≥则( )A .{}3nn a 是等差数列 B .{}3nn a 是等比数列 C .数列{}n a 的通项公式3nn a n =⋅D .数列{}n a 的通项公式3n nn a =【答案】AC【解析】在数列{}n a 中,当2n ≥时,133nn n a a -=+,即11133n n n n a a --=+,而13a =,即113a =,则{}3n n a 是首项为1,公差为1的等差数列, 因此,1(1)13n na n n =+-⨯=,3nna n =⋅, 所以A 正确,B 不正确,C 正确,D 不正确. 故选:AC11.(2021·海南 )若函数32()3f x x x a =-+的图象在点()()00,x f x 处与x 轴相切,则实数a 的值可能为( ) A .1 B .4C .0D .2【答案】BC【解析】由题意可知,'2()36f x x x =-,因为函数()f x 的图象在点()()00,x f x 处与x 轴相切,所以320002000()30()360f x x x a f x x x ⎧=-+='=⎨-=⎩,解得0a =或4a =. 故选:BC.12.(2021·临澧县第一中学 )我国明代音乐理论家和数学家朱载堉在所著的《律学新说》一书中提出了“十二平均率”的音乐理论,该理论后被意大利传教士利玛窦带到西方,对西方的音乐产生了深远的影响.以钢琴为首的众多键盘乐器就是基于“十二平均率”的理论指导设计的.图中钢琴上的每12个琴键(7个白键5个黑键)构成一个“八度”,每个“八度”各音阶的音高都是前一个“八度”对应音阶的两倍,如图中所示的琴键的音高524C C =⋅(4C 称为“中央C ”).将每个“八度”( 如4C 与5C 之间的音高变化)按等比数列十二等份,得到钢琴上88个琴键的音阶.当钢琴的4A 键调为标准音440Hz 时,下列选项中的哪些频率(单位:Hz)的音可以是此时的钢琴发出的音( )(参考数据:122 1.414=,132 1.260=,142 1.189=,152 1.148=,162 1.122=,1122 1.059=)A .110B .233C .505D .1244【答案】ABD【解析】∵A 4 = 440,244042110==,故110Hz 是A 4往左两个“八度”A 2键的音,A 正确. 设相邻音阶的公比为q ,则12524C q C ==,∴1122q =.而A 3 = 220,A 4 = 440,A 5 = 880,112233 1.0592220q ===,B 正确; 155051.1482440n q ==≠(n ∈N *),C 不正确;16212441.4142880q ===,D 正确. 故选:ABD.三、填空题(每题5分,4题共20分)13.(2021·黑龙江鹤岗一中高三月考(文))等比数列{}n a 中,5a ,21a 是方程21150x x ++=的两根,则71913a a a 的值为___________.【答案】【解析】由题设知:5215215,11a a a a =+=-,又{}n a 为等比数列,∴521,0a a <,且2719135215a a a a a ===,而81350a a q =<,∴13a =71913a a a=故答案为:14.(2021·河南 )函数()ln xf x x x=-在区间(]0,e 上的最大值是___________. 【答案】1-【解析】由()ln x f x x x =-可得()2221ln 1ln 1x x xf x x x ---'=-=, 设()21ln g x x x =--,则()g x 在(]0,e 上递减,因为()10g =,所以当()0,1x ∈时,()0g x >,()0f x '>; 当(]1,e x ∈时,()0g x <;()0f x '<; 所以()f x 在(]0,1上递增,在(]1,e 上递减, 所以()()max 11f x f ==-, 故答案为:1-.15.(2021·河南南阳中学高二月考)已知函数6(3)3(7)()(7)x a x x f x a x ---≤⎧=⎨>⎩,若数列{}n a 满足()*()n a f n n N =∈,且{}na 是递增数列,则实数a 的取值范围是________.【答案】()2,3【解析】数列{}n a 是递增数列,又6(3)3(7)()(7)x a x x f x ax ---≤⎧=⎨>⎩,()*()n a f n n N =∈,13a ∴<<且(7)(8)f f <,27(3)3a a ∴--<解得9a <-或2a >,故实数a 的取值范围是()2,3.故答案为:()2,3.16.(2021·河南信阳)已知()2af x x x=+.若曲线()y f x =存在两条过()2,0点的切线,则a 的取值范围是___________.【答案】{|8a a <-或0}a > 【解析】由题得()212af x x '=-,设切点坐标为0002a x x x ⎛⎫+ ⎪⎝⎭,,则切线方程为()00200122a a y x x x x x ⎛⎫--=-- ⎪⎝⎭, 又切线过点()2,0,可得()002001222a a x x x x ⎛⎫--=-- ⎪⎝⎭, 整理得20020x ax a +-=,因为曲线()y f x =存在两条切线,故方程有两个不等实根且00x ≠ 若00x =,则0a =,为两个重根,不成立即满足()280a a ∆=-->,解得0a >或8a <-.故a 的取值范围是{|8a a <-或0}a > 故答案为:{|8a a <-或0}a >四、解答题(17题10分,其余每题12分,共6题70分)17.(2021·浙江宁波·高三月考)已知数列{}n b 为等差数列,数列{}n a 满足2log n n b a =,且451a b ==. (1)求数列{}n a ,{}n b 的通项公式;(2)若数列{}n c 满足n n n c a b =,求{}n c 的前n 项和n T .【答案】(1)4n b n =-,n n *∈,42n n a -=,n n *∈;(2)()()()()33552,482752,58n n n n n T n n --⎧--⋅-≤⎪⎪=⎨⎪-⋅+≥⎪⎩.【解析】(1)数列{}n b 为等差数列. 4242log log 10b a ===,51b =,则4n b n =-,n n *∈,42n n a -=,n n *∈,(2)()442n n n n c a b n -==-⋅设()442n n c n -=-⋅',n T '为数列{}n c '的前n 项和,则有:()()()()321432221242n n T n ----'=-⨯+-⨯+-⨯++-⨯,(*) ()()()()2130232221242n n T n ---'=-⨯+-⨯+-⨯++-⨯,(**)(*)式-(**)式,得()()()()()()2132143332123222242324212n n n n n T n n ---------⋅--=-⨯++++--⨯=-⨯+--⋅-'()35528n n T n -'=-⨯+.当4n ≤时,()35528n n n T T n -'=-=---⋅;当5n ≥时,()()3345527252452848n n n n T T T n n --''=-=-⋅++-=-⋅+,即()()()()33552,482752,58n n n n n T n n --⎧--⋅-≤⎪⎪=⎨⎪-⋅+≥⎪⎩18.(2021·青海师大附中高二期中(文))已知函数2()e ln 2xa f x x x =-,函数()f x 在1x =处的切线与y 轴垂直.(1)求实数a 的值;(2)设()()()g x f x f x '=-,求函数()g x 的最小值. 【答案】(1)e a =;(2)e2.【解析】(1)由已知e ()e ln xxf x x ax x'=+-,则(1)e 0f a '=-=,所以e a =.(2)2e ()e ln 2x f x x x =-,e ()e ln e x xf x x x x'=+-,则2e e()e 2x g x x x x =-+,定义域是(0,)+∞,22e (1)e ()e e (1)e x x x g x x x x x ⎛⎫-'=-+=-+ ⎪⎝⎭显然2e e 0xx+>, 所以01x <<时,()0g x '<,()g x 是减函数,1x >时,()0g x '>,()g x 是增函数,所以1x =时,()g x 取得极小值也是最小值e (1)2g =. 19.(2021·江苏省苏州第十中学校高二月考)已知数列{}n a 的前n 项和为n S ,且12a =,当2n ≥时,12n n n a S -=-.(1)求数列{}n a 的通项公式;(2)设2log n n b S =,设n n n c b S =⋅,求数列{}n c 的前n 项和为n T .【答案】(1)12,12,2n n n a n -=⎧=⎨≥⎩;(2)()1212n n T n +=-+ 【解析】(1)当2n ≥时,12n n n a S -=-,112n n n a S ++=-,两式相减可得:11122n n n n n n a S a S -++--+=-,即1112n n n n a a a -++=--,所以12n n a ,12a =不满足12n n a ,所以数列{}n a 的通项公式为12,12,2n n n a n -=⎧=⎨≥⎩; (2)当2n ≥时,由12n n n a S -=-,12n n a ,可得1112222n n n n n n S a ---=+=+=,112S a ==,满足2n n S =,所以2n n S =,可得22log log 2n n n b S n ===,2n n n n c b S n =⋅=⋅,()1231122232122n n n T n n -=⋅+⋅+⋅++-⋅+⋅, ()23412122232122n n n T n n +=⋅+⋅+⋅++-⋅+⋅,两式相减可得: 123111222222n n n n T n -+-=⋅++++-⋅()()11212221212n n n n n ++-=-⋅=---,所以()1212n n T n +=-+.20.(2021·贵州遵义 )设函数()()3221f x ax x x a R =+++∈,且函数()f x 的单调递减区间为11,3⎛⎫-- ⎪⎝⎭. (1)求函数()f x 的表达式,并求出函数()f x 的单调递增区间;(2)若函数()0f x m +=有3个不相等的实数根,求实数m 的取值范围.【答案】(1)()3221f x x x x =+++,该函数的单调递增区间为(),1-∞-、1,3⎛⎫-+∞ ⎪⎝⎭;(2)231,27⎛⎫-- ⎪⎝⎭. 【解析】(1)因为()()3221f x ax x x a R =+++∈,则()2341f x ax x '=++,因为函数()f x 的单调递减区间为11,3⎛⎫-- ⎪⎝⎭,即不等式()0f x '<的解集为11,3⎛⎫-- ⎪⎝⎭, 所以,1-、13-为函数()f x 的两个极值点, 即1-、13-为方程23410ax x ++=的两根,且0a >, 由韦达定理可得()41133111330a a a ⎧-=--⎪⎪⎪⎛⎫-⨯-=⎨ ⎪⎝⎭⎪⎪>⎪⎩,解得1a =,所以,()3221f x x x x =+++, 所以,()()()2341311f x x x x x '=++=++,由()0f x '>可得1x <-或13x >-, 所以,函数()f x 的单调递增区间为(),1-∞-、1,3⎛⎫-+∞ ⎪⎝⎭; (2)令()()3221g x f x m x x x m =+=++++,则()()()2341311g x x x x x '=++=++,列表如下:所以,函数()g x 的极大值为()11g m -=+,极小值为327g m ⎛⎫-=+ ⎪⎝⎭,因为函数()g x 有三个零点,则()1101230327g m g m ⎧-=+>⎪⎨⎛⎫-=+< ⎪⎪⎝⎭⎩,解得23127m -<<-. 21.(2021·皇姑·辽宁实验中学 )已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=. (1)求数列{}n a 和{}n b 的通项公式;(2)设n n n b c a =,求数列{}n c 的前n 项和n T . (3)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<. 【答案】(1)1()2n na ,21nb n =+(2)1(21)22n n T n +=-⋅+(3)证明见解析 【解析】(1)设等比数列{}n a 的公比为0q >,52a ,4a ,64a 成等差数列,456224a a a ∴=+,24422(2)a a q q ∴=+,化为:2210q q +-=,0q >,解得12q =. 又满足2434a a =,∴322114()a q a q =, 即114a q =,解得112a =. *1()()2n n a n N ∴=∈, 数列{}n S 的前n 项之积为n b ,1(2)n n n b S n b -∴=≥, 11221(2)n n n n nb n S b b b -∴+=+=≥, 即12(2)n n b b n --=≥,{}n b ∴是以2为公差的等差数列.又111112121S b b b +=+=,即13b =, 所以32(1)21n b n n =+-=+(2)(21)2n n n nb c n a ==+⋅,237(13225)222n n n T ∴⋅+=⋅+⋅++⋅+, 123422325272(1)2n n T n +=⋅++⋅+⋅+⋅+,两式相减得,213432222222(21)222n n n T n +-=⋅+⋅+⋅+⋅⋅+⋅++-()11222212(21)2n n n ++++-⋅-=-1(12)22n n +=-⋅-,1(21)22n n T n +∴=-⋅+ (3)2112511(21)(23)2(21)2(23)2n n n n n n n n b a n d b b n n n n +-+⋅+===-⋅++⋅+⋅+⋅ 所以数列{}n d 的前n 项和1221111111()()()31525272(21)2(23)2n n n n M d d d n n -=++⋯+=-+-+⋯+-⨯⨯⨯⨯+⋅+⋅1(23213)n n +⋅=-, 又1730M =,n M 是单调递增, 所以71303n M ≤<. 22.(2021·四川泸州老窖天府中学 )已知函数()()1ln 2a f x x a x x=+---,其中a R ∈. (Ⅰ)若()f x 存在唯一极值点,且极值为0,求a 的值;(Ⅱ)若2a e ≤,讨论()f x 在区间21,e ⎡⎤⎣⎦上的零点个数. 【答案】(Ⅰ)1a =或a e =;(Ⅱ)答案见解析.【解析】(Ⅰ)由题意,函数()()1ln 2a f x x a x x =+---, 可得()()()()221110x x a a a x x x x f x +--=--=>', ①若0a ≤时,则当()0,x ∈+∞时,恒()0f x '>成立,所以()f x 在()0,∞+上单调递增,此时函数()f x 在()0,∞+无极值点, 这与()f x 存在极值点矛盾,舍去;②若0a >,令()0f x '=,可得x a =,当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>,所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增,此时()f x 存在唯一极小值点x a =,令()()()()11ln 211ln 0f a a a a a a =+---=--=,解得1a =或a e =.(Ⅱ)①当1a ≤时,()0f x '≥在21,e ⎡⎤⎣⎦上恒成立,所以()f x 在21,e ⎡⎤⎣⎦上单调递增.因为()110f a =-≤,()2222a f e e a e =+-, (ⅰ)当0a ≤时,()222221220a f e e a e a e e ⎛⎫=+-=+-> ⎪⎝⎭;(ⅱ)当01a <≤时,()2222210a f e e a a e =+->=≥, 所以()20f e >,则由零点存在性定理知,函数()f x 在21,e ⎡⎤⎣⎦上有1个零点;②当21a e <<时,当[)1,x a ∈时,()0f x '<;当(2,e x a ⎤∈⎦时,()0f x '>,所以()f x 在[)1,a 上单调递减,在(2,a e ⎤⎦上单调递增. 可得()()()()min 11ln f x f a a a ==--.(ⅰ)当a e =时,()min 0f x =,此时()f x 在21,e ⎡⎤⎣⎦上有1个零点;(ⅱ)当1a e <<时,()min 0f x >,此时()f x 在21,e ⎡⎤⎣⎦上无零点;(ⅲ)当2e a e <<时,()min 0f x <,()110f a =->.(a)当()22220a f e e a e =+-<,即42221e a e e <<-时,()f x 在21,e ⎡⎤⎣⎦上有1个零点; (b)当()22220a f e e a e =+-≥,即4221e e a e <≤-时,()f x 在21,e ⎡⎤⎣⎦上有2个零点; 综上,当1a e <<时,()f x 在21,e ⎡⎤⎣⎦上无零点;当1a ≤或a e =或4221e a e >-时,()f x 在21,e ⎡⎤⎣⎦上有1个零点; 当4221e e a e <≤-时,()f x 在21,e ⎡⎤⎣⎦上有2个零点.。

2023年高考数学一轮复习提升专练(新高考地区用)3-2-2 函数的性质(二)(精讲)(解析版)

2023年高考数学一轮复习提升专练(新高考地区用)3-2-2 函数的性质(二)(精讲)(解析版)

3.2.2 函数的性质(二)(精讲)(提升版)思维导图考点呈现考点一 函数的周期性【例1-1】(2022·黑龙江)己知()f x 是定义在R 上的周期为4的奇函数,当(0,1)x ∈时,5()e xf x a =+,若323(22)2e 5f f ⎛⎫-= ⎪⎝⎭,则195f ⎛⎫=⎪⎝⎭( )A .3e e +B .3e e -+C .3e e -D .3e e --【答案】D【解析】由题意可得,()f x 为定义在R 上的周期为4的奇函数,故(4)()()f x f x f x +==-- , 故(2)(24)(2)f f f =-+=-,所以(2)0f =故()()32332222e 55f f f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭即()3322e 5f f ⎛⎫-= ⎪⎝⎭,即332e 5f ⎛⎫= ⎪⎝⎭,而当()0,1x ∈时,()5e xf x a =+,故333e 2e ,e 35f a a ⎛⎫=+== ⎪⎝⎭,则当()0,1x ∈时,()53e e xf x =+,故319191(4)()e e 555f f f ⎛⎫=-=-=-- ⎪⎝⎭,故选:D【例1-2】(2022·湖南衡阳·三模)定义在R 上的奇函数()f x 满足()1f x +为偶函数,且当[]0,1x ∈时,()4cos x f x x =-,则下列结论正确的是( )A .40434039(2022)22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B .40394043(2022)22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭C .40434039(2022)22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .40394043(2022)22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】因为()1f x +为偶函数,所以满足(1)(1)f x f x +=-+,又因为()f x 是奇函数,所以(1)(1),f x f x -+=--故[](1)(1)(3)(3)f x f x f x f x +=--=---=-例题剖析因此()(4),f x f x =+即()f x 是以4为周期的周期函数.4043404331(4505)()(),2222f f f f ⎛⎫=-⨯== ⎪⎝⎭(2022)(2)(0)f f f ==, 4039403911(4505)2222f f f f ⎛⎫⎛⎫⎛⎫=-⨯=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当[]0,1x ∈时,()4cos x f x x =-,4x 在[]0,1x ∈单调递增,cos x 在[]0,1x ∈单调递减,故()4cos x f x x =-在[]0,1x ∈单调递增.所以40434039(2022)211()(0)2()22f f f f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⇒⎝>-⎭> 故选:A 【一隅三反】1.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭( )A .-11B .-8C .3log 4D .38log 4-【答案】A【解析】因为函数()f x 图象关于原点对称,所以()()f x f x -=-, 由()(4)f x f x =+知,函数()f x 是以4为周期的函数,又当(0,2)x ∈时,()f x 则3333243(3log )(3log 243log 4)(8log 4)4f f f +=+-=-33(log 4)(log 4)f f =-=-=11==-.故选:A. 2.(2022·江西鹰潭·二模)已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=( ) A .2- B .4 C .4- D .6【答案】C【解析】因为()f x 是定义在R 上的奇函数,又32f x ⎛⎫+ ⎪⎝⎭为偶函数,所以()()f x f x -=-、()00f =且3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,则33322232f f x x ⎡⎤⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦++⎣⎦,即()()3f x f x -=+,所以()()()()6333f x f x f x f x +=++=-+=⎡⎤⎣⎦,即()f x 是以6为周期的周期函数,由()12f =,()()412f f =-=-所以()()()20206336442f f f =⨯+==-,()()()()202163371112f f f f =⨯-=-=-=-, ()()()20226337000f f f =⨯+==,所以()()()2020202120224f f f ++=-;故选:C3.(2022·新疆·三模)已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e xf x x =,则下面结论正确的是( )A .()()()3ln3e e f f f <<- B .()()()3e ln3ef f f -<< C .()()()3e e ln3f f f <-<D .()()()3ln3e e f f f <-<【答案】A【解析】[]0,3x ∈,()e x f x x =()()e 1xf x x '∴=+[]0,3x ∴∈时,()f x 单调递增;()()6f x f x +=,[]18,21x ∴∈,()f x 单调递增;323636e e +⨯<<+⨯()()()3236e e 36f f f ∴+⨯<<+⨯()()()32e e f f f ∴<<()()f x f x -=()()e e f f ∴-= 20ln 3ln e 2∴<<=,()()ln32f f ∴<,综上所述,()()()3ln3e e f f f <<-.故选:A.考点二 函数的对称性【例2-1】(2022·安徽合肥)函数()4e e x xf x +-=-(e 是自然对数的底数)的图象关于( )A .直线e x =-对称B .点(e,0)-对称C .直线2x =-对称D .点(2,0)-对称【答案】D【解析】由题意()()2e 2e 42e 42e 2e ee e e x x x xf x -----+--++--=-=-,它与()f x 之间没有恒等关系,相加也不为0,AB 均错,而44(4)4(4)e e e e ()x x x x f x f x --+----+--=-=-=-,所以()f x 的图象关于点(2,0)-对称.故选:D . 【例2-2】(2022·全国·模拟预测)已知函数()f x 的定义域为R ,()()()2220212f x f x f +=-+对任意的x ∈R 恒成立,且函数()2021f x -的图像关于点()2021,0对称,()12021f =-,则()()20212022f f +=( ) A .2021 B .-2021C .2022D .-2022【答案】A【解析】对任意的x ∈R 都有()()()2220212f x f x f +=-+,令x =0,则()()()2220212f f f =+,即()20f =,即有()()22f x f x +=-,即()()4f x f x +=-,所以函数()f x 的图像关于直线x =2对称.又函数()2021f x -的图像关于点()2021,0对称,则函数()f x 的图像关于点()0,0对称,即函数()f x 为奇函数. 所以()()()4f x f x f x +=-=-,所以()()()84f x f x f x +=-+=, 所以8是函数()f x 的最小正周期.()()()()()()()20212538333122112021,f f f f f f f =⨯-=-=-=-+=--=-=()()()()202225382220f f f f =⨯-=-=-=,所以()()202120222021f f +=,故选:A .【例2-3】.(2022·山西吕梁)已知定义在R 上的函数()f x 满足()()2f x f x +=-,且在区间()1,+∞上单调递增,则满足()()13f x f x ->+的x 的取值范围为( ) A .()1,-+∞ B .(),1-∞- C .()1,1- D .(),1-∞【答案】B【解析】因为函数()f x 满足()()2f x f x +=-,所以()f x 的图象关于直线1x =对称, 又()f x 在区间()1,+∞上单调递增,所以在(,1)-∞上单调递减, 因为()()13f x f x ->+,()()|11||31|x x -->+-,即2x x ->+,平方后解得1x <-.所以x 的取值范围为(,1)-∞-.故选:B.【例2-4】(2022·河南河南·三模(理))函数()112e e 1x x f x x --=---的所有零点之和为( ) A .0 B .2 C .4D .6【答案】B【解析】令()112e e 01x xf x x --=--=-,得112e e 1x x x ---=-, ()21g x x =-图象关于()1,0对称,在()(),1,1,-∞+∞上递减.()11e e ,x x h x --=-,令()()()()1e e ,e e x x x x H x h x H x H x --=+=--=-=-,所以()H x 是奇函数,图象关于原点对称,所以()h x 图象关于()1,0对称,()10h =,()1ee e x xh x -=-在R 上递增, 所以()h x 与()g x 有两个交点,两个交点关于()1,0对称,所以函数()112e e 1x xf x x --=---的所有零点之和为2. 故选:B【一隅三反】1.(2022·北京四中高三阶段练习)下列函数的图象中,既是轴对称图形又是中心对称的是( ) A .1y x= B .lg y x = C .tan y x = D .3y x =【答案】A【解析】对于A ,1y x=图象关于y x =、坐标原点()0,0分别成轴对称和中心对称,A 正确;对于B ,lg y x =为偶函数,其图象关于y 轴对称,但无对称中心,B 错误;对于C ,tan y x =关于点(),02k k Z π⎛⎫∈⎪⎝⎭成中心对称,但无对称轴,C 错误; 对于D ,3y x =为奇函数,其图象关于坐标原点()0,0成中心对称,但无对称轴,D 错误. 故选:A.2.(2022·河北保定·一模)已知函数()32f x x ax x b =+++的图象关于点()1,0对称,则b =( )A .3-B .1-C .1D .3【答案】C 【解析】()f x 图象关于点()1,0对称,()()20f x f x ∴+-=,又()()()()()()32322222641310f x x a x x b x a x a x -=-+-+-+=-++-++4a +b +,()()()()222641210420f x f x a x a x a b ∴+-=+-++++=,260412010420a a a b +=⎧⎪∴+=⎨⎪++=⎩,解得:3a =-,1b =.故选:C. 3.(2022·吉林·长春外国语学校高三开学考试(文))已知函数2()e e x x f x -=-,则下列说法正确的是( ) A .()f x 关于直线1x =-对称 B .()f x 关于点(1,0)对称 C .()f x 关于点(1,0)-对称 D .()f x 关于直线1x =对称【答案】B【解析】∵2()e e x x f x -=-,∴2(2)e e x x f x --=-,24(2)e e x x f x --+--=-, ∴242(2)e e ()e e x x x x f x f x --+-=≠--=--,故A 错误;()22(2)e e e e ()x x x x f x f x --=-=---=-,故B 正确; ()242(2)e e ()e e x x x x f x f x --+---=-=--≠-,故C 错误;22(2)e e ()e e x x x x f x f x ---=-=-≠,故D 错误.故选:B.4.(2022·天津市第七中学模拟预测)已知()f x 是定义在R 上的奇函数,且满足()()22f x f x +=-,当[]0,2x ∈时,()2f x x a =+,则函数()f x 与函数()2112x g x --=的图象在[]2020,2022-上所有交点的横坐标之和为( ) A .2020 B .1010 C .1012 D .2022【答案】A【解析】因为()f x 是定义在R 上的奇函数,所以()00f a ==,即当[]0,2x ∈时,()2f x x =由已知()()()44f x f x f x =-=--,()()48f x f x ∴-=--,()()8f x f x =-,故()f x 是8T =周期函数,且对称轴为2x =,又()()2241111422x x g x g x ------===,即()()22g x g x +=-,所以函数()2112x g x --=关于2x =对称如图函数()f x 和函数()g x 在[]6,10-上的图像在区间[]2,2022上,包含了函数()f x 中的252个周期再加上12个周期, 在区间[]2020,2-上,包含了函数()f x 中的252个周期再加上34个周期,所以函数()f x 和函数()g x 在[]2020,2-和[]2,2022上都有25221505⨯+=个交点, 根据对称性可得所有交点的横坐标之和为50542020⨯=.故选:A.考点三 Mm 函数【例3】(2022.广东)已知3()sin 1f x x x =-+,[2x π∈-,2]π,若()f x 的最大值为M ,()f x 的最小值为N ,则M N +等于( ) A .0 B .2C .4πD .38π【答案】B【解析】令3()()1sin g x f x x x =-=-,[2x π∈-,2]π,函数()g x 的定义域关于原点对称,且33()sin()()sin ()g x x x x x g x -=---=-+=-,∴函数()g x 为奇函数,()()0max min g x g x ∴+=,即()1()10max min f x f x -+-=,()()2max min f x f x ∴+=,即2M N +=.故选:B .【一隅三反】1.(20022•椒江区)已知函数2()2x xxf x e e -=++的最大值为M ,最小值为m ,则M m +的值等于( )A .2B .4C .2221ee ++ D .2441ee ++ 【答案】B 【解析】设2()x xxg x e e -=+,则()g x 是奇函数,()g x ∴的最大值和最小值互为相反数,且()f x 的最大值为M ,最小值为m , 4M m ∴+=.故选:B .2.(2022•沙河)函数21(21)2()2x x xx f x x +++=在[2019-,0)(0⋃,2019]上的最大值为M ,最小值为N ,则(M N += ) A .4038 B .4C .2D .0【答案】B【解析】22221222222222()22x x x x x x x xx x f x x x x --++++++++===+, 设222()x x g x x-++=,则()g x 是奇函数,()g x ∴在[2019-,0)(0⋃,2019]上的最大值和最小值互为相反数,又()f x 在[2019-,0)(0⋃,2019]上的最大值为M ,最小值为N , 4M N ∴+=.故选:B .3.(2021•河北)已知22(2)()4x f x x +=+,则()f x 在区间[2-,2]上的最大值最小值之和为( )A .2B .3C .4D .8【答案】A【解析】由222444()144x x xf x x x ++==+++ 令24()4xg x x =+,可得24()()4xg x g x x -=-=-+是奇函数, 可得()g x 区间[2-,2]上的最大值最小值之和为0.那么()f x 在区间[2-,2]上的最大值为1()max g x +,最小值为1()min g x +; ()f x ∴在区间[2-,2]上的最大值最小值之和为2.故选:A .4.(2022•广东月考)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1-,3]上的最大值为M ,最小值为m ,则(M m += ) A .1B .2C .3D .4【答案】B 【解析】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,[1x ∈-,3]上, 可得[2t ∈-,2];那么()f x 转化为21()sin sin 1g t t t t t=+-+ 由于21()sin sin h t t t t t=+-是奇函数 可得()h t ,[2t ∈-,2]的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .考点四 函数性质的综合运用【例4】(2022·辽宁·模拟预测)(多选)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是( )A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点【答案】BC【解析】因为()()()63f x f x f ++=,取3x =-,得()()()333f f f +-=,故()30f -=,又()f x 是偶函数,所以()()330f f =-=,所以()()60f x f x ++=,故()()()126f x f x f x +=-+=,即()f x 的一个周期为12,故A 项错误;又()f x 在区间[]6,0-上是增函数,所以()f x 在区间[]0,6上为减函数,由周期性可知,()f x 在区间[]12,18上单调递减,故B 项正确;因为()f x 是偶函数,所以()f x 的图像关于y 轴对称,由周期性可知()f x 的图像关于直线12x =对称,故C 项正确;因为()f x 在区间[]6,0-上是增函数,所以()f x 在区间[]0,6上为减函数,()()330f f =-=,由周期性可知,在区间[]0,12上,()()390f f ==,而区间[]0,2016上有168个周期,故()f x 在区间[]0,2016上有336个零点,又()()201930f f ==,所以()f x 在区间[]0,2022上有337个零点,由()f x 为偶函数,可知()f x 在区间[]2022,2022-上有674个零点,故D 项错误.故选:BC 项.【一隅三反】1.(2022·江苏·涟水县第一中学高三期中)(多选)已知()f x 是R 上的奇函数,()2f x +是R 上的偶函数,且当[]0,2x ∈时,()22f x x x =+,则下列说法正确的是( )A .()f x 最小正周期为4B .()33f -=-C .()20200f =D .()20213f =-【答案】BCD 【解析】因为(2)f x +是偶函数, 所以(2)(2)f x f x +=-+, 又因为()f x 是奇函数,所以(2)(2)f x f x -+=--,所以(2)(2)f x f x +=--,所以(4)()f x f x +=-,所以()()4()8x x f f f x =-=++,所以()f x 的周期为8,故A 错误;又当[]0,2x ∈时,()22f x x x =+,所以()()()3513f f f -==-=-,选项B 正确;(2020)(42528)(4)(0)0f f f f =+⨯==-=,选项C 正确;(2021)(52528)(5)(1)3f f f f =+⨯==-=-,选项D 正确.故选:BCD.2.(2022·江苏泰州·模拟预测)(多选)已知定义在R 上的单调递增的函数()f x 满足:任意x ∈R ,有()()112f x f x -++=,()()224f x f x ++-=,则( )A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,f x T f xD .存在非零实数c ,使得任意x ∈R ,()1f x cx -≤【答案】ABD【解析】对于A ,令1x t =-,则()()22f t f t +-=,即()()22f x f x +-=,又()()224f x f x ++-=,()()()()()242422f x f x f x f x ∴+=--=--=+;令0x =得:()()112f f +=,()()224f f +=,()11f ∴=,()22f =,则由()()22f x f x +=+可知:当x ∈Z 时,()f x x =,A 正确;对于B ,令1x t =+,则()()22f t f t -++=,即()()22f x f x -++=,()()()()()2224222f x f x f x f x ∴-=-+=---=--,由A 的推导过程知:()()22f x f x -=-,()()()22f x f x f x ∴-=--=-,B 正确;对于C ,()f x 为R 上的增函数,∴当0T >时,x T x +>,则()()f x T f x +>;当0T <时,x T x +<,则()()f x T f x +<,∴不存在非零实数T ,使得任意x ∈R ,f x T f x ,C 错误;对于D ,当1c =时,()()f x cx f x x -=-;由()()112f x f x -++=,()()224f x f x ++-=知:()f x 关于()1,1,()2,2成中心对称,则当a Z ∈时,(),a a 为()f x 的对称中心;当[]0,1x ∈时,()f x 为R 上的增函数,()00f =,()11f =,()[]0,1f x ∴∈,()1f x x ∴-≤;由图象对称性可知:此时对任意x ∈R ,()1f x cx -≤,D 正确.故选:ABD.3.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为( ) A .8B .7C .6D .5【答案】A 【解析】因为函数()f x 满足()()2f x f x -=,所以函数()f x 的图象关于直线1x =对称,又函数()f x 为偶函数,所以()()()2-==-f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =-的图象也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5-上的图象,如图所示:由图可知,函数()f x 与()g x 的图象在区间[]3,5-上有8个交点,且关于直线1x =对称,所以方程()11f x x =-在区间[]3,5-上所有解的和为4218⨯⨯=, 故选:A. 4.(2022·内蒙古呼和浩特·二模(理))已知函数()y f x =是R 上的奇函数,对任意x ∈R ,都有()()()22f x f x f -=+成立,当1x ,[]20,1x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,有下列命题:①()()()2320220f f f ++⋅⋅⋅+=;②点()2022,0是函数()y f x =图象的一个对称中心;③函数()y f x =在[]2022,2022-上有2023个零点;④函数()y f x =在[]7,9上为减函数;则正确结论的序号为______.【答案】①②③ 【解析】(2)()(2)f x f x f -++,令0x =得(2)(0)(2)f f f =+,(0)0f =,令1x =得(1)(1)(2)f f f =+,(2)0f =, 所以(2)()f x f x -=,又()f x 是奇函数,()()(2)f x f x f x =--=-+,(4)(2)()f x f x f x +=-+=,()f x 是周期函数,4是它的周期,当1x ,[]20,1x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,即12x x >时,12()()f x f x >,()f x 在[0,1]是增函数,由奇函数性质知()f x 在[1,0]-上也是增函数,所以()f x 在[1,1]-上递增,所以(1)(2)(3)(4)(1)(2)(1)(0)0f f f f f f f f +++=++-+=,从而()(1)(2)(3)0,f k f k f k f k k Z ++++++=∈,202224505-=⨯,()()()()()232022302022f f f f f ++⋅⋅⋅+=⋅⋅⋅+=+,①正确;(2)()f x f x -=,则函数图象关于直线1x =对称,又函数图象关于原点对称,因此也关于点(2,0)对称,②正确;由上讨论知()f x 在[,4)k k +上有2个零点,2022210114⨯=, 注意(2022)(2022)0f f =-=,因此()f x 在[2022,2022]-上零点个数为2101112023⨯+=,③正确;由周期性知函数在[7,9]x ∈与[1,1]x ∈-时的图象相同,函数同为增函数,④错误.故答案为:①②③.。

2013高三数学总复习同步练习:5-4向量的应用及向量与其他知识的综合问题

2013高三数学总复习同步练习:5-4向量的应用及向量与其他知识的综合问题

5-4向量的应用及向量与其他知识的综合问题基础巩固强化1.(文)如图,在△ABC 中,AB =5,BC =3,CA =4,且O 是△ABC 的外心,则OC →·CA →=( )A .6B .-6C .8D .-8 [答案] D[解析] ∵AB 2=AC 2+BC 2,∴∠ACB 为直角, ∵O 为△ABC 外心,∴OC →·CA →=-CO →·CA →=-12(CA →+CB →)·CA →=-12|CA →|2-12CB →·CA →=-8.(理)在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,∠B =45°,AB =2CD =2,M 为腰BC 的中点,则MA →·MD →=( )A .1B .2C .3D .4 [答案] B[解析] 由条件知AB =2,CD =1,BC =2, ∴MB =MC =22,∴MC →·BA →=|MC →|·|BA →|·cos45°=22×2×22=1, MB →·CD →=|MB →|·|CD →|·cos135°=22×1×⎝⎛⎭⎪⎫-22=-12,∴MA →·MD →=(MB →+BA →)·(MC →+CD →) =MB →·MC →+MB →·CD →+BA →·MC →+BA →·CD →=-⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫-12+1+2×1=2,故选B.2.已知A 、B 、C 是锐角△ABC 的三个内角,向量p =(sin A,1),q =(1,-cos B ),则p 与q 的夹角是( )A .锐角B .钝角C .直角D .不确定[答案] A[解析] 解法1:p ·q =sin A -cos B ,若p 与q 夹角为直角,则p ·q =0,∴sin A =cos B ,∵A 、B ∈⎝ ⎛⎭⎪⎫0,π2,∴A =B =π4,则C =π2,与条件矛盾;若p 与q 夹角为钝角,则p ·q <0,∴sin A <cos B =sin ⎝ ⎛⎭⎪⎫π2-B ,∵sin x 在⎝ ⎛⎭⎪⎫0,π2上为增函数,∴A <π2-B ,∴A +B <π2,∴C >π2这与条件矛盾,∴p 与q 的夹角为锐角.解法2:由题意可知A +B >π2⇒A >π2-B ⇒sin A >sin(π2-B )=cos B ⇒p ·q =sin A -cos B >0,又显然p 、q 不同向,故p 与q 夹角为锐角.3.(2012·河北郑口中学模拟)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.23[答案] C[解析] 如图,PB →+PC →=PE →=2PD →,∵PB →+PC →+2P A →=0,∴P A →+PD →=0,∴P 为AD 的中点,∴所求概率为P =S △PBC S △ABC =12.4.(文)(2011·成都市玉林中学期末)已知向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P ,使AP →·BP →有最小值,则P 点坐标为( )A .(-3,0)B .(3,0)C .(2,0)D .(4,0)[答案] B[解析] 设P (x,0),则AP →=(x -2,-2),BP →=(x -4,-1),AP →·BP →=(x -2)(x -4)+(-2)×(-1)=x 2-6x +10=(x -3)2+1,∴当x =3时AP →·BP →有最小值,∴P (3,0).(理)(2011·河南质量调研)直线ax +by +c =0与圆x 2+y 2=9相交于两点M 、N ,若c 2=a 2+b 2,则OM →·ON →(O 为坐标原点)等于( )A .-7B .-14C .7D .14[答案] A[解析] 记OM →、ON →的夹角为2θ.依题意得,圆心(0,0)到直线ax +by +c =0的距离等于|c |a 2+b 2=1,∴cos θ=13,∴cos2θ=2cos 2θ-1=2×(13)2-1=-79,∴OM →·ON →=3×3cos2θ=-7,选A.5.(2012·吉林实验中学模拟)如图,正方形ABCD 中,点E 、F 分别是DC 、BC 的中点,那么EF →=( )A.12AB →+12AD → B .-12AB →-12AD → C .-12AB →+12AD → D.12AB →-12AD →[答案] D[解析] EF →=AF →-AE →=(AB →+12BC →)-(AD →+12DC →) =AB →+12AD →-AD →-12AB →=12AB →-12AD →.6.(2012·浙江宁波市期末)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →|的最小值是( )A.12 B.32 C. 2 D.22[答案] D[解析] ∵∠A =120°,AB →·AC →=-1, ∴|AB →|·|AC →|·cos120°=-1, ∴|AB →|·|AC →|=2,∴|AB →|2+|AC →|2≥2|AB →|·|AC →|=4,∵D 为BC 边的中点,∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,∴|AD →|≥22.7.如图,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.[答案] -92[解析] 设PC =x ,则0≤x ≤3.(P A →+PB →)·PC →=2PO →·PC →=-2x ×(3-x )=2x 2-6x =2(x -32)2-92,所以(P A →+PB →)·PC →的最小值为-92.8.(2012·会昌月考)已知向量a 与b 的夹角为2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.[答案] 1[解析] ∵〈a ,b 〉=2π3,|a |=1,|b |=4,∴a ·b =|a |·|b |·cos 〈a ,b 〉=1×4×cos 2π3=-2,∵(2a +λb )⊥a ,∴a ·(2a +λb )=2|a |2+λa ·b =2-2λ=0,∴λ=1.9.(2012·宁夏三市联考)在平行四边形ABCD 中,已知AB =2,AD =1,∠BAD =60°,E 为CD 的中点,则AE →·BD →=________.[答案] -32[解析] AE →·BD →=(AD →+12AB →)·(AD →-AB →)=|AD →|2-12|AB →|2-12AD →·AB →=1-2-12×1×2·cos60°=-32.10.(文)(2012·豫南九校联考)已知向量OP →=(2cos x +1,cos2x -sin x +1),OQ →=(cos x ,-1),f (x )=OP →·OQ →.(1)求函数f (x )的最小正周期;(2)当x ∈[0,π2]时,求函数f (x )的最大值及取得最大值时的x 值. [解析] (1)∵OP →=(2cos x +1,cos2x -sin x +1),OQ →=(cos x ,-1),∴f (x )=OP →·OQ →=(2cos x +1)cos x -(cos2x -sin x +1) =2cos 2x +cos x -cos2x +sin x -1 =cos x +sin x =2sin(x +π4),∴函数f (x )最小正周期T =2π. (2)∵x ∈[0,π2],∴x +π4∈[π4,3π4],∴当x +π4=π2,即x =π4时,f (x )=2sin(x +π4)取到最大值 2. (理)(2012·龙岩月考、河北衡水中学调研)△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,向量m =(-1,1),n =(cos B cos C ,sin B sin C -32),且m ⊥n .(1)求A 的大小;(2)现在给出下列三个条件:①a =1;②2c -(3+1)b =0;③B =45°,试从中选择两个条件以确定△ABC ,求出所确定的△ABC 的面积.(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).[解析] (1)因为m ⊥n ,所以-cos B cos C +sin B sin C -32=0,即cos B cos C -sin B sin C =-32,所以cos(B +C )=-32, 因为A +B +C =π,所以cos(B +C )=-cos A , 所以cos A =32,A =30°.(2)方案一:选择①②,可确定△ABC , 因为A =30°,a =1,2c -(3+1)b =0,由余弦定理得,12=b 2+(3+12b )2-2b ·3+12b ·32解得b =2,所以c =6+22,所以S △ABC =12bc sin A =12·2·6+22·12=3+14, 方案二:选择①③,可确定△ABC , 因为A =30°,a =1,B =45°,C =105°,又sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=6+24,由正弦定理c =a sin C sin A =1·sin105°sin30°=6+22, 所以S △ABC =12ac sin B =12·1·6+22·22=3+14. (注意:选择②③不能确定三角形)能力拓展提升11.(文)(2012·浙江省样本学校测试)如图,△ABC 的外接圆的圆心为O ,AB =3,AC =5,BC =7,则AO →·BC →等于( )A .-8B .-1C .1D .8[答案] D[解析]取BC 的中点M ,连接AM 、OM , AO →·BC →=(AM →+MO →)·BC →=AM →·BC →=AC →+AB →2·(AC →-AB →)=|AC →|2-|AB →|22=8,故选D. (理)(2011·福建理,8)已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2.上的一个动点,则OA →·OM →的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2][答案] C[解析] OA →·OM →=(-1,1)·(x ,y )=y -x ,画出线性约束条件⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2.表示的平面区域如图所示.可以看出当z =y -x 过点A (1,1)时有最小值0,过点C (0,2)时有最大值2,则OA →·OM →的取值范围是[0,2],故选C.12.设F 1、F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→的值等于( )A .0B .2C .4D .-2[答案] D[解析] 由题意得c =a 2-b 2=3,又S 四边形PF 1QF 2=2S △PF 1F 2=2×12×F 1F 2·h (h 为F 1F 2边上的高),所以当h =b =1时,S 四边形PF 1QF 2取最大值,此时∠F 1PF 2=120°.所以PF 1→·PF 2→=|PF 1→|·|PF 2→|·cos120° =2×2×(-12)=-2.13.(2011·烟台质检)在平面直角坐标系xOy 中,i 、j 分别是与x轴,y 轴平行的单位向量,若直角三角形ABC 中,AB →=i +j ,AC →=2i +m j ,则实数m =________.[答案] 0或-2[解析] ∵△ABC 为直角三角形,∴当A 为直角时,AB →·AC →=(i +j )·(2i +m j )=2+m =0⇒m =-2; 当B 为直角时,AB →·BC →=AB →·(AC →-AB →)=(i +j )·[i +(m -1)j ]=1+m -1=0⇒m =0;当C 为直角时,AC →·BC →=AC →·(AC →-AB →)=(2i +m j )·[i +(m -1)j ]=2+m 2-m =0,此方程无解.∴实数m =0或m =-2.14.(2012·苏北四市统考)已知△ABO 三顶点的坐标为A (1,0),B (0,2),O (0,0),P (x ,y )是坐标平面内一点,且满足AP →·OA →≤0,BP →·OB →≥0,则OP →·AB →的最小值为________.[答案] 3[解析] AP →=(x -1,y ),OA →=(1,0), BP →=(x ,y -2),OB →=(0,2), ∵⎩⎪⎨⎪⎧AP →·OA →≤0,BP →·OB →≥0,∴⎩⎪⎨⎪⎧ x -1≤0,2(y -2)≥0,∴⎩⎪⎨⎪⎧x ≤1,y ≥2, ∴OP →·AB →=(x ,y )·(-1,2)=-x +2y ≥-1+2×2=3,∴OP →·AB →的最小值为3.15.(文)已知向量a =1sin x ,-1sin x ,b =(2,cos2x ),其中x ∈⎝ ⎛⎦⎥⎤0,π2.(1)试判断向量a 与b 能否平行,并说明理由? (2)求函数f (x )=a ·b 的最小值.[解析] (1)若a ∥b ,则有1sin x ·cos2x +1sin x ·2=0. ∵x ∈⎝⎛⎦⎥⎤0,π2,∴cos2x =-2,这与|cos2x |≤1矛盾,∴a 与b 不能平行. (2)∵f (x )=a ·b =2sin x -cos2xsin x=2-cos2x sin x =1+2sin 2x sin x =2sin x +1sin x , ∵x ∈⎝ ⎛⎦⎥⎤0,π2,∴sin x ∈(0,1],∴f (x )=2sin x +1sin x ≥22sin x ·1sin x =2 2.当2sin x =1sin x ,即sin x =22时取等号, 故函数f (x )的最小值为2 2.(理)已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.[解析] 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0), 则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →得,(x -a ,y )=-32(-x ,b -y )=(32x ,32(y -b )), ∴⎩⎪⎨⎪⎧x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧a =-x 2,b =y 3.把a =-x 2代入①,得-x 2(x +x2)+3y =0, 整理得y =14x 2(x ≠0).16.如图,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .[证明] AD →·CE →=(AC →+12CB →)·(CA →+23AB →)=-|AC →|2+12CB →·CA →+23AB →·AC →+13AB →·CB →=-|AC →|2+12|CB →||CA →|cos90°+223|AC →|2cos45°+23|AC →|2cos45°=-|AC →|2+|AC →|2=0,∴AD →⊥CE →,即AD ⊥CE .1.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则a 与b 的夹角范围为( )A .(0,π6)B .(π6,π] C .(π3,π] D .(π3,2π3][答案] C[解析] 设a 与b 的夹角为θ,f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,即f ′(x )=x 2+|a |x +a ·b =0有两个不同的实数解,故Δ=|a |2-4a ·b >0⇒cos θ<12,又θ∈[0,π],所以θ∈(π3,π],故选C.2.设F 为抛物线y 2=2px (p >0)的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,|F A →|+|FB →|+|FC →|=3,则该抛物线的方程是( )A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x [答案] A[解析] ∵F (p2,0),设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), 由F A →+FB →+FC →=0得,(x 1-p 2)+(x 2-p 2)+(x 3-p2)=0, ∴x 1+x 2+x 3=32p . 又由抛物线定义知,|F A →|+|FB →|+|FC →|=(x 1+p 2)+(x 2+p 2)+(x 3+p2)=3p =3,∴p =1, 因此,所求抛物线的方程为y 2=2x ,故选A.3.不共线向量OA →、OB →,且2OP →=xOA →+yOB →,若P A →=λAB →(λ∈R ),则点(x ,y )的轨迹方程是( )A .x +y -2=0B .2x +y -1=0C .x +2y -2=0D .2x +y -2=0[答案] A[解析] 由P A →=λAB →得,OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ.消去λ得x +y =2,故选A. 4.已知O 为原点,点A 、B 的坐标分别为A (a,0)、B (0,a ),其中常数a >0,点P 在线段AB 上,且有AP →=tAB →(0≤t ≤1),则OA →·OP →的最大值为( )A .aB .2aC .3aD .a 2[答案] D[解析] ∵AP →=tAB →,∴OP →=OA →+AP →=OA →+t (OB →-OA →) =(1-t )OA →+tOB →=(a -at ,at ), ∴OA →·OP →=a 2(1-t ), ∵0≤t ≤1,∴OA →·OP →≤a 2.5.已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC 、△MCA 和△MAB 的面积分别为12、x 、y ,则1x +4y 的最小值是________.[答案] 18[解析] ∵AB →·AC →=23,∴bc cos A =23, ∵∠BAC =30°,∴bc =4, ∴S △ABC =1,∴x +y =12,1x +4y =2(x +y )x +8(x +y )y =(2y x +8xy )+10≥18. 等号成立时,⎩⎪⎨⎪⎧2y x =8x y ,x +y =12.∴x =16,y =13,∴在⎩⎪⎨⎪⎧x =16,y =13.时,1x +4y 取得最小值18.6.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0),作圆x 2+y 2=a24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率为________.[答案]102[解析] ∵PF 与圆x 2+y 2=a 24相切,∴OE ⊥PF ,且OE =a2,∵OE→=12(OF →+OP →),∴E 为PF 的中点,又O 为FF 2的中点,∴|PF 2|=2|OE |=a ,由双曲线定义知,|PF |=|PF 2|+2a =3a ,在Rt △PFF 2中,|PF |2+|PF 2|2=|FF 2|2,∴a 2+9a 2=4c 2,∴e 2=52,∵e >1,∴e =102.7.(2012·广东惠州二调)已知向量a =(sin θ,cos θ)与b =(3,1),其中θ∈(0,π2).(1)若a ∥b ,求sin θ和cos θ的值; (2)若f (θ)=(a +b )2,求f (θ)的值域. [解析] (1)∵a ∥b ,∴sin θ·1-3cos θ=0, 求得tan θ= 3.又∵θ∈(0,π2),∴θ=π3.∴sin θ=32,cos θ=12.(注:本问也可以结合sin 2θ+cos 2θ=1或化为2sin(θ-π3)=0来求解)(2)f (θ)=(sin θ+3)2+(cos θ+1)2 =23sin θ+2cos θ+5=4sin(θ+π6)+5, 又∵θ∈(0,π2),θ+π6∈(π6,2π3), 12<sin(θ+π6)≤1,∴7<f (θ)≤9,即函数f (θ)的值域为(7,9].。

黑龙江省大庆实验中学2020届高三5月模拟测试理科数学试题(含答案)

黑龙江省大庆实验中学2020届高三5月模拟测试理科数学试题(含答案)

大庆实验中学2020届高三综合训练(一)数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合M ={x |﹣1<x <3},N ={x |y =lg (x 2﹣1)},则M ∩N =( ) A .{x |﹣1<x <3}B .{x |﹣1<x <1}C .{x |1<x <3}D .{x |﹣1<x ≤1}2.已知复数z 满足z •(1+2i )=|3﹣4i |(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知a =0.40.3,b =0.30.3,c =0.30.4,则( ) A .a >c >bB .a >b >cC .c >a >bD .b >c >a4.现有甲、乙两台机床同时生产直径为40mm 的零件,各抽测10件进行测量,其结果如图,不通过计算从图中数据的变化不能反映和比较的数字特征是( ) A .极差 B .方差 C .平均数 D .中位数 5.给出如下四个命题:①若“p 或q ”为假命题,则,p q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”; ③若,a b 是实数,则“2a >”是“24a >”的必要不充分条件; ④命题“若,x y =则sin sin x y =”的逆否命题为真命题.其中正确命题的个数是( ) A .3 B .2 C .1 D .06.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b cos C ﹣c cos B =2c •cos C ,则角C 的取值范围为( ) A .B .C .D .7.已知平面向量,,均为单位向量,若,则的最大值是( )A .B .3C .D .8.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的精美图案.如图所示的窗棂图案,是将边长为2R 的正方形的内切圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.若在正方形内随机取一点,则该点在窗棂图案上阴影内的概率为( ) A .B .C .D .9.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=2﹣|x +2|.若对任意的x ∈[﹣1,2],f (x +a )>f (x )成立,则实数a 的取值范围是( )A .(0,2)B .(0,2)∪(﹣∞,﹣6)C .(﹣2,0)D .(﹣2,0)∪(6,+∞)10.已知双曲线C:(a>0,b>0)的左、右顶点分别为A,B,左焦点为F,P为C上一点,且PF⊥x 轴,过点A的直线l与线段PF交于点M(异于P,F),与y轴交于点N,直线MB与y轴交于点H,若(O为坐标原点),则C的离心率为()A.2B.3C.4D.511.已知函数,在区间[0,π]上有且仅有2个零点,对于下列4个结论:①在区间(0,π)上存在x1,x2,满足f(x1)﹣f(x2)=2;②f(x)在区间(0,π)有且仅有1个最大值点;③f(x)在区间上单调递增;④ω的取值范围是,其中所有正确结论的编号是()A.①③B.①③④C.②③D.①④12.设函数恰有两个极值点,则实数t的取值范围是()A.∪(1,+∞)B.∪[1,+∞)C.D.[1,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.二项式(﹣)5的展开式中x﹣2的系数是.14.在今年的疫情防控期间,某省派出5个医疗队去支援武汉市的4个重灾区,每个重灾区至少分配一个医疗队,则不同的分配方案共有种.(用数字填写答案)15.已知抛物线y2=4x的焦点为F,准线为l,过点F且斜率为的直线交抛物线于点M(M在第一象限),MN ⊥l,垂足为N,直线NF交y轴于点D,则|MD|=.16.在四面体ABCD中,CA=CB,DA=DB,AB=6,CD=8,AB⊂平面α,l⊥平面α,E,F分别为线段AD,BC的中点,当四面体以AB为轴旋转时,直线EF与直线l夹角的余弦值的取值范围是.三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,考生都必须作答,第22、23题为选考题,考生根据要求作答.17.(12分)已知S n是公差不为零的等差数列{a n}的前n项和,S3=6,a3是a1与a9的等比中项.(1)求数列{a n}的通项公式;(2)设数列,数列{b n}的前2n项和为P2n,若,求正整数n的最小值.18.(12分)19.(12分)已知椭圆与抛物线D:y2=﹣4x有共同的焦点F,且两曲线的公共点到F的距离是它到直线x=﹣4(点F在此直线右侧)的距离的一半.(1)求椭圆C的方程;(2)设O为坐标原点,直线l过点F且与椭圆交于A,B两点,以OA,OB为邻边作平行四边形OAMB.是否存在直线l,使点M落在椭圆C或抛物线D上?若存在,求出点M坐标;若不存在,请说明理由.20.(12分)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X都在[70,100)内,在以组距为5画分数的频率分布直方图(设“”)时,发现Y满足,n∈N*,5n≤X<5(n+1).(1)试确定n的所有取值,并求k;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[95,100)的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A和B均参加了本次比赛,且学生A在第一阶段评为二等奖.(i)求学生B最终获奖等级不低于学生A的最终获奖等级的概率;(ii)已知学生A和B都获奖,记A,B两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.21.已知函数2()23()x x f x e ax a e a R −=−+∈,其中 2.71828...e =为自然对数的底数. (1)讨论()f x 的单调性;(2)当(0,)x ∈+∞时,222e ()3e 10()x x x a a x af x −−+−−+>恒成立,求a 的取值范围.(二)选考题:10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy 中,曲线C 的方程为x 2﹣2x +y 2=0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)写出曲线C 的极坐标方程,并求出直线l 与曲线C 的交点M ,N 的极坐标; (2)设P 是椭圆上的动点,求△PMN 面积的最大值.[选修4-5:不等式选讲] 23.已知f (x )=x 2+2|x ﹣1|. (1)解关于x 的不等式:;(2)若f (x )的最小值为M ,且a +b +c =M (a ,b ,c ∈R +),求证:.大庆实验中学2020届高三综合训练(一)数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.解:N ={x |x 2﹣1>0}={x |x >1或x <﹣1},M ={x |﹣1<x <3}, ∴M ∩N ={x |1<x <3}. 故选:C .2.解:由z •(1+2i )=|3﹣4i |=5, 得,∴在复平面内复数z 对应的点的坐标为(1,﹣2),位于第四象限, 故选:D .3.解析:0.30.3>0.30.4,即b >c >0,而,即a >b ,∴a >b >c , 故选:B . 4.C由于极差反映了最大值与最小值差的关系,方差反映数据的波动幅度大小关系,平均数反映所有数据的平均值的关系,中位数反映中间一位或两位平均值的大小关系,因此由图可知,不通过计算不能比较平均数大小关系. 故选C . 5.【答案】B对于①,若 “p 或q ”为假命题,则p ,q 均为假命题,故①正确;对于②,命题“若x ≥2且y ≥3,则x +y ≥5”的否命题为“若x <2或y <3,则x +y <5”,故②错;对于③,因为2a <−时24a >,所以若a ,b 是实数,则“a >2”是“a 2>4”的充分不必要条件,故③错; 对于④,命题“若x y =,则sin sin x y =”为真命题,则其的逆否命题为真命题,故④正确. 故选:B .6.【分析】由已知利用正弦定理,两角差的正弦函数公式,二倍角的正弦函数公式可得sin (B ﹣C )=sin2C ,在锐角三角形中可求B =3C ,可得,且,从而解得C 的取值范围.【解答】解:∵b cos C ﹣c cos B =2c •cos C ,∴由正弦定理可得:sin B cos C ﹣sin C cos B =2sin C cos C , ∴sin (B ﹣C )=sin2C , ∴B ﹣C =2C , ∴B =3C ,∴,且,∴.故选:A.7.解:∵平面向量,,均为单位向量,(+)2=+2•+=3,故||=;∴=•+﹣(+)•=﹣()≤+|+|•|﹣|=+;当且仅当与反向时取等号.故选:C.8.解:连接A、B、O,得等边三角形OAB,则阴影部分的面积为S阴影=12×(×πR2﹣×R2×sin60°)=(2π﹣3)R2,故所求概率为.故选:B.9.解析:依题意作出f(x)的图象,y=f(x+a)的图象可以看成是y=f(x)的图象向左(a>0时)或向右(a <0时)平移|a|个单位而得,当a>0时,y=f(x)的图象至少向左平移6个单位(不含6个单位)才能满足f(x+a)>f(x)成立,当a<0时,y=f(x)的图象向右平移至多2个单位(不含2个单位)才能满足f(x+a)>f(x)成立(对任意的x∈[﹣1,2]),故x∈(﹣2,0)∪(6,+∞),故选:D.10.解:不妨设P在第二象项,|FM|=m,H(0,h)(h>0),由知N(0,﹣2h),由△AFM~△AON,得(1),由△BOH~△BFM,得(2)(1),(2)两式相乘得,即c=3a,离心率为3.故选:B.11.解析:∵x∈[0,π],∴,令,则由题意,在上只能有两解和∴,(*)因为在上必有,故在(0,π)上存在x1,x2满足f(x1)﹣f(x2)=2;①成立;对应的x(显然在[0,π]上)一定是最大值点,因对应的x值有可能在[0,π]上,故②结论错误;解(*)得,所以④成立;当时,,由于,故,此时y=sin z是增函数,从而f(x)在上单调递增.综上,①③④成立,故选:B.12.解:求导得有两个零点等价于函数φ(x)=e x﹣(2x+1)t有一个不等于1的零点,分离参数得,令,,h(x)在递减,在递增,显然在取得最小值,作h(x)的图象,并作y=t的图象,注意到h(0)=1,,(原定义域x>0,这里为方便讨论,考虑h(0)),当t≥1时,直线y=t与只有一个交点即φ(x)只有一个零点(该零点值大于1);当时在两侧附近同号,不是极值点;当时函数φ(x)=e x﹣(2x+1)t有两个不同零点(其中一个零点等于1),但此时在x=1两侧附近同号,使得x=1不是极值点不合.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.解:展开式通项,依题意,,得r=3,所以:x﹣2的系数是.故答案为:﹣80.14.解:根据题意,将5个医疗队分派到4个重灾区,每个重灾区至少分配一个医疗队,则其中有一个重灾区安排两个医疗队,剩下3个重灾区各安排一个医疗队,分2步进行分析:先选出一个重灾区分配有两个医疗队,有C41种分配法,再为剩下的3个重灾区各分配一个医疗队,有种分配法,所以不同的分配方案数共有.故答案为:240.15.解:设准线l与x轴交于E.易知F(1,0),EF=2,由抛物线定义知|MN|=|MF|,由于∠NMF=60°,所以△NMF为等边三角形,∠NFE=60°,所以三角形边长为|NM|==2|FE|=4,又OD是△FEN的中位线,MD就是该等边三角形的高,,故答案为:2.16.解:∵在四面体ABCD中,CA=CB,DA=DB,AB=6,CD=8,AB⊂平面α,l⊥平面α,E,F分别为线段AD,BC的中点,∴AB⊥CD,又GE∥CD,GF∥AB,∴GE⊥GF,得EF=5.当四面体绕AB旋转时,由GF∥AB,即EF绕GF旋转,故EF与直线l所成角的范围为[90°﹣∠GFE,90°],∴直线EF与直线l夹角的余弦值的取值范围是.故答案为:[0,].三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必做题:60分.17.【分析】(1)设出等差数列的公差为d,且不为0,运用等比数列的中项性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(2)求得,再由数列的裂项相消求和,计算可得P2n,解不等式可得所求最小值.【解答】解:(1)公差d不为零的等差数列{a n},由a3是a1与a9的等比中项,可得,即a1(a1+8d)=(a1+2d)2,化为a1=d,又S 3=3a 1+3d =6,可得a 1=d =1,所以数列{a n }是以1为首项和公差的等差数列, 故综上;(2)由(1)可知, 所以=,所以,故n 的最小值为505. (2)法二:所以当n 为奇数时+11111+=21212123n n b b n n n n −++−+++-112123n n =+−+- ()()()21234212+++11111155743411=141n n nP b bb b b b n n n −=+++=−+−++−+−+−++ 所以,故n 的最小值为505. 18.19.解:(1)由题意知F(﹣1,0),因而c=1,即a2=b2+1,又两曲线在第二象限内的交点Q(x Q,y Q)到F的距离是它到直线x=﹣4的距离的一半,即4+x Q=2(﹣x Q+1),得,则,代入到椭圆方程,得.由,解得a2=4,b2=3,∴所求椭圆的方程为.(2)当直线AB的斜率存在且不为0时,设直线AB的方程为y=k(x+1),由,得(3+4k2)x2+8k2x+4k2﹣12=0,设M(x0,y0),A(x1,y1),B(x2,y2),则2122834kx xk−+=+,,由于OABM为平行四边形,得,故,若点M在椭圆C上,则,代入得,解得k无解;若点M在抛物线D上,则,代入得,解得k无解.当直线斜率不存在时,易知存在点M(﹣2,0)在椭圆C上.故不存在直线l,使点M落在抛物线D上,存在直线l,使点M(﹣2,0)落在椭圆C上.20.解:(1)根据题意,X在[70,100)内,按组距为5可分成6个小区间,分别是[70,75),[75,80),[80,85),[85,90),[90,95),[95,100),∵70≤X<100,由5n≤X<5(n+1),n∈N*,∴n=14,15,16,17,18,19,每个小区间对应的频率值分别是P=5Y=.,解得k=,∴n的对值是14,15,16,17,18,19,k=.(2)(i)由于参赛学生很多,可以把频率视为概率,由(1)知,学生B的分数属于区间[70,75),[75,80),[80,85),[85,90),[90,95),[95,100)的概率分别是:,我们用符号A ij(或B ij)表示学生A(或B)在第一轮获奖等级为i,通过附加赛最终获奖等级为j,其中j≤i(i,j=1,2,3),记W=“学生B最终获奖等级不低于学生A的最终获奖等级”,则P(W)=P(B1+B21+B22A22+B32A22)=P(B1)+P(B21)+P(B22)P(A22)+P(B32)P(A22)=+=.(ii)学生A最终获得一等奖的概率是P(A21)=,学生B最终获得一等奖的概率是P()=,P (ξ=0)=(1﹣)(1﹣)=, P (ξ=1)=, P (ξ=2)=, ∴ξ的分布列为:E ξ==.21. (1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;(2)令()()221210x g x e x a x ax a =−−−+−+只需在()0,x ∈+∞使()min 0g x >即可,通过讨论a 的范围,求出函数的单调区间,求出函数的最值,从而确定a 的范围即可.解:(1)由题意可知,()22223'23x x x x x e ae a f x e a a e e −−−=−−= ()()3x x x e a e a e−+=, 当0a =时,()'0xf x e =>,此时()f x 在R 上单调递增; 当0a >时,令()'0f x =,解得()ln 3x a =,当()(),ln 3x a ∈−∞时,()'0f x <,()f x 单调递减;当()()ln 3,x a ∈+∞时,()'0f x >,()f x 单调递增;当0a <时,令()'0f x =,解得()ln x a =−,当()(),ln x a ∈−∞−时,()'0f x <,()f x 单调递减;当()()ln ,x a ∈−+∞时,()'0f x >,()f x 单调递增;综上,当0a =时,()f x 在R 上单调递增;当0a >时,()(),ln 3x a ∈−∞时,()f x 单调递减, ()()ln 3,x a ∈+∞时单调递增;当0a <时,()(),ln x a ∈−∞−时,()f x 单调递减, ()()ln ,x a ∈−+∞时单调递增.(2)由()()222310x x ex a a e x a f x −−+−−+>, 可得,()2212100x e x a x ax a −−−+−+>,令()()221210x g x e x a x ax a =−−−+−+,只需在()0,x ∈+∞使()min 0g x >即可,()()()()'1222x x x g x e x a e x a e x a =−−+−+=−−,①当0a ≤时,0x a −>,当0ln2x <<时,()'0g x <,当ln2x >时,()'0g x >,所以()g x 在()0,ln2上是减函数,在()ln2,+∞上是增函数,只需()()22ln22ln22ln 22ln280g a a =−+−−++>, 解得ln24ln22a −<<+,所以ln240a −<≤;②当0ln2a <<时,()g x 在()0,a 上是增函数,在(),ln2a 上是减函数,在()ln2,+∞上是增函数,则()()2000g ln g ⎧>⎪⎨≥⎪⎩,解得0ln2a <<, ③当ln2a =时,()'0g x ≥,()g x 在()0,+∞上是增函数,而()209ln2ln 20g =−−>成立, ④当ln2a >时,()g x 在()0,ln2上是增函数,在()ln2,a 上是减函数,在(),a +∞上是增函数,则()()2100090a g a e g a a ⎧=−>⎪⎨=−−≥⎪⎩,解得ln2ln10a <<. 综上,a 的取值范围为()ln24,ln10−.(二)选考题:10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.解:(1)曲线C 的方程为x 2﹣2x +y 2=0.转换为极坐标方程为:ρ=2cos θ.联立,得M (0,0),.(2)易知|MN |=1,直线.设点P (2cos α,sin α),则点P 到直线l 的距离.∴(其中). ∴△PMN 面积的最大值为.[选修4-5:不等式选讲]23.解:(1)当x<0时,等价于x2+2|x﹣1|>﹣2,该不等式恒成立,……(1分)当0<x≤1时,f(x)>等价于x2﹣2x>0,该不等式解集为ϕ,……(2分)当x>1时,等价于x2+2x﹣2>2,解得,………(3分)综上,x<0或,所以不等式的解集为.…………………(5分)证明:(2),易得f(x)的最小值为1,即a+b+c=M=1……………………………(7分)因为a,b,c∈R+,所以,,,所以≥2a+2b+2c=2,……………………(9分)当且仅当时等号成立.…………………………………………(10分)。

高中数学8.6第八章 立体几何初步综合测试卷2021高中数学新教材配套提升训练人教A版必修第二册

高中数学8.6第八章 立体几何初步综合测试卷2021高中数学新教材配套提升训练人教A版必修第二册

第八章 《立体几何初步》 综合测试卷一、单选题1.(2021·安徽省肥东县第二中学高二期末(文))棱长为4的正方体的内切球的表面积为( ) A .4π B .12πC .16πD .20π【答案】C 【解析】由正方体的内切球直径为正方体棱长,直接求解. 【详解】由球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径, 得24r =,2r ,故表面积为2416S r ππ==,故选:C. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 2.(2021·安徽蚌埠市·高二期末(文))阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π【答案】C 【解析】根据球的体积公式求出半径,根据圆柱的体积公式可求得结果. 【详解】设球的半径为R ,则343R π=36π,所以3R =, 所以圆柱的底面半径为3R =,圆柱的高为26R =, 所以圆柱的体积为232254R R R πππ⨯==. 故选:C3.(2021·湖北武汉市·高二期末)过圆柱的上,下底面圆圆心的平面截圆柱所得的截面是面积为8的正方形,则圆柱的侧面积是( )A .B .12πC .8πD .10π【答案】C 【解析】结合立体图,先由面积计算底面半径和侧棱,再利用侧面积公式计算即可. 【详解】如图所示,过圆柱的上,下底面圆圆心的平面截圆柱所得的截面是正方形ABCD ,面积为8,故边长AB AC ==12R AB ==AC =则圆柱的侧面积是228S R AC πππ=⋅==. 故选:C.4.(2021·广西钦州市·高二期末(理))直三棱柱111ABC A B C -中,1AB AC AA ==,60BAC ∠=︒,则1AC 与面11BCC B 成角的正弦值为( )ABCD【答案】A 【解析】过A 作AM BC ⊥,可证AM ⊥平面11BB C C ,连接1C M ,可知1AC M ∠即为所求线面角,计算即可求解. 【详解】如图,过A 作AM BC ⊥,连接1C M ,在直三棱柱111ABC A B C -中,因为11,B B AM BC BB B⊥=所以AM ⊥平面11BB C C ,故1AC 在平面11BB C C 上的射影为1MC ,所以1AC M ∠为直线1AC 与平面11BB C C 所成的角, 设1AB AC AA a ===,又60BAC ∠=︒所以1,2AM a AC ==故1sin AC M ∠== 故选:A5.(2021·宁夏银川市·银川一中高一期末)如图,正方体1111ABCD A B C D -的棱长为2,下面结论错误的是( )A .//BD 平面11CB D B .1AC ⊥平面11CB DC .异面直线1CB 与BD 所成角为60 D .三棱锥11D CB D -体积为23【答案】D 【解析】根据线面平行的判定定理,证明A 正确;根据线面垂直的判定定理,证明B 正确;在正方体中,作出异面直线1CB 与BD 所成角,结合题中条件,可判断C 正确;根据三棱锥的体积公式,可判断D 错. 【详解】A 选项,在正方体1111ABCD ABCD -中,11//BD B D ,又11B D ⊂平面11CB D ,BD ⊄平面11CB D ,所以//BD 平面11CB D ,即A 正确;B 选项,连接11AC ,1CD ,在正方体1111ABCD A B C D -中,1111B D A C ⊥,11DC CD ⊥,AD ⊥平面11C D DC ,1AA ⊥平面1111D C B A ,因为1CD ⊂平面11C D DC ,11B D ⊂平面1111D C B A , 所以1CD AD ⊥,111AA B D ⊥,又1DC AD D ⋂=,1DC ⊂平面1AC D ,AD ⊂平面1AC D ,所以1CD ⊥平面1AC D , 因此11CD AC ⊥; 同理111B D AC ⊥, 又1111CD B D D =,1CD ⊂平面11CB D ,11B D ⊂平面11CB D ,所以1AC ⊥平面11CB D ;即B 正确;C 选项,因为11//BD BD ,所以11CB D ∠即等于异面直线1CB 与BD 所成角,又1111CB B D CD ====11CB D 为等边三角形,即异面直线1CB 与BD 所成角为60,故C 正确;D 选项,三棱锥11D CB D -的体积为111111111142223323D CB D B CDD CDD V V S B C --==⋅=⨯⨯⨯⨯=.故D 错; 故选:D.6.(2021·安徽池州市·高三期末(文))三棱锥P ABC -中,PA PB PC ==,4ABC π∠=,AC =,则三棱锥P ABC -外接球表面积的最小值是( ) A .8π B .4πC .2πD .π【答案】B 【解析】根据正弦定理求出ABC 外接圆半径,设三棱锥P ABC -高为h ,球的半径为R ,从而可得222()R h R r -+=,再利用基本不等式求出R 的最小值即可.【详解】设底面ABC 外接圆圆心为1O ,半径为r , 则22sin ACr ABC==∠,即1r =.设三棱锥P ABC -高为h ,球的半径为R .由PA PB PC ==,得球心O 在1PO 上,且222()R h R r -+=,则111122R h h ⎛⎫=+≥⋅= ⎪⎝⎭,当且仅当1h =时等号成立,此时外接球表面积最小,则min 4S π=.故选:B7.(2021·安徽合肥市·高二期末(文))三棱锥D ABC -及其三视图中的正视图和侧视图如图所示,CD ⊥平面ABC ,则棱BD 的长为( )A .B .4C .D .2【答案】A 【解析】由已知中的三视图可得DC ⊥平面ABC ,且底面△ABC 为等腰三角形,解三角形即可求解. 【详解】由三棱锥D ABC -及其三视图中的正视图和侧视图可知, DC ⊥平面ABC ,且底面△ABC 为等腰三角形,在△ABC 中AC =4,AC 边上的高为故4BC ==,在Rt △DBC 中,由DC =4,4BC =,可得DB 22442.故选:A8.(2021·河北唐山市·高二期末)在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1 B .32C .2D .3【答案】C 【解析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C9.(2021·安徽合肥市·高二期末(文))设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥ D .若,,m m αββα⊥⊥⊄,则//m α【答案】D 【解析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交;在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α. 【详解】由直线m 、n ,和平面α、β,知:对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误; 对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误;对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确. 故选:D .10.(2021·江苏淮安市·高二期末)蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈ 1.41≈ 1.73≈ 2.45≈. A .101g B .182gC .519gD .731g【答案】B【解析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体,所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a =,设正四面体外接球半径为R ,则2222()()332R R a =-+⨯,解得R =,所以3D 打印的体积为:3233411343223812V a a a a ππ⎛⎫=-⋅⋅⋅=- ⎪ ⎪⎝⎭, 又336216a ==,所以207.71125.38182.331182V =-≈-=≈, 故选:B 二、多选题11.(2020·沙坪坝区·重庆一中高三月考)设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是( ) A .若,,//m n m n αβ⊂⊂,则//αβ B .若,m n m α⊂⊥,则n α⊥ C .若,mn αα,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD 【解析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误. 【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD12.(2020·全国高三月考)在直三棱柱111ABC A B C -中,90ABC ∠=︒,2AB BC ==,12AA =,M 是BC 的中点,N 是11A C 的中点,点P 在线段1B N 上,点Q 在线段AM 上,且23AQ AM =,S 是1AC 与1A C 的交点,若//PS 面1B AM ,则( )A .1//PSB Q B .P 为1B N 的中点C .AC PS ⊥D .三棱锥1P B AM -的体积为23【答案】ACD 【解析】连接交NS 交AC 于G 点,连接BG ,利用线面平行的性质定理判断A ;根据三角形相似判断B ;由线面垂直的判定定理及性质定理判断C ;由11P AB M B ABM V V --=计算可得,从而判断D ;【详解】解:对于选项A :连接交NS 交AC 于G 点,连接BG ,则由AB BC =,23AQ AM =,可得BG 必过点Q ,且23BQ BG =,因为PS ⊂面1BB NG ,//PS 面1AMB ,面1AMB 面11BB NG B Q =,所以1//PS B Q ,故A 正确;对于选项B :1//PS B Q ,1NPS NBQ B QB ∴∠=∠=∠,1Rt Rt PNS QBB ∴∽△△,112PN NS BQ BB ∴==,即111212233PN BQ BG B N ==⋅=, P ∴为靠近N 的三等分点,故B 错误;对于选项C :AC NG ⊥,AC BG ⊥,,NG BG ⊂面1BB NG ,NG BG G =AC ∴⊥面1BB NG ,PS ⊂面1BB NG ,AC PS ∴⊥,故C 正确;对于选项D :1//B P BQ ,且1B P BQ =,1BB PQ ∴是矩形,111112221323P AB M B AB M B ABM V V V ---∴===⋅⋅⋅⋅=,故D 正确. 故选:ACD13.(2020·全国高三专题练习)如图所示,矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE △,若M 为线段1A C 的中点,则在ADE 翻转过程中,则下列命题正确的是( )A .||BM 是定值B .点M 在球面上运动C .一定存在某个位置,使1DE A C ⊥D .一定存在某个位置,使//MB 平面1A DE【答案】ABD【解析】取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,由平行线性质得1A DE MNB ∠=∠,可判断A ,这时可得出平面//MNB 平面1A DE ,从而判断D ,利用BM 长为定值可判断B ,结合1A C 在平面ABCD 内的射影可判断C .A 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,1A DE MNB ∠=∠,112MN A D ==定值,NB DE ==定值,根据余弦定理得,2222cos MB MN NB MN NB MNB =+-⋅⋅∠,∴||BM 是定值,B 对,B 是定点,∴M 是在以B 为球心,MB 为半径的球面上,C 错,当矩形ABCD 满足AC DE ⊥时存在,其他情况不存在,否则若AC DE ⊥不成立,作CF DE ⊥于F ,连接1A F ,可得DE ⊥平面1A CE ,从而有1DE A F ⊥,因此有原图形中,,A F C 共线,AC DE ⊥,矛盾.D 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,∴平面//MNB 平面1A DE ,∵MB ⊂平面MNB ,∴//MB 平面1A DE .故选ABD.14.(2021·湖北黄石市·黄石二中高二期末)在矩形ABCD 中,4AB =,3BC =,沿矩形对角线BD 将BCD △折起形成四面体ABCD ,在这个过程中,现在下面四个结论其中所有正确结论为( )A .在四面体ABCD 中,当DA BC ⊥时,BC AC ⊥B .四面体ABCD 的体积的最大值为245C .在四面体ABCD 中,BC 与平面ABD 所成角可能为3π D .四面体ABCD 的外接球的体积为定值.【答案】ABD【解析】 A.根据线面垂直判定定理证明BC ⊥平面ACD 进而有BC AC ⊥;B.当平面ABD ⊥平面BCD 时,四面体ABCD 的体积最大,根据体积公式计算即可;C.当平面ABD ⊥平面BCD 时BC 与平面ABD 所成的角CBD ∠最大,计算得3CBD π∠<; D.斜边BD 中点到,,,A B C D 距离相等,所以四面体ABCD 的外接球的半径为定值52,其题意奕为定值.解:对于A.当DA BC ⊥时,又因为,,,BC CD CD DA D CD DA ⊥=⊂平面ACD ,所有BC ⊥平面ACD ,所以BC AC ⊥,故A 正确;对于B.当平面ABD ⊥平面BCD 时,四面体ABCD 的体积最大在BCD △中根据等面积法可得C 到平面ABD 的距离满足125345h h =⨯⇒=所以11112243433255A BCD ABD V S h -⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭,故B 正确; 对于C. 当平面ABD ⊥平面BCD 时BC 与平面ABD 所成的角CBD ∠最大,此时4tan 3CBD ∠=<3CBD π∠<,故C 错误; 对于D.因为BAD 和BCD △都是直角三角形且共斜边,所以斜边BD 中点到,,,A B C D 距离相等,所以四面体ABCD 的外接球的半径1522R BD ==,所以四面体ABCD 的外接球的体积为定值34532π⎛⎫⨯ ⎪⎝⎭故选:ABD三、填空题15.(2021·周至县第二中学高一期末)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高h =_______cm .【答案】8【解析】根据题意半球的体积等于圆锥的体积,根据等体积法化简即可.解:由题意得半球的半径和圆锥底面圆的半径4r =,如果冰淇淋融化后正好盛满杯子,则半球的体积等于圆锥的体积 所以()32141448233h h ππ⨯⨯=⨯⨯⇒= 故答案为:816.(2021·安徽蚌埠市·高二期末(理))正方体1111ABCD A B C D -中,点P 是1CC 的中点,则异面直线AP 与1BC 所成角的大小为_________. 【答案】4π 【解析】设正方体1111ABCD A B C D -的棱长为2,连接11,AD D P ,在正方体1111ABCD A B C D -中,11//AD BC ,所以1D AP ∠(或其补角)为异面直线AP 与1BC 所成角,即可求解.【详解】设正方体1111ABCD A B C D -的棱长为2,连接11,AD D P在正方体1111ABCD A B C D -中,11//AD BC所以1D AP ∠(或其补角)为异面直线AP 与1BC 所成角113,AD AP D P ====所以2221111cos 22AP AD D PD AP AP AD +-∠===⨯⨯ 所以14D AP π∠=故答案为:4π17.(2021·海南高三二模)如图,位于山西省朔州市应县佛宫寺内的释迦塔,俗称应县木塔,是我国现存最高最古老的木结构塔式建筑,木塔顶部可以近似地看成一个正八棱锥,其侧面和底面的夹角大小为30︒,则该正八棱锥的高和底面边长之比为________.(参考数据:tan 22.51︒=)【解析】 设底面边长为a ,根据正八棱锥底边所对的圆心角为45,求得圆心到底边的距离,再由侧面与底面成30︒求解.【详解】如图所示:点P 是正八棱锥的顶点,点O 是底面的中心,AB 是底面的一条边,M 是AB 的中点,根据题意知22.5BOM ︒∠=,因为tan 22.51︒=,设AB a ,则1tan 22.52BM OM a ︒+==, 又因为二面角P AB O --的大小为30︒,即30PMO ︒∠=,所以tan306OP OM ︒+==,故答案为:6四、双空题 18.(2020·浙江杭州市·高一期末)一圆台的母线长为20cm ,母线与轴的夹角为30,上底面半径为15cm ,则下底面半径为____,圆台的高为_______.【答案】25【解析】根据题意画出图形,结合图形求出圆台的高和下底面圆的半径和高.【详解】解:如图所示,圆台的母线长为20l cm =,母线与轴的夹角为30,上底面的半径为15r cm =,所以圆台的高为cos3020)h l cm =︒==, 则1sin3020102R r l -=︒=⨯=, 所以底面圆的半径为151025()R cm =+=,故答案为:25;19.(2020·浙江省杭州第二中学高二期中)如图,在四面体ABCD 中, AB CD =,M 、N 、P 、Q 分别是BC 、AD 、AC 、BD 的中点,则MN 和PQ 所成角为_________,若AB 与CD 所成角为30︒,则MN 和CD 所成角为_________.【答案】90 15或75.【解析】(1)连接,,,MP PN NQ MQ ,可证明四边形MPNQ 是菱形,即可得出;(2)可得PMQ ∠即为AB 与CD 所成角(或其补角),且30PMQ 或150,继而得出MN 和CD 所成角为15NMQ ∠=或75.【详解】(1)连接,,,MP PN NQ MQ ,M 、N 、P 、Q 分别是BC 、AD 、AC 、BD 的中点,11,22MQ CD PN CD ∴,MQ PN ∴, ∴四边形MPNQ 是平行四边形, 12MP AB =,AB CD =,12MP CD ∴=,MP MQ ∴=,故四边形MPNQ 是菱形,MN PQ ∴⊥,故MN 和PQ 所成角为90;//,//MP AB MQ CD ,PMQ ∴∠即为AB 与CD 所成角(或其补角),30PMQ ∴∠=或150,而NMQ ∠为MN 和CD 所成角,且15NMQ ∠=或75,即MN 和CD 所成角为15或75.故答案为:90;15或75.20.(2020·全国高二单元测试)设P A ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB 、PC 分别与α成45°和30°角,P A=2,则P A 与BC 的距离是___________;点P 到BC 的距离是___________.【解析】作AD ⊥BC 于点D ,连接PD ,根据P A ⊥面ABC ,易得AD 是P A 与BC 的公垂线,BC ⊥平面P AD 求解.【详解】如图所示:作AD ⊥BC 于点D ,因为P A ⊥面ABC ,所以P A ⊥AD ,所以AD 是P A 与BC 的公垂线.因为PB 、PC 分别与α成45°和30°角,P A=2,所以AB=2,AC=BC=4,,连接PD ,由,,BC AD BC PA PA AD A ⊥⊥⋂=则BC ⊥平面P AD ,则PD ⊥BC ,所以点P 到BC 的距离.21.(2021·浙江杭州市·高二期末)在正方体1111ABCD A B C D -中,棱1AA 与面对角线1BC 所成角的大小是____;面对角线1BC 与体对角面11ACC A 所成角的大小是_____.【答案】45︒ 30︒【解析】连接1BC ,11A C ,AC ,BD ,记AC 与BD 交点为O ,连接1C O ,根据异面直线所成角,以及线面角的概念,得到11B BC ∠等于棱1AA 与面对角线1BC 所成的角,1BC O ∠即为面对角线1BC 与体对角面11ACC A 所成角,再根据正方体的结构特征,即可得出结果.【详解】连接1BC ,11A C ,AC ,BD ,记AC 与BD 交点为O ,连接1C O , 在正方体1111ABCD A B C D -中,侧棱相互平行,即11//AA BB , 所以11B BC ∠等于棱1AA 与面对角线1BC 所成的角(或所成角的补角), 因为在正方形11BCC B 中,1145B BC ∠=︒,异面直线所成角大于0︒且小于等于90︒, 所以棱1AA 与面对角线1BC 所成角的大小是45︒; 又在正方体1111ABCD A B C D -中,侧棱垂直于底面,所以1AA ⊥平面ABCD , 因为BD ⊂平面ABCD ,所以1AA BD ⊥,又底面ABCD 为正方形,所以AC BD ⊥,因为1AC AA A =∩,1AA ⊂平面11AAC C ,AC ⊂平面11AAC C ,所以BD ⊥平面11AAC C ,因此1BC O ∠即为面对角线1BC 与体对角面11ACC A 所成角, 所以111112sin 2BD BO BC O BC BC ∠===, 因为1BC O ∠显然为锐角,所以130BC O ∠=︒.故答案为:45︒;30︒.五、解答题22.(2020·陕西西安市·高一期末)如图,在三棱锥P ABC -中,,PA PC AB BC ==,O 是AC 的中点,PO BO ⊥,2,3PO AC BO ===.(1)证明:AC PB ⊥;(2)求三棱锥A PBC -的体积.【答案】(1)证明见解析;(2)2【解析】(1)通过,PO AC BO AC ⊥⊥得出AC ⊥平面POB ,即可证明;(2)先证明PO 是三棱锥的高,再直接求出三棱锥体积.【详解】(1),PA PC AB BC ==,O 是AC 的中点,,PO AC BO AC ∴⊥⊥,PO BO O =,AC ∴⊥平面POB ,∴AC PB ⊥;(2),PO AC PO BO ⊥⊥,AC BO O ⋂=,PO ∴⊥平面ABC ,即PO 是三棱锥的高,1112322332A PBC ABC V S PO -∴=⋅=⨯⨯⨯⨯=. 23(2020·陕西西安市·西安一中高一月考)一个透明的球形装饰品内放置了两个具有公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球的表面积的316,设球的半径为R ,圆锥底面半径为r .(1)试确定R 与r 的关系,并求出大圆锥与小圆锥的侧面积的比值.(2)求出两个圆锥的总体积(即体积之和)与球的体积之比.【答案】(1)2r R =;(2)3:8. 【解析】(1)求出球的表面积和圆锥底面积,即可得出r R =,根据几何特征表示出圆锥的高和母线长,即可求出侧面积之比;(2)根据体积公式计算出,即可得出比值.【详解】解:(1)球的表面积为24R π,∴圆锥的底面积为223416r R ππ=⨯,解得2r R =, 由几何体的特征知球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者可以构成一个直角三角形;由此可以求得球心到圆锥底面的距离是:112OO R ==,所以小圆锥的高为:1122R R R -=R =;同理可得大圆锥的高为:1322R R R +==; 又由这两个圆锥的底面半径相同,:R =.(2)由(1)可得两个圆锥的体积和为:321232R r R ππ⋅⋅⋅=, 球的体积为:343R π, 故两个圆锥的体积之和与球的体积之比为:334:3:823R R ππ=.24.(2021·浙江嘉兴市·高二期末)如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值.【答案】(1)证明见解析;(2 【解析】 (1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值.【详解】(1)取AB 中点G ,连结OG 、EG ,在直三棱柱111ABC A B C -中,1OG BB ∥,则OG EF ∥, 又112EF CC =,则OG EF =, 所以四边形OGEF 为平行四边形,则 OF EG ∥,又EG ⊂平面ABE ,OF ⊄平面ABE , 故//OF 平面ABE .(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角, 连接CG ,由直三棱柱111ABC A B C -可得EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,设2AB =,则114AA CC ==,又1CE C F =,则1CE =,CG =2EG =,所以,直线EG 与平面ABC故直线OF 与平面ABC 方法点睛:证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明;(3)利用面面平行的性质定理:直线在一平面内,由两平面平行,推得线面平行;直线在两平行平面外,且与其中一平面平行,这这条直线与另一个平行.25.(2021·六盘山高级中学高一期末)如图,AB是O的直径,P A垂直于O所在的平面,C是圆周上不同于A,B的一动点.(1)证明:BC⊥面P AC;(2)若P A=AC=1,AB=2,求直线PB与平面P AC所成角的正切值.【答案】(1)证明见解析;(2)2【解析】(1)证明AC⊥BC和P A⊥BC,BC⊥面P AC即得证;BC PC即得解.(2)先证明∠BPC为PB与平面P AC所成的角,再通过解三角形求出,【详解】证明:(1)AB为圆O直径∴∠ACB=90°即AC⊥BCP A⊥面ABC,∴P A⊥BCAC P A=A∴BC⊥面P AC.(2)BC⊥面P AC,∴∠BPC为PB与平面P AC所成的角,在直角三角形ABC 中,BC在直角三角形PAC 中,PC ==,在直角三角形PBC 中,tan ∠BPC2=.故直线PB 与平面P AC 方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形). 26.(2021·安徽宿州市·高二期末(文))如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .【答案】(1)证明见解析;(2)证明见解析.【解析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ; ( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=,所以AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC ,又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .27.(2021·陕西西安市·高三一模(文))如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC ,由//AC EF ,可证明BD EF ⊥,BD PE ⊥,从而得BD ⊥平面PEF ,得证线线垂直; (2)设设PM MB λ=,则1PM PB λλ=+,根据棱锥的体积公式,利用体积法得出结论,由11M PAD B PAD P ABD V V V λλλλ---==++,1144P DEF P ACD P ABD V V V ---==,可得λ值. 【详解】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,.又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴. BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MB λ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。

高中数学复习提升-高中数学专题——立体几何专题(学生版)

高中数学复习提升-高中数学专题——立体几何专题(学生版)

立体几何专题【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算一、看图选择正确的三视图1、(2010广东理数)6.如图1,△ABC为三角形,AA'//BB'//CC' ,CC'⊥平面ABC且3AA'=32BB'=CC'=AB,则多面体△ABC -A B C'''的正视图(也称主视图)是2、(2010北京理数)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为二、根据三视图求几何体的面积、体积1、(2010安徽理数)8、一个几何体的三视图如图,该几何体的表面积为A、280B、292C、360D、372A B C D2、(江苏省苏州市2009届高三教学调研测试第12题)已知一个正三棱锥P ABC -的主视图如图所示,若32AC BC ==, 6PC =_________.3、(2010全国卷1文数)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 2343 (C) 2383题型2 空间点、线、面位置关系的判断例1 (江苏苏州市2009届高三教学调研测试7)已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________. 分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.例2 (浙江省2009年高考省教研室第一次抽样测试理科第5题)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ题型3 空间平行与垂直关系的证明、空间几何体的有关计算例1.(2009江苏泰州期末16)如图所示,在棱长为2的正方体 1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点. (1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥; (3)求三棱锥EFC B V -1的体积.例2.(江苏省苏州市2009届高三教学调研测试第17题) 在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ; (3)求证CE ∥平面PAB .题型4 求空间的角的大小一、异面直线所成的角例1(2007年广东理数)如图6所示,等腰三角形△ABC 的底边AB=66CD=3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且E F ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使P E ⊥AE ,记BE=x ,V (x )表示四棱锥P-ACEF 的体积。

高考数学二轮1题型练2 选择题、填空题综合练(二)

高考数学二轮1题型练2 选择题、填空题综合练(二)

题型练2选择题、填空题综合练(二)能力突破训练1.若全集为实数集R,集合M={x|x>1},N={x∈Z|0≤x≤4},则(∁R M)∩N=()A.{0}B.{0,1}C.{0,1,2}D.{2,3,4}2.(2021广西玉林高三模拟)已知z i+1=2i,则|z|=()A.√3B.√5C.1D.23.(2021广西河池高三期末)某几何体的三视图如图所示,记底面的中心为E,则PE与底面所成的角为()A.π3B.π4C.π6D.π24.某中学高三文科班从甲、乙两个班各选出7名学生参加文史知识竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分为85,乙班学生成绩的中位数为83,则x+y的值为()A.9B.7C.8D.65.已知p:∀x∈[-1,2],4x-2x+1+2-a<0恒成立,q:函数y=(a-2)x是增函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(2021河北邯郸高三三模)已知点P在直线x+y=4上,过点P作圆O:x2+y2=4的两条切线,切点分别为A,B,则点M(3,2)到直线AB的距离的最大值为()A.√2B.√3C.2D.√57.已知实数x,y满足{x-2≥0,y-2≥0,x+y-8≤0,z=ax+by(a>b>0)的最大值为2,则直线ax+by-1=0过定点()A.(3,1)B.(-1,3)C.(1,3)D.(-3,1)8.已知函数f(x)=log2x,x∈[1,8],则不等式1≤f(x)≤2成立的概率是()A.17B.27C.37D.479.已知等差数列{a n}的通项是a n=1-2n,前n项和为S n,则数列{S nn}的前11项和为() A.-45 B.-50C.-55D.-6610.已知P为椭圆x 225+y216=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13D.1511.已知A,B,C为球O的球面上的三个点,☉O1为△ABC的外接圆.若☉O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π12.已知a>0,a≠1,函数f(x)=4a x+2a x+1+x cos x(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则()A.M+N=8B.M+N=6C.M-N=8D.M-N=613.设α,β表示平面,l表示直线,A,B,C表示三个不同的点,给出下列说法:①若A∈l,A∈α,B∈l,B∈α,则l⊂α;②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB;③若l⊄α,A∈l,则A∉α;④若A,B,C∈α,A,B,C∈β,则α与β重合.其中,正确的有()A.1个B.2个C.3个D.4个14.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,已知a (sin A+9sin B )=12sin A ,sin C=13,则△ABC 的面积的最大值为( ) A.1B.12C.43D.2315.执行如图所示的程序框图,若输入a=1,b=2,则输出的a 的值为 .16.已知直线y=mx 与函数f (x )={2-(13)x,x ≤0,12x 2+1,x >0的图象恰好有三个不同的公共点,则实数m 的取值范围是 .思维提升训练17.设集合A={x|x+2>0},B={x |y =√3-x },则A ∩B=( )A .{x|x>-2}B .{x|x<3}C .{x|x<-2或x>3}D .{x|-2<x<3}18.(2021广西河池高三期末)已知复数z=1+(a-1)i,a ∈R ,i 为虚数单位,则“a>0”是“复数z 在复平面内对应的点位于第一象限”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 19.(2021全国乙,文6)cos 2π12-cos 25π12=( ) A.12 B.√33C.√22D.√3220.(2021广西南宁高三一模)若实数x ,y 满足约束条件{x -y +2≥0,x -3≤0,x +y -3≥0,则z=x+y 的最大值为( ) A.3 B.5C.6D.821.若实数x ,y 满足|x-1|-ln 1y =0,则y 关于x 的函数图象的大致形状是( )22.若函数f (x )=A sin(ωx+φ)(A >0,ω>0,|φ|<π2)的图象的一个对称中心为(π3,0),其相邻一条对称轴方程为x=7π12,该对称轴处所对应的函数值为-1,为了得到g (x )=cos 2x 的图象,则只需将f (x )的图象( ) A.向右平移π6个单位长度 B.向左平移π12个单位长度 C.向左平移π6个单位长度 D.向右平移π12个单位长度23.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ 的最小值为( )A .2116 B .32 C .2516D .324.在△ABC 中,AC=√7,BC=2,B=60°,则BC 边上的高等于( ) A .√32 B .3√32 C .√3+√62 D .√3+√39425.已知圆(x-1)2+y 2=34的一条切线y=kx 与双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)有两个交点,则双曲线C 的离心率的取值范围是( )A.(1,√3)B.(1,2)C.(√3,+∞)D.(2,+∞)26.已知数列{a n }的前n 项和为S n ,若S 1=1,S 2=2,且S n+1-3S n +2S n-1=0(n ∈N *,n ≥2),则此数列为( ) A .等差数列 B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列27.一名警察在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A.甲 B.乙 C.丙 D.丁28.关于函数f (x )=sin |x|+|sin x|有下述四个结论:①f (x )是偶函数;②f (x )在区间(π2,π)内单调递增;③f (x )在区间[-π,π]上有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A.①②④ B.②④ C.①④ D.①③29.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为 m 3.30.设F 是双曲线C :x 2a 2−y 2b 2=1的一个焦点.若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 .31.已知曲线f(x)=ax e x在点(0,f(0))处的切线与抛物线y=x2-2x+4相切,则a=.32.在(2x2+x-1)5的展开式中,x3的系数为.答案:能力突破训练1.B解析:∵N={x∈Z|0≤x≤4},M={x|x>1},∴N={0,1,2,3,4},∁R M={x|x≤1}.∴(∁R M)∩N={0,1}.2.B解析:因为z i+1=2i,所以z=-1+2ii=2+i,所以|z|=√22+12=√5.3.A解析:由三视图可知该几何体的直观图如图所示﹐∠PEA为PE与底面所成的角.∵PA=√6,AE=√2,∴tan∠PEA=PAAE=√3,∴∠PEA=π3.4.C解析:由茎叶图可知甲班学生的总分为70×2+80×3+90×2+(8+9+5+x+0+6+2)=590+x,又甲班学生的平均分为85,所以总分为85×7=595,所以x=5.乙班学生成绩的中位数为80+y=83,所以y=3.所以x+y=8.5.A解析:关于p:不等式化为22x-2·2x+2-a<0,令t=2x,∵x∈[-1,2],∴t∈[12,4],则不等式转化为t2-2t+2-a<0,即a>t2-2t+2对任意t∈[12,4]恒成立.令y=t2-2t+2=(t-1)2+1,当t∈[12,4]时,y max=10,所以a>10.关于q:只需a-2>1,即a>3.故p是q的充分不必要条件.6.D解析:设P(a,b),则a+b=4,以OP为直径的圆的方程为(x-a2)2+(y-b2)2=14(a2+b2),与圆O的方程x2+y2=4相减,得直线AB的方程为ax+by-4=0.因为a+b=4,所以b=4-a ,代入直线AB 的方程,得ax+(4-a )y-4=0,即a (x-y )+4y-4=0,由x-y=0,且4y-4=0,解得x=1,y=1,所以直线AB 过定点N (1,1).所以点M 到直线AB 的距离的最大值即为点M ,N 之间的距离.又|MN|=√5,所以点M 到直线AB 的距离的最大值为√5. 7.A 解析:作出不等式组表示的可行域如图所示.将z=ax+by 化为y=-ab x+1b z. 因为a>b>0,所以-ab <-1.由图可知当直线y=-ab x+1b z 过点A 时,z 取最大值. 由{x +y -8=0,y -2=0,得A (6,2).所以z max =6a+2b=2,即3a+b=1. 所以直线ax+by-1=0恒过定点(3,1). 8.B 解析:由1≤f (x )≤2,得1≤log 2x ≤2, 解得2≤x ≤4.由几何概型可知P=27,故选B . 9.D 解析:因为a n =1-2n ,S n =n (-1+1-2n )2=-n 2,Snn =-n ,所以数列{S nn }的前11项和为11(-1-11)2=-66.故选D .10.B 解析:由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM|+|PN|的最小值为|PF 1|+|PF 2|-1-2=7.11.A 解析:由题意知☉O 1的半径r=2.由正弦定理知ABsinC =2r , ∴OO 1=AB=2r sin60°=2√3, ∴球O 的半径R=√r 2+|OO 1|2=4. ∴球O 的表面积为4πR 2=64π.12.B 解析:f (x )=4a x +2a x +1+x cos x=3+a x -1a x +1+x cos x ,设g (x )=a x -1a x +1+x cos x ,则g (-x )=-g (x ),函数g (x )是奇函数,则g (x )的值域为关于原点对称的区间,当-1≤x ≤1时,设-m ≤g (x )≤m ,则3-m ≤f (x )≤3+m ,∴函数f (x )的最大值M=3-m ,最小值N=3+m ,得M+N=6,故选B . 13.A 解析:①正确;②α,β可能重合,故②错误;③当l ∩α=A 时,A ∈l ,A ∈α,故③错误;④当A ,B ,C 共线时,α,β可能相交,故④错误.故选A .14.D 解析:因为a (sin A+9sin B )=12sin A ,所以a (a+9b )=12a.又a>0,所以a+9b=12≥2√9ab 当且仅当a=9b ,即a=6,b=23时,等号成立,所以ab ≤4,所以△ABC 的面积的最大值为12×4×13=23.15.32 解析:第一次循环,输入a=1,b=2,判断a ≤31,则a=1×2=2; 第二次循环,a=2,b=2,判断a ≤31,则a=2×2=4; 第三次循环,a=4,b=2,判断a ≤31,则a=4×2=8; 第四次循环,a=8,b=2,判断a ≤31,则a=8×2=16; 第四次循环,a=16,b=2,判断a ≤31,则a=16×2=32; 第五次循环,a=32,b=2,不满足a ≤31,输出a=32. 16.(√2,+∞) 解析:作出函数f (x )={2-(13)x,x ≤0,12x 2+1,x >0的图象,如图.直线y=mx 的图象是绕坐标原点旋转的动直线.当斜率m ≤0时,直线y=mx 与函数f (x )的图象只有一个公共点;当m>0时,直线y=mx 始终与函数y=2-(13)x(x ≤0)的图象有一个公共点,故要使直线y=mx 与函数f (x )的图象有三个公共点,必须使直线y=mx 与函数y=12x 2+1(x>0)的图象有两个公共点,即方程mx=12x 2+1在x>0时有两个不相等的实数根,即方程x 2-2mx+2=0的判别式Δ=4m 2-4×2>0,解得m>√2.故所求实数m 的取值范围是(√2,+∞).思维提升训练17.D 解析:由已知,得A={x|x>-2},B={x|x<3},则A ∩B={x|-2<x<3},故选D . 18.B 解析:若复数z 在复平面内对应的点位于第一象限,则a-1>0,即a>1.因为“a>0”是“a>1”的必要不充分条件,所以“a>0”是“复数z 在复平面内对应的点位于第一象限”的必要不充分条件.19.D 解析:原式=cos 2π12-cos 2(π2−π12)=cos 2π12-sin 2π12=cos π6=√32. 20.D 解析:作出不等式组{x -y +2≥0,x -3≤0,x +y -3≥0表示的可行域如图所示.由{x -3=0,x -y +2=0,解得{x =3,y =5,即点A (3,5).平移直线z=x+y ,当直线z=x+y 经过点A 时,z 取得最大值,所以z max =3+5=8. 21.B 解析:已知等式可化为y=(1e )|x -1|={(1e )x -1,x ≥1,(1e )-(x -1),x <1,根据指数函数的图象可知选项B 正确,故选B .22.B 解析:依题意,函数f (x )=A sin(ωx+φ)(A >0,ω>0,|φ|<π2)的图象过点(π3,0),(7π12,−1), 则A=1,14·2πω=7π12−π3,解得ω=2.所以f (π3)=sin (2π3+φ)=0, 所以φ=-2π3+k π(k ∈Z). 又|φ|<π2,所以φ=π3.所以f (x )=sin (2x +π3).所以把f (x )=sin (2x +π3)的图象向左平移π12个单位长度,可得y=sin (2x +π3+π6)=cos2x 的图象,即得到g (x )=cos2x 的图象.23.A 解析:如图,取AB 的中点F ,连接EF.AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(AE ⃗⃗⃗⃗⃗+BE ⃗⃗⃗⃗⃗ )2-(AE ⃗⃗⃗⃗⃗-BE ⃗⃗⃗⃗⃗ )24=(2FE⃗⃗⃗⃗⃗ )2-AB ⃗⃗⃗⃗⃗ 24=|FE⃗⃗⃗⃗⃗ |2-14. 当EF ⊥CD 时,|EF ⃗⃗⃗⃗⃗ |最小,即AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ 取最小值.过点A 作AH ⊥EF 于点H ,由AD ⊥CD ,EF ⊥CD ,可得EH=AD=1,∠DAH=90°. 因为∠DAB=120°,所以∠HAF=30°. 在Rt △AFH 中,易知AF=12,HF=14, 所以EF=EH+HF=1+14=54.所以(AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ )min =(54)2−14=2116.24.B 解析:设AB=a ,则由AC 2=AB 2+BC 2-2AB·BC cos B 知7=a 2+4-2a ,即a 2-2a-3=0, ∴a=3(负值舍去).∴BC 边上的高为AB·sin B=3×√32=3√32. 25.D 解析:由已知得√k 2+1=√32,解得k 2=3. 由{y =kx ,x 2a 2-y 2b 2=1,消去y ,得(b 2-a 2k 2)x 2-a 2b 2=0,则4(b 2-a 2k 2)a 2b 2>0,即b 2>a 2k 2. 因为c 2=a 2+b 2,所以c 2>(k 2+1)a 2. 所以e 2>k 2+1=4,即e>2.故选D .26.D 解析:由S 1=1得a 1=1,又由S 2=2可知a 2=1.因为S n+1-3S n +2S n-1=0(n ∈N *,且n ≥2), 所以S n+1-S n -2S n +2S n-1=0(n ∈N *,且n ≥2),即(S n+1-S n )-2(S n -S n-1)=0(n ∈N *,且n ≥2),所以a n+1=2a n(n∈N*,且n≥2),故数列{a n}从第2项起是以2为公比的等比数列.故选D.27.B解析:因为乙、丁两人的观点一致,所以乙、丁两人的供词应该是同真或同假.若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯;由甲说假话,推出乙、丙、丁三人不是罪犯,矛盾.所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词内容可以断定乙是罪犯.28.C解析:因为函数f(x)的定义域为R,关于原点对称,且f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确;当π2<x<π时,f(x)=2sin x,它在区间(π2,π)内单调递减,故②错误;当0≤x≤π时,f(x)=2sin x,它有两个零点0和π;当-π≤x≤0时,f(x)=sin(-x)-sin x=-2sin x,它有两个零点-π和0;故f(x)在区间[-π,π]上有3个零点-π,0和π,故③错误;当x∈[2kπ,2kπ+π](k∈N*)时,f(x)=2sin x;当x∈(2kπ+π,2kπ+2π](k∈N*)时,f(x)=sin x-sin x=0.又f(x)为偶函数,所以f(x)的最大值为2,故④正确.综上可知①④正确,故选C.29.2解析:由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此该四棱锥的体积为V=13×(2×1)×3=2.故答案为2.30.√5解析:不妨设F(c,0)为双曲线右焦点,虚轴一个端点为B(0,b),依题意得点P为(-c,2b),又点P在双曲线上,所以(-c)2a2−(2b)2b2=1,得c2a2=5,即e2=5,因为e>1,所以e=√5.31.2或-6解析:∵f(x)=ax e x,∴f'(x)=a e x+ax e x,∴曲线f(x)=ax e x在点(0,f(0))处的切线的斜率为k=f'(0)=a.又切点为(0,0),∴切线方程为y=ax.由{y=ax,y=x2-2x+4,得x2-(2+a)x+4=0,∴Δ=(2+a)2-16=0,解得a=2或a=-6.32.-30解析:(2x2+x-1)5=[2x2+(x-1)]5,故T r+1=C5r(2x2)5-r(x-1)r,因为要求x3的系数,所以r=4或5.当r=4时,x3的系数为C54·2·C43·(-1)3;当r=5时,x3的系数为C55·C52·(-1)2.所以x3的系数为C54·2·C43·(-1)3+C55·C52·(-1)2=-40+10=-30.。

高三数学什么练习题好呢

高三数学什么练习题好呢

高三数学什么练习题好呢高三学生正处于紧张备考阶段,数学作为一门重要的科目,对于大部分学生来说都是一个挑战。

而练习题在高三数学复习中起着至关重要的作用,可以帮助学生巩固知识,提升解题能力。

那么,高三数学的练习题应该选择哪些呢?下面将针对此问题进行探讨。

一、选择有针对性的练习题高三数学复习的关键是针对性。

学生应该根据自己的掌握情况选择合适的练习题,有针对性地进行巩固和提高。

可以参考以下几种类型的练习题:1. 基础题:这类题目主要涉及基础知识和计算能力的练习,可以帮助学生熟悉概念、掌握计算技巧。

例如,四则运算、代数运算等。

2. 推理题:这类题目要求学生进行推理和分析,培养学生的思维能力和逻辑思维能力。

例如,选择题、填空题等。

3. 综合题:这类题目涉及多个知识点的综合运用,要求学生将所学知识进行整合和应用。

例如,应用题、综合题等。

二、注重练习题的质量在选择练习题时,不仅要考虑题目的类型,还要注重题目质量。

好的练习题应该具备以下几个特点:1. 清晰明了:练习题的题干要表达清晰,不含有歧义,学生能够准确理解题意。

2. 知识点全面覆盖:练习题应该覆盖全面,涵盖高三数学各个知识点,让学生进行有针对性的复习。

3. 难易程度适中:练习题的难易程度应该适中,既不能过于简单以至于没有挑战性,也不能过于复杂以至于学生无法理解。

4. 多样化:练习题应该包含不同类型的题目,帮助学生熟悉不同解题方法和思路,培养多样化的解题能力。

三、多渠道获取练习题在高三数学复习中,学生可以通过多种途径获取练习题。

以下是一些常用的途径:1. 学习资料:可以参考教材、习题集、课后辅导资料等,这些资料通常包含大量的练习题。

2. 网上资源:可以通过搜索引擎查询相关的数学练习题,还可以参考一些在线教育平台提供的练习题库。

3. 老师辅导:可以向老师请教,获取老师精选的练习题,老师在教学过程中通常会留一些重点习题供学生参考。

4. 同学交流:可以与同学交流并分享练习题,相互之间进行讨论和解答,互相促进共同进步。

高三数学,应该选一本什么练习册

高三数学,应该选一本什么练习册

高三数学,应该选一本什么练习册1. 《2000题》全名《新高考数学真题全刷基础2000题(清华社出版)》市面上的2000题有好几个不同版本,比如我之前还买过一个X哥的,但有的版本题目太老,答案错误也比较多(不具体点名,免去麻烦)。

所以综合考量,我说的这一版是最推荐大家用的。

特点&定位•特点:本练习册特别适合巩固知识,打好基础。

答案很明确,有配套的讲解视频。

题目很详细,题量很大。

非常适合定点培训推广•定位:是一本专题练习册,第一轮复习阶段可用•难度:简单题和中档题为主,有一定的区分度适应人群数学不及格或分数低于100分的学生。

或者需要为某个知识点补充基础。

2. 《800题》全名《新高考数学真题全刷决胜800题(清华社出版)》。

与上面的《2000题》可以看作一套题。

同样的,市面上版本比较多,这里推荐清华社出版的这一版。

特点&定位•特点:这本练习册适合巩固基础之后进一步提升,专题分的很细致,题量比较多,很适合用来定点训练提升•定位:是一本专题练习册,第一轮复习阶段可用•难度:中档题和难题为主适应人群数学及格但分数低于130的学生。

或者某个知识点需要定点强化。

3. 《53基础题数学1500题》这个练习册和之前的2000本有点重复,选一本其实就够了。

特点&定位•特点:适合巩固基础刷题专用,按照考点分类习题,但是知识点讲解的比较一般可以不用看•定位:是一本专题练习册,第一轮复习阶段可用•难度:简单题和中档题为主,兼顾高考题和模拟题,有一定的区分度适应人群徘徊在数学及格线附近的同学。

或者需要为某个知识点补充基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合提升练习’
1设向量(1,2)OA =- ,(,1)OB a =- ,(,0)OC b =- ,其中O 为坐标原点,0,0a b >>,若,,A B C 三点共线,则12a b
+的最小值为( ). A .4 B .6 C.8 D .9
2.函数()(0,0,)sin()2
A f x A x πωϕωϕ=>><+的部分图像如图所示,则()4f π=.
3.工人在悬挂如图所示的一个正六边形装饰品时,需要固定六个位置上的螺丝,首先随意拧紧一个螺丝,接着拧紧距离它最远的第二个螺丝,再随意拧紧第三个螺丝,接着拧紧距离第三个螺丝最远的第四个螺丝,第五个和第六个以此类推,则不同的固定方式有种.
4.已知A 为双曲线C :22
221(0,0)x y a b a b
-=>>的右顶点,12,B B 分别为虚轴的两个端点,F 为右焦点,若21B F AB ⊥,则双曲线C 的离心率是.
5.如图,四棱锥中,90P ABCD ABC BAD -∠=∠=︒,
2BC AD =,PAB ∆与PAD ∆都是边长为2的等边三
角形,E 是BC 的中点.
(Ⅰ)求证://AE 平面PCD ;
(Ⅱ)求平面PAB 与平面PCD 所成二面角的大小.
6.在平面直角坐标中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为)0(cos 2sin 2>=a a θθρ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 2
24222(t 为参数),直线l 与曲线C 相交于A ,B 两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;
(2)若102||=AB ,求a 的值.。

相关文档
最新文档