鲁教版初一数学上册期末考试试题
【鲁教版】七年级数学上期末试题(含答案)
一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40° 3.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-4.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .5.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++ C .2(1)43x x -=-+ D .2(1)4(3)x x -=-+6.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 7.关于x 的方程2x m 3-=1的解为2,则m 的值是( )A .2.5B .1C .-1D .38.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0 10.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c11.13-的倒数的绝对值( ) A .-3 B .13- C .3 D .1312.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0 二、填空题 13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____15.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
鲁教版七年级数学上册期末试题
期末复习综合检测试题学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各三角形中,正确画出AC 边的高的是( ) A. B. C. D.2. 在实数√4,227,−13,0.3⋅ 01⋅ ,π,√93,0.301300130001…(3与1之间依次增加一个0)中,无理数的个数为 ( ) A. 3 B. 4 C. 5 D. 23. 下列各式计算正确的是( )A. √(−1)33=−1B. (−√2)2=−2C. √(√9)2=−9D. √25=±54. 如图是作△ABC 的作图痕迹,则此作图的已知条件是 ( )A. 已知两边及夹角B. 已知三边C. 已知两角及夹边D. 已知两边及一边对角5. 如图①是美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a ,较短的直角边为b ,斜边长为c.如图②,现将这四个全等的直角三角形紧密拼接,形成飞镖状,且外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积( )A. 6B. 12C. 16D. 246.如图,已知校门的坐标是(1,1)(图中每个小方格的长度为1cm),那么下列对于实验楼位置的叙述正确的个数为( )比例尺:1:10000 ①实验楼的坐标是3. ②实验楼的坐标是(3,3). ③实验楼的坐标是(4,4). ④实验楼在校门的东北方向上,距校门200√2m.A. 1B. 2C. 3D. 47.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C= 2:3:4,⑤a2=(b+c)(b−c)中,能确定△ABC是直角三角形的有( )A. 2个B. 3个C. 4个D. 5个8.A,B两地相距20km,甲、乙两人沿同一条路线从A地到B地.如图反映的是二人行进路程y(km)与行进时间t(ℎ)之间的关系,有下列说法:①甲始终是匀速行进的,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上.在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个9.两根木棒的长分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么方法有( )A. 3种B. 4种C. 5种D. 6种10.如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数.某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为( )A. 47B. 62C. 79D. 98二、填空题(本大题共8小题,共24分)11.若y=(a−3)x+a2−9为正比例函数,则此函数图象经过第象限.12.点A、B是平面直角坐标系中x轴上的两点,且AB=2,有一点P与AB构成三角形,若△PAB的面积为3,则点P的纵坐标为.13.如图,图形的各个顶点都在3×3正方形网格的格点上,则∠1+∠2=.14.如图,在四边形ABCD中,∠BAD=120∘,∠B=∠D=90∘,在BC,CD上分别找点M,N,使△AMN周长最小时,则∠AMN+∠ANM的度数是.15.如图,在△ABE和△ACD中,点D,E分别在线段AB,AC上,AD=AE,CD与BE相交于O点,请添加一个条件,使△ABE≌△ACD,这个添加的条件可以是(只需写一个,不添加辅助线).16.如图,有一艘轮船由东向西航行,在A处测得西偏北15°方向上有一灯塔P,继续航行20海里后到B处,又测得灯塔P在西偏北30°方向上.如果轮船航向不变,则灯塔与轮船之间的最近距离是海里.17.如图,学校操场边上一块空地(阴影部分)需要绿化,测出CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,那么需要绿化部分的面积为.18.若√a=3,|b|=5,且ab<0,则a+b的算术平方根为.三、计算题(本大题共1小题,共6分)19.计算:√14+√−273−|−12−√2|−(1−√2).四、解答题(本大题共8小题,共60分。
鲁教版七年级上册数学期末试卷
鲁教版七年级上册数学期末试卷一.选择题(共9小题)1.下列各组的两个图形属于全等图形的是()A.B. C.D.2.如图,给出下列四个条件:AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组3.在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.4.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20 B.25 C.30 D.355.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米6.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的()A.2倍B.3倍C.4倍D.5倍7.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>08.在平面直角坐标系中,点A、点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8)D.(8,2)9.如果一次函数y=kx+b(k,b是常数,k≠0)的图象经过第一、二、四象限,那么k,b 应满足的条件是()A.k>0且b>0 B.k<0且b>0 C.k>0且b<0 D.k<0且b<0二.填空题(共4小题)10.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.11.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中共有个等腰三角形.12.实数a,b在数轴上对应点的位置如图所示,则|a﹣b|= .13.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象交点的横坐标为.三.解答题(共4小题)14.在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm的两部分,求三角形各边的长.15.如图,有一个长方体无盖的盒子,长AB=8cm,宽BD=5cm,高BC=1cm,一只蚂蚁经过盒子里面从N爬到M.(1)画出盒子的展开图,并画出蚂蚁的最短爬行路径;(2)求出蚂蚁的最短爬行路径是多少厘米.16.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的关系式;(2)当x=﹣时,求函数y的值;(3)求当﹣3<y≤1时,自变量x的取值范围.17.A,B,C三地在同一条公路上,A地在B,C两地之间,甲、乙两车同时从A地出发匀速行驶,甲车驶向C地,乙车先驶向B地,到达B地后,调头按原速经过A地驶向C地(调头时间忽略不计),到达C地停止行驶,甲车比乙车晚0.4h到达C地,两车距B地的路程y(km)与行驶时间x(h)之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)甲车的行驶速度是km/h,并在图中括号内填入正确的数值;(2)求图象中线段FM所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)在乙车到达C地之前,甲、乙两车出发后几小时与A地路程相等?直接写出答案.。
鲁教版初一数学上册期末考试试卷
鲁教版初一数学上册期末考试试卷此刻打盹,你将做梦;而此刻学习,你将圆梦。
把你的实力全部发挥,祝你七年级数学期末考试成功!下面小编给大家分享一些鲁教版初一数学上册期末考试试卷,大家快来跟小编一起看看吧。
鲁教版初一数学上册期末考试题一、选择题(共15小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,共45分,错选、不选或选出的答案超过一个,均记0分)1.下列计算正确的是( )A. =±3B. =﹣2C. =9D. =0.12.估算的大小,四舍五入到十分位是( )A.2.1B.2.2C.2.3D.2.43.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是( )A.3B.4C.5D.64.下列说法中,正确的是( )A. 的立方根是±B.立方根等于它本身的数是1C.负数没有立方根D.互为相反数的两个数的立方根也互为相反数5.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE 是AB的垂直平分线,若AD=3,则AC等于( )A.4B.4.5C.5D.66.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数( )A.46°B.44°C.36°D.22°7.下列命题中,是真命题的是( )A.角是轴对称图形,角平分线是它的对称轴B.线段是轴对称图形,并且只有一条对称轴C.三角形的一个外角等于它任意两个内角的和D.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半8.如图所示,已知在三角形纸片ABC中,BC=3,AC=4,∠BCA=90°,在AC上取一点E,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CD的长度为( )A.1B.2C.3D.59.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:510.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.2个C.3个D.4个11.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是( )A.50°B.57.5°C.60°D.65°12.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限13.将直线y=﹣2x+1向上平移1个单位,得到一个新的函数是( )A.y=﹣2x+2B.y=2x+1C.y=﹣2x﹣1D.y=﹣2x14.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系( )A. B.C. D.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B.C. D.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果)16. 的平方根是__________.17.已知a、b、c是△ABC的三边长,且满足关系c2﹣a2﹣b2+|a ﹣b|=0,则△ABC的形状为__________.18.命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”的题设是__________,它是__________命题(填“真”或“假”).19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于__________.20.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为__________米.三、解答题(共7小题,满分55分.解答要写出必要的文字说明、证明过程或演算步骤)21.解下列方程组:(1)(2) .22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求线段AD的长度;(3)求四边形ABCD的面积.23.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.24.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,过点D 作平行于BC的直线EF,分别交AB、AC于E、F,若BE=2,CF=3,若BE=2,CF=3,求EF的长度.25.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.27.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为__________千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?鲁教版初一数学上册期末考试试卷参考答案一、选择题(共15小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,共45分,错选、不选或选出的答案超过一个,均记0分)1.下列计算正确的是( )A. =±3B. =﹣2C. =9D. =0.1【考点】立方根;算术平方根.【分析】根据平方根、立方根,即可解答.【解答】解:A、 =3,故错误;B、 =2,故错误;C、 =3,故错误;D、,故正确;故选:D.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.2.估算的大小,四舍五入到十分位是( )A.2.1B.2.2C.2.3D.2.4【考点】估算无理数的大小;近似数和有效数字.【分析】由4<5<9可知2< <3,然后由2.22<5<2.32,可知2.2< <2.3,然依据上述方法进行估算即可.【解答】解:∵4<5<9,∴2< <3.∵2.22=4.84,2.32=5.29,∴2.22<5<2.32,∴2.2< <2.3.∵2.232=4.9729,2.242=5.0176,∴2.232<5<2.242.∴2.23< <2.24.∴ ≈2.2.故选:B.【点评】本题主要考查的是估算无理数的大小,明确被开方数越大,对应的算术平方根越大是解题的关键.3.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是( )A.3B.4C.5D.6【考点】点的坐标.【分析】根据勾股定理,可得答案.【解答】解:PO= =5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.4.下列说法中,正确的是( )A. 的立方根是±B.立方根等于它本身的数是1C.负数没有立方根D.互为相反数的两个数的立方根也互为相反数【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:A、的立方根是,故本选项错误;B、立方根等于它本身的数是1、﹣1、0,故本选项错误;C、负数有立方根,故本选项错误;D、互为相反数的两个数的立方根也互为相反数,正确;故选:D.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.5.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE 是AB的垂直平分线,若AD=3,则AC等于( )A.4B.4.5C.5D.6【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠A=∠ABD,然后根据角平分线的定义与直角三角形两锐角互余求出∠CBD=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出CD,然后求解即可.【解答】解:∵点D在AB的垂直平分线上,∴AD=BD=4,∴∠A=∠ABD,∵BD是角平分线,∴∠ABD=∠CBD,∵∠C=90°,∴∠A+∠ABD+∠CBD=90°,∴∠CBD=30°,∴CD= BD= ×3=∴AC=AD+CD=3+ = .故选B.【点评】本题考查了角平分线的定义,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,题目难度稍微复杂,熟记性质是解题的关键.6.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数( )A.46°B.44°C.36°D.22°【考点】平行线的性质.【分析】由l1∥l2,可得:∠1=∠3=44°,由l3⊥l4,可得:∠2+∠3=90°,进而可得∠2的度数.【解答】解:如图,∵l1∥l2,∴∠1=∠3=44°,∵l3⊥l4,∴∠2+∠3=90°,∴∠2=90°﹣44°=46°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.7.下列命题中,是真命题的是( )A.角是轴对称图形,角平分线是它的对称轴B.线段是轴对称图形,并且只有一条对称轴C.三角形的一个外角等于它任意两个内角的和D.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半【考点】命题与定理.【分析】利用对称轴及轴对称的定义、线段和角的对称性,三角形的外角的性质及直角三角形的性质分别判断后即可确定正确的选项.【解答】解:A、角是轴对称图形,角平分线所在直线是它的对称轴,故错误,为假命题;B、线段是轴对称图形,它有两条对称轴,故错误,为假命题;C、三角形的一个外角等于与其不相邻的两个内角的和,故错误,为假命题;D、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,正确,为真命题,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解称轴及轴对称的定义、线段和角的对称性,三角形的外角的性质及直角三角形的性质,属于基础定义,难度较小,但也应重点掌握.8.如图所示,已知在三角形纸片ABC中,BC=3,AC=4,∠BCA=90°,在AC上取一点E,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CD的长度为( )A.1B.2C.3D.5【考点】翻折变换(折叠问题).【分析】先在Rt△ABC中根据勾股定理求得AB=5,然后由翻折的性质可知BD=AB=5,最后根据CD=BD﹣BC求解即可.【解答】解:∵BC=3,AC=4,∠BCA=90°,∴AB= =5.由翻折的性质可知:BD=AB=5.∴CD=BD﹣BC=5﹣3=2.故选:B.【点评】本题主要考查的是翻折变换、勾股定理的应用,由翻折的性质求得BD=AB=5是解题的关键.9.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理及勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选D.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理或三角形的内角和定理来判定.10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.【解答】解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.故选C.【点评】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.11.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是( )A.50°B.57.5°C.60°D.65°【考点】三角形内角和定理.【分析】先根据三角形内角和定理得出∠BCF+∠CBF的度数,再由角平分线的性质得出∠ABC+∠ACB的度数,根据三角形内角和定理即可得出结论.【解答】解:∵∠BFC=115°,∴∠BCF+∠CBF=180°﹣115°=65°.∵BF平分∠ABC,CF平分∠ACB,∴∠ABC+∠ACB=2(∠BCF+∠CBF)=130°,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣130°=50°.故选A.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.12.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】根据y随x的增大而减小得:k<0,又kb>0,则b<0.再根据k,b的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.【点评】能够根据k,b的符号正确判断直线所经过的象限.13.将直线y=﹣2x+1向上平移1个单位,得到一个新的函数是( )A.y=﹣2x+2B.y=2x+1C.y=﹣2x﹣1D.y=﹣2x【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=﹣2x+1向上平移1个单位所得直线的解析式为:y=﹣2x+1+1,即y=﹣2x+2.故选A.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系( )A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设馒头每颗x元,包子每颗y元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,联立方程即可得到所求方程组.【解答】解:设馒头每颗x元,包子每颗y元,伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=50+2,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,故可列方程组为,故选B.【点评】本题主要考查由实际问题抽象出的二元一次方程组的知识点,解答本题的关键是理解题意,找出题干中的等量关系,列出等式,本题难度一般.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B.C. D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是 .故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果)16. 的平方根是±3.【考点】算术平方根;平方根.【分析】直接根据平方根的定义即可求解.【解答】解:的平方根是±3,故答案为:±3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.17.已知a、b、c是△ABC的三边长,且满足关系c2﹣a2﹣b2+|a ﹣b|=0,则△ABC的形状为等腰直角三角形.【考点】三角形三边关系.【分析】根据题意得出c2=a2+b2,a=b进而得出△ABC的形状.【解答】解:∵c2﹣a2﹣b2+|a﹣b|=0,∴c2﹣a2﹣b2=0,|a﹣b|=0,∴c2=a2+b2,a=b,∴△ABC的形状为等腰直角三角形.故答案为:等腰直角三角形.【点评】直接利用绝对值以及偶次方的性质,得出a,b,c之间的关系是解题关键.18.命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”的题设是两三角形两边分别相等且其中一组等边的对角相等,它是假命题(填“真”或“假”).【考点】命题与定理.【分析】改写成“如果…,那么…”的形式后即可确定其题设和结论,判断正误后即可确定真假.【解答】解:命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”改写成“如果…,那么…”为:如果两三角形两边分别相等且其中一组等边的对角相等,那么这两个三角形全等,所以题设是:两三角形两边分别相等且其中一组等边的对角相等,为假命题,故答案为:两三角形两边分别相等且其中一组等边的对角相等,假.【点评】本题考查了命题与定理的知识,解题的关键是能够将原命题写成“如果…,那么…”的形式,难度不大.19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于20°.【考点】平行线的性质.【分析】先根据AB∥CD求出∠BCD的度数,再由EF∥CD求出∠ECD的度数,由∠BCE=∠BCD﹣∠ECD即可得出结论.【解答】解:∵AB∥CD,∠ABC=46°,∴∠BCD=∠ABC=46°,∵EF∥CD,∠CEF=154°,∴∠ECD=180°﹣∠CEF=180°﹣154°=26°,∴∠BCE=∠BCD﹣∠ECD=46°﹣26°=20°.故答案为:20°.【点评】本题考查的是平行线的性质,熟知两直线平行,内错角相等;同旁内角互补是解答此题的关键.20.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200米.【考点】一次函数的应用.【专题】数形结合.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.【点评】本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.三、解答题(共7小题,满分55分.解答要写出必要的文字说明、证明过程或演算步骤)21.解下列方程组:(1)(2) .【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1) ,①×3+②×2得:13x=﹣11,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为 ;(2)方程组整理得:,①﹣②得:5y=150,即y=30,把y=30代入①得:x=28,则方程组的解为 .【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求线段AD的长度;(3)求四边形ABCD的面积.【考点】坐标与图形性质;三角形的面积;勾股定理.【分析】(1)根据图象可以直接写出A、B、C、D的坐标.(2)把AD作为斜边,利用勾股定理解决.(3)把四边形分割成3个直角三角形和一个正方形来求面积.【解答】解:(1)由图象可知A(﹣2,3),B(﹣3,0),C(3,0),D(1,4);(2)AD= = ;(3)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF= ×1×3+ ×1×3+ ×2×4+3×3=13.【点评】本题目考查了已知点写坐标以及勾股定理,三角形的面积有关知识,应该掌握分割法求面积.23.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.【考点】平行线的判定与性质.【专题】证明题.【分析】根据垂直的定义得到∠ADF=∠EFC=90°,再根据同位角相等,两直线平行得到AD∥EF,利用直线平行的性质有∠2=∠DAC;由∠4=∠C,根据同位角相等,两直线平行得到DG∥AC,再利用直线平行的性质得∠1=∠DAC,最后利用等量代换即可得到结论.【解答】解:∵AD⊥BC,EF⊥BC,∴∠ADF=∠EFC=90°,∴AD∥EF,∴∠2=∠DAC,又∵∠4=∠C,∴DG∥AC,∴∠1=∠DAC,∴∠1=∠2.【点评】本题考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.24.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,过点D 作平行于BC的直线EF,分别交AB、AC于E、F,若BE=2,CF=3,若BE=2,CF=3,求EF的长度.【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】证明:∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,同理FC=FD,又∵EF=ED+DF,∴EF=EB+FC=5.【点评】此题考查了等腰三角形的判定,平行线的性质,利用了等量代换的思想,熟练掌握性质与判定是解本题的关键.25.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?【考点】二元一次方程组的应用.【专题】图表型.【分析】本题等量关系有:甲班人数×8+乙班人数×10=920;(甲班人数+乙班人数)×5=515,据此可列方程组求解.【解答】解:设甲班有x人,乙班有y人.由题意得:解得: .答:甲班55人,乙班48人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题按购票人数分为三类门票价格.26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.【考点】翻折变换(折叠问题);坐标与图形性质.【分析】先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.【解答】解:依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△A BE中,AE=AO=10,AB=8,BE= = =6,∴CE=4,∴E(4,8).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5,∴D(0,5),综上D点坐标为(0,5)、E点坐标为(4,8).【点评】本题主要考查了翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.27.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【考点】一次函数的应用.【专题】应用题.【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s= t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣ t+12= t,解得t=当t= 时,S= × =3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。
七年级上册数学期末试题(鲁教版)
七年级数学试题第一学期期末考试题号 一 二 三 总分 16 17 18 19 20 21 22 23 24 25 得分选择题答题栏题 号 1 2345678910 答 案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.16的算术平方根是A .4B .±4C .2D .±2 2.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y xB .⎩⎨⎧-==21y xC .⎩⎨⎧==12y x D .⎩⎨⎧-==10y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .614.下列函数中,y 是x 的一次函数的是 ① y =x -6 ② y =x 2 ③ y =8x④ y =7-x A .① ② ③ B .① ③ ④ C . ① ② ③ ④ D .② ③ ④ 5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上某点A 的坐标为(5,-6 ),那么图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 ) 6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1 2)--,,“馬”位于点(2 2)-,,则“兵”位于点( ) A .(1 1)-,B .(2 1)--,C .(1 2)-,D .(3 1)-,(第15题图)(第6题图)Oxy OxyOxy Oxy A . B . C . D .O O O Ox /时y /件 A . B .C .D .y /件x /时x /时y /件y /件x /时7.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图像大致是( )8.某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为( )9.已知代数式15x a -1y 3与-5x b y a +b 是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧-=-=12b aC .⎩⎨⎧==12b aD .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有A .1 个B .2 个C .3 个D . 4个二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.已知方程3x +2y =6,用含x 的代数式表示y ,则y = . 12. 若点P (a +3, a -1)在x 轴上,则点P 的坐标为 .13.请写出一个同时具备:①y 随x 的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21x +3向下平移5个单位长度,得到新的直线的解析式(第10题图)Oy /件t /时581015200.511.52甲乙是 .15.如图l 1的解析式为y =k 1x +b 1 , l 2的解析式为y =k 2x +b 2,则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分,每小题2分) 计算:(1).4+3125-. 17.(本题满分4分)解方程组: ⎩⎨⎧=+=+.134,1632y x y x(2).21.1+64.0.18.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内画出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标.19.(本题满分5分)木工师傅做一个人字形屋梁,如图所示,上弦AB =AC =5m ,跨度BC 为6m ,现有一根木料打算做中柱AD (AD 是△ABC 的中线), 请你通过计算说明中柱AD 的长度 . (只考虑长度、不计损耗)CB A(第18题)(第15题图)Oxyl 1l 23-122ABDC②①20.(本题满分5分) 列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇. 甲、乙两人每小时各走多少千米?21. (本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一张入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九张卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们背面朝上洗匀后,任意抽出一张,若抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据说明你的观点.22 错误!链接无效。
鲁教版初一数学上册期末考试试题
初一数学上册期末试卷一、选择题:1.若a=(-2)*(-3),b=(-2)*3,c=-(-3)*2,则a 、b 、c 的大小关系是()A 、a >b >cB 、c >b >aC 、c >a >bD 、a >c >b 2.当2x =-时,代数式-|-1x +|的值是 ( ) A .1- B .3- C .1 D .3 3.下列计算正确的是 ( )A .33a b ab +=B .32a a -=C .225235a a a += D .2222a b a b a b -+=4. 沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D5.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式 6.数a ,b 在数轴上的位置如图所示,则a b b a -+-是( )A 2b-a B .2b-2a C .2a-2b D .07. 若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->- C .32x y +>+ D .33x y > 8. 一个棱柱有12个顶点,所有侧棱长的和为72cm ,则每条侧棱长为()A 、3cmB 、6cmC 、12cmD 、24cm9.把方程0.10.20.710.30.4x x---=的分母化为整数的方程是( )A.0.10.20.7134x x ---= B .12710134x x---=C .127134x x ---=D .127101034x x ---=10.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是 _________ .A .6B .8C .7D .5 二、填空题1.在32,0,1,-6中,任取两个数相乘,最小的积是__________.2. 小明在超市买一食品,外包装上印有总净含量“(±5)g ”的字样。
【鲁教版】初一数学上期末试卷(附答案)
一、选择题1.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D . 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个 C .3个 D .4个 3.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A .30°B .60°C .120°D .150° 4.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 5.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= 6.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- 7.下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+2 8.方程的解是( )A .B .C .D .9.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次10.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 11.若,则化简|-2|+|1-|的结果是( ) A .-1 B .1C .+1D .-3 12.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( )A .28B .34C .45D .75 二、填空题13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.14.同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.15.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________.16.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.17.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 18.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______. 19.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.20.比较大小:364--_____________()6.25--. 三、解答题21.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .22.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.23.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?24.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?25.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 26.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.2.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.3.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.4.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A 、射线OA 与OB 不是同一条射线,选项错误;B 、射线OA 与OB 是同一条射线,选项正确;C 、射线OA 与OB 不是同一条射线,选项错误;D 、射线OA 与OB 不是同一条射线,选项错误.故选B .【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.5.B解析:B【解析】【分析】利用等式的基本性质判断即可.【详解】解:A 、由02x ,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意;C、由2a=3,得a=32,不符合题意;D、由a=b,c≠0,得a bc c,不符合题意;故选:B.【点睛】本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.6.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.解析:C【解析】【分析】方程移项合并,把x 系数化为1,即可求出解.【详解】 方程,移项合并得:-2x =2,解得:x =-1,故选:C .【点睛】此题考查了解一元一次方程,解方程移项注意要变号. 9.C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般. 10.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a)=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.12.C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.二、填空题13.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a与4相对应b 与2相对应c与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:3 4【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a,b,c分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC 和AB 再利用线段的和差计算即可【详解】解:(1)当点C 在AB 的延长线上时如图1∵点D解析:4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC 和AB ,再利用线段的和差计算即可.【详解】解:(1)当点C 在AB 的延长线上时,如图1,∵点D 是线段BC 的中点,CD =3,∴BC =2CD =6,∵BC =3AB ,∴AB =13BC =13×6=2, ∴AC =AB +BC =2+6=8;(2)当点C 在BA 的延长线时,如图2,∵点D 是线段BC 的中点,CD =3,∴BC =2CD =6,∵BC =3AB ,∴AB =13BC =13×6=2, ∴AC =BC -AB =6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键 解析:13【分析】根据共生数对的定义进行分析,列式,求解即可.【详解】由已知可得221x x -=--解得x=13故答案为:13 【点睛】考核知识点:解一元一次方程.理解题意是关键.16.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.17.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 18.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 19.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.三、解答题21.【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 23.(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.24.成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.25.(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.26.(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.。
2022-2023学年鲁教版(五四制)数学七年级上册 期末测试卷(原卷版)
2022-2023学年鲁教版(五四制)数学七年级上册期末测试卷一.选择题(共12小题)1.下列实数为无理数的是()A.B.0.2C.﹣5D.2.等腰三角形的一个角是90°,则它的底角是()A.45°B.90°C.45°或90°D.10°或90°3.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|﹣b|D.|﹣a|>|b|4.点A(a﹣1,5)和点B(2,b﹣1)关于x轴对称,则(a+b)2021=______.()A.1B.﹣1C.±1D.05.如图,若△ABC≌△ADE,则下列结论中不一定成立的是()A.∠ABD=∠ADB B.∠BAD=∠CAE C.∠DAC=∠C D.∠B=∠ADE 6.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB,其中符合要求的有()A.③④B.①②C.①②③④D.①②③④⑤7.如图,△ABC中,∠A=105°,AB的垂直平分线EF交BC于点D,BD=AC,则∠B 的度数为()A.15°B.20°C.25°D.30°8.如图所示,一文物被探明位于A点地下48m处,由于A点地面下有障碍物,考古人员不能垂直下挖,他们从距离A点14m的B处斜着挖掘,那么要找到文物至少要挖()米.A.14B.48C.50D.609.函数的自变量x的取值范围是()A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0 10.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为11.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5或D.7或2512.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=10二.填空题(共6小题)13.已知x是16的算术平方根,y是9的平方根,则x2+y2﹣x﹣1的值为.14.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为°.15.如图,在△ABC中,AB=AC=5,BC=6,AD=4,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是.16.海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是.17.已知A,B两地相距120km,甲、乙两人沿同一条公路从A地出发到B地,甲骑摩托车,乙骑自行车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,则乙出发小时被甲追上.18.如图,在平面直角坐标系xOy中,点A的坐标是(﹣7,1),∠AOB=135°,OB=5,则点B的坐标为.三.解答题(共7小题)19.如图,将墙面和地平线的一部分分别标记EF,FG,且EF⊥FG.把长为10m的梯子AB斜靠在墙上,梯子底端离墙角6m.如果梯子的顶端下滑了2m,求梯子底部在水平方向滑动的距离BD.20.已知:点P是线段AC上一点,BP=DP,AB=3,CD=7.(1)如图1,若∠A=∠C=∠BPD=90°,求AC的长;(2)如图2,若∠A=∠C=∠BPD≠90°,能否求出AC的长?若能,求出AC的长;若不能,说明理由.21.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)求出租车和客车的速度分别为多少?(2)经过多少小时,两车相遇?并求出相遇时,出租车离甲地的路程是多少?22.如图,△ACB中,点D是AB边上一点,点E是CD的中点,过点C作CF∥AB交AE 的延长线于点F.(1)求证:△ADE≌△FCE;(2)若CD=CF,∠DCF=120°,求∠ACD的度数.23.计算(1).(2).(3).(4).(5).24.如图,一次函数y=kx+b(k≠0)的图象与x,y轴交于点A,B(0,4),与正比例函数y=﹣2x的图象相交于点C(﹣1,m).(1)求一次函数y=kx+b的表达式;(2)若点P在直线AB上,且S△OAP=3S△OAC,求点P的坐标.25.如图,在平面直角坐标系中,△ABC的顶点A,B,C的坐标分别为(2,2),(1,﹣3),(4,﹣2),△A′B′C′与△ABC关于y轴对称,点A,B,C的对应点分别为A′,B′,C′.(1)请在图中作出△A′B′C′,并写出点A′,B′,C′的坐标;(2)若点M(m+2,n﹣2)是△ABC的边上一点,其关于y轴的对称点为M′(﹣n.2m),求m,n的值.(3)请在y轴上找到一点P,使PC﹣PB的值最大,并在图上标注出来.。
2023年鲁教版(五四制)数学七年级上册期末考试测试卷及部分答案(共三套)
2023年鲁教版(五四制)数学七年级上册期末考试测试卷及答案(一)一、选择题(共10个小题,每小题3分,共30分)1.已知实数x ,y 满足|x-4|+=0, 则以x ,y 的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16 D .以上答案均不对 2.下列说法正确的是( )A .带根号的数都是无理数B .无限小数都是无理数C .两个无理数之和一定是无理数D .两个无理数之积不一定是无理数(6题图)3.设点A (a,b )是正比例函数y= - x 图像上的任意一点,则下列等式一定成立的是( )A. 2a+3b=0B.2a -3b=0C.3a -2b=0D.3a+2b=04.下列各组数分别是三角形的三边长,不是直角三角形的一组是( )A .4,5,6B .3,4,5C .5,12,13D .6,8,105.下列说法不正确的是( )①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等。
④三角形三条角平分线的交点到这个三角形三边的距离相等。
其中正确的结论有A .1个B .2个C .3个D .4个6.如图是一张直角三角形的纸片,两直角边AC=6cm 、BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm7.△ABC 的三边分别为a 、b 、c ,其对角分别为∠A 、∠B 、∠C .下列条件不能判定△ABC 是直角三角形的是( )A .∠B=∠A ﹣∠CB . a :b :c=5:12:13C . -=D .∠A :∠B :∠C=3:4:58.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数( )A .6B .7C .8D .99.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )8 y a 2c 2b 223327 A .乙前4秒行驶的路程为48米 B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度10. 如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(-3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A.(2,-3)B.(2,3)C(3,2) d(3,-2)二.填空题(共8小题,每小题3分,共24分。
鲁教版七年级数学上册期末考试试卷-附带答案
鲁教版七年级数学上册期末考试试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.下列说法中错误的是( ) A .三角形的三个内角中至少有两个角是锐角B .有一个角是锐角的三角形是锐角三角形C .一个三角形的三个内角中至少有一个内角不大于60︒D .如果三角形的两个内角之和小于90︒,那么这个三角形是钝角三角形2.下列货币符号图案是轴对称图形的有( )个.A .0B .1C .2D .33.已知一次函数6y kx =+的图象经过()3,3A -,则k 的值为( )A .3-B .2-C .1D .24.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是(2,1)-,则点Q 不在第( )象限. A .一 B .二 C .三 D .四5.下列语句正确的是( )A .3.78788788878888是无理数B .无理数分正无理数、零、负无理数C .无限小数不能化成分数D .无限不循环小数是无理数6.小明同学把一张长方形纸折了两次,如图,使点A B 、都落在DG 上,折痕分别是DE DF 、,则EDF ∠的度数为( )A .60︒B .75︒C .90︒D .120︒7.如图,菱形ABCD 中,点M 是AD 的中点,点P 由点A 出发,沿A→B→C→D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是( )A.B.C.D.8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米分;①乙走完全程用了32分钟;①乙用16分钟追上甲;①乙到达终点时,甲离终点还有320米.其中正确的结论有()A.1个B.2个C.3个D.4个9.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A .6B .8C .10D .910.点P(3,4)关于y 轴对称的点的坐标是( )A .(3,﹣4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣4,3)二、填空题(共8小题,满分32分)11.如果正比例函数y kx =的图象经过点()8,2-,那么k 的值为 .12.已知点(a +1,2a +5)在y 轴上,则该点坐标为 .13.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为 .14.平面直角坐标系中,点()3,2A -,点B 在y 轴上,则当线段AB 取最小值时,点B 的坐标为 . 15.一次函数()0y kx b k =+≠的图象如图所示,当0x >时,y 的取值范围为 .16.在平面坐标系内,A (﹣1,﹣1)、B (2,3),M 是x 轴上一点,使MB +MA 的值最小,则M 的坐标为 . 17.给出依次排列的一列数:按照此规律,第n个数为.三、解答题(共6小题,每题8分,满分48分)(1)A ,B 两点关于 ___________轴对称;(2)A ,D 两点横坐标相等,线段AD ___________y 轴,线段AD ___________x 轴;若点P 是直线AD 上任意一点,则点P 的横坐标为___________.(3)线段AB 与CD 的位置关系是___________;若点Q 是直线AB 上任意一点,则点Q 的纵坐标为 ___________.22.已知一直角三角形纸片OAB ,其中90AOB ∠=︒,OA=2,OB=4,将该纸片放置在平面直角坐标系中,如图1所示.(1)求经过A ,B 两点的直线的函数表达式.(2)折叠该纸片,使点B 与点A 重合,折痕与边OB 交于点C ,与边AB 交于点D (如图2所示),求点C 的坐标.(3)①若P 为OAB 内一点,其坐标为()0.5,1P ,过点P 作x 轴的平行线交AB 于点M ,作y 轴的平行线交AB 于点N (如图3所示),求点M ,N 的坐标并求PM PN +的长.①若P 为OB 上一动点,设OA 的中点为点E ,AB 的中点为点()1,2F (如图4所示)求PM PN +的最小值,并求取得最小值时点P 的坐标.23.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A .计时制:0.05元/分钟,B .包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?24.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?参考答案: 1.B2.C3.A4.D5.D6.C7.D8.A9.C10.B11.14-/0.25- 12.(0,3)13.4.14.()0,215.3y < 16.(﹣14,0) 17.22(1)1nnn -+ 18.4043219.22±20.(1)这个一次函数的解析式为21y x =-(2)点C (12,0)在这个一次函数的图像上 (3)12x =21.(1)y(2),⊥,-2(3)ABCD ,3。
【鲁教版】初一数学上期末试题(带答案)
一、选择题1.下列调查中,适合采用普查方式的是( )A .了解一批圆珠笔的使用寿命B .了解全国九年级学生身高的现状C .了解我市人民坐高铁出行的意愿D .“新冠病毒”防疫期间,对进入校园人员的进行体温测量2.去年某校有1 500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有( )A .400名B .450名C .475名D .500名 3.以下问题,不适合用普查的是( )A .一个班级学生的体重B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .某品牌袋装食品的质量4.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.设这个数是x ,根据题意列方程是( )A .21133327x x x x +++= B .21133327x x x ++= C .21133327x x x x ++=+ D .21133327x x x x ++=- 5.下列运用等式性质进行的变形,正确的是( )A .如果a b =,那么a c b c +=-;B .如果23a a =,那么3a =;C .如果a b =,那么a b c c =; D .如果a b c c=,那么a b = 6.整数a 满足36a <≤,若a 使得关于x 的方程()631ax x +=-的解为整数,则满足条件的所有整数a 的个数是( )A .1B .2C .3D .47.有下列说法:①由许多条线段连接而成的图形叫做多边形;②从一个多边形(边数为n )的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n -个三角形;③角的边越长,角越大;④一条射线就是一个周角.其中正确的结论有( )A .1个B .2个C .3个D .0个8.如图,把长方形沿虚线剪去一个角,得到一个五边形,则这个五边形的周长______原来长方形的周长,理由是______,横线上依次填入( )A.大于:经过两点有一条直线,并且只有一条直线B.大于:两点之间的所有连线中,线段最短C.小于:经过两点有一条直线,并且只有一条直线D.小于:两点之间的所有连线中,线段最短9.把根绳子对折成一条线段AB,在线段AB取一点P,使13AP PB=,从P处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm,则绳子的原长为()A.32cm B.64cm C.32cm或64cm D.64cm或128cm 10.下列所给代数式中,属于单项式的是()A.aπB.a C.12a+D.2a11.如图,数轴上有三个点A、B、C,且A、B表示的数互为相反数,若每个单位长度表示1,则点C表示的数为()A.不能确定B.-2 C.2 D.012.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A.B.C.D.二、填空题13.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________14.小明将同学们周末生活的调查结果绘制成了扇形统计图.其中,看书这一项对应的圆心角度数为72°,则周末看书的同学人数占了总数的______.( 填百分比 )15.如图,在33⨯幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为______.16.某服装进货价为60元/件,商店提高进价的50%进行标价,为回馈新、老顾客商店元旦期间进行大促销活动,将此服装打折销售,但销售后商店仍可获利20%,则该服装应打______折销售.17.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数;(2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.18.当21x y ++取最小值时,代数式423x y ++的值是________.19.计算:()101π92-⎛⎫-+-= ⎪⎝⎭______. 20.一个无盖长方体的包装盒展开图如图所示,则该长方体的体积为_______cm 3.三、解答题21.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中 C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.如图,A 、B 两点在一数轴上,其中点O 为原点,点A 对应的有理数为﹣2,点B 对应的有理数为22.点A 以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t 秒(t >0).(1)当t =2时,点A 表示的有理数为 ,A 、B 两点的距离为 ;(2)若点B 同时以每秒2个单位长度的速度向左运动,经过多少秒,点A 与点B 相遇; (3)在(2)的条件下,点M (M 点在原点)同时以每秒4个单位长度的速度向右运动,几秒后MA =2MB ?23.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 24.对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=.(1)计算:()124⎛⎫-⊕- ⎪⎝⎭; (2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值. 25.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?26.下图是由几个相同的小正方体搭成的几何体,(1)搭成这个几何体需要个小正方体;(2)画出这个几何体的主视图和左视图;(3)在保持主视图和左视图不变的情况下,最多可以拿掉n个小正方体,则n=,请在备用图中画出拿掉n个小正方体后新的几何体的俯视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解一批圆珠笔的使用寿命,应采用抽样调查,故此选项不合题意;B、了解全国九年级学生身高的现状,应采用抽样调查,故此选项不合题意;C、了解我市人民坐高铁出行的意愿,应采用抽样调查,故此选项不合题意;D、“新冠病毒”防疫期间,对进入校园人员的进行体温测量,意义重大,应采用普查,故此选项符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.B解析:B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【详解】∵抽取200名考生的数学成绩,其中有60名考生达到优秀,∴该校考生的优秀率是:60200×100%=30%, ∴该校达到优秀的考生约有:1500×30%=450(名);故选B .【点睛】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想. 3.D解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、一个班级学生的体重,适合采用普查的方式,故A 不符合题意;B 、旅客上飞机前的安检,适合采用普查的方式,故B 不符合题意;C 、学校招聘教师,对应聘人员面试,适合采用普查的方式,故C 不符合题意;D 、某品牌袋装食品的质量,适合抽样调查,故D 符合题意;故选:D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 4.A解析:A【分析】可设这个数是x ,根据等量关系:这个数的三分之二+这个数的一半+这个数的七分之一+这个数=33,依此列出方程求解即可.【详解】解:设这个数是x ,依题意有21133327x x x x +++=, 故选:A【点睛】此题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.D解析:D【分析】根据等式的性质即可求出答案.【详解】解:A 、当a =b 时,a +c =b +c ,故A 错误,不符合题意;B 、如果23a a =,那么3a =或0,故B 错误,不符合题意;C 、当c =0时,此时a b c c =无意义,故C 错误,不符合题意; D 、如果a b c c=,那么a b =,故D 正确,符合题意; 故选:D .【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型. 6.C解析:C【分析】由整数a 满足36a <≤,先确定6,5,4,4,5,6a =---,由方程()631ax x +=-的解为整数,可得93x a =--,由3a -是9的约数931±±±,,, 求出6,0,2,4,6,12a =-,结合条件求出6,4,6a =-即可. 【详解】∵整数a 满足36a <≤,∴36a <≤或63-≤<-a ,∴6,5,4,4,5,6a =---,∵()631ax x +=-,整理得()39a x -=-, ∴93x a =--, ∵3a -是9的约数931±±±,,,∴6,0,2,4,6,12a =-,∴6,4,6a =-,则满足条件的所有整数a 的个数是3个.故选择:C .【点睛】本题考查有条件限定的一元方程的整数解问题,掌握方程整数解的求法,关键是方程变形为93xa=--,转化为9的约数来解是解题关键.7.A解析:A【分析】根据多边形的定义,多边形对角线,角的大小,周角等知识逐项判断即可求解.【详解】解:①由许多条线段连接而成的图形叫做多边形,判断错误;②从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n-个三角形,判断正确;③角的边越长,角越大,判断错误;④一条射线就是一个周角,判断错误.故选:A【点睛】本题考查了多边形、角等知识,理解多边形、多边形对角线、角、周角的概念是解题关键.8.D解析:D【分析】根据两点之间线段最短的定理进行判断即可;【详解】如图所示:原长方形的周长=AE+BE+BF+FC+DC+AD五边形的周长=AE+EF+FC+DC+AD;∵两点之间线段最短,∴ BE+BF>EF,∴ AE+BE+BF+FC+DC+AD>AE+EF+FC+DC+AD,故选:D.【点睛】本题考查了两点之间线段最短的定理,正确理解定理是解题的关键.9.C解析:C【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.【详解】解:如图∵13AP PB =, ∴2AP=23PB <PB ①若绳子是关于A 点对折,∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm ,∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折,∵AP <2PB ∴剪断后的三段绳子中最长的一段为2PB=24cm∴PB=12 cm∴AP=12×143=cm ∴绳子全长=2PB+2AP=12×2+4×2=32 cm ;故选:C .【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.10.A解析:A【分析】根据单项式的定义逐一验证即可.【详解】 ∵a π是单项式, a 是二次根式,12a +是多项式, 2a是分式, 故选A .【点睛】本题考查了单项式的定义,熟练把握数与字母的积这一特征是解题的关键.11.B解析:B【分析】首先确定原点位置,进而可得C点对应的数.【详解】解:∵点A、B表示的数互为相反数,∴原点在线段AB的中点处,∴点C对应的数是-2.故选:B.【点睛】本题主要考查了数轴,关键是正确确定原点的位置.12.A解析:A【解析】【分析】分别分析四个选项的主视图、左视图、俯视图,从而得出都是正方体的几何体.【详解】A、正方体的主视图、左视图、俯视图都正方形,符合题意;B、圆锥主视图、左视图都是等腰三角形,俯视图是圆和圆中间一点,不符合题意;C、圆柱的主视图、左视图都是矩形、俯视图是圆,不符合题意;D、球的主视图、左视图、俯视图都是圆,不符合题意.故选A.【点睛】考查了简单几何体的三视图、学生的思考能力,关键是掌握几何体三种视图的空间想象能力.二、填空题13.32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数设该组频数为x根据圆心角度数的计算公式求解【详解】设该组频数为xx=32故答案为:32【点睛】此题考查圆心角度数的计算公式正确解析:32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x,根据圆心角度数的计算公式求解.【详解】设该组频数为x,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.14.20【解析】【分析】根据圆心角度数除以360度乘百分之百即可求解【详解】则周末看书的同学人数占了总数的=20故答案为:20【点睛】此题考查扇形统计图解题关键在于看懂图中数据解析:20%【解析】【分析】根据圆心角度数除以360度乘百分之百,即可求解.【详解】 则周末看书的同学人数占了总数的0072100360⨯ =20% 故答案为:20%.【点睛】此题考查扇形统计图,解题关键在于看懂图中数据. 15.3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x 即可解出x 的值;【详解】∵每行每列每对角线上的三个数之和都相等∴4x+x+7=19+x 解得x=3故答案为:3【点睛解析:3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x 即可解出x 的值;【详解】∵ 每行每列每对角线上的三个数之和都相等,∴ 4x+x+7=19+x ,解得x=3,故答案为:3.【点睛】本题考查了有理数的加法,一元一次方程的应用,根据表格,根据每行每列每对角线上的三个数之和都相等得知4x+x+7=19+x 是解题的关键.16.【分析】根据利润=售价−进价即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设该服装应打x 折销售根据题意得:60×(1+50)×−60=60×20解得:x =8故答案为:8【点睛】本题考查了一解析:【分析】根据利润=售价−进价,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设该服装应打x 折销售.根据题意得:60×(1+50%)×10x −60=60×20%, 解得:x =8.故答案为:8.【点睛】本题考查了一元一次方程的应用,根据利润=售价−进价,列出关于x 的一元一次方程是解题的关键. 17.(1);(2)【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数再相加可得∠AOE 的度数;(2)据角平分线的定义和得到再由求得的度数最后由平分求得的度数【详解】解(1)如图∵平分∴∵平分∴∴解析:(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.18.【分析】根据取最小值时则2x+y=0然后将代数式变形为2(2x+y)+3整体代入即可求解【详解】解:∵∴当取最小值时∴2x+y=0∴=2(2x+y)+3=3故答案为:3【点睛】本题主要考察了绝对值的解析:【分析】 根据21x y ++取最小值时,2=0x y +,则2x+y=0,然后将代数式423x y ++变形为2(2x+y)+3,整体代入即可求解.【详解】解:∵20x y +≥∴当21x y ++取最小值时,2=0x y +∴2x+y=0∴423x y ++=2(2x+y)+3=3故答案为:3.【点睛】本题主要考察了绝对值的性质、用整体代入法求代数式的值,解题的关键是熟练掌握绝对值的性质以及用整体代入法求代数式的值.19.【分析】首先计算乘方然后计算加法求出算式的值是多少即可【详解】解:=1+(-2)=-1【点睛】本题考查的是实数的运算熟知数的开方法则0指数幂及负整数指数幂的运算法则的运算解析:1-【分析】首先计算乘方,然后计算加法,求出算式的值是多少即可.【详解】解:011(()2π--+=1+(-2)=-1.【点睛】本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的运算法则的运算. 20.80三、解答题21.(1)50;24%;(2)补全图形见解析;(3)72;(4)160名.【分析】(1)由条形统计图得到B 级学生数,由扇形统计图得B 学生数占抽取学生总数的48%,用24除以48%得所抽取学生的总数即得前一个空的答案,由条形统计图得A 级学生数,用其除以所抽取的学生总数再化成百分数即得a 的值;(2)在(1)的基础上用抽取的总学生数减去A 、B 、D 级的学生数得到C 级的学生数,即可补全条形统计图;(3)用C 级的学生数除以所抽取的总学生数乘以360°即得;(4)先算得D 级学生数占所抽取学生总数的百分比,再乘以学校的学生总数即可.【详解】(1)2448%50÷=(名),1250100%24%a =÷⨯=;(2)C 级学生数为50-12-24-4=10(名)补全条形统计图如下图(3)103607250⨯︒=︒,故填72;(4)4100%200016050⨯⨯=(名)所以该校D级学生有160名.【点睛】此题综合考查了条形统计图和扇形统计图,还有用样本去估计全体的相关知识.其关键是领会两种统计图各自的特点和不足,合起来运用.条形统计图能清楚反映出各部分的具体数目,用扇形统计图能直观清楚的看出各部分占全部的百分比.22.(1)2,20;(2)经过6秒,点A与点B相遇;(3)3秒或235秒后,MA=2MB【分析】(1)根据点A的出发点、运动速度及运动时间,可找出当t=2时点A表示的有理数,再利用数轴上两点间的距离公式可求出AB得出长;(2)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,由点A,B相遇,可得出关于t的一元一次方程,解之即可得出结论;(3)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t,分0<t≤113及t>113两种情况考虑,根据MA=2MB,即可得出关于t的一元一次方程,解之即可得出结论.【详解】解:(1)当t=2时,点A表示的有理数为﹣2+2×2=2,∴AB=22﹣2=20.故答案为:2;20.(2)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,依题意得:2t﹣2=﹣2t+22,解得:t=6.答:经过6秒,点A与点B相遇.(3)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t.令﹣2t+22=4t,解得:t=11 3.当0<t≤113时,4t﹣(2t﹣2)=2(﹣2t+22﹣4t),解得:t=3;当t>113时,4t﹣(2t﹣2)=2[4t﹣(﹣2t+22)],解得:t=235.答:3秒或235秒后,MA=2MB.【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)利用数轴上两点间的距离公式,求出AB的长;(2)找准等量关系,正确列出一元一次方程;(3)分0<t≤113及t>113两种情况,找出关于t的一元一次方程.23.(1)14(2)378 23【分析】(1)根据题意可得出CM=12AC,CN=12CD,所以MN=CM+CN=12(AC+CD)=12AD=9,从而得出AD的长,根据AB:BC:CD=2:3:4,可得出AB的长,继而求出BD的长;(2)根据题意,当CN=13CD时,设AB=2x,BC=3x,CD=4x,可得AC=5x,因为点M是线段AC的中点,可得CM=2.5x,因为CN=13CD,可求出CN=43x,根据MN=9,可解出x的值,继而得出BD的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB =29×AD =4, ∴BD =AD ﹣AB =18﹣4=14;(2)∵当CN =13CD 时,如图,∵AB :BC :CD =2:3:4,∴设AB =2x ,BC =3x ,CD =4x ,∴AC =5x , ∵点M 是线段AC 的中点,∴CM =12AC =2.5x , ∵CN =13CD =43x , ∴CM+CN =52x+43x =MN =9, ∴x =5423, ∴BD =7x =37823; 【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.24.(1)234;(2)-5 【分析】(1)结合题意,根据有理数混合运算的性质计算,即可得到答案;(2)结合题意,通过合并同类项计算,即可得到答案.【详解】 (1)()124⎛⎫-⊕- ⎪⎝⎭()1324=--⨯- 164=-+ =234; (2)∵()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭∴153103a b b a ⎛⎫+--=- ⎪⎝⎭∴2210a b +=-∴5a b +=-.【点睛】本题考查了有理数运算、合并同类项的知识;解题的关键是熟练掌握有理数混合运算、合并同类项的性质,从而完成求解.25.(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.26.(1)10;(2)见解析;(3)1【解析】试题分析:(1)观察可知共有三层,最下面一层有6个,中间一层有3个,最上一层有1个,加起来即可得总个数;(2)观察即可得,主视图可得到从左往右3列的正方形的个数依次为3,1,2;左视图得到从左往右3列的正方形的个数依次为3,2,1,据此可画出图形;(3)如图,要想保证主视图和左视图不变的情况下,只能拿掉图中标涂红色的两个小正方体中的一个.试题(1)观察可知共有三层,最下面一层有6个,中间一层有3个,最上一层有1个, 6+3+1=10,故答案为:10;(2)如图所示;(3)如图,要想保持主视图和左视图不变,只能拿掉图中涂红色的两块中的一块,故n=1,新几何体的俯视图如下.。
七年级数学上册 期末考试卷(鲁教版)
七年级数学上册期末考试卷(鲁教版)满分:120分时间:120分钟一、选择题(每题3分,共36分)1.【2022·永州】下列多边形具有稳定性的是()2.[数学文化]【2022·自贡】剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()3.【2022·泰州】下列判断正确的是()A.0<3<1 B.1<3<2 C.2<3<3 D.3<3<4 4.【2023·济南槐荫区月考】如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-4,1)C.(-2,-1)D.(1,-2)5.【2023·青岛市中区月考】下列运算中错误的有()①16=±4;②3(-8)2=8;③(-4)2=-4;④(-3)2=3;⑤±32=3A.4个B.3个C.2个D.1个6.下列说法不正确的是()A.点A(-a2-1,|b|+1)一定在第二象限B.点P(-2,3)到y轴的距离为2C.若P(x,y)中x=0,则P点在y轴上D.若xy=0,则点P(x,y)一定在第二、四象限角平分线上7.如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米,那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米8.【社会热点】呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图①中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图②),血液酒精浓度M与呼气酒精浓度K的关系见图③.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0 Ω时,R1的阻值为100 ΩC.当K=10 Ω时,该驾驶员为非酒驾状态D.当R1=20 Ω时,该驾驶员为醉驾状态9.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AD=3,BD=2,则EC的长度是() A. 5 B. 6 C.3 D.210.【2023·泰安泰山区月考】如图,已知AB =CD ,AE =DF ,CE =BF ,则下列结论:①△ABE ≌△DCF ;②∠B =∠C ;③∠CDF =∠BAE ;④∠BEA =∠CFD ;⑤CF =BE .其中正确的个数是( ) A .2B .3C .4D .511.[数学文化] “赵爽弦图”巧妙利用面积关系证明勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较长直角边长为a ,较短直角边长为b ,且(a + b )2=11,小正方形的面积为3,则大正方形的边长为( ) A .10 B .7 C .10 D .712.如图,已知点A 的坐标为(0,1),点B 的坐标为⎝ ⎛⎭⎪⎫32 ,-2,点P 在直线y =-x 上运动,当|P A -PB |最大时点P 的坐标为( ) A .(2,-2)B .(4,-4)C .⎝ ⎛⎭⎪⎫52,-52D .(5,-5)二、填空题(每题3分,共18分)13.【2023·济南商河期中】已知点M 关于y 轴的对称点N 的坐标是(-5,4),则点M 的坐标是________.14.如果一个正数的两个不同的平方根是3a -2和2a -13,那么这个正数是________.15.【2023·淄博临淄区期末】如图,在等腰直角三角形ABC 中,∠A 为直角.若AD =6 cm ,且∠DBC =15°,则BD 的长为________cm.16.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.17.【2022·哈尔滨】在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是________.18.【2022·盐城】《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=12x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,O n-1A n-1=a n,若a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.已知2a-1的一个平方根是3,3a+b-1的一个平方根是-4,求a+2b的立方根.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1__________,B1__________,C1____________;(2)计算△ABC的面积.21.【2023·德州乐陵市月考】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.22.【2022·温州】如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)试说明:∠EBD=∠EDB;(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.23.【2023·济南章丘区期中】如图,已知直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的表达式.(2)已知直线AB上一点C在第一象限,且点C的坐标为(a,2),求a的值及△BOC的面积.24.某校借助小型飞行器监测学生课间休息情况.一天,甲飞行器从距地面5 m处,以1 m/min的速度上升;同时,乙飞行器从距地面15 m处,以0.5 m/min的速度上升.设甲、乙两个飞行器距地面的高度分别为y甲m,y乙m,上升的时间为x min.(1)分别求出y甲,y乙与x之间的函数关系式.(2)当x=50时,甲、乙两个飞行器距地面的高度相差多少米?(3)在某时刻甲、乙两个飞行器能否位于同一高度?如果能,求此时两个飞行器距地面的高度.25.【2023·德州宁津月考】如图①,在长方形ABCD中,AB=CD=6 cm,BC=10 cm,点P从点B出发,以2 cm/s的速度沿BC向点C运动,设点P的运动时间为t s.(1)PC=________ cm.(用含t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)如图②,当点P从点B开始运动时,同时,点Q从点C出发,以v cm/s的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一、1.D2.D3.B4.B5.A【点拨】①16=4,②3(-8)2=4,③(-4)2=4,④(-3)2=3,⑤±32=±3.综上,错误的有①②③⑤,共4个.6.D【点拨】A.因为-a2-1=-(a2+1)<0,|b|+1>0,所以点A一定在第二象限;B.因为点到y轴的距离等于横坐标的绝对值,所以点P(-2,3)到y轴的距离为2;C.横坐标为0的点在y轴上;D.因为xy=0,所以当x=0,y≠0时,点P在y轴上,当y=0,x≠0时,点P在x轴上,所以当x =y=0时,点P在原点,所以原说法不正确.7.C【点拨】连接AB.因为PA=15米,PB=11米,所以由三角形三边关系定理得(15-11)米<AB<(15+11)米,即4米<AB<26米,所以选C.8.C【点拨】由题图②可知:呼气酒精浓度K越大,R1的阻值越小;当K=0×10-3mg/100mL时,R1的阻值为100Ω;由题图③可知:当K=10×10-3mg/100mL时,M=2200×10×10-3=22mg/100 mL,此时,该驾驶员为酒驾状态;由题图②可知,当R1=20Ω时,K=40×10-3mg/100mL,所以M=2200×40×10-3=88mg/100mL,此时该驾驶员为醉驾状态.9.C【点拨】由作法得CE⊥AB,BE=DE,则∠AEC=90°.因为AD=3,BD =2,所以DE=BE=1,AE=4,AC=AB=AD+BD=3+2=5.所以在Rt△ACE中,CE2=52-42=9,所以CE=3.10.D【点拨】因为CE=BF,所以CE+EF=BF+EF,即CF=BE.所以CE+EF=BF+EF,即CF=BE.在△ABE和△DCF =CD,=DF,=CF,所以△ABE≌△DCF(SSS).所以∠B=∠C,∠CDF=∠BAE,∠BEA=∠CFD.故①②③④⑤都正确.11.D【点拨】设大正方形的边长为c,则c2=a2+b2.因为(a+b)2=11,所以a2+2ab+b2=11.①因为小正方形的面积为3,所以(a-b)2=3,所以a2-2ab+b2=3.②①+②,得2a2+2b2=14,所以a2+b2=7.所以c=a2+b2=7.12.B二、13.(5,4)14.49【点拨】由题意得3a-2+2a-13=0,解得a=3,所以这个正数为(3a-2)2=49.15.12【点拨】因为△ABC是等腰直角三角形,且∠A=90°,所以∠ABC=∠ACB=45°.因为∠DBC=15°,所以∠ABD=∠ABC-∠DBC=45°-15°=30°.所以BD=2AD=2×6=12(cm).16.4【点拨】根据垂线段最短,可知当DP⊥BC时,DP的长度最小.因为BD⊥CD,所以∠BDC=90°,所以∠A=∠BDC.又因为∠ADB=∠C,所以∠ABD=∠CBD.又因为DA⊥BA,DP⊥BC,所以AD=DP.又因为AD=4,所以DP=4,即DP长的最小值为4.17.80°或40°【点拨】当△ABC为锐角三角形时,如图①,∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC 为钝角三角形时,如图②,∠BAD =180°-∠B -∠ADB =180°-30°-90°=60°,∠BAC =∠BAD -∠CAD =60°-20°=40°.综上所述,∠BAC =80°或40°.18.2【点拨】把x =0代入y =12x +1,得y =1,所以A (0,1),所以OA =a 1=1.把y =1代入y =x ,得x =1,所以O 1(1,1).把x =1代入y =12x +1,得y =12×1+1=32,所以A 11,32所以O 1A 1=a 2=32-1=12.把y =32代入y =x ,得x =32,所以O 232,32把x =32代入y =12x +1,得y =12×32+1=74,所以A 232,74所以O 2A 2=a 3=74-32=14;…,所以O n -1A n -1=a n 12n -1.因为a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,所以S ≥a 1+a 2+…+a n =1+12+14+…+12n -1=2-12n -1,所以S 的最小值为2.三、19.【解】因为2a -1的一个平方根是3,3a +b -1的一个平方根是-4,所以2a -1=9,3a +b -1=16.解得a =5,b =2.所以a +2b =5+4=9.所以a +2b 的立方根为39.20.【解】(1)如图所示,△A 1B 1C 1即为所求.(-1,1);(-4,2);(-3,4)(2)S △ABC =3×3-12×3×1-12×2×1-12×2×3=9-32-1-3=72.21.【解】(1)在△ABD 和△ACE 中,AB =AC ,∠1=∠2,AD =AE ,所以△ABD ≌△ACE (SAS),所以BD =CE .(2)因为∠1=∠2,所以∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .由(1)得△ABD ≌△ACE ,所以∠B =∠C .在△ACM 和△ABN 中,∠C =∠B ,AC =AB ,∠CAM =∠BAN ,所以△ACM ≌△ABN (ASA),所以∠M=∠N.22.【解】(1)因为BD是△ABC的角平分线,所以∠CBD=∠EBD.因为DE∥BC,所以∠CBD=∠EDB.所以∠EBD=∠EDB.(2)CD=ED.理由如下:因为AB=AC,所以∠C=∠ABC.因为DE∥BC,所以∠ADE=∠C,∠AED=∠ABC.所以∠ADE=∠AED.所以AD=AE,所以CD=BE,由(1)得∠EBD=∠EDB,所以BE=DE,所以CD=ED.23.【解】(1)设直线AB的表达式为y=kx+b.把点A(1,0),B(0,-2)的坐标代入,得b=-2,k+b=0,解得k=2,所以直线AB的表达式为y=2x-2.(2)因为点C(a,2)在直线y=2x-2上,所以2=2a-2,所以a=2,所以C(2,2).×2×2=2.所以S△BOC=1224.【解】(1)由题意可得y甲=5+x,y乙=15+0.5x.(2)当x=50时,y甲=5+50=55,y=15+0.5×50=40,55-40=15(m),乙所以当x=50时,甲、乙两个飞行器距地面的高度相差15m.(3)在某时刻甲、乙两个飞行器能位于同一高度.由题意得5+x=15+0.5x,解得x=20,所以5+x=25,所以上升的时间为20min时,甲、乙两个飞行器位于同一高度,此时两个飞行器距地面的高度是25m.25.【解】(1)(10-2t)(2)当△ABP≌△DCP时,BP=CP=5cm,故2t=5,解得t=2.5.(3)①当△ABP≌△QCP时,BA=CQ,PB=PC.所以BP=PC=12BC=5cm,所以2t=5,解得t=2.5.因为BA=CQ=6cm,所以v×2.5=6,解得v=2.4.②当△ABP≌△PCQ时,BP=CQ,AB=PC.因为AB=6cm,所以PC=6cm,所以BP=10-6=4(cm),所以2t=4,解得t=2,因为CQ=BP=4cm,所以v×2=4,解得v=2.综上所述,当v=2.4或2时,△ABP与△PQC全等.。
【鲁教版】初一数学上期末试卷(及答案)
一、选择题1.某校七年级(1)班体育委员对本班60名同学参加球类项目的情况做了统计(每人选一种),绘制成如图所示统计图,已知“羽毛球”所在扇形的圆心角度数为72°,则该班参加乒乓球和羽毛球项目的人数总和为( )A .20人B .25人C .30人D .35人2.下列调查中,适宜抽样调查的是( )A .了解某班学生的身高情况B .选出某校短跑最快的学生参加全市比赛C .了解全班同学每周体育锻炼的时间D .调查某批次汽车的抗撞击能力3.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人乘一辆车,最后剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .3932x x +=-B .9232x x -+= C .9232xx +-= D .2932x x +=+ 4.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款( )A .288元B .288元和332元C .332元D .288元和316元5.如图,在长方形ABCD 中,AB 6cm =,8BC cm =,点E 是AB 上的点,且2AE BE =.点P 从点C 出发,以2/cm s 的速度沿点C D A E ---匀速运动,最终到达点E .设点P 运动时间为ts ,若三角形PCE 的面积为218cm ,则t 的值为( )A.98或194B.194或98或274C.94或6D.6或94或2746.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④7.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则BD的长为()A.6cm B.7cm C.8cm D.9cm8.如图,甲从点A出发向北偏东65°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则BAC的度数是()A.85°B.135°C.105°D.150°9.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是()A.B.C.D.10.把黑色三角形按如图所示的规律拼成下列图案,其中第①个图案中有4个黑色三角形,第②图案有7个黑色三角形,第③个图案有10个黑色三角形,…,按此规律排列下去,则第⑥图案中黑色三角形的个数为()A .16B .19C .31D .3611.据统计,2014年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学计数法表示为( )元A .4.057×109B .0.4057×1010C .40.57×1011D .4.057×1012 12.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有( )A .1个B .2个C .3个D .4个二、填空题13.某公司有员工700人举行元旦庆祝活动(如图),A 、B 、C 分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人都要参加,则下围棋的员工共有_____人.14.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是_________度.15.欧拉是一位著名的数学家,他把他的一生都献给了人类的数学事业,在他一生岁数的14那年,他发表了第一篇数学论文,并且获得了巴黎科学院奖金,此后过了7年,他成为彼得堡科学院的数学教授,在欧拉去世的前17年,他不幸双目失明了,但他继续在黑暗的世界里凭着他的记忆和心算进行数学研究,在这17年里,他写出了数学论文400篇,正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍.根据以上信息,请你算出数学家欧拉一生______岁.16.若x=1是方程2x+a=7的解,则a=_______.17.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.18.观察下面的一列单项式:2x,3-,54x-,……,根据你发现的规律,第8x,716x20个单项式为__________.19.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.20.用一个平面去截下列几何体,截面可能是圆的是________(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%22.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:1.5+,3-,2+,2.5-,3-,1+,2-,2-(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?23.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .24.综合与探究某餐厅中1张餐桌可坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有4张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐人;(2)当有n 张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐______人; (3)该餐厅有30张这样的长方形桌子,按方式一每3张拼成一张大桌子,则30张桌子可拼成10张大桌子,共可坐______人?按方式二呢?(4)一天中午,该餐厅来了98名顾客共同就餐客(即桌子要摆在一起),但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选用哪种方式来摆餐桌呢? 25.计算:(1)()11124386⎛⎫-+⨯- ⎪⎝⎭(2)()3412426⎡⎤--⨯--⎣⎦ 26.如图是由一些棱长为单位1的相同的小正方体组合成的简单几何体,请在图中的方格子中分别画出从几何体正面看、左面看、上面看得到的图形。
(完整word版)鲁教版七年级数学上册期末测试题
七年级数学上册期末测试题一、选择题:1、下列图案是轴对称图形的有( ) (A )1个 (B )2个 (C )3个 (D )4个2、下列说法中正确的是( )(A )9是一个无理数 (B )函数x y +=12的自变量x 的取值范围是x >-1 (C )若点P (2,a )和点Q (b ,-3)关于x 轴对称,则a b -的值为1 (D )-8的立方根是2 3、点P (m ,1)在第二象限内,则点Q (m -,0)在( )(A )x 轴负半轴上 (B )x 轴正半轴上 (C )y 轴负半轴上 (D )y 轴正半轴上 4、如果三角形的两边分别为3和5,那么这个三角形的周长可能是( ) (A )15 (B )16 (C )8 (D )7 5、如图,∠=∠12,∠=∠34,则下列结论错误的是( )(A )ADC ∆≌BCD ∆(B )ABD ∆≌BAC ∆(C )ABO ∆≌COD ∆(D )AOD ∆≌BOC ∆ 6、如图,在ABC ∆中,AC AD BD ==,DAC ∠=︒80,则B ∠的度数是( ) (A )︒40 (B )︒35 (C )︒25 (D )︒207、如图,一直角三角形纸片,两直角边AC cm =6,BC cm =8,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与线段AE 重合,则CD 等于( ) (A )cm 2 (B )cm 3 (C )cm 4 (D )cm 58、若实数a ,b ,c 满足a b c ++=0,且a b c <<,则函数y ax c =+的图象可能是( )9、将直线y x =2向右平移1个单位后所得图象对应的函数表达式为( )(A )y x =-21 (B )y x =-22 (C )y x =+21 (D )y x =+22 10、甲、乙两队举行一年一度的赛龙舟比赛,两队在比赛时的路 程s (米)与时间t (分)之间的函数关系如图所示,根据图 象判断,下列说法正确的是( )(A )甲队率先到达终点 (B )乙队比甲队少用.02分钟(C )甲队比乙队多走了200米路程(D )比赛中两队从出发到.22分钟时间段,乙队的速度比甲队的速度大二、填空题: 11、3125的平方根是__________________。
【鲁教版】七年级数学上期末试卷(带答案)
一、选择题1.某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是( )A .该调查的方式是普查B .本城市只有40个成年人不吸烟C .本城市一定有20万人吸烟D .样本容量是502.下列调查中,适合采用全面调查方式的是( )A .对南宁邕江水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对市场上某种雪糕质量情况的调查D .对本班45名学生身高情况的调查3.下列调查中,调查方式选择合理的是( )A .为了了解北斗三号卫星零件的质量情况,选择全面调查B .为了了解胜溪湖森林公园全年的游客流量,选择全面调查C .为了了解某品牌木质地板的甲醛含量,选择全面调查D .新冠肺炎疫情期间,为了了解出入某小区的居民的体温,选择抽样调查4.一个密封的长方体容器内装有部分水,液体部分的截面恰好是一个正方形(如图1),液面到容器顶端的距离是6cm .若把该容器横放(如图2),液面到容器顶端的距离是4cm .则这个容器的截面面积是( )A .2112cmB .2160cmC .2216cmD .2280cm 5.已知关于x 的一元一次方程224m x a -+=的解为1x =-,则a m +的值为( ) A .9B .7C .5D .46.现有两堆花生,将第一堆中的3颗花生移动到第二堆后,第二堆的花生数是第一堆花生数的3倍.设第一堆原有m 颗花生,则第二堆的花生原有颗数为( ) A .3m 6-B .3m 3-C .3m 12-D .3m 9-7.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条8.如图,两条直线相交,有一个交点.三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有10条直线相交时,最多有多少个交点( )A .60B .50C .45D .409.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( )A .2cmB .4cmC .2cm 或4cmD .不能确定 10.一个三位数的百位上是a ,十位上是b ,个位上是c ,这个三位数可以表示为( ) A .a b c ++ B .abcC .10010c b a ++D .10010a b c ++11.如图是正方体的平面展开图,每个面上都标有一个汉字,与“爱”字对应的面上的字为( )A .大B .美C .綦D .江12.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F -B G -100米80米60-米50米70-米20米A .240-米B .240米C .390米D .210米二、填空题13.将一个圆分割成三个扇形,若甲、丙两个扇形面积之比为3:2,圆心角∠BOC =120°,则∠AOC =_____°.14.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.15.王老师把几本《数学大世界》给学生们阅读.若每人3本,则剩下3本;若每人5本,则有一位同学分不到书看,只够平均分给其他几位同学.则学生与书本的数量分别是____________;16.如图是由六个正方形组成的长方形,其中正方形A 、B 一样大,其余都不相同.已知中间小正方形的面积是4,则这个长方形的面积是______.17.(1)计算:1517(36)61218⎫⎛+-⨯- ⎪⎝⎭ (2)计算:2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ (3)计算:18050243'-⨯18.如图,第1个图形由4枚棋子摆成,第2个图形由9枚棋子摆成,第3个图形由14枚棋子摆成,…,按照此规律,由399枚棋子摆成的是第________图形.19.计算:1141(1)63793÷-+-= __________ ; 20.如下图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算这个几何体的侧面积为___________c2m.(注意:计算结果保留 )三、解答题21.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.22.甲、乙二人同时从相距1252千米的A地去B地,甲骑车,乙步行.甲每小时的速度比乙每小时的速度的3倍多1千米,甲达到B地后停留45分,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?23.如图1所示,将一副三角尺的直角顶点重合在点O处.(1)①指出∠AOD和∠BOC的数量关系.②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O旋转到如图2的位置.①∠AOD和∠BOC相等吗?说明理由;②指出∠AOC 和∠BOD 的数量关系.24.先化简,再求值:()()2222522225a ab b a ab b -+--+,其中2, 1.a b ==-25.计算:(1)(23)50(3)7-++--;(2)202021(120%)5[1(3)]---÷⨯--.26.如图,是由大小相同的小立方块搭成的几何体,请在方格里画出从左面、上面观察这个图形所看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据抽样调查的有关概念判断即可. 【详解】解:随机调查了50个成年人,是抽样调查,故A 选项不符合题意; 在样本中有40个成年人不吸烟,不是本城市,故B 选项不符合题意;通过样本可以估计有20万人吸烟,不是一定有20万人吸烟,故C 选项不符合题意; 样本容量是50,故D 选项符合题意; 故选:D . 【点睛】本题考查了抽样调查、样本、样本容量等问题,解题关键是深入理解有关概念,细心判断.2.D解析:D 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】解:A .对南宁邕江水质情况的调查适合抽样调查; B .对端午节期间市场上粽子质量情况的调查适合抽样调查;C.对市场上某种雪糕质量情况的调查适合抽样调查;D.对本班45名学生身高情况的调查适合全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、为了了解北斗三号卫星零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项正确;B、为了了解胜溪湖森林公园的游客流量,因为普查工作量大,适合抽样调查,故本选项错误;C、为了了解某品牌木质地板的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;D、新冠肺炎疫情期间,为了了解出入某小区的居民的体温,是精确度要求高的调查,适于全面调查,故本项错误,故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.C解析:C【分析】设长方体的长、宽、分别是a、b,则高是(b+6),根据液体的体积相等列方程,解方程求得b的值,b(b+6)即可得这个容器的截面面积.【详解】解:设长方体的长、宽、分别是a、b,则高是(b+6),根据题意得()()264=+-ab a b b()22224=+-ab a b b22224=+-ab ab ab a2240-=ab ab-=12012b =,这个容器的截面面积是b (b+6)= 12×(12+6)=2216cm . 故选:C . 【点睛】本题考查长方体的体积,一元一次方程的应用,解题的关键是利用液体的体积相等列出方程.5.A解析:A 【分析】根据一元一次方程的概念和其解的概念解答即可. 【详解】解:因为关于x 的一元一次方程224m x a -+=的解为x=-1, 可得: m -2=1,-2+a =4, 解得:m=3,a=6, 所以a+m=6+3=9, 故选:A . 【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.6.C解析:C 【分析】设第二堆原有a 颗花生,根据题意得3(m-3)=a+3,求出a 即可. 【详解】解:设第二堆原有a 颗花生,根据题意得3(m-3)=a+3, 解得:a=3m-12, 故选:C . 【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.7.B解析:B 【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可. 【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B . 【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.8.C解析:C 【分析】根据交点个数的变化规律:n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点,然后计算求解即可. 【详解】解:两条直线相交,最多一个交点, 三条直线相交,最多有三个交点,1+2=3=3(31)2-, 四条直线相交,最多有六个交点,1+2+3=6= 4(41)2-, ……∴n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点, 故10条直线相交,最多有1+2+3+…+9= 10(101)2-=5×9=45个交点, 故选:C . 【点睛】本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键.9.C解析:C 【分析】分点C 在直线AB 上和直线AB 的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可. 【详解】解:①当点C 在直线AB 上时∵M 为AB 中点,N 为BC 中点 ∴AM=BM=12AB=3,BN=CN=12BC=1, ∴MN=BM-BN=3-1=2;②当点C 在直线AB 延长上时 ∵M 为AB 中点,N 为BC 中点 ∴AM=CM=12AB=3,BN=CN=12BC=1, ∴MN=BM+BN=3+1=4综上,MN 的长度为2cm 或4cm . 故答案为C . 【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.10.D解析:D 【分析】百位上的数乘以100得到实际数的大小,十位上的数乘以10得到实际数的大小,个位上的数乘以1得到实际数的大小,即可表示出这个三位数. 【详解】解:百位上是a ,则实际数字是100a , 十位上是b ,则实际数字是10b , 个位上是c ,则实际数字是c , 这个三位数可以表示为10010a b c ++. 故选:D . 【点睛】本题考查列代数式,解题的关键是掌握数字问题列代数式的方法.11.D解析:D 【解析】 【分析】利用正方体及其表面展开图的特点解题.方法比较灵活可让“爱”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察. 【详解】这是一个正方体的平面展开图,共有六个面,其中面“我”与面“美”相对,面“爱”与面“江”相对,“大”与面“綦”相对. 故选D . 【点睛】本题考查了正方体相对两个面上的文字,解题关键是注意正方体的空间图形,从相对面入手,分析及解答问题.12.B解析:B 【分析】根据表格信息,利用有理数的加法运算法则进行计算. 【详解】解:由表可知:100A C -=(米),80C D (米),60D E(米),50E F(米),70F G(米),20G B -=-(米),∴()()()()()()()()1008060507020240A C C D D E E F F G GB A B -+-+-+-+-+-=-=+++-++-=(米). 故选:B . 【点睛】本题考查有理数加法的应用,解题的关键是掌握有理数的加法运算法则.二、填空题13.96【分析】依据各扇形的面积比等于对应的圆心角的度数比求解即可【详解】解:∵甲丙两个扇形面积之比为3:2∠BOC =120°∴甲丙两个扇形d 的圆心角的度数和为240°∴∠AOC =240°×=96°故答解析:96 【分析】依据各扇形的面积比等于对应的圆心角的度数比求解即可. 【详解】解:∵甲、丙两个扇形面积之比为3:2,∠BOC =120°, ∴甲、丙两个扇形d 的圆心角的度数和为240° ∴∠AOC =240°×232+=96°. 故答案为:96. 【点睛】本题主要考查的是扇形统计图圆心角问题,熟练掌握扇形的面积之比等于扇形对应的圆心角之比是解决此题的关键.14.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数然后用总人数乘以不合格所占的百分比即可【详解】解:∵学生总人数=25÷50=50(人)∴不合格的学生人数=50×(1-50-40)=5(人)解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.15.415【分析】设有x名学生根据分书情况列方程即可【详解】解:设有x名学生根据题意列方程得3x+3=5(x-1)解得x=4一共有书3×4+3=15(本)答:学生有4人书有15本;故答案为:415【点睛解析:4,15.【分析】设有x名学生,根据分书情况列方程即可.【详解】解:设有x名学生,根据题意列方程得,3x+3=5(x-1)解得,x=4,一共有书3×4+3=15(本),答:学生有4人,书有15本;故答案为:4,15.【点睛】本题考查了一元一次方程的应用,解题关键是审清题意,恰当的设未知数,找到等量关系列方程.16.572【分析】由中央小正方形面积为4平方厘米可求出小正方形的边长为2厘米设正方形A和B的边长为xcm根据正方形的排列情况以及长方形对边相等列方程求出这个正方形的边长从而求得长方形长和宽进而求出长方形解析:572【分析】由中央小正方形面积为4平方厘米,可求出小正方形的边长为2厘米,设正方形A和B的边长为xcm,根据正方形的排列情况,以及长方形对边相等列方程求出这个正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】解:设A和B两个正方形边长为x厘米,如图,根据长方形对边相等可得:(x+2)+x+x=(x+4)+(x+6),3x+2=2x+10,3x-2x=10-2,x=8;大长方形的长是:3×8+2=26(厘米),宽是8×2+4+2=22 (厘米),面积是26×22=572(厘米2);答:长方形的面积是572cm2.故答案为:572.【点睛】解决此题关键是理解图,找出正方形边长之间的关系,求出长方形的长和宽,进一步用长乘宽求得面积.17.(1)13;(2);(3)【分析】(1)利用乘法分配律进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可【详解】(1)(2)(3)【点睛】本题考查乘法分解析:(1)13;(2)16;(3)2848'.【分析】(1)利用乘法分配律,进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可.【详解】(1)1517()(36)61218+-⨯-()()()1517363636 61218=⨯-+⨯--⨯-6(15)(34)=-+---61534=--+13=(2)2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 111(29)23=--⨯⨯- 11(7)6=--⨯- 16= (3)18050243'-⨯1796015072''=-2848'=.【点睛】本题考查乘法分配律,有理数的混合运算,度分秒的换算,掌握有理数的混合运算的法则以及度分秒的换算方法是得出正确答案的前提.18.80【分析】从图形中可以发现规律第n 个图形需棋子的个数是:5n-1再假设第n 个图形的棋子数为399可列方程即可解得【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚)第2个图形需解析:80【分析】从图形中可以发现规律,第n 个图形需棋子的个数是:5n-1,再假设第n 个图形的棋子数为399,可列方程,即可解得.【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚),第2个图形需棋子的个数是:2×4+1=9(枚),第3个图形需棋子的个数是:3×4+2=14(枚),第n 个图形需棋子的个数是:n×4+(n-1)=5n-1,设第399枚棋子摆成的是第n 个图形5n-1=399解得:n=80故答案为:80.【点睛】本题考查图形的变化,具有规律性,解题的关键是,根据图形发现规律.19.【分析】有理数的混合运算先做小括号里的然后再做括号外面的【详解】解:====故答案为:【点睛】本题考查有理数的混合运算掌握运算顺序和运算法则正确计算是解题关键 解析:165-.【分析】有理数的混合运算,先做小括号里的,然后再做括号外面的.【详解】解:1141(1) 63793÷-+-=1722821() 63636363÷-+-=165() 6363÷-=163 6365 -⨯=1 65 -故答案为:1 65 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和运算法则,正确计算是解题关键.20.3π三、解答题21.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×60500=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)喜爱篮球的有:500×(1-20%-18%-20%-60500×100%)=150人,补全统计图如下:(4)20000×60500=2400(人) 全市本届学生中“最喜欢足球运动”的学生约有2400人.【点睛】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.甲的速度为16千米/小时,乙的速度是5千米/小时【分析】设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,根据二人行走路程之和为A 、B 两地路程的二倍列出方程,解方程即可.【详解】解:设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,由题意得 ()451313+3=252602x x ⎛⎫+-⨯ ⎪⎝⎭, 解得 x=5,3x+1=16,答:甲的速度为16千米/小时,乙的速度是5千米/小时.【点睛】本题考查了一元一次方程的应用,理解题意,找到等量关系是解题关键.23.(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.24.2a ab -,6【分析】先去括号,再合并同类项,最后将值代入即可.【详解】解:原式222255104410a ab b a ab b =-+-+-2a ab =-当2,1a b ==-时,22a -ab=2-2?(-1)=6.【点睛】本题考查整式的加减——化简求值.注意去括号时,括号前面是负号,去掉括号和负号将括号内变号;括号前面是正号,直接去掉括号即可.25.(1)17;(2)725. 【分析】(1)先将同号相加,再计算加法;(2)先计算乘方,同时将除法化为乘法,再计算乘法,最后计算加减法.【详解】解:(1)原式=(-23-3-7)+50=(-33)+50=17;(2)原式=411(19)55--⨯⨯- =-1-(3225-)=-1+32 25=7 25.【点睛】此题考查有理数的混合运算,掌握有理数的计算法则及混合运算的顺序是解题的关键.26.见解析【分析】由已知条件可知,从左面看有3列,每列小正方数形数目从左往右分别为3,2,1,从上面看有3列,每列小正方形数目从左往右分别为3,2,1.据此可画出图形.【详解】解:如图所示:【点睛】本题考查简单组合体的三视图,“长对正,宽相等,高平齐”是画三视图的基本要求.。
【鲁教版】初一数学上期末试卷(含答案)
一、选择题1.下列调查中,适合采用全面调查的是( )A .对中学生目前睡眠质量的调查B .开学初,对进入我校人员体温的测量C .对我市中学生每天阅读时间的调查D .对我市中学生在家学习网课情况的调查 2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( )A .2016年泰兴市八年级学生是总体B .每一名八年级学生是个体C .500名八年级学生是总体的一个样本D .样本容量是500 3.下列调查中,调查方式选择合理的是( )A .为了了解某一批灯泡的寿命,选择全面调查B .为了了解某年北京的空气质量,选择抽样调查C .为了了解神舟飞船的设备零件的质量情况,选择抽样调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查4.某超市有线上和线下两种销售方式,去年10月份该超市线下销售额比线上销售额多a 元,与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%,若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为( )A .12B .611C .59D .475.下列说法中,其中正确的个数有( )①两点之间的所有连线中,线段最短;②倒数等于它本身的数是1-、0、1;③不能作射线OA 的延长线;④单项式3222a b -的系数是2-,次数是7;⑤若a b =,则a b =±;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则3m =±.A .1个B .2个C .3个D .4个6.某商店出售两件衣服,每件售价60元,其中一件赚20%,而另一件赔20%,那么这家商店销售这两件衣服的总体收益情况是( )A .赚了5元B .赔了5元C .赚了8元D .赔了8元 7.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =8.如图,甲、乙两人同时从A 地出发,甲沿北偏东50︒ 方向步行前进,乙沿图示方向步行前进.当甲到达B 地,乙到达C 地时,甲与乙前进方向的夹角∠BAC 为100︒ ,则此时乙位于A 地的( )A .南偏东30︒B .南偏东50︒C .北偏西30︒D .北偏西50︒ 9.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A .42°B .64°C .48°D .24°10.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是( )A .429B .409C .408D .40411.有理数a ,b 在数轴上对应点的位置如图所示,下列选项正确的是( )A .0a b +>B .0ab >C .a b <-D .0b a -> 12.如图,经过折叠可以围成一个长方体的图形有( )A .4个B .3个C .2个D .1个二、填空题13.某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,则养鸡的数量占鸡、鸭、鹅总数的百分比为____.14.若某校有学生4000名,从中随机抽取了40名学生,调查他们每天做作业的时间,结果如下表:每天做作业时间t (时)01t≤<12t≤<23t≤<34t≤<4t>人数7161421则全校学生每天做作业超过3小时的人数约有___________.15.甲、乙两人骑自行车同时同向匀速行驶去距离甲1300米的目的地,乙在甲前面100米处,且甲的速度比乙的速度快.已知甲行驶50秒就能追上乙,且乙行驶300秒就能到达目的地.若甲行驶t秒就能到达目的地,则t=______.16.已知:点A在原点左侧,点B在原点右侧,且点A到原点的距离是点B到原点距离的2倍,15AB=.点P从点A出发,以每秒1个单位长度的速度向点B方向运动;同时,点Q从点B出发,先向点A方向运动,当与点P重合后,马上改变方向与点P同向而行且速度始终为每秒2个单位长度.设运动时间为t秒.①当点P与点Q重合时,t的值为___;②当23AP AQ=时,t的值为____秒.17.如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°.(1)求∠BOC的度数.(2)求∠DOE的度数.18.如图是一个按某种规律排列的数阵,根据数阵的规律,第8行倒数第二个数是______.19.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.20.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的__________.(球的体积计算公式为343V r π=)三、解答题21.新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成如图的频数分布表和频数分布直方图:a .线上垃圾分类知识测试频数分布表 成绩分组 50≤x <60 60≤x <70 70≤x <80 80≤x <90 90≤x <100频数 3 9 m 12 8c .成绩在80≤x <90这一组的成绩为80,81,82,83,83,85,86,86,87,88,88,89根据以上信息,回答下列问题:(1)本次抽样调查样本容量为 ,表中m 的值为 ;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2000人,若达到测试成绩80分为良好,那么估计小明所在的社区良好的人数约为 人;(4)若达到测试成绩前十五名的可以颁发“垃圾分类知识小达人”奖章,已知居民A 的得分为88分,请问居民A 是否可以领到“垃圾分类知识小达人”奖章?22.甲、乙二人同时从相距1252千米的A 地去B 地,甲骑车,乙步行.甲每小时的速度比乙每小时的速度的3倍多1千米,甲达到B 地后停留45分,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?23.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.24.先化简,再求值;()()222232522x xy y x xy y -+--+,其中1x =,2y =-.25.某厂计划每周代工生产某品牌配件700套,平均每天生产100套,但实际每天的产量与计划量相比有误差,下表是某一周的生产量情况(标准产量为每天100套,超产记为正、减产记为负): 星期 一二 三 四 五 六 日 增减 8+ 3- 4- 12+ 7- 5+ 3-(1)根据上表的数据可知该厂星期五生产配件 套.(2)产量最多的一天比产量最少的一天多生产配件 套;(3)该厂实行每周计件工资制,每生产一套配件可得25元,若超额完成任务,则超过部分每套另奖10元;若未完成任务,则低于任务部分每套扣20元,求该厂工人这一周的工资总额.26.补全如图的三视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、对中学生目前睡眠质量的调查,调查范围广适合抽样调查,故A 不符合题意; B 、对进入我校人员体温的测量,人数较少也为确保安全必须进行全面调查,故B 符合题意;C 、对我市中学生每天阅读时间的调查,调查范围广适合抽样调查,故C 不符合题意;D 、对我市中学生在家学习网课情况的调查,调查范围广适合抽样调查,故D 不符合题意;故选:B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A 错误;B. 每一名八年级学生的视力情况是个体,故B 错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C 错误;D. 样本容量是500,故D 正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A .为了了解某一批灯泡的寿命,应该选择抽样调查,不合题意;B .为了了解某年北京的空气质量,选择抽样调查,符合题意;C .为了了解神舟飞船的设备零件的质量情况,应该选择全面调查,不合题意;D .为了了解一批袋装食品是否含有防腐剂,应该选择抽样调查故选:B .【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.B解析:B【分析】设去年10月线上销售额为x 元,则去年总销售额为2x a +()元,今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元,根据“今年10月份的销售总额比去年10月份的销售总额增加了10%”列出方程,解方程求出4x a =,从而得出今年10月份线上销售额与当月销售总额,即可求解.【详解】解:设去年10月线上销售额为x 元,线下销售额为(x +a )元,去年总销售额为2x a +()元,则今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元根据题意得:(2)(110%)135%90%()x a x x a ++=++,解得:4x a =,今年10月线上销售额为4135% 5.4a a ⋅=元,今年10月总销售额为135%490%(4)9.9a a a a ⋅++=元 故5.469.911a a =. 故选B .【点睛】本题考查一元一次方程的应用,根据题意找准等量关系,正确列出一元一次方程是解题的关键.5.C解析:C【分析】根据线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义依次判断.【详解】①两点之间的所有连线中,线段最短,故正确;②倒数等于它本身的数是1-、1,0没有倒数,故该项错误;③不能作射线OA 的延长线,故正确;④单项式3222a b -的系数是2-3,次数是4,故该项错误;⑤若a b =,则a b =±,故正确;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则m=-3,故该项错误; 故正确的有:①③⑤,故选:C .【点睛】此题考查线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义,熟练掌握各部分知识是解题的关键.6.B解析:B【分析】设赚钱的衣服的进价为x 元,赔钱的衣服的进价为y 元,根据售价=成本×(1+利润率),即可得出关于x ,y 的一元一次方程,解之即可得出x ,y 的值,再利用利润=售价−成本,即可求出结论.【详解】解:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,依题意,得:(1+20%)x=60,(1−20%)y=60,解得:x=50,y=75,∴60+60−50−75=−5(元).故选:B.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.A解析:A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 8.A解析:A【分析】直接根据题意得出各角度数,进而结合方向角表示方法得出答案.【详解】解:如图所示:由题意得:∠1=50︒,∠BAC =100︒∴∠2=180°-∠1-∠BAC=180°-50︒-100︒=30︒故乙位于A地的南偏东30︒.故选:A.【点睛】此题主要考查了方向角,正确掌握方向角的表示方法是解题关键.9.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II卷的文字说明10.C解析:C【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数.【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n个三角形需要(2n+1)根火柴棍,n个正方形需要(3n+1)根火柴棍,所以2n+1+3(n-4)+1=2030,解得n=408.故选:C.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律.11.C解析:C【分析】根据有理数a,b在数轴上的位置逐项进行判断即可.【详解】解:由有理数a,b在数轴上的位置可知,b<-1<0<a<1,且|a|<|b|,因此a+b<0,故A不符合题意;ab<0,故B不符合题意;a+b<0,即a<-b,故C符合题意;b<a,即b-a<0,故D不符合题意;故选:C.【点睛】本题考查数轴表示数的意义,有理数的加、减、乘法运算,掌握计算法则是正确判断的前提.12.C解析:C【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:第一个图形,第四个图形都能围成四棱柱;第二个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;故选:C.【点睛】本题考查了展开图折叠成几何体,解题时掌握四棱柱的特征及正方体展开图的各种情形是关键.二、填空题13.25【分析】用扇形图中鸡对应的圆心角除以周角度数即可得【详解】养鸡的数量占鸡鸭鹅总数的百分比为100=25故答案为:25【点睛】本题主要考查扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形的大小解析:25%.【分析】用扇形图中鸡对应的圆心角除以周角度数即可得.【详解】养鸡的数量占鸡、鸭、鹅总数的百分比为90360100%=25%.故答案为:25%.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.14.300【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例【详解】全校学生每天做作业超过3小时的人数约有4000×=300(人)故答案为:300人【点睛】本题考查的是用样本估计总体的知解析:300【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例.【详解】全校学生每天做作业超过3小时的人数约有4000×2+140=300(人),故答案为:300人.【点睛】本题考查的是用样本估计总体的知识.读懂统计图,从统计表中得到必要的信息是解决问题的关键15.【分析】先求出乙的速度再设甲的速度为x米/秒列出方程求出甲的速度进而即可求解【详解】∵乙行驶300秒到达目的地∴乙的速度为:(1300-100)÷300=4(米/秒)设甲的速度为x米/秒由题意得:5解析:650 3【分析】先求出乙的速度,再设甲的速度为x米/秒,列出方程,求出甲的速度,进而即可求解.【详解】∵乙行驶300秒到达目的地,∴乙的速度为:(1300-100)÷300=4(米/秒),设甲的速度为x 米/秒,由题意得:50x=4×50+100,解得:x=6,∴t=1300÷6=6503, 故答案是:6503 【点睛】本题主要考查一元一次方程的实际应用,找到等量关系,列出方程,是解题的关键. 16.或10【分析】①根据点P 与点Q 运动的路程之和等于15列方程求解即可;②先求出点AB 表示的数再按照点Q 往左运动和点Q 往右运动两种情况求解【详解】①当点与点重合时得t+2t=15解得t=5故答案为:5; 解析:307或10 【分析】①根据点P 与点Q 运动的路程之和等于15列方程求解即可;②先求出点A 、B 表示的数,再按照点Q 往左运动和点Q 往右运动两种情况求解.【详解】①当点P 与点Q 重合时,得t+2t=15,解得t=5,故答案为:5;②∵点A 到原点的距离是点B 到原点距离的2倍,15AB =, ∴211510,15533OA OB =⨯==⨯=, ∵点A 在原点左侧,点B 在原点右侧,∴点A 表示的数是-10,点B 表示的数是5,点Q 往左运动时,点P 表示的数是-10+t ,点Q 表示的数是5-2t ,此时AP=t ,AQ=15-2t , 当23AP AQ =时, t=23(15-2t ), ∴t=307; 当点P 与点Q 运动5秒时相遇,点Q 往右运动,此时点P 表示的数是-5+(t-5)=t-10,点Q 表示的数是-5+2(t-5)=2t-15,∴AP=t ,AQ=2t-5, 当23AP AQ =时, t=23(2t-5),∴t=10,综上,当23AP AQ时,t的值为307或10秒,故答案为:307或10.【点睛】此题考查数轴上点的运动问题,数轴上两点之间的距离公式,一元一次方程的应用,正确表示数轴上两点之间的距离及理解相遇问题及追及问题分析是解题的关键.17.(1)∠BOC=50°;(2)∠DOE=45°【分析】(1)由角平分线的定义得∠DOB=∠AOB=70°再由∠BOC=∠BOD﹣∠COD即可得出结果;(2)由角平分线的定义得∠COE=∠BOC=25解析:(1)∠BOC=50°;(2)∠DOE=45°【分析】(1)由角平分线的定义得∠DOB=12∠AOB=70°,再由∠BOC=∠BOD﹣∠COD,即可得出结果;(2)由角平分线的定义得∠COE=12∠BOC=25°,再由∠DOE=∠COE+∠COD,即可得出结果.【详解】解:(1)∵OD平分∠AOB,∴∠DOB=12∠AOB=12×140°=70°,∴∠BOC=∠BOD﹣∠COD=70°﹣20°=50°;(2)∵OE平分∠BOC,∴∠COE=12∠BOC=12×50°=25°,∴∠DOE=∠COE+∠COD=25°+20°=45°.【点睛】本题考查了角平分线的定义、角的计算等知识;熟练掌握角平分线的定义是解题的关键.18.【分析】由数阵规律可知被开方数是连续的自然数根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数可得结论【详解】解:第1行的最后一个数是;第2行的最后一个数是;第3行的最后一个数是;第4行的【分析】由数阵规律可知,被开方数是连续的自然数,根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数,可得结论.【详解】解:第1第2第3;第4∴第8∴第8【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.19.【分析】先根据收费标准列出运算式子再计算有理数的乘法与加减法即可得【详解】由题意得:即他所付的车费是元故答案为:【点睛】本题考查了有理数的乘法与加减法的应用依据题意正确列出运算式子是解题关键解析:36.6【分析】先根据收费标准列出运算式子,再计算有理数的乘法与加减法即可得.【详解】由题意得:()8 2.6143+⨯-,828.6=+,36.6=,即他所付的车费是36.6元,故答案为:36.6.【点睛】本题考查了有理数的乘法与加减法的应用,依据题意,正确列出运算式子是解题关键. 20.23三、解答题21.(1)50;18;(2)见解析;(3)800;(4)可以领到【分析】(1)根据题意,可以得到样本容量,然后即可计算出m 的值;(2)根据频数分布表中的数据和m 的值,可以将频数分布表补充完整;(3)根据题目中的数据,可以得到样本中良好的人数百分比为12+850,进一步即可 估计出小明所在的社区良好的人数;(4)根据题目中的数据,可以得到88分是第多少名,从而可以得到居民A 是否可以领到“垃圾分类知识小达人”奖章.解:(1)由题意可得,随机抽取了50名居民进行线上垃圾分类知识测试.本次抽样调查样本容量为50,表中m 的值为:m=50﹣3﹣9﹣12﹣8=18,故答案为:50,18;(2)由(1)值m 的值为18,由频数分布表可知80≤x <90这一组的频数为12,补全的频数分布直方图如图所示;(3)随机抽取了50名居民进行线上垃圾分类知识测试.达到测试成绩80分为良好,良好的人数有:12+8=20(人)良好的百分比为=20100%=40%50⨯ 2000×40%=800(人),即小明所在的社区良好的人数约为800人,故答案为:800;(4)由题意可得,88分是第10名或者第11名,故居民A 可以领到“垃圾分类知识小达人”奖章.【点睛】本题考查样本和样本容量,频率直方分布图,用样本估计总体,掌握样本和样本容量,频率直方分布图,用样本估计总体等知识是解题的关键.22.甲的速度为16千米/小时,乙的速度是5千米/小时【分析】设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,根据二人行走路程之和为A 、B 两地路程的二倍列出方程,解方程即可.【详解】解:设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,由题意得 ()451313+3=252602x x ⎛⎫+-⨯ ⎪⎝⎭, 解得 x=5,答:甲的速度为16千米/小时,乙的速度是5千米/小时.【点睛】本题考查了一元一次方程的应用,理解题意,找到等量关系是解题关键.23.(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.24.22x y +,5【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:()()222232522x xy y x xy y -+--+2222325224x xy y x xy y =-+-+-22x y =+当1x =,2y =-时,原式()2212=+- 5=【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.(1)93;(2)19;(3)17780元【分析】(1)用100加上-13即可;(2)用最多的星期四的量减去最少的星期五的量,根据有理数的减法运算计算即可; (3)根据规定列出算式,然后根据有理数的混合运算方法进行计算即可求解.【详解】解:(1)100-7=93套,故答案为:93;(2)12-(-7)=19套,故答案为:19;(3)700+8-3-4+12-7+5-3=708套,708×25+8×10=17780元,∴该厂工人这一周的工资总额为17780元.【点睛】本题考查了正数与负数,有理数混合运算的应用,读懂表格数据,根据题意准确列式是解题的关键.26.见解析.【解析】【分析】视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】如图所示;【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册期末试卷
一、选择题:
1.若(-2)*(-3),(-2)*3,(-3)*2,则a 、b 、c 的大小关系是()
A 、a >b >c
B 、c >b >a
C 、c >a >b
D 、a >c >b
2.当2x =-时,代数式1x +|的值是 ( )
A .1-
B .3-
C .1
D .3 3.下列计算正确的是 ( ) A .33a b ab += B .32a a -= C .225235a a a += D .2222a b a b a b -+= 4. 沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )
A B C D
5.多项式12++xy xy 是( )
A .二次二项式
B .二次三项式
C .三次二项式
D .三次三项式 6.数a ,b 在数轴上的位置如图所示,则
a b b a
-+-是( )A 2 B .2b-2a
C .2a-2b
D .0
7. 若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-
C .32x y +>+
D .33
x y >
8. 一个棱柱有12个顶点,所有侧棱长的和为72,则每条侧棱长为()
A 、3
B 、6
C 、12
D 、24 9.把方程0.10.20.710.30.4
x x ---=
的分母化为整数的方程是( ) A.
0.10.20.7134x x ---= B .12710134
x x ---= C .127134
x x
---= D .127101034
x x
---= 10.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察
这个立方体木块看到的数字情况,数字1和5对面的数字的和是 .
A .6
B .8
C .7
D .5
二、填空题
1.在3
2
,0,16中,任取两个数相乘,最小的积是.
2. 小明在超市买一食品,外包装上印有总净含量“(±5)g ”的字样。
小明拿去称
了一下,发现总净含量只有297g 。
则食品
生产厂家(填“有”或“没有”) 欺诈行为。
3.甲数x 的23与乙数y 的1
4
差可以表示为
4.定义a ※b =2a b -,则(1※2)※3
5. 5
2
xy -
的系数是 ,次数是 6.近似数54.25万精确到位。
7.若“!”是一种数学运算符号,并且11,22×1=2,33×2×1=6,44×3×2×1=24,……,
则!
98!
100的值为
8.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .
三、简答题 1、计算:
2( 6.5)(2)(5)5⎛⎫
-+-÷-÷- ⎪⎝⎭
②)3
1()2(6)]9
5()3
2
[()3(2-⨯-÷--+-⨯-
2.先化简,再求值: )441()34(22a a a a +---
其中a =-2。
3.解方程:33
5
252--=--x x x
四、画图
如图所示的几何体是由7个相同的正方体搭成的,从正面、左面、上面观察,分别
画出所看到的几何体的形状图。
五、应用题
1.如图是一个长方体墨水瓶纸盒的平面展
开图,已知纸盒中相对两个面上的数互为相反数。
(1)填空:,; (2)求()·c -()·a +c
a b
+的值。
2.已知x 、y 为有理数,现规定一种新运算▽,满足x ▽y =+1 .
(1)求2▽4的值;
(2)任意选择两个有理数(至少有一个是负数),分别代替x 和y ,计算x ▽y 和y ▽x ;并比较它们的运算结果;
(3)探索a ▽(b +c )与a ▽b +a ▽c 的关系,并用等号或不等号把它们表达出来 .
3.如图是一个粮仓,已知粮仓底面直径为8m,粮仓顶部顶点到地面的垂直距离为9m,粮仓下半部分高为6m,观察并回答下列问题:
(1)粮仓是由两个几何体组成的,他们分别是;
(2)用一个平面去截粮仓,截面可能是(写出一个即可)
(3)如图,将下面的图形分别绕虚线旋转一周,哪一个能形成粮仓?用线连一连;(4)求出该粮仓的容积(结果精确到0.1,∏取3.14)
4.你能很快算出20052吗?
(1)探索规律:152=225,可写成100
×1×(1+1)+25
252=625,可写成100×2×
(2+1)+25
352=1225,可写成100×3×
(3+1)+25
…………
852=7225,可写成.
(2)从第(1)题的结果归纳出:
(105)2.
(3)根据上面的归纳,计算20052.
5.一架飞机飞行在两个城市之间,风速为
每小时24千米,顺风飞行需要2小时50
分钟,逆风飞行需要3小时,求两城市间
距离?
6.粗蜡烛和细蜡烛的长短一样,粗蜡烛可
以点5小时,细蜡烛可以点4小时,如果
同时点燃这两支蜡烛,过了一段时间后,
剩余的粗蜡烛长度是细蜡烛长度的2倍,
问这两支蜡烛已点燃了多少时间?
7.已知某水池有进水管与出水管一根,进
水管工作15小时可以将空水池放满,出水
管工作24小时可以将满池的水放完;对于
空的水池,如果进水管先打开2小时,再
同时打开两管,问注满水池还需要多少时
间?。