高三物理一轮万有引力定律5.5 章末 限时练(清北)
高三物理第一轮复习 学案5 万有引力定律
第5单元 万有引力定律第一部分 知识复习1.万有引力定律(1)内容:任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
(2)公式:F =G221rm m ,其中G =6.67×10-11N ﹒m 2/kg 2(3)万有引力定律适用于一切物体,而公式在中学阶段只能直接用于质点间的万有引力的计算(匀质球体或匀质球壳亦可)。
(4)万有引力是一种场力在空间只要存在有质量的物体,它就会在周围空间建立起引力场。
任何一个有质量的物体进入这个引力场,就会受到万有引力的作用,这是由于进入引力场的物体也在周围空间形成自己的引力场,并通过引力场与其它物体相互作用。
2.地球上物体重力变化的原因 (1)自转的影响当物体位于纬度φ处时万有引力为F =G2RMm向心力为F n =mω2R cos φ 重力mg =φcos 222n n FF F F -+当物体位于赤道时,φ=0°,mg =F -F n =G 2RMm -mω2R cos φ当物体位于两极时,φ=90°,mg =F =G2RMm可见,物体的重力产生于地球对物体的引力,但在一般情况下,重力不等于万有引力,方向不指向地心,由于地球自转的影响,从赤道到两极,物体的重力随纬度的增大而增大。
(2)地面到地心的距离R 和地球密度ρ的影响由于地球是椭球体,质量分布也不均匀,根据F =G 2RMm =ρπGRm 34可知,随着R和ρ的变化,重力也会发生变化。
说明:由于地球自转的影响,从赤道到两极,重力变化为千分之五;地面到地心的距离R 每增加一千米,重力减少不到万分之三。
所以,在近似计算中,mg ≈F 。
3.万有引力定律的应用 (1)重力加速度g =G2)(h R M +(2)行星绕恒星、卫星绕行星做匀速圆周运动,万有引力充当向心力,根据万有引力定律和牛顿第二定律可知 G2rMm =ma n ,又a n =r Tr rv222)2(πω==,则v =rGM ,3rGM =ω,T =GMr32π(3)中心天体的质量M 和密度ρ 由G2rMm =m r T2)2(π可得M =2324GTr π,ρ=2333334TGR rRM ππ=当r =R ,即近地卫星绕中心天体运行时,ρ23GTπ=。
万有引力专题复习高三物理第一轮复习北京30多页
一、有关万有引力定律及其应用
1.对于地球表面附近的物体 Mm G 2 mg (近似) R
2.对于绕地球做圆周运动的卫星
规律
2 Mm v2 4 2 F向 G 2 ma向 m m r m 2 r r r T
3.随地球自转的物体(受支持力)
F向心力<< F万有引力
[ 作业 P46/1] 土星外层上有一个环。为了判断它 是土星的一部分还是土星的卫星群,可以测量 环中各层的线速度 v与该层到土星中心的距离 R 之间的关系来判断:( )
A、 若v∝R,则该层是土星的一部分
B、 若v2∝R,则该层是土星的卫星群
C、 若v∝1/R,则该层是土星的一部分
D、若v2∝1/R,则该层是土星的卫星群
AD
土星
3、关于重力加速度g
• 不同星球表面的重力加速度
Mm G 2 mg R
M g G 2 由星球决定 R
• 地球表面的重力加速度与纬度的关系
随纬度升高重力加速度增大(明确重力与万有 引力的关系)
• 地球表面的重力加速度与高度的关系
Mm / G mg ( R h) 2
g/ R2 g ( R h) 2
1、重力与万有引力的关系?
地球对物体的万有引力中的一个 分力提供给物体随地球自转所需 的向心力。 重力只是万有引力的另一个分 力。所以重力不是万有引力, 但是因为地球吸引而产生的。 纬度越大,越靠近南北两极, 重力越大,重力加速度越大。 假如自转角速度变大,将引起 什么变化? O F引
ω
F向 mg
(1)(2006四川)荡秋千是大家喜爱的一项体育活 动。随着科技的迅速发展,将来的某一天,同学们 也许会在其它星球上享受荡秋千的乐趣。假设你当 时所在星球的质量为M、半径为R,可将人视为质点, 秋千质量不计、摆长不变、摆角小于90°,万有引 力常量为G。那么, • (1)该星球表面附近的重力加速度g等于多少? • (2)若经过最低位置的速度为v0,你能上升的最大 高度是多少?
高三物理一轮复习习题:第五章+万有引力(巩固卷)+Word版缺答案
高三物理第一轮复习第五章《万用引力定律》单元检测(巩固卷)编写人:刘春琴 审核人:吴艳婷班级 姓名 成绩一、单项选择题(共7小题,每小题6分, 共42分)1.如图所示,一飞行器围绕地球沿半径为r 的圆轨道1运动。
经P 点时,启动推进器短时间向前喷气使其变轨,2、3是与轨道1相切于P 点的可能轨道。
则飞行器: ( ) A .变轨后将沿轨道2运动 B .相对于变轨前运行周期变长C .变轨前、后在两轨道上经P 点的速度大小相等D .变轨前、后在两轨道上经P 点的加速度大小相等2.我国自主研制的“北斗”卫星导航系统具有导航、定位等功能,在抗震救灾中发挥了巨大作用.“北斗”系统中两颗质量不相等的工作卫星沿同一轨道绕地心O 做匀速圆周运动,轨道半径为r ,某时刻两颗工作卫星分别位于轨道上的A 、B 两位置,如题图所示.若卫星均沿顺时针方向运行,地球表面的重力加速度为g ,地球半径为R ,o60AOB ∠=,下述说法中正确的是: ( )A.地球对两颗卫星的万有引力相等B.卫星1向后喷气就一定能追上卫星2C.卫星绕地心运动的周期为2D.卫星1由位置A 运动到位置B3.理论研究表明第二宇宙速度是第一宇宙速度的2倍。
火星探测器悬停在距火星表面 高度为h 处时关闭发动机,做自由落体运动,经时间t 落到火星表面。
已知引力常量为G ,火星的半径为R 。
若不考虑火星自转的影响,要使探测器脱离火星飞回地球,则探测器从火星表面的起飞速度至少为: ( ) ABC .11.2km/sD . 7.9km/s 4.2014年11月12日,“菲莱”着陆器成功在67P 彗星上实现着陆,这是人类首次实现在彗星上软着陆,被称为人类历史上最伟大冒险之旅.载有“菲莱”的 “罗赛塔”飞行器历经十年的追逐,被67P 彗星俘获后经过一系列变轨,成功的将“菲莱”着陆器弹出,准确得在彗星3 r表面着陆.如图所示,轨道1和轨道2是“罗赛塔”绕彗星环绕的两个圆轨道,B 点是轨道2上的一个点,若在轨道1上找一点A ,使A与B 的连线与BO 连线的最大夹角为θ,则“罗赛塔”在轨道1、2上运动的周期之比21T T 为:( )A .θ3sinB .31sin θC .θ3sinD 5.2013年12月2日1时30分,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察。
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道表面称量,弹簧测力计读数为F 2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②2322041F R F GMTπ=- (2)“设想地球”的1年与现实地球的1年时间相同 【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断. 解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变. 答: (1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.4.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g =2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅=地球表面的物体受到重力等于万有引力2Mmmg G R =联立解得6T =; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π,所以100222t T V ===πππωωω--;5.一颗绕地球做匀速圆周运动的人造卫星,离地高度为h .已知地球半径为R ,地球表面的重力加速度为g ,万有引力常量为G .求: (1)地球的质量;(2)卫星绕地球运动的线速度.【答案】(1) 2gR G(2)【解析】 【详解】(1)地表的物体受到的万有引力与物体的重力近似相等即:2 GMmmg R= 解得:M =2gR G(2)根据22Mm v G m r r = 其中GgR M 2=,r=R+h解得v =6.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BR hTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+7.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧,引力常量为G.求:(1)A星球做圆周运动的半径R和B星球做圆周运动的半径r;(2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.8.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度v v ==9.地球同步卫星,在通讯、导航等方面起到重要作用。
2019年高考物理一轮复习必刷题练习五 万有引力定律
������ ������������'
2
5.(2015·江苏卷,3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开 了研究太阳系外行星的序幕。“51 peg b”绕其中心恒星做匀速圆周运动,周期约为 4 天,轨道半径约为地 球绕太阳运动半径的
2
4π ������地
( )( )
������地 ������行
3
2
≈1,B 项正确。
������������地2
【答案】B
考点 2 人造地球卫星
1.(2017·全国卷Ⅲ,14)2017 年 4 月,我国成功发射的“天舟一号”货运飞船与“天宫二号”空间实验室完 成了首次交会对接,对接形成的组合体仍沿“天宫二号”原来的轨道(可视为圆轨道)运行。与“天宫二 号”单独运行时相比,组合体运行的( )。 A.周期变大 B.速率变大 C.动能变大 D.向心加速度变大
������
������
的轨道半径为 r,行星的质量为 m,根据 G 2 =ma 可知,轨道半径越大,行星绕太阳做圆周运动的加速度越小,
������������
������ 所以 B 项正确;设行星半径为 R,根据 G 2 =m'g=m' 结合表中数据可知,火星表面的重力加速度和火星的第 ������ ������
3.(2017·北京卷,17)利用引力常量 G 和下列某一组数据,不能计算出地球质量的是( )。 A.地球的半径及地面附近的重力加速度(不考虑地球自转) B.人造卫星在地面附近绕地球做圆周运动的速度及周期 C.月球绕地球做圆周运动的周期及月球与地球间的距离 D.地球绕太阳做圆周运动的周期及地球与太阳间的距离
������������'
高考物理一轮复习万有引力定律专项训练(附答案)
高考物理一轮复习万有引力定律专项训练(附答案)万有引力定律是艾萨克牛顿在1687年于《自然哲学的物理原理》上发表的。
以下是查字典物理网整理的万有引力定律专项训练,请考生认真练习。
一、选择题1.一飞船在某行星表面附近沿圆轨道绕该行星飞行.认为行星是密度均匀的球体,要确定该行星的密度,只需要测量()A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量2.在万有引力常量G已知的情况下,若再知道下列哪些数据,就可以计算出地球的质量()A.地球绕太阳运动的周期及地球离太阳的距离B.人造地球卫星在地面附近绕行的速度和运行周期C.月球绕地球运行的周期及地球半径D.若不考虑地球自转,已知地球半径和地球表面的重力加速度3.我国曾发射一颗绕月运行的探月卫星嫦娥1号.设想嫦娥1号贴近月球表面做匀速圆周运动,其周期为T.嫦娥1号在月球上着陆后,自动机器人用测力计测得质量为m的仪器重力为P.已知引力常量为G,由以上数据可以求出的量有()A.月球的半径B.月球的质量C.月球表面的重力加速度D.月球绕地球做匀速圆周运动的向心加速度二、非选择题4.已知地球质量大约是M=6.01024 kg,地球平均半径为R=6 370 km,地球表面的重力加速度g=9.8 m/s2.求:(1)地球表面一质量为10 kg物体受到的万有引力;(2)该物体受到的重力;(3)比较说明为什么通常情况下重力可以认为等于万有引力.5.假设在半径为R的某天体上发射一颗该天体的卫星,若它贴近天体的表面做匀速圆周运动的周期为T1,已知万有引力常量为G,则该天体的密度是多少?若这颗卫星距该天体表面的高度为h,测得在该处做圆周运动的周期为T2,则该天体的密度又是多少?6.已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1.地球的自转周期T2,地球表面的重力加速度g,某同学根据以上条件,提出一种估算地球质量M的方法:同步卫星绕地心做圆周运动,由G=m2h,得M=.(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果;(2)请根据已知条件再提出两种估算地球质量的方法并解得结果.7.已知地球半径R=6.4106 m,地面附近重力加速度g=9.8 m/s2,计算在距离地面高为h=2.0106 m的圆形轨道上的卫星做匀速圆周运动的线速度v和周期T.(结果保留两位有效数字)1.C [飞船在行星表面附近飞行,则G=m2R,M=,行星的密度为====,即只要知道飞船的运行周期就可以确定该行星的密度.故C 选项正确.]2.BD [已知地球绕太阳运动的情况只能求太阳的质量,A错.由G=m及T=得M=,B对.已知月球绕地球的周期及轨道半径才能求地球的质量,C错.由mg=G得M=,D对.]3.ABC [万有引力提供卫星做圆周运动的向心力,设卫星质量为m,有G=mR,又月球表面万有引力等于重力, G=P=mg 月,两式联立可以求出月球的半径R、质量M、月球表面的重力加速度g月,故A、B、C都正确.]4.(1)98.6 N (2)98.0 N (3)见解析解析 (1)由万有引力定律得F=G,代入数据得F98.6 N.(2)重力G=mg=98.0 N.(3)比较结果,万有引力比重力大,原因是在地球表面上的物体所受到的万有引力可分解为重力和随地球自转所需的向心力.但计算结果表明物体随地球自转所需的向心力远小于物体受到的万有引力,所以通常情况下可认为重力等于万有引力.5.解析设卫星的质量为m,天体的质量为M.卫星贴近天体表面运动时有G=mR,M=根据物理知识可知星球的体积V=R3故该星球密度===卫星距天体表面距离为h时有G=m(R+h),M=6.见解析解析 (1)上面结果是错误的.地球的半径R在计算过程中不能忽略.正确的解法和结果是G=m2(R+h),得M=(2)方法一:对于月球绕地球做圆周运动,由G=m2r,得M=.方法二:在地球表面重力近似等于万有引力,由G=mg得M=.7.6.9103 m/s 7.6103 s解析根据万有引力提供卫星做圆周运动的向心力,即G=m.知v= ①由地球表面附近万有引力近似等于重力,即G=mg,得GM=gR2②由①②两式可得v= =6.4106 m/s6.9103 m/s运动周期T== s7.6103 s万有引力定律专项训练及答案的所有内容就为大家分享到这里,更多精彩内容请考生持续关注查字典物理网最新内容。
高三物理一轮复习习题:第五章+万有引力(后考卷)+Word版缺答案
高三物理第一轮复习第五章《万用引力定律》单元检测(后考卷)编写人:刘春琴 审核人:吴艳婷班级 姓名 成绩一、单项选择题(共9小题,每小题6分, 共54分)1.关于地球的同步卫星下列说法正确的是 ( )A .所有地球的同步卫星一定处于赤道的正上方,但不一定在同一个圆周上B .所有地球的同步卫星离地面的高度相同,但不一定位于赤道的正上方C .所有地球的同步卫星的向心加速度、线速度、角速度、周期一定相同D .所有地球同步卫星的向心加速度大小、线速度大小、角速度和周期一定相等2.若各国的人造地球卫星都在不同的轨道上做匀速圆周运动,设地球的质量为M ,地球的半径为R 地.则下述判断正确的是( )A .各国发射的所有人造地球卫星在轨道上做匀速圆周运动的运行速度都不超过地R GM m /=υB .各国发射的所有人造地球卫星在轨道上做匀速圆周运动的的运行周期都不超过GM /R R 2T m 地地π=C .卫星在轨道上做匀速圆周运动的圆心不一定与地心重合D .地球同步卫星做匀速圆周运动的的运行周期等于GM /R R 2地地π3. 2014年10月,“嫦娥五号试验器”成功发射,标志着我国探月三期工程进人关键阶段。
假设试验器在距月球表面h 处绕月球做匀速圆周运动,周期为T ,向心加速度大小为a ,引力常量为G ,由此可求得月球质量为: ( ) A .34416a T G π B .2224a T G π C .2324h GTπ D .2ah G 4.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星。
假设该行 星质量约为地球质量的6.4倍,半径约为地球半径的2倍。
那么,一个在地球表面能举起64kg物体的人在这个行星表面能举起的物体的质量约为多少(地球表面重力加速度g=10m/s 2): ( )A .40kgB .50kgC .60kgD .30kg5.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星,其中a、c的轨道相交,b、d在同一个圆轨道上,b、c轨道位于同一平面.某时刻四颗人造卫星的运行方向及位置如图所示.下列说法中正确的是( )A.a、c的加速度大小相等,且大于b的加速度B.b、c的角速度大小相等,且小于a的角速度C.a、c的线速度大小相等,且小于d的线速度D.a、c存在相撞危险6.“嫦娥”三号探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道I为圆形。
2022届高三物理一轮复习4:曲线运动和万有引力定律(答案)
2022届高三物理一轮复习4:曲线运动和万有引力定律(参考答案)一、选择题1. 【答案】AD【解析】物体做速率逐渐增加的直线运动时,其加速度跟速度方向一致,故其所受合外力的方向一定与速度方向相同,A 正确;物体做变速率曲线运动时,其所受合外力的方向不一定改变,如做平抛运动的物体,B 错误;物体只有在做匀速率圆周运动时,合外力才全部充当向心力,物体做变速率圆周运动时,只是合外力有指向圆心的分量,但其所受合外力的方向不指向圆心,故C 错误;物体做匀速率曲线运动时,据动能定理可知合外力不做功,故物体所受合外力的方向总是与速度方向垂直,D 正确。
2. 【答案】C【解析】A 、由题意,物体做匀变速曲线运动,则加速度的大小与方向都不变,所以运动的轨迹是一段抛物线,不是圆弧,故A 错误;B 、由题意,质点运动到B 点时速度方向相对A 点时的速度方向改变了90︒,速度沿B 点轨迹的切线方向,则知加速度方向垂直于AB 的连线向下,合外力也向下,质点做匀变速曲线运动,质点由A 到B 过程中,合外力先做负功,后做正功,由动能定理可得,物体的动能先减小后增大,故B 错误;C 、物体的加速度方向垂直于AB 的连线向下,合外力也垂直于AB 的连线向下;由于物体做匀变速曲线运动,由运动的对称性可知在AB 中点处质点的速度最小,其大小为初速度0v 沿AB 方向的分速度,由于到达B 点速度的方向相对A 点时的速度方向改变了90︒,则AB 的连线与A 点速度的方向之间的夹角一定是45︒,如图,可知质点的最小速度:1002cos 452min v v v v ==︒=,故C 正确;D 、物体在B 点速度沿B 点轨迹的切线方向,而加速度方向垂直于AB 的连线向下,可知二者之间的夹角小于90︒,故D 错误; 故选:C 。
3. 【答案】D【解析】设滑块的水平速度大小为v ,A 点的速度的方向沿水平方向,如图将A 点的速度分根据运动的合成与分解可知,沿杆方向的分速度:v 分=vcosα,B 点做圆周运动,实际速度是圆周运动的线速度,可以分解为沿杆方向的分速度和垂直于杆方向的分速度,如图设B 的线速度为v′则:v B 分=v′⋅cosθ=v′cos (90°﹣β)=v′sinβ, 又:v′=ωL又二者沿杆方向的分速度是相等的,即:v 分=v B 分联立可得:v =L sin co s ωβα.故D 正确,ABC 错误4. 【答案】 AC【解析】 物块B 静止于斜面上时,受力平衡,根据平衡条件,物块B 受到的支持力等于其重力垂直于斜面方向的分力,即F N =mg cos α,A 正确;斜面体A 运动位移为x 时,物块B 沿斜面上升位移x ,同时随斜面体向右移动位移x ,两个分位移夹角为π-α,可得合位移为2x ·sin α2,如图所示,当α=60°时,B 的位移为x ,B错误,C 正确;若A 以速度v 匀速运动,则物块B 既以速度v 沿斜面匀速上升,同时随斜面体以速度v 向右匀速运动,两个分速度的夹角为π-α,B 的合速度为2v ·sin α2,D 错误。
高三物理一轮复习万有引力定律 万有引力与航天限时练清北班
5.3人造卫星(清北)一、选择题(每题2分,共60分)1.关于宇宙速度,下列说法正确的是( )A .第一宇宙速度是能使人造地球卫星飞行的最小发射速度B .第一宇宙速度是人造地球卫星绕地球飞行的最小速度C .第二宇宙速度是卫星在椭圆轨道上运行时的最大速度D .第三宇宙速度是发射人造地球卫星的最小速度 2.地球人造卫星绕地球做匀速圆周运动,其飞行速率( ) A .大于7.9km/s B .介于7.9~11.2km/s 之间 C .小于7.9km/s D .一定等于7.9km/s3.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/s4.物体脱离星球引力所需要的最小速度称为第二宇宙速度,第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1。
已知某星球半径是地球半径R 的13,其表面的重力加速度是地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( )A .gRB .13gRC .16gR D .3gR5.如图1所示,在1687年出版的《自然哲学的数学原理》一书中,牛顿设想,抛出速度很大时,物体就不会落回地面,已知地球半径为R ,月球绕地球公转的轨道半径为n 2R ,周期为T ,不计空气阻力,为实现牛顿设想,抛出的速度至少为( )A .2πn 2R T B .2πR T C .2πR nT D .2πn 3RT6.火星表面特征非常接近地球,可能适合人类居住。
2010年,我国志愿者王跃参与了在俄罗斯进行的“模拟登火星”实验活动。
已知火星半径是地球半径的12,质量是地球质量的19,自转周期基本相同。
地球表面重力加速度是g ,若王跃在地面上能向上跳起的最大高度是h ,在忽略自转影响的条件下,下述分析正确的是( )A .王跃在火星表面所受火星引力是他在地球表面所受地球引力的29倍B .火星表面的重力加速度是2g 3C .火星的第一宇宙速度是地球第一宇宙速度的23倍 D .王跃在火星上向上跳起的最大高度是3h27.(多选)在太阳系中有一颗半径为R 的行星,若在该行星表面以初速度v 0竖直向上抛出一物体,上升的最大高度为H ,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计。
高三物理一轮复习万有引力定律 万有引力定律限时练清北班
5.1万有引力定律(清北)一、选择题(每题2分,共60分) 1.下列说法符合史实的是( ) A .牛顿发现了行星的运动规律 B .胡克发现了万有引力定律C .卡文迪许测出了引力常量G ,被称为“称量地球重量的人”D .伽利略用“月—地检验”证实了万有引力定律的正确性2.在牛顿发现太阳与行星间的引力过程中,得出太阳对行星的引力表达式后推出行星对太阳的引力表达式,是一个很关键的论证步骤,这一步骤采用的论证方法是( )A .研究对象的选取B .理想化过程C .控制变量法D .等效法3.关于万有引力,下列说法中正确的是( )A .万有引力只有在研究天体与天体之间的作用时才有价值B .由于一个苹果的质量很小,所以地球对它的万有引力几乎可以忽略C .地球对人造卫星的万有引力远大于卫星对地球的万有引力D .地球表面的大气层是因为万有引力的约束而存在于地球表面附近 4.下列关于万有引力定律的说法中,正确的是( ) ①万有引力定律是卡文迪许在实验室中发现的②相距很远、可以看成质点的两个物体,万有引力定律F =G Mmr 2中的r 是两质点间的距离③对于质量分布均匀的球体,公式中的r 是两球心间的距离④质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力A .①③B .②④C .②③D .①④5.下列说法正确的是( )A .万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的B .F =G m 1m 2r2中的G 是一个比例常数,是没有单位的C .万有引力定律适用于任意质点间的相互作用D .万有引力定律只适用于天体,不适用于地面上的物体6.(多选)对于质量为m 1和m 2的两个物体间的万有引力的表达式F =G m 1m 2r 2,下列说法正确的是( )A .对于质量分布均匀的球体,公式中的r 为两球心间的距离B .公式中的G 是引力常量,它是由实验测出的,而不是人为规定的C .当两物体间的距离r 趋于零时,万有引力趋于无穷大D .m 1和m 2间的万有引力,大小总是相等的7.(多选)关于开普勒对于行星运动规律的认识,下列说法正确的是( ) A .所有行星绕太阳运动的轨道都是椭圆 B .所有行星绕太阳运动的轨道都是圆C .所有行星的轨道的半长轴的二次方跟公转周期的三次方的比值都相同D .所有行星都是在靠近太阳时速度变大8.如图所示,某行星沿椭圆轨道运行,远日点距太阳距离为a,近日点距太阳距离为b,过远日点时行星的速率为v a ,则过近日点时速率v b 为( )A .v b =ba v a B .vb =a b v a C .v b =ab v a D .v b =b av a 9.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积10. 16世纪,哥白尼经过40多年的天文观测和潜心研究,提出“日心说”的如下四个基本论点,这四个基本论点目前看不存在缺陷的是( ) A.宇宙的中心是太阳,所有的行星都在绕太阳做匀速圆周运动B.地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运动的同时还跟地球一起绕太阳运动C.天体不转动,因为地球每天自西向东转一周,造成天体每天东升西落的现象D.与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多11. 把太阳系各行星的运动近似看作匀速圆周运动,比较各行星周期,则离太阳越远的行星( )A .周期越小B .周期越大C .周期都一样D .无法确定12. 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km,公转周期T 1=6.39天。
2023届高考物理一轮复习选择题专练:万有引力定律及其应用+相对论
万有引力定律及其应用 相对论练习1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积2.两个质量均匀的球形物体,两球心相距r 时它们之间的万有引力为F ,若将两球的半径都加倍,两球心的距离也加倍,它们之间的作用力为( )A .2FB .4FC .8FD .16F3.若地球表面处的重力加速度为g ,而物体在距地面3R (R 为地球半径)处,由于地球作用而产生的加速度为g ′,则g ′g 为( )A .1B .19C .14D .1164.对于开普勒行星运动定律的理解,下列说法正确的是( )A .开普勒通过自己长期观测,记录了大量数据,通过对数据研究总结得出了开普勒行星运动定律B .根据开普勒第一定律,行星围绕太阳运动的轨迹是圆,太阳处于圆心位置C .根据开普勒第二定律,行星距离太阳越近,其运动速度越大;距离太阳越远,其运动速度越小D.根据开普勒第三定律,行星围绕太阳运动的轨道半径跟它公转周期成正比5.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D点是弧线ABC和ADC 的中点,下列说法正确的是()A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T 2D.卫星从B经A到D点的运动时间为T 26.太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是() A.10年B.2年C.4年D.8年7.从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为()A .9∶1B .9∶2C .36∶1D .72∶18.火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A .0.2B .0.4C .2.0D .2.59.2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105 s 的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m .已知火星半径约为3.4×106 m ,火星表面处自由落体的加速度大小约为3.7 m/s 2,则“天问一号”的停泊轨道与火星表面的最远距离约为( )A .6×105 mB .6×106 mC .6×107 mD .6×108 m10.科幻大片《星际穿越》是基于知名理论物理学家基普·索恩的黑洞理论,加入人物和相关情节改编而成的.电影中的黑洞花费三十名研究人员将近一年的时间,用数千台计算机精确模拟才得以实现,让我们看到了迄今最真实的黑洞模样.若某黑洞的半径R 约为45 km ,质量M 和半径R 的关系满足M R =c 22G (其中c =3×108 m/s ,G 为引力常量),则该黑洞表面的重力加速度大约为( )A .108 m/s 2B .1010 m/s 2C .1012 m/s 2D .1014 m/s 211.我国将在今年择机执行“天问1号”火星探测任务.质量为m的着陆器在着陆火星前,会在火星表面附近经历一个时长为t 0、速度由v 0减速到零的过程.已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,忽略火星大气阻力.若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( )A .m ⎝ ⎛⎭⎪⎫0.4g -v 0t 0B .m ⎝ ⎛⎭⎪⎫0.4g +v 0t 0C .m ⎝ ⎛⎭⎪⎫0.2g -v 0t 0D .m ⎝ ⎛⎭⎪⎫0.2g +v 0t 0 12.科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M13.2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行,若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径14.(多选)“嫦娥三号”在月球表面释放出“玉兔”号月球车开展探测工作,若该月球车在地球表面的重力为G 1,在月球表面的重力为G 2,已知地球半径为R 1,月球半径为R 2,则( )A .地球表面与月球表面的重力加速度之比为G 1R 22G 2R 21B .地球的第一宇宙速度与月球的第一宇宙速度之比为 G 1R 1G 2R 2C .地球与月球的质量之比为G 1R 22G 2R 21D .地球与月球的平均密度之比为G 1R 2G 2R 1 15.(多选)接近光速飞行的飞船和地球上各有一只相同的铯原子钟,飞船和地球上的人观测这两只钟的快慢,下列说法正确的有( )A .飞船上的人观测到飞船上的钟较快B .飞船上的人观测到飞船上的钟较慢C .地球上的人观测到地球上的钟较快D .地球上的人观测到地球上的钟较慢16.一艘太空飞船静止时的长度为30 m ,他以0.6c (c 为光速)的速度沿长度方向飞行越过地球,下列说法正确的是( )A .飞船上的观测者测得该飞船的长度小于30 mB .地球上的观测者测得该飞船的长度小于30 mC .飞船上的观测者测得地球上发来的光信号速度小于cD .地球上的观测者测得飞船上发来的光信号速度小于c答案:1.C2.D3.D 4. C 5. C 6. D7. B8. B9. C 10. C11. B12. B13. D14.BD15. AC16. B。
高考物理第一轮复习必做练习题:万有引力定律应用
高考物理第一轮复习必做练习题:万有引力定律应用下面就是查字典物理网为大家整理的2021年高考物理第一轮温习必做练习题:万有引力定律运用供大家参考,不时提高,学习更上一层楼。
1.(2021上海黄浦区期末)关于万有引力定律,以下说法正确的选项是()A.牛顿提出了万有引力定律,并测定了引力常量的数值B.万有引力定律只适用于天体之间C.万有引力的发现,提醒了自然界一种基本相互作用的规律D.地球绕太阳在椭圆轨道上运转,在近日点和远日点遭到太阳的万有引力大小是相反的2.太阳系中的八大行星的轨道均可以近似看成圆轨道。
以下四幅图是用来描画这些行星运动所遵照的某一规律的图像。
图中坐标系的横轴是lg,纵轴是lg;这里T和R区分是行星绕太阳运转的周期和相应的圆轨道半径,T0和R0区分是水星绕太阳运转的周期和相应的圆轨道半径。
以下四幅图中正确的选项是()3.关于万有引力定律的物理表达式F=G,以下说法正确的选项是()A.公式中G为引力常量,是人为规则的B.r趋近零时,万有引力趋于无量大C.m1、m2遭到的万有引力总是大小相等D.m1、m2遭到的万有引力总是大小相等、方向相反,是一对平衡力4.一名宇航员离开一个星球上,假设该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受万有引力的()A.0.25倍B.0.5倍C.2.0倍D.4.0倍对点训练:天体质量和密度的计算5.近年来,人类发射的多枚火星探测器曾经相继在火星上着陆,正在停止着激动人心的迷信探求,为我们未来登上火星、开发和应用火星资源奠定了坚实的基础。
假设火星探测器盘绕火星做近地匀速圆周运动,并测得该运动的周期为T,那么火星的平均密度的表达式为(k为某个常数)()A.=kTB.=C.=kT2D.=6.(2021福建高考)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视作半径为r的圆。
万有引力常量为G,那么描画该行星运动的上述物理量满足()A.GM=B.GM=C.GM=D. GM=7.(2021台州模拟)如图2所示是美国的卡西尼号探测器经过长达7年的艰辛游览,进入绕土星飞行的轨道。
河北省石家庄市高三物理一轮复习万有引力定律5-2万有引力与航天限时练清北班
5.2万有引力定律(清北)一、选择题(每题2分,共60分)1.如图所示,在同一轨道平面上的几颗人造地球卫星、、,在某一时刻恰好在同一直线上,下列说法正确的是A.根据,可知三颗卫星的线速度B.根据万有引力定律,可知三颗卫星受到的万有引力C.三颗卫星的向心加速度D.三颗卫星运行的角速度2.a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞的危险3.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大4..(多选)2011年11月26日美国宇航局的“好奇号”火星探测器发射成功,顺利进入飞往火星的轨道以探寻火星上的生命元素.已知质量为m 的探测器在接近火星表面轨道上飞行,可视为匀速圆周运动.火星质量为M ,半径为R ,火星表面重力加速度为g ,引力常量为G ,不考虑火星自转的影响,则探测器的( )A .线速度v = B .角速度ω=C .运行周期T =2πD .向心加速度a =5.(多选)在圆轨道上运动的质量为m 的人造地球卫星,它到地面的距离等于地球半径R ,地面上的重力加速度为g ,则( )A .卫星运动的速度为 B .卫星运动的周期为4πC .卫星运动的加速度为 D .卫星的动能为6.(多选)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两颗卫星轨道均可视为圆轨道.以下判断正确的是( )A .甲的周期大于乙的周期B .乙的速度大于第一宇宙速度C .甲的加速度小于乙的加速度D .甲在运行时能经过北极的正上方7. (多选)下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离rB.月球绕地球运行的周期T 和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T 和轨道半径r8. 已知地球同步卫星离地面的高度约为地球半径的6倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5章末复习(清北)一、选择题(每题2分,共60分) 1.【巩文芳】(多选)如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有()(A )T A >T B (B )E kA >E kB(C )S A =S B (D )答案AD2.【巩文芳】登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响,根据如表,火星和地球相比( )A 火星的公转周期较小B 火星做圆周运动的加速度较小C 火星表面的重力加速度较大D 火星的第一宇宙速度较大3.【巩文芳】国务院批复,自2016年起将4月24日设立为“中国航天日”。
1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440km ,远地点高度约为2060km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35786km 的地球同步轨道上。
设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为A a2>a1>a3B .a3>a2>a1C .a3>a1>a2D .a1>a2>a3 4.【巩文芳】(多选)通过观察冥王星的卫星,可以推算出冥王星的质量。
假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。
这两个物理量可以是A .卫星的速度和角速度B .卫星的质量和轨道半径C .卫星的质量和角速度D .卫星的运行周期和轨道半径5.【巩文芳】假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为:A .B .C .D .6.【巩文芳】宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为A.0B.C.D.7.【巩文芳】我国即将发射“天宫二号”空间实验室,之后发生“神舟十一号”飞船与“天宫二号”对接。
假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是A 、使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B 、使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C 、飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D 、飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接8.【巩文芳】(多选)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。
当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。
据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。
已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是A. 各地外行星每年都会出现冲日现象B. 在2015年内一定会出现木星冲日C. 天王星相邻两次冲日的时间间隔为土星的一半D. 地外行星中,海王星相邻两次冲日的时间间隔最短9.【巩文芳】假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么A.地球公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度10.【巩文芳】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕,“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的,该中心恒星与太阳的质量比约为()A B1 C5 D1011.【巩文芳】(多选)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球,已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1,下列说法正确的有A.探测器的质量越大,脱离星球所需的发射速度越大B.探测器在地球表面受到的引力比在火星表面的大C.探测器分别脱离两星球所需要的发射速度相等D.探测器脱离星球的过程中势能逐渐变大12.【巩文芳】(多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。
已知探测器的质量约为 1.3×109kg,地球质量约为月球的81倍,地球半径为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。
则次探测器A.在着陆前瞬间,速度大小约为8.9m/sB.悬停时受到的反冲作用力约为2×103NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度13.【巩文芳】有a、b、c、d四颗地球卫星,a还未发射,在地球赤道上随地球表面一起转动,b处于地面附近近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星,各卫星排列位置如图2,则有().A.a的向心加速度等于重力加速度gB.c在4 h 内转过的圆心角是C.b在相同时间内转过的弧长最长D.d的运动周期有可能是20 h14.【巩文芳】为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面附近做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧称称量一个质量为m的砝码读数为N。
已知引力常量为G。
则下列计算中错误的是A .该行星的质量为B .该行星的半径为C .该行星的密度为D .该行星的第一宇宙速度为15.【巩文芳】太阳系中某行星A运行的轨道半径为R,周期为T,但科学家在观测中发现,其实际运行的轨道与圆轨道存在一些偏离,且每隔时间t发生一次最大的偏离。
天文学家认为形成这种现象的原因可能是A外侧还存在着一颗未知行星B,它对A的万有引力引起A行星轨道的偏离,假设其运动轨道与A在同一平面内,且与A的绕行方向相同,由此可推测未知行星B绕太阳运行的圆轨道半径为B .C .D .16.【巩文芳】(多选)最近我国连续发射了多颗“北斗一号”导航定位卫星,预示着我国通讯技术的不断提高.该卫星处于地球的同步轨道,假设其离地高度为h,地球半径为R,地面附近重力加速度为g,则有()A.该卫星运行周期为24hB .该卫星所在处的重力加速度是C .该卫星周期与近地卫星周期之比是D .该卫星运动动能是17.【巩文芳】(多选)013年12月2日,嫦娥三号发射取得圆满成功,这标志着我国的航空航天技术又迈进了一大步。
“嫦娥三号”探月卫星沿地月转移轨道到达距月球表面的点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,再经过一次制动进入距月球表面的圆形轨道Ⅱ上绕月球做匀速圆周运动。
则下面说法正确的是()A.由于“刹车制动”,卫星在轨道Ⅱ上运动的周期将比沿轨道Ⅰ运动的周期长B.虽然“刹车制动”,但卫星在轨道Ⅱ上运动的周期还是比沿轨道Ⅰ运动的周期短C.卫星在到达月球附近时需进行第一次“刹车制动”是因为卫星到达月球附近时的速度大于月球卫星的第二宇宙速度D.卫星在轨道Ⅱ上运动的加速度小于沿轨道Ⅰ上运动到 点时的加速度18.【巩文芳】(多选)据报道,2016年2月18日嫦娥三号着陆器玉兔号成功自主“醒来”,嫦娥一号卫星系统总指挥兼总设计师叶培建院士介绍说,自2013年12月14日月面软着陆以来,中国嫦娥三号月球探测器创造了全世界在月工作最长记录。
假如月球车在月球表面以初速度0v 竖直上抛出一个小球,经时间t 后小球回到出发点,已知月球的半径为R ,引力常量为G ,下列说法正确的是( )A 、月球表面的重力加速度为0v tB 、月球的质量为20v Gt RCD19.【巩文芳】2013年12月2日嫦娥三号发射升空,12月14日嫦娥三号探测器在月球表面成功软着陆,下列说法正确的是( )A . 嫦娥三号升空时动能不变,重力势能增加,机械能增加B . 嫦娥三号沿椭圆轨道绕地球飞行,在近月点时动能最大,在远月点时势能最大C . 嫦娥三号沿椭圆轨道绕月球飞行,从近月点向远月点运动时势能转化为动能D . 嫦娥三号探测器接近月面减速下降时,机械能不变20.【魏雪飞】宇航员驾驶飞船环绕一未知星球表面飞行一周用时为T,然后飞船减速降落在该星球表面,宇航员让随身携带的小铁锤从高为处自由下落,得到小铁锤距地面距离随时间变化关系如图,已知万有引力常量为G,根据题中所给信息,判断下列说法中正确的是( )A.可以测出该星球表面的重力加速度B.可以测出该星球的密度C.可以测出该飞船的质量D.可以测出小铁锤撞击地面前一瞬间的速度21. 【闫晓琳】 两颗靠得较近的天体称为双星,它们以两者连线上某点为圆心做匀速圆周运动,因而不会因万有引力作用吸引在一起,下列说法中正确的是( )A .它们所受向心力之比与其质量成正比B .它们做匀速圆周运动的角速度之比是1∶1C .它们做匀速圆周运动的轨道半径之比与其质量成反比D .它们做匀速圆周运动的线速度大小与其质量成反比22.【闫晓琳】 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
若某双星系统中两星做圆周运动的周期为T ,两星总质量为M ,两星之间的距离为r ,两星质量分别为m1、m2,做圆周运动的轨道半径分别为r1、r2,则下列关系式中正确的是( )A .M =2324r GT B .r1=1m M r C .T =2πD .1122 m r m r =23.【闫晓琳】 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的0点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L ,质量之比为m1 : m2 =3 : 2。
则可知( )A .m1 、 m2做圆周运动的线速度之比为3 : 2B .m1做圆周运动的半径为2L/5C .m1 、 m2做圆周运动的向心力大小相等D .m1 、 m2做圆周运动的周期的平方与m1 和 m2的质量之和成反比24. 【乔龙】宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图458所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3Gm R3C .每颗星做圆周运动的周期为2πR33GmD .每颗星做圆周运动的加速度与三星的质量无关25.【乔龙】宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用。