广东省广州市高考数学一轮复习模拟试题精选 专题 空间几何体
广东省广州市重点学校备战高考数学一轮复习立体几何试题精选23【含答案】
立体几何23一、选择题:1.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (c)11π (D)13π 【答案】D【解析】:由圆M 的面积为4π得2MA =,2224212OM =-=OM ⇒=030Rt ONM OMN ∠=中,12ON OM ∴===13N S π∴=圆故选D2.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B.C .10D.【答案】C二、填空题:3.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.4.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 。
5.一个几何体的三视图如图所示(单位:m ),则这个几何体 的体积为__________ 3m 【答案】6π+【解析】由题意知,该几何体为一个组合体,其下面是一个长方体(长为3m,宽为2m, 高为1m),上面有一个圆锥(底面半径为1,高为3),所以其体积为1321363V V ππ+=⨯⨯+⨯=+长方体圆锥.6.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,求球的表面积与该圆柱的侧面积之差是.答案:22R π解析:max 24S r S π=⋅=侧侧时,2222222R r R r r r R =-⇒=⇒=,则222422R R R πππ-=7.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于.8.三棱锥P-ABC 中,PA ⊥底面ABC ,PA=3,底面ABC 是边长为2的正三角形,则三棱锥P-ABC的体积等于______。
广东省广州市重点学校备战高考数学一轮复习立体几何试题精选14【含答案】
立体几何144.已知函数f(x)=-x3+3x2+9x+a,(I)求f(x)的单调递减区间;(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解:(I)f’(x)=-3x2+6x+9.令f‘(x)<0,解得x<-1或x>3,所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,所以f(2)>f(-2).因为在(-1,3)上f‘(x)>0,所以f(x)在[-1, 2]上单调递增,又由于f(x)在[-2,-1]上单调递减,因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有 22+a=20,解得a=-2.故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,即函数f(x)在区间[-2,2]上的最小值为-7.5.如图, 在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=23,AA1=3,AD⊥DC,AC⊥BD, 垂足为E,(I)求证:BD⊥A1C;(II )求二面角A 1-BD -C 1的大小;(III )求异面直线 AD 与 BC 1所成角的大小.(I )在直四棱柱ABCD -AB 1C 1D 1中,∵AA 1⊥底面ABCD .∴ AC 是A 1C 在平面ABCD 上的射影. ∵BD ⊥AC .∴ BD ⊥A 1C ; (II )连结A 1E ,C 1E ,A 1 C 1. 与(I )同理可证BD ⊥A 1E ,BD ⊥C 1E ,∴ ∠A 1EC 1为二面角A 1-BD -C 1的平面角. ∵ AD ⊥DC ,∴ ∠A 1D 1C 1=∠ADC =90°, 又A 1D 1=AD =2,D 1C 1= DC =23,AA 1=3且 AC ⊥BD , ∴ A 1C 1=4,AE =1,EC =3,∴ A 1E =2,C 1E =23, 在△A 1EC 1中,A 1C 12=A 1E 2+C 1E 2, ∴ ∠A 1EC 1=90°, 即二面角A 1-BD -C 1的大小为90°. (III )过B 作 BF //AD 交 AC 于 F ,连结FC 1,则∠C 1BF 就是AD 与BC 1所成的角. ∵ AB =AD =2, BD ⊥AC ,AE =1, ∴ BF =2,EF =1,FC =2,BC =DC ,∴ FC 1=7,BC 1在△BFC 1 中,1cos C BF ∠==∴ ∠C 1BF =即异面直线AD 与BC 1所成角的大小为.6.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;(III)求异面直线AC1与B1C所成角的余弦值.(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,∴ AC⊥BC,且BC1在平面ABC内的射影为BC,∴ AC⊥BC1;7.在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(Ⅰ)证明AB ⊥平面VAD .(Ⅱ)求面VAD 与面VDB 所成的二面角的大小.证明:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………………………1分 建立如图空间直角坐标系,并设正方形边长为1,…………………………2分 则A (12,0,0),B (12,1,0),C (-12,1,0), D (-12,0,0),V (0,0,2),∴1(0,1,0),(1,0,0),(2AB AD AV ===- ………………………………3分由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥……………………………………4分1(0,1,0)(022AB AV AB AV ⋅=⋅-=⇒⊥ ……………………………………5分又AB ∩AV=A∴AB⊥平面VAD…………………………………………………………………………6分。
2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)
新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
高考数学一轮复习《空间几何体》练习题(含答案)
高考数学一轮复习《空间几何体》练习题(含答案)一、单选题1.降水量(precipitation[amount]):从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度.降水量以mm 为单位,气象观测中一般取一位小数,现某地10分钟的降雨量为13.1mm ,小王在此地此时间段内用口径为10cm 的圆柱型量筒收集的雨水体积约为( )(其中π 3.14≈)A .331.0210mm ⨯B .331.0310mm ⨯C .531.0210mm ⨯D .531.0310mm ⨯2.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .()256122cm +B .()248162cm + C .()280122cm + D .()272162cm + 3.阿基米德(Archimedes ,公元前287年-公元前212年)是古希腊伟大的数学家,物理学家和天文学家,在他墓碑上刻着的一个圆柱容器里放了一个球,该球与圆柱的两个底面及侧面均相切,如图所示,则在该几何体中,圆柱表面积与球表面积的比值为( )A .32B .43C .32或23D .234.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )A .33πB .2πC .3πD .4π5.某圆锥的母线长为2,高为423,其三视图如下图所示,圆锥表面上的点M 在正视图上的对应点为A ,圆锥表面上的点N 在侧视图上的对应点为B ,则在此圆锥侧面上,从M 到N 的路径中,最短路径的长度为A .2B .22C .823+D .223- 6.已知某空间几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .323B .163C .4D .87.已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )A .12B .13C .16D .1128.某几何体的三视图如图所示,则该几何体的表面积为( )A .810+16B .40C .810++24D .489.棱长为1的正方体1111ABCD A B C D -中,点E 是侧面11CC B B 上的一个动点(包含边界),则下面结论正确的有( )①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;③在线段1BC 上存在点E ,使直线1A E 与CD .所成的角为30;④当E 在棱1BB 上移动时,1EC ED +的最小值是352+. A .1个 B .2个 C .3个 D .4个10.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为A .4πB .12C .1D .211.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于443+,则球O 的体积等于( )A .3223πB .1623πC .823πD .423π 12.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为A .36B .48C .64D .72二、填空题13.如果用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于____. 14.点A ,B ,C ,D 在同一个球的球面上,3AB BC AC ==,若四面体ABCD 体积的3________.15.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD 32,则此“方锥”的外接球表面积为________. 16.棱长为6的正方体内有一个棱长为x 的正四面体,正四面体的中心(正四面体的中心就是该四面体外接球的球心)与正方体的中心重合,且该四面体可以在正方体内任意转动,则x 的最大值为______.三、解答题17.如图,已知直三棱柱111ABC A B C ,其底面是等腰直角三角形,且22AB BC ==14AC AA ==.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值.18.如图是一个以111A B C为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知11112A B B C==,11190A B C∠=︒,14AA=,13BB=,12CC=,求该几何体的体积.19.如图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.(单位:cm)20.如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是矩形,2PA AB ==,2AD =,过点B 作BE ⊥AC ,交AD 于点E ,点F ,G 分别为线段PD ,DC 的中点.(1)证明:AC ⊥平面BEF ;(2)求三棱锥F -BGE 的体积.21.如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,AC =23,△ADE 为等腰直角三角形,∠AED =90°,平面ADE ⊥平面ABCD ,且EF //AB ,EF =1.(1)证明:AC ⊥平面BDF ;(2)若G 为棱BF 的中点,求三棱锥G —DEF 的体积.22.如图,在三棱锥-P ABC 中,2AB BC ==,22PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.23.如图,在三棱锥S -ABC 中,SA =SC ,D 为AC 的中点,SD ⊥AB .(1)证明:平面SAC ⊥平面ABC ;(2)若△BCD 是边长为3的等边三角形,点P 在棱SC 上,PC =2SP ,且932S ABC V -=,求三棱锥A -PBC 的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,60DAB ∠=︒,7PA PD ==,O F 、分别为AD AB 、的中点,PF AC ⊥.(1)求证:面POF ⊥面ABCD ;(2)求三棱锥B PCF -的体积。
广东广州市2018届高三数学一轮复习模拟试题精选:空间几何体 Word版含答案
空间几何体一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.正方体1111ABCD A BC D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( ) A .三角形B .四边形C .五边形D .六边形【答案】A2.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对 【答案】B3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B .6C .5D .3【答案】A4.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )A .B .C .D .【答案】D5.如图,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G在线段MN 上,且2MG GN = ,现用基向量,,OA OB OC表示向量,设OG xOA yOB zOC =++,则x 、y 、z 的值分别是( )A . x =31,y =31,z =31B . x =31,y =31,z =61C . x =31,y =61,z =31D . x =61,y =31,z =31【答案】D6.点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8中,底边BC P AB BC 到,则点,56==的距离为( )A .54B .3 C .33 D .32【答案】A7.一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中( )A .AB ∥CD B .AB 与CD 相交C .AB ⊥CD D .AB 与CD 所成的角为60°【答案】D8.下列说法正确的是( )A .圆台是直角梯形绕其一边旋转而成;B .圆锥是直角三角形绕其一边旋转而成;C .圆柱不是旋转体;D .圆台可以看作是平行底面的平面截一个圆锥而得到 【答案】D9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m //,则m α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m //【答案】A10.如图,点P 、Q 、R 、S 分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是( )【答案】C11.某几何体的三视图如图所示,则该几何体的体积是( )A .π34 B .2 C .π38D .π310 【答案】A12.已知平面α外的直线b 垂直于α内的二条直线,有以下结论:○1b 一定不垂直于α;○2b 可能垂直于平面α;○3b 一定不平行于平面α,其中正确的结论有( ) A .0个 B .1个C .2个D .3个【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.在空间直角坐标系中,若点(1,2,1),A -点(3,1,4)B --,则||AB = . 【答案】5214.一个几何体的三视图及部分数据如图所示,左视图为等腰三角形,俯视图为正方形,则这个几何体的体积等于 .【答案】1315.四棱锥ABCD P -的三视图如右图所示,四棱锥ABCD P -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为 .【答案】π1216.一个几何体的三视图如下图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为 .【答案】4三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.如图,已知平行四边形ABCD 中,2AD =,CD =,45AD C ∠=︒,AE BC ⊥,垂足为E ,沿直线AE 将BAE ∆翻折成'B AE ∆,使得平面'B AE ⊥平面AECD .连接'B D ,P 是'B D 上的点.(I )当'B P PD =时,求证CP ⊥平面'AB D ;(Ⅱ)当'2B P PD =时,求二面角P AC D --的余弦值.【答案】(1)∵BC AE ⊥,平面⊥'AE B 平面AECD ,∴EC E B ⊥'. 如图建立空间直角坐标系.则)0,1,0(A ,)1,0,0(B ',)0,0,1(C ,)0,1,2(D ,)0,0,0(E ,)21,21,1(P .)1,1,0(-=B A ,)0,0,2(=AD ,)21,21,0(=.∵02121=+-=⋅B A CP ,0=⋅,∴B A CP '⊥,AD CP ⊥.又A AB AD = ,∴⊥CP 平面AD B '.设面PAC 的法向量为),,(z y x n = ,则⎪⎩⎪⎨⎧=-=⋅=+-=⋅003334y x n z y x n.取1==y x ,3-=z ,则)3,1,1(-=n,又平面DAC 的法向量为)1,0,0(=m,∴||cos ,11m n m n m n ⋅<>==.∴二面角D AC P --的余弦值11.18.如图所示,已知BCD ,AB 平面⊥M 、N 分别是AC 、AD 的中点,BC ⊥CD .(I )求证:MN ∥平面BCD ;(II )求证:平面B CD ⊥平面ABC ;(III )若AB =1,BC =3,求直线AC 与平面BCD 所成的角.【答案】 (1)因为,M N 分别是,AC AD 的中点,所以//MN CD . 又MN ⊄平面BCD 且CD ⊂平面BCD ,所以//MN 平面BCD . (2)因为AB ⊥平面BCD , CD ⊂平面BCD ,所以AB CD ⊥. 又CD BC AB BC B ⊥⋂=且,所以CD ⊥平面ABC . 又CD ⊂平面BCD ,所以平面BCD ⊥平面ABC .(3)因为AB ⊥平面BCD ,所以ACB ∠为直线AC 与平面BCD 所成的角.在直角∆ABC中,tan AB ACB BC ∠==30ACB ∠=. 故直线AC 与平面BCD 所成的角为30.19.如图,已知正三棱柱111ABC A B C -各棱长都为a ,P 为线段1A B 上的动点.(Ⅰ)试确定1:A P PB 的值,使得PC AB ⊥;(Ⅱ)若1:2:3A P PB =,求二面角P AC B --的大小;【答案】【法一】(Ⅰ)当PC AB ⊥时,作P 在AB 上的射影D . 连结CD .则AB ⊥平面PCD ,∴AB CD ⊥,∴D 是AB 的中点,又1//PD AA ,∴P 也是1A B 的中点,即1:1A P PB =. 反之当1:1A P PB =时,取AB 的中点D ',连接CD '、PD '.∵ABC ∆为正三角形,∴CD AB '⊥. 由于P 为1A B 的中点时,1//PD A A '∵1A A ⊥平面ABC ,∴PD '⊥平面ABC ,∴AB PC ⊥.(Ⅱ)当1:2:3A P PB =时,作P 在AB 上的射影D . 则PD ⊥底面ABC .作D 在AC 上的射影E ,连结PE ,则PE AC ⊥.∴DEP ∠为二面角P AC B --的平面角.又∵1//PD AA ,∴132BD BP DA PA ==,∴25AD a =.∴60DE AD sin =⋅= ,又∵135PD AA =,∴35PD a =.∴PDtan PED DE∠==P AC B --的大小为60PED ∠= . 【法二】以A 为原点,AB 为x 轴,过A 点与AB 垂直的直线为y 轴,1AA 为z 轴,建立空间直角坐标系A xyz -,如图所示,设(),0,P x z ,则(),0,0B a 、()10,0,A a、2aC ⎛⎫⎪ ⎪⎝⎭.(Ⅰ)由0CP AB ⋅=得(),,0,002a x z a ⎛⎫-⋅= ⎪ ⎪⎝⎭,即02a x a ⎛⎫-⋅= ⎪⎝⎭,∴12x a =,即P 为1A B 的中点,也即1:1A P PB =时,AB PC ⊥.(Ⅱ)当1:2:3A P PB =时,P 点的坐标是23,0,55a a ⎛⎫⎪⎝⎭.取()3,2m =- .则()233,2,0,055a a m AP ⎛⎫⋅=-⋅= ⎪⎝⎭,()3,22a m AC ⎛⎫⋅=-⋅= ⎪ ⎪⎝⎭.∴m 是平面PAC 的一个法向量.又平面ABC 的一个法向量为()0,0,1n = .1,2m n cos m n m n ⋅〈〉==⋅,∴二面角P AC B --的大小是60 .20.一个多面体的直观图和三视图如图所示:(I )求证:PA ⊥BD ;(II )连接AC 、BD 交于点O ,在线段PD 上是否存在一点Q ,使直线OQ 与平面ABCD 所成的角为30o ?若存在,求DQDP的值;若不存在,说明理由.【答案】(I )由三视图可知P-ABCD 为四棱锥,底面ABCD 为正方形,且PA =PB =PC =PD , 连接AC 、BD 交于点O ,连接PO .因为BD ⊥AC ,BD ⊥PO ,所以BD ⊥平面PAC , 即BD ⊥PA .(II )由三视图可知,BC =2,PA =,假设存在这样的点Q ,因为AC ⊥OQ ,AC ⊥OD ,所以∠DOQ 为直线OQ 与平面ABCD 所成的角在△POD 中,PD =OD ,则∠PDO =60o , 在△DQO 中,∠PDO =60o ,且∠QOD =30o .所以DP ⊥OQ .所以OD ,QD =. 所以14DQ DP =. 21.如图,在四梭锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD,AD =2,AB =1.点M 线段PD 的中点.(I )若PA =2,证明:平面ABM ⊥平面PCD ;(II )设BM 与平面PCD 所成的角为θ,当棱锥的高变化时,求sin θ的最大值.【答案】 (Ⅰ)∵PA ⊥平面ABCD ,AD PA ⊥∴.∵点M 为线段PD 的中点,PA= AD =2,AM PD ⊥∴. 又∵⊥AB 平面PAD ,AB PD ⊥∴.⊥∴PD 平面ABM . 又⊂PD 平面PCD ,∴平面ABM ⊥平面PCD .(Ⅱ)设点B 到平面PCD 的距离为d . ∵AB ∥CD, ∴AB ∥平面PCD.∴点B 到平面PCD 的距离与点A 到平面PCD 的距离相等. 过点A 在平面PAD 内作AN ⊥PD 于N,平面ABM ⊥平面PCD ,⊥∴AN 平面PCD .所以AN 就是点A 到平面PCD 的距离. 设棱锥的高为x ,则=d在Rt △ABM 中,22AM AB BM +=4241)2(22222x AP AD PD AB +=++=+=. ∴sin =θ22422232124123244242x x x x xx x xBMd ++=++=++=.因为()222222322123212+=+≥++x x ,当且仅当2232x x=,即x 时,等号成立.故()222222432124sin 222-=+≤++=x x θ.22.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD=DC=4,AD=2,E 为PC 的中点.(I )求证:AD ⊥PC ;(II )求三棱锥P-ADE 的体积;(III )在线段AC 上是否存在一点M ,使得PA//平面EDM ,若存在,求出AM 的长;若不存在,请说明理由.【答案】(I )因为PD ⊥平面ABCD. 所以PD ⊥AD. 又因为ABCD 是矩形, 所以AD ⊥CD. 因为,D CD PD =⋂ 所以AD ⊥平面PCD. 又因为⊂PC 平面PCD , 所以AD ⊥PC.(II )因为AD ⊥平面PCD ,V P-ADE =V A-PDE , 所以AD 是三棱锥A —PDE 的高. 因为E 为PC 的中点,且PD=DC=4, 所以.444212121=⎪⎭⎫⎝⎛⨯⨯⨯==∆A PDC PDE S S又AD=2, 所以.38423131=⨯⨯=⋅=∆-PDE PDE A S AD V (III )取AC 中点M ,连结EM 、DM ,因为E 为PC 的中点,M 是AC 的中点, 所以EM//PA ,又因为EM ⊂平面EDM ,PA ⊄平面EDM , 所以PA//平面EDM. 所以.521==AC AM 即在AC 边上存在一点M ,使得PA//平面EDM ,AM 的长为5.。
广东省广州市重点学校备战高考数学一轮复习立体几何试题精选05
立体几何05二、填空题(共22题) 33.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:______(写出所有正确结论的编号..) ①3; ②4; ③5; ④6; ⑤7解:如图,B 、D 、A 1到平面α的距离分别为1、2、4,则D 、A 1的中点到平面α的距离为3,所以D 1到平面α的距离为6;B 、A 1的中点到平面α的距离为52,所以B 1到平面α的距离为5;则D 、B 的中点到平面α的距离为32,所以C 到平面α的距离为3;C 、A 1的中点到平面α的距离为72,所以C 1到平面α的距离为7;而P 为C 、C 1、B 1、D 1中的一点,所以选①③④⑤。
35.已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =那么,A B 两点的球面距离为_______________,球心到平面ABC 的距离为______________. 解:如右图,因为AC BC ⊥,所以AB 是截面 的直径,又AB =R ,所以△OAB 是等边三角形,所以∠AOB =3π,故,A B 两点的球面距离为3R π, 于是∠O 1OA =30︒,所以球心到平面ABC 的距离OO 1=Rcos30︒=2R .36.棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.解:ππ274233332==⇒=⇒=R S R d37.过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有 条. 解:过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面平行的直线共有6条。
38.如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形, ∠ACB =90︒,AC =6,BC =CC 1,P 是BC 1上一动点,则CP +PA 1AB CD A 1 B 1 C 1D 1αBCB的最小值是___________解:连A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平面内,如图所示,连A 1C ,则A 1C 的长度就是所求的最小值。
广东省广州市普通高中2021高考高三数学第1次模拟试题精选:立体几何01 Word版含答案
立体几何011、假设一个圆锥的轴截面是边长为4cm 的等边三角形 ,那么这个圆锥的侧面积为 2cm 【答案】8π 【解析】因为圆锥的轴截面是边长为4cm 的等边三角形 ,所以母线4l = ,底面半径2r = .所以底面周长24c r ππ== ,所以侧面积为1144822lc ππ=⨯⨯= .2、如下列图 ,一个空间几何体的三视图 ,那么该几何体的体积为俯视图左视图主视图【答案】2323π+【 解析】由三视图可知该几何下面是圆柱 ,上面是四棱锥 .圆柱的底面半径为1 ,高为2 所以圆柱的体积为2π .四棱锥的高为2213-= ,四棱锥底面边长为2 ,所以四棱锥的体积为2123(2)333⨯⨯= ,所以该几何体的体积为2323π+ .3、正方体1111D C B A ABCD -中 ,异面直线C B 1与D C 1所成的角的大小为【答案】【 解析】连结11AC ,1A D ,那么11//AD B C ,所以11D BC ∠为直线1BD 与平面11B BCC 所成的角 ,所以设正方体的边长为 1 ,那么12BC = ,所以1111112tan 22D C D BC BC === ,所以11D BC ∠2arctan2= .4、 三棱锥S ABC -中 ,E 、F 、G 、H 分别为SA 、AC 、BC 、SB 的中点 ,那么截面EFGH 将三棱锥S ABC -分成两局部的体积之比为【答案】1:1【 解析】因为E 、F 、G 、H 分别为SA 、AC 、BC 、SB 的中点 ,所以四边形EFGH 为平行四边形 ,SC 平行平面EFGH 且AB 平行平面EFGH ,且SC 和AB 到平面EFGH 的距离相同 .每一局部都可以可作是一个三棱锥和一个四棱锥两局部的体积和 .如图1中连接DE 、DF ,V ADEFGH =V D ﹣EFGH +V D ﹣EFA :图2中 ,连接BF 、BG ,V BCEFGH =V B ﹣EFGH +V G ﹣CBF E ,F ,G 分别是棱AB ,AC ,CD 的中点 ,所以V D ﹣EFGH =V B ﹣EFGH V D ﹣EFA 的底面面积是V G ﹣CBF 的一半 ,高是它的2倍 ,所以二者体积相等.所以V ADEFGH :V BCEFGH =1:15、正三棱柱的底面正三角形边长为2 ,侧棱长为3 ,那么它的体积=V . 【答案】33【 解析】正三棱柱的底面面积为12222⨯⨯⨯=,所以体积为. 6、假设圆柱的侧面展开图是一个正方形 ,那么它的母线长和底面半径的比值是 .【答案】π2【解析】设圆柱的底面半径为r ,母线为l ,那么2l r π= ,所以2l rπ= .7、假设圆椎的母线cm 10=l ,母线与旋转轴的夹角030=α,那么该圆椎的侧面积为 2cm【答案】50π【 解析】因为线与旋转轴的夹角030=α ,设底面圆的半径为r ,那么010sin305r == .所以底面圆的周长210c r ππ== ,所以该圆锥的侧面积1110105022lc ππ=⨯⨯= .8、123,,l l l 是空间三条不同的直线 ,以下命题中正确的选项是 ( )A 如果1223,l l l l ⊥ ,那么13l l ⊥B 如果1223,l l l l ,那么123,,l l l 共面C 如果1223,l l l l ⊥⊥ ,那么13l l ⊥D 如果123,,l l l 共点 ,那么123,,l l l 共面【答案】A【 解析】根据线面垂直和平行的性质可知 ,A 正确 ,所以选A9、一个圆锥的侧面展开图是一个半径为R 的半圆 ,那么这个圆锥的底面积是________. 【答案】24R π【 解析】因为圆锥的侧面展开图是一个半径为R 的半圆 ,所以圆锥的 ,母线l R =,设圆锥底面圆的半径为r ,那么2r R ππ=,即2R r =,所以圆锥的底面积是222()24R R r πππ==10、,,,A B C D 是空间四点 ,命题甲:,,,A B C D 四点不共面 ,命题乙:直线AC 和BD 不相交 ,那么甲是乙成立的 [答]( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 【答案】A【 解析】假设,,,A B C D 四点不共面 ,那么直线AC 和BD 不共面 ,所以AC 和BD 不相交 .假设直线AC 和BD 不相交 ,AC 和BD 平行时 ,,,,A B C D 四点共面 ,所以甲是乙成立的充分不必要条件 ,选A11、长方体的三条棱长分别为1 ,1 ,2 ,并且该长方体的八个顶点都在一个球的球面上 ,那么此球的外表积为____________.【答案】6π【 解析】因为长方体的八个顶点都在一个球的球面上 ,那么长方体的体对角线为球的直径 ,2r = ,所以球半径2r = ,所以球的外表积为22446r πππ== . 12、m ,n 是两条不同直线 ,βα,是两个不同平面 ,以下命题中的假命题的是 ( )A βαβα//,,则若⊥⊥m mB αα⊥⊥n m n m 则若,,//C n m n m //,,//则若=βααD βαβα⊥⊂⊥则若,,m m【答案】C【 解析】C 中 ,当m β⊂时 ,直线//m n ,当m β⊄时 ,直线//m n 不一定成立 ,所以C 为假命题 ,选C13、假设圆锥的侧面展开图是半径为1cm 、圆心角为180︒的半圆 ,那么这个圆锥的轴截面面积等于【答案】4【 解析】因为半圆的周长为π ,所以圆锥的母线为1 .设圆锥的底面半径为r ,那么2r ππ= ,所以12r =.= ,所以圆锥的轴截面面积为11222⨯⨯= .14、半径为R 的球的球面上有三个点 ,其中任意两点间的球面距离都等于3R π ,且经过这三个点的小圆周长为4π ,那么R = .【答案】【 解析】设三点分别为A 、B 、C ,球心为O ,由题意知∠AOB =∠AOC =∠BOC =3π ,所以AB =BC =CA =R ,所以,小圆周长为24ππ= ,解得R =。
广东省广州市高考数学一轮复习 专项检测试题13 三视图
三视图考查内容:空间图形的三视图,柱体、锥体、球体的体积公式和表面积公式。
1、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( D )A 、9πB 、10πC 、11πD 、12π1、 2、2、已知四棱锥ABCD P -的三视图如图,则四棱锥ABCD P -的全面积为( A )A 、53+B 、52+C 、5D 、43、正视图为一个三角形的几何体可以是 。
(写出三种)三棱锥、三棱柱、圆锥4、一个几何体的三视图如图所示,则这个几何体的体积为 。
1034、5、6、5、若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于 。
答案:6、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 。
7、8、9、解析:由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于=7、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是____3cm 。
答案:1448、如图是一个几何体的三视图,若它的体积是=a 。
答案:333322=⇒=⨯a a 。
9、一个几何体的三视图如图所示,则这个几何体的体积为 。
设几何体的体积为V ,则()1122132V =+⨯⨯=。
10、11、10、设某几何体的三视图如下(单位为m ),则该几何体的体积为 3m 。
答案:311432432V m =⨯⨯⨯⨯=。
11、若某几何体的三视图(单位:cm )如图,则此几何体的体积是 3cm 。
答案:18。
广东省广州市重点学校备战高考数学一轮复习 立体几何
立体几何1119.如图,在长方体1111ABCD A B C D -中,,E P 分别是11,BC A D 的中点,,M N 分别是1,AE CD 的中点,1,2AD AA a AB a ===(Ⅰ)求证://MN 面11ADD A ;(Ⅱ)求二面角P AE D --的大小;(Ⅲ)求三棱锥P DEN -的体积。
点评:本小题主要考察长方体的概念、直线和平面、平面和平面的关系等基础知识,以及空间想象能力和推理能力。
(Ⅱ)设F 为AD 的中点 ∵P 为11A D 的中点 ∴1//PF D D ∴PF ⊥面ABCD 作FH AE ⊥,交AE 于H ,连结PH ,则由三垂线定理得AE PH ⊥,从而PHF ∠为二面角P AE D --的平面角。
在Rt AEF ∆中,17,2,2a AF EF a AE ===,从而221717aa AF EF FH AE a ⋅⋅==在Rt PFH ∆中,117tan DD PF PFH FH FH ∠===故:二面角P AE D --的大小为17(Ⅲ)1222111154244NEP ECD PS S BC CD a a a a∆==⋅=⋅⋅+=矩形作1DQ CD⊥,交1CD于Q,由11A D⊥面11CDD C得11AC DQ⊥∴DQ⊥面11BCD A∴在1Rt CDD∆中,1155CD DDDQ aCD a⋅===∴13P DEN D ENP NEPV V S DQ--∆==⋅215345a a=⋅316a=(Ⅱ)过P作PH AE⊥,交AE于H,取AD的中点F,则,0,02aF⎛⎫⎪⎝⎭设(),,0H x y,则,,,,,022a aHP x y a HF x y⎛⎫⎛⎫=--=--⎪ ⎪⎝⎭⎝⎭u u u r u u u r又,2,02aAE a⎛⎫=-⎪⎝⎭u u u r由0AP AE⋅=u u u r u u u r,及H在直线AE上,可得:2204244a ax ayx y a⎧-+-=⎪⎨⎪+=⎩,解得332,3417x a y a==∴8282,,,,,017171717a a a aHP a HF⎛⎫⎛⎫=--=--⎪ ⎪⎝⎭⎝⎭u u u r u u u r∴0HF AE⋅=u u u r u u u r即HF AE⊥u u u r u u u r∴HPu u u r与HFu u u r所夹的角等于二面角P AE D--的大小cos,21HP HFHP HFHP HF⋅==⋅u u u r u u u ru u u r u u u ru u u r u u u r故二面角P AE D --的大小为221arccos2120.如图,长方体ABCD-1111D C B A 中,E 、P 分别是BC 、11A D 的中点, M 、N 分别是AE 、1CD 的中点, 11AD=A A ,a =Ab=2,a(Ⅰ)求证:11MN//ADD ;A 平面;(Ⅱ)求二面角P AE D --的大小;本小题主要考察长方体的概念、直线和平面、平面和平面的关系等基础知识,以及空间想象能力和推理能力。
广东省广州市重点学校备战高考数学一轮复习 立体几何
立体几何2226.在三棱柱ABC-A1B1C1中,已知AB=AC=AA1BC=4,在A1在底面ABC的投影是线段BC的中点O。
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
【答案】27.平面图形111A B B A C C如图4所示,其中11BB C C 是矩形,12,4B C B B ==,AB AC ==1111A B AC =BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题。
(Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值。
【答案】本题考查平面图形与空间图形的转化,空间直线与直线、直线与平面、平面与平面的位置关系的判定。
空间线段长度和空间角的余弦值的计算等基础知识和基本技能,考查空间想象能力,推理论证能力和求解能力。
【解析】(综合法)28.如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。
【答案】29.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD 的体积.【答案】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE.在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以2AB BG BF BG =====于是PA BF ==又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面。
高三数学一轮复习必备精品:空间几何体 试题
卜人入州八九几市潮王学校2021~2021高三数学〔人A〕第一轮复习资料第8讲空间几何体一.【课标要求】1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的构造特征,并能运用这些特征描绘现实生活中简单物体的构造;2.能画出简单空间图形〔长方体、球、圆柱、圆锥、棱柱等的简易组合〕的三视图,能识别上述的三视图所表示的立体模型,会使用材料〔如:纸板〕制作模型,会用斜二侧法画出它们的直观图;3.通过观察用两种方法〔平行投影与中心投影〕画出的视图与直观图,理解空间图形的不同表示形式;4.完成实习作业,如画出某些建筑的视图与直观图〔在不影响图形特征的根底上,尺寸、线条等不作严格要求〕;比较稳定,题目难易适中,解答题常常立足于棱柱、棱锥和正方体位置关系的证明和夹角间隔的求解,而选择题、填空题又经常研究空间几何体的几何特征和体积外表积。
因此复习时我们要首先掌握好空间几何体的空间构造特征。
培养好空间想才能。
预测2021年高考对该讲的直接考察力度可能不大,但经常出一些创新型题目,详细预测如下:〔1〕题目多出一些选择、填空题,经常出一些考察空间想象才能的试题;解答题的考察位置关系、夹角间隔的载体使空间几何体,我们要想像的出其中的点线面间的位置关系;〔2〕研究立体几何问题时要重视多面体的应用,才能发现隐含条件,利用隐蔽条件解题。
三.【要点精讲】1.柱、锥、台、球的构造特征〔1〕柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公一共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公一共边叫做棱柱的侧棱;侧面与底面的公一共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线棱柱与圆柱统称为柱体;〔2〕锥棱锥:一般的有一个面是多边形,其余各面都是有一个公一共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或者底;有公一共顶点的各个三角形面叫做棱锥的侧面;各侧面的公一共顶点叫做棱锥的顶点;相邻侧面的公一共边叫做棱锥的侧棱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )A .三角形B .四边形C .五边形D .六边形 【答案】A2.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对 【答案】B3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B .6 C .5 D .3 【答案】A4.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )A .B .C .D .【答案】D5.如图,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G在线段MN 上,且2MG GN =,现用基向量,,OA OB OC 表示向量,设OG xOA yOB zOC =++,则x 、y 、z 的值分别是( )A . x =31,y =31,z =31B . x =31,y =31,z =61C . x =31,y =61,z =31D . x =61,y =31,z =31【答案】D6.点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8中,底边BC P AB BC 到,则点,56==的距离为( ) A .54B .3C .33D .32【答案】A 7.一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中( )A .AB ∥CDB .AB 与CD 相交C .AB ⊥CD D .AB 与CD 所成的角为60°【答案】D8.下列说法正确的是( )A .圆台是直角梯形绕其一边旋转而成;B .圆锥是直角三角形绕其一边旋转而成;C .圆柱不是旋转体;D .圆台可以看作是平行底面的平面截一个圆锥而得到 【答案】D9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m //,则m α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m //【答案】A10.如图,点P 、Q 、R 、S 分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是( )【答案】C11.某几何体的三视图如图所示,则该几何体的体积是( )A .π34B .2C .π38D .π310 【答案】A12.已知平面α外的直线b 垂直于α内的二条直线,有以下结论:○1b 一定不垂直于α;○2b 可能垂直于平面α;○3b 一定不平行于平面α,其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在空间直角坐标系中,若点(1,2,1),A -点(3,1,4)B --,则||AB = .【答案】14.一个几何体的三视图及部分数据如图所示,左视图为等腰三角形,俯视图为正方形,则这个几何体的体积等于 .【答案】1315.四棱锥ABCD P -的三视图如右图所示,四棱锥ABCD P -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为 .【答案】π1216.一个几何体的三视图如下图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为 .【答案】4三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.如图,已知平行四边形ABCD 中,2AD =,CD ,45ADC ∠=︒,AE BC ⊥,垂足为E ,沿直线AE 将BAE ∆翻折成'B AE ∆,使得平面'B AE ⊥平面AECD .连接'B D ,P 是'B D 上的点.(I )当'B P PD =时,求证CP ⊥平面'AB D ;(Ⅱ)当'2B P PD =时,求二面角P AC D --的余弦值.【答案】(1)∵BC AE ⊥,平面⊥'AE B 平面AECD ,∴EC E B ⊥'. 如图建立空间直角坐标系.则)0,1,0(A ,)1,0,0(B ',)0,0,1(C ,)0,1,2(D ,)0,0,0(E ,)21,21,1(P . )1,1,0(-='B A ,)0,0,2(=AD ,)21,21,0(=. ∵02121=+-=⋅B A CP ,0=⋅,∴B A CP '⊥,AD CP ⊥.又A AB AD = ,∴⊥CP 平面AD B '.设面PAC 的法向量为),,(z y x n = ,则⎪⎩⎪⎨⎧=-=⋅=+-=⋅003334y x n z y x n.取1==y x ,3-=z ,则)3,1,1(-=n,又平面DAC 的法向量为)1,0,0(=m,∴||311cos ,11m n m n m n ⋅<>==.∴二面角D AC P --的余弦值.18.如图所示,已知BCD ,AB 平面⊥M 、N 分别是AC 、AD 的中点,BC ⊥CD .(I )求证:MN ∥平面BCD ;(II )求证:平面B CD ⊥平面ABC ;(III )若AB =1,BC =3,求直线AC 与平面BCD 所成的角.【答案】 (1)因为,M N 分别是,AC AD 的中点,所以//MN CD . 又MN ⊄平面BCD 且CD ⊂平面BCD ,所以//MN 平面BCD . (2)因为AB ⊥平面BCD , CD ⊂平面BCD ,所以AB CD ⊥. 又CD BC AB BC B ⊥⋂=且,所以CD ⊥平面ABC . 又CD ⊂平面BCD ,所以平面BCD ⊥平面ABC .(3)因为AB ⊥平面BCD ,所以ACB ∠为直线AC 与平面BCD 所成的角. 在直角∆ABC中,tan 3AB ACB BC ∠==.所以30ACB ∠=. 故直线AC 与平面BCD 所成的角为30.19.如图,已知正三棱柱111ABC A B C -各棱长都为a ,P 为线段1A B 上的动点.(Ⅰ)试确定1:A P PB 的值,使得PC AB ⊥;(Ⅱ)若1:2:3A P PB =,求二面角P AC B --的大小;【答案】【法一】(Ⅰ)当PC AB ⊥时,作P 在AB 上的射影D . 连结CD .则AB ⊥平面PCD ,∴AB CD ⊥,∴D 是AB 的中点,又1//PD AA ,∴P 也是1A B 的中点,即1:1A P PB =. 反之当1:1A P PB =时,取AB 的中点D ',连接CD '、PD '.∵ABC ∆为正三角形,∴CD AB '⊥. 由于P 为1A B 的中点时,1//PD A A '∵1A A ⊥平面ABC ,∴PD '⊥平面ABC ,∴AB PC ⊥.(Ⅱ)当1:2:3A P PB =时,作P 在AB 上的射影D . 则PD ⊥底面ABC .作D 在AC 上的射影E ,连结PE ,则PE AC ⊥.∴DEP ∠为二面角P AC B --的平面角.又∵1//PD AA ,∴132BD BP DA PA ==,∴25AD a =.∴360DE AD sin =⋅=,又∵135PD AA =,∴35PD a =.∴PDtan PED DE∠=,∴P AC B --的大小为60PED ∠=. 【法二】以A 为原点,AB 为x 轴,过A 点与AB 垂直的直线为y 轴,1AA 为z 轴,建立空间直角坐标系A xyz -,如图所示,设(),0,P x z ,则(),0,0B a 、()10,0,A a、2a C ⎛⎫⎪⎪⎝⎭.(Ⅰ)由0CP AB ⋅=得(),,0,002a x z a ⎛⎫-⋅= ⎪ ⎪⎝⎭,即02a x a ⎛⎫-⋅= ⎪⎝⎭,∴12x a =,即P 为1A B 的中点,也即1:1A P PB =时,AB PC ⊥.(Ⅱ)当1:2:3A P PB =时,P 点的坐标是23,0,55a a ⎛⎫⎪⎝⎭.取()3,2m =-.则()233,2,0,055a a m AP ⎛⎫⋅=-⋅= ⎪⎝⎭,()3,22a m AC ⎛⎫⋅=-⋅= ⎪ ⎪⎝⎭.∴m 是平面PAC 的一个法向量.又平面ABC 的一个法向量为()0,0,1n =.1,2m n cos m n m n⋅〈〉==⋅,∴二面角P AC B --的大小是60.20.一个多面体的直观图和三视图如图所示:(I )求证:PA ⊥BD ;(II )连接AC 、BD 交于点O ,在线段PD 上是否存在一点Q ,使直线OQ 与平面ABCD 所成的角为30o ?若存在,求DQ DP的值;若不存在,说明理由.【答案】(I )由三视图可知P-ABCD 为四棱锥,底面ABCD 为正方形,且PA =PB =PC =PD , 连接AC 、BD 交于点O ,连接PO .因为BD ⊥AC ,BD ⊥PO ,所以BD ⊥平面PAC ,即BD ⊥PA .(II )由三视图可知,BC =2,PA =,假设存在这样的点Q ,因为AC ⊥OQ ,AC ⊥OD ,所以∠DOQ 为直线OQ 与平面ABCD 所成的角在△POD 中,PD =,OD ,则∠PDO =60o , 在△DQO 中,∠PDO =60o ,且∠QOD =30o .所以DP ⊥OQ .所以OD ,QD =. 所以14DQ DP =. 21.如图,在四梭锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD,AD =2,AB =1.点M 线段PD 的中点.(I )若PA =2,证明:平面ABM ⊥平面PCD ;(II )设BM 与平面PCD 所成的角为θ,当棱锥的高变化时,求sin θ的最大值.【答案】 (Ⅰ)∵PA ⊥平面ABCD ,AD PA ⊥∴.∵点M 为线段PD 的中点,PA= AD =2,AM PD ⊥∴. 又∵⊥AB 平面PAD ,AB PD ⊥∴. ⊥∴PD 平面ABM . 又⊂PD 平面PCD ,∴平面ABM ⊥平面PCD .(Ⅱ)设点B 到平面PCD 的距离为d . ∵AB ∥CD, ∴AB ∥平面PCD.∴点B 到平面PCD 的距离与点A 到平面PCD 的距离相等. 过点A 在平面PAD 内作AN ⊥PD 于N,平面ABM ⊥平面PCD ,⊥∴AN 平面PCD .所以AN 就是点A 到平面PCD 的距离. 设棱锥的高为x ,则=d在Rt △ABM 中,22AMAB BM +=4241)2(22222x AP AD PD AB +=++=+=. ∴sin =θ22422232124123244242x x x x xx x xBMd ++=++=++=.因为()222222322123212+=+≥++x x ,当且仅当2232x x=,即=x 等号成立.故()222222432124sin 222-=+≤++=x x θ.22.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD=DC=4,AD=2,E 为PC 的中点.(I )求证:AD ⊥PC ;(II )求三棱锥P-ADE 的体积;(III )在线段AC 上是否存在一点M ,使得PA//平面EDM ,若存在,求出AM 的长;若不存在,请说明理由.【答案】(I )因为PD ⊥平面ABCD. 所以PD ⊥AD.又因为ABCD 是矩形, 所以AD ⊥CD. 因为,D CD PD =⋂所以AD ⊥平面PCD.又因为⊂PC 平面PCD , 所以AD ⊥PC.(II )因为AD ⊥平面PCD ,V P-ADE =V A-PDE , 所以AD 是三棱锥A —PDE 的高. 因为E 为PC 的中点,且PD=DC=4,所以.444212121=⎪⎭⎫⎝⎛⨯⨯⨯==∆A PDC PDE S S 又AD=2, 所以.38423131=⨯⨯=⋅=∆-PDE PDE A S AD V (III )取AC 中点M ,连结EM 、DM ,因为E 为PC 的中点,M 是AC 的中点,所以EM//PA ,又因为EM ⊂平面EDM ,PA ⊄平面EDM , 所以PA//平面EDM. 所以.521==AC AM 即在AC 边上存在一点M ,使得PA//平面EDM ,AM 的长为5.。