Microstructure evolution in hot worked and annealed magnesium alloy AZ31

合集下载

多尺度铝合金微观组织演变模型研究进展

多尺度铝合金微观组织演变模型研究进展

多尺度铝合金变形组织演变建模研究进展1王冠1,2,卞东伟1,寇琳媛1,易杰2,刘志文2,李落星2(1.宁夏大学机械工程学院,银川750021;2.湖南大学,汽车车身先进设计制造国家重点实验室,长沙410082;)摘要:铝合金在热成型过程中,微观组织会发生晶粒长大、晶粒不均匀变形、动态再结晶等一系列复杂的演化,而这些材料内部微观结构的改变,会直接影响到铝合金的综合性能。

通过掌握变形过程中微观组织演变的物理本质,来达到控制微观组织及产品性能的目的,已经越来越受到材料研究者的重视。

本文综述了铝合金变形组织演变建模的研究现状,重点介绍了多尺度模拟方法,同时指出了研究中存在的问题,展望了铝合金变形组织演变建模的发展趋势。

关键词:铝合金;微观组织演变;多尺度建模;热压缩变形;Research Progress in Multi-scale modelling of microstructure evolution during hot deformation ofaluminum alloyWANG Guan1,2, BIAN Dong-wei1, KOU Lin-yuan1, YI Jie2, LIU Zhi-wen2, LI Luo-xing2(1.College of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;2.State Key Laboratory of Advanced Design and Manufacture for Vehicle body, Hunan University,Changsha 410082;)Abstract:During the hot forming process of aluminum alloy, microstructure will occur in a series of complex evolution such as grain growth, inhomogeneous deformation, dynamic recrystallization and which will directly affect the comprehensive properties of aluminum alloy. By mastering the physical essence of the microstructure evolution during heat deformation, to achieve the purpose of controlling the microstructure and the properties of the products has been paid more and more attention by the researchers of materials. This paper summarizes the research status quo of modelling of microstructure evolution during hot deformation of aluminum alloy, especially for the multi-scale simulation method, and points out the problems existing in current research and forecast the development trend of modelling of microstructure evolution during hot deformation of aluminum alloy.Key words: Aluminum alloy; Microstructure evolution; Multi-scale modelling; Hot compression deformation;铝合金具有密度低、比强度高、耐腐蚀性好、可循环利用等优点,被公认为汽车轻量化的理想材料。

ti6al4v合金不同热处理态下显微组织分析

ti6al4v合金不同热处理态下显微组织分析

毕业设计(论文)开题报告题目:Ti6Al4V合金不同热处理态下显微组织分析2011年3月5日1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)1.1研究背景1.1.1钛合金的发展钛是20世纪50年代发展起来的一种重要的结构金属,它是第四周期第四族中的过渡元素,钛的比重在20℃时为4.5g/cm3,介于铝(2.7g/cm3)和铁(7.6g/cm3)之间,但比强度高于铝和铁。

经过适当的热处理后其强度可以达到1500MPa以上,这对于钢来说,在制作工艺上是非常难以达到的。

正是由于钛及钛合金所具有的密度小、高比强度、耐高温、耐腐蚀、无磁、透声、抗冲击振动及生物相容性好等良好的综合性能,而在航空、航天、国防、民用、体育及生物医学等各个领域开辟了广阔的应用前景[1,2]。

自海绵钛工业化以来,钛在工业上的广泛应用推动了钛工业的迅速发展,钛的生产能力正在逐年提升,并将陆续超过铅、锌、铜成为名副其实的第三金属。

世界上已探明的钛资源(以TiO计)共有2418亿吨,具有经济开采价值的探明储2量 (经济储量 )13182亿吨。

然而,由于冶炼困难,必须使用氯气与惰性气体或者在真空中进行,海绵钛的生产国至今仍限于日本、美国、俄罗斯和中国[3]。

钛及钛合金的高速发展,是与航空和航天技术的发展以及本身所特有的优异性能是分不开的。

如20世纪50~60年代,钛及钛合金的研究刚起步时主要是发展航空发动机用的高温钛合金和机体用的结构钛合金;70年代开发出一批耐蚀钛合金;80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。

钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构。

1.1.2钛合金的制备技术钛合金材料的生产技术已达到较高水平,近年在技术量变上不断取得一定进展。

在钛合金传统的熔炼、铸造和成型工艺技术基础上开发并应用了不少新工艺、新技术。

在熔炼方面,冷床炉熔炼技术已成功应用于工业化生产,能熔炼25t重的无偏析和夹杂铸锭。

Microstructural evolution

Microstructural evolution

(Received 19 August 1997; accepted 22 October 1997)
Abstract Calcium aluminate bonded alumina-spine1 castable refractories have been fabricated with in-situ spine1 formation. Spine1 formation occurs between 1200 and 1400°C with a net-like morphology inter-linked with CaO-MgO-AIIOjrSiOZ phases. Spine1 generated at 1400°C is nearly stoichiometric but at higher temperatures it progessively enriches in AIzO+ The calcium aluminate phases in the cement bond react to form platey CA6 crystals between 1200 and 1400°C which coexist with the spine1 and penetrate and bond to tabular alumina grains. The potential e#ect of these morphologies on properties is discussed. 0 1998 Elsevier Science Limited. All rights reserved
*On secondment from Montanuniversitat tAIso KSR International Ltd., Beauchief,

高纯无氧铜的晶界迁移行为及其晶粒长大机制

高纯无氧铜的晶界迁移行为及其晶粒长大机制

高纯无氧铜的晶界迁移行为及其晶粒长大机制高纯无氧铜的晶界迁移行为及其晶粒生长机制1. 引言高纯无氧铜是一种重要的工程材料,具有良好的导电性和热导性。

在制造电子设备、电力传输系统和化学工艺装备等领域具有广泛的应用。

高纯无氧铜的性能主要由其晶界迁移行为和晶粒生长机制决定。

本文旨在探讨高纯无氧铜的晶界迁移行为及其晶粒生长机制。

2. 高纯无氧铜的晶界迁移行为晶界迁移是指晶界位置在固态材料中发生改变的过程。

高纯无氧铜中,晶界迁移由两个主要因素驱动:体动力学效应和力学应力。

体动力学效应是指晶界迁移是由于原子在固态材料中的扩散运动,主要受温度和时间的影响。

力学应力是指晶界迁移是由于外部应力的作用,如热循环等。

晶界迁移过程中,晶界位置的变化使得晶粒的形状和尺寸发生改变。

3. 高纯无氧铜的晶粒生长机制晶粒生长是指晶体中的晶粒逐渐增长并形成较大晶粒的过程。

在高纯无氧铜中,晶粒生长的主要机制有两种:晶界扩散和气液固相变。

晶界扩散是指晶界附近的原子扩散,使得晶界迁移速率增加并促进晶粒生长。

气液固相变是指在高纯无氧铜中气体的溶解和析出,从而引发晶界迁移和晶粒生长。

4. 高纯无氧铜晶界迁移行为的研究方法为了研究高纯无氧铜的晶界迁移行为,研究者使用了多种实验方法和理论模型。

实验方法包括金相显微镜观察、原子力显微镜观察、电子背散射衍射等。

这些实验方法可以直接观察晶界的迁移过程和晶粒的生长过程。

理论模型主要是基于晶界迁移的动力学模型,如弥散选择模型和非饱和模型。

5. 高纯无氧铜晶粒生长机制的研究方法高纯无氧铜晶粒生长机制的研究主要使用了相场模型和分子动力学模拟。

相场模型是通过数学模拟晶粒长大的过程,可以研究晶粒的形状和尺寸变化。

分子动力学模拟是通过计算原子之间的相互作用力和位移,模拟晶粒生长的过程。

这些模拟方法可以预测晶粒长大的趋势和速率。

6. 结论通过对高纯无氧铜晶界迁移行为及其晶粒生长机制的研究,我们可以更好地理解并控制高纯无氧铜的性能。

Zener-Hollomon参数对Cr4Mo4Ni4V高合金钢热变形行为的影响

Zener-Hollomon参数对Cr4Mo4Ni4V高合金钢热变形行为的影响

第52卷第2期2021年2月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.52No.2Feb.2021Zener-Hollomon 参数对Cr4Mo4Ni4V 高合金钢热变形行为的影响马少伟1,3,张艳1,3,杨明1,2,3,李波2(1.贵州大学材料与冶金学院,贵州贵阳,550025;2.贵州电力科学研究院,贵州贵阳,550025;3.贵州大学高性能金属结构材料与制造技术国家地方联合工程实验室,贵州贵阳,550025)摘要:依据热模拟压缩实验结果,研究Cr4Mo4Ni4V 高合金钢在变形温度为950~1100℃、应变速率为0.001~1s −1条件下的热变形行为。

基于Zener-Hollomon 参数(Z 参数)建立Arrhenius 本构方程,并表征不同应变条件下材料常数(α,n ,Q 和ln A )的变化规律,证实所建立的本构模型具有较高的预测精度。

此外,利用Z 参数建立动态再结晶的临界模型,并结合微观组织在热变形中的演化规律,获得Z 参数影响微观组织变形机制和软化行为的基本规律。

研究结果表明:在高温低应变速率下,材料的流变应力较低,且呈现出明显的动态再结晶特征;在高ln Z (≥45.11)条件下,绝热剪切带和混晶是主要的微观组织形态;而在38.80≤ln Z ≤43.40时,微观组织是以动态再结晶的形式发生软化和细化,且随着Z 参数的减小,动态再结晶体积分数相应增加;而较小的ln Z (36.49)会导致再结晶晶粒粗化,不利于热加工。

据此,获得的相关结论能够为Cr4Mo4Ni4V 高合金钢热加工工艺的制定提供参考。

关键词:Cr4Mo4Ni4V 高合金钢;本构方程;Zener-Hollomon 参数;临界应变;微观组织演变中图分类号:TG142.1文献标志码:A文章编号:1672-7207(2021)02-0376-13Effect of Zener-Hollomon parameters on hot deformationbehavior of Cr4Mo4Ni4V high alloy steelMA Shaowei 1,3,ZHANG Yan 1,3,YANG Ming 1,2,3,LI Bo 2(1.School of Materials and Metallurgy,Guizhou University,Guiyang 550025,China;2.Guizhou Electric Power Research Institute,Guiyang 550025,China;3.National &Local Joint Engineering Laboratory for High-performance Metal Structure Material and AdvancedManufacturing Technology,Guizhou University,Guiyang 550025,China)DOI:10.11817/j.issn.1672-7207.2021.02.006收稿日期:2020−04−20;修回日期:2020−06−24基金项目(Foundation item):贵州省教育厅工程研究中心项目([2017]016);贵州省自然科学基金重点资助项目([2020]1Z046)(Project([2017]016)supported by the Engineering Research Center Program of Education Department of Guizhou Province;Project([2020]1Z046)supported by the Key Program of Natural Science Foundation of Guizhou Province)通信作者:杨明,博士,副教授,从事金属材料加工及力学行为研究;E-mail :**************.cn引用格式:马少伟,张艳,杨明,等.Zener-Hollomon 参数对Cr4Mo4Ni4V 高合金钢热变形行为的影响[J].中南大学学报(自然科学版),2021,52(2):376−388.Citation:MA Shaowei,ZHANG Yan,YANG Ming,et al.Effect of Zener-Hollomon parameters on hot deformation behavior of Cr4Mo4Ni4V high alloy steel[J].Journal of Central South University(Science and Technology),2021,52(2):376−388.第2期马少伟,等:Zener-Hollomon参数对Cr4Mo4Ni4V高合金钢热变形行为的影响Abstract:Based on the results of the thermal simulation compression test,the hot deformation behavior of Cr4Mo4Ni4V high alloy steel was investigated in terms of deformation temperature(950−1100°C)and strain rate(0.001−1s−1).Meanwhile,the Arrhenius constitutive equation was established and the variation law of the materialconstants(α,n,Q and ln A)under different strain conditions was characterized based on the Zener-Hollomon parameter(Z),which confirms that the constitutive equation has high prediction accuracy.In addition,the critical model of dynamic recrystallization assisted by using Z-parameter and microstructure evolution characterization in hot deformation was performed to acquire the basic law,which reflects the effect of Z parameter on the deformation mechanism and softening behavior of microstructure.The results show that the flow stress of the material is low and shows obvious dynamic recrystallization characteristics at high temperature and low strain rate.When ln Z is high(≥45.11),the adiabatic shear band and mischcrystal structure are the main microstructure features,when38.80≤ln Z≤43.40,the microstructure presents softening and refining characterization in the form of dynamic recrystallization,and the volume fraction of dynamic recrystallization increases with the decrease of Z parameter.However,the low ln Z(36.49)will lead to the coarsening of recrystallized grains and have detrimental effect on hot processing.So the relevant conclusions can provide a reference for the regulation of the hot processing technology of Cr4Mo4Ni4V high alloy steel.Key words:Cr4Mo4Ni4V high alloy steel;constitutive equation;Zener-Hollomon parameter;critical strain;microstructure evolution近年来,航空工业的快速发展对航空发动机轴承的力学性能和服役寿命提出了更高的要求,而控制轴承部件的热加工组织将是提高其力学性能的重要方法[1]。

金属基自润滑复合材料固体润滑剂研究进展

金属基自润滑复合材料固体润滑剂研究进展

第47卷第5期燕山大学学报Vol.47No.52023年9月Journal of Yanshan UniversitySept.2023㊀㊀文章编号:1007-791X (2023)05-0398-13金属基自润滑复合材料固体润滑剂研究进展邹㊀芹1,2,王㊀鹏1,徐江波1,李艳国2,∗(1.燕山大学机械工程学院,河北秦皇岛066004;2.燕山大学亚稳材料制备技术与科学国家重点实验室,河北秦皇岛066004)㊀㊀收稿日期:2022-05-25㊀㊀㊀责任编辑:唐学庆基金项目:丹凤朝阳人才支持计划(丹人才办[2019]3号);河北省高等学校科学研究重点项目(ZD2021099)㊀㊀作者简介:邹芹(1978-),女,安徽淮北人,博士,教授,博士生导师,主要研究方向为超硬及特种陶瓷材料㊁摩擦磨损;∗通信作者:李艳国(1978-),男,河北唐山人,博士,副研究员,主要研究方向为金属基复合材料,Email:lyg@㊂摘㊀要:固体润滑剂在金属基自润滑复合材料中的应用正在迅速增加,特别是在极端环境(高温㊁高负载等)条件下工作的耐磨材料㊂目前,金属基自润滑复合材料中常使用的固体润滑剂主要有无机层状固体润滑剂㊁金属及其化合物㊁MAX 金属陶瓷㊁有机物固体润滑剂㊁碳纳米材料固体润滑剂㊁多元复合固体润滑剂等,其种类很多,且各自有其适用的环境和基体㊂根据基体材料以及工况环境选择相匹配的固体润滑剂,可以保证金属基自润滑复合材料具有良好的减摩耐磨效果㊂针对上述内容,本文综述了金属基自润滑复合材料采用的固体润滑剂种类㊁基本性质㊁优缺点㊁润滑机理,总结了固体润滑剂的适用温度及其在金属基自润滑复合材料中的应用情况,并对金属基自润滑复合材料固体润滑剂的发展趋势进行了展望㊂关键词:金属基自润滑复合材料;固体润滑剂;润滑机理;研究进展;展望中图分类号:TB331㊀㊀文献标识码:A㊀㊀DOI :10.3969/j.issn.1007-791X.2023.05.0030㊀引言固体润滑剂[1]是金属基自润滑复合材料的重要组成部分,在金属基自润滑复合材料中的应用具有很长的历史㊂早在19世纪初期[2-3],石墨和Pb 已经作为润滑剂用于低速运转的机器上㊂20世纪30年代,添加固体润滑剂的铁基自润滑轴承在德国出现㊂20世纪60年代,添加MoS 2的金属基自润滑复合材料逐渐产生,并对超音速飞机的问世起到了重要的推动作用[4]㊂到目前为止,由于固体润滑剂可在一些特殊工况下(见表1)起润滑作用,这对高新技术的发展起到了重要的推动作用[5]㊂金属基自润滑复合材料固体润滑剂种类很多,包括无机层状固体润滑剂㊁金属及其化合物㊁MAX 金属陶瓷㊁有机物固体润滑剂㊁多元复合固体润滑剂等,其各有优缺点,且仍处于不断发展阶段㊂表1㊀固体润滑剂的适用场景Tab.1㊀Applicable scenaries of solid lubricants适用场景具体应用高负载滑动场景重型机械中的摩擦部件高温环境下磨损场景航空航天发动机㊁导弹燃油泵等摩擦部件强辐射环境下摩擦场景核电站㊁卫星等设备上的裸露活动部件强腐蚀性介质中摩擦场景化学反应器轴承,压缩机螺丝等部件摩擦接触表面导电场景电刷㊁受电弓滑板等灰尘或碎片环境中工作场景矿山机械和织机机械中的摩擦部件需要保证清洁的摩擦场景食品机械㊁纺织机械等摩擦部件微颤环境下的摩擦场景汽车和飞机上的摩擦部件1㊀无机层状固体润滑剂1.1㊀石墨石墨价格低廉,在潮湿环境中由于水的氢离第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展399㊀子和氢氧根离子的饱和导致层间范德华键减弱,从而促进了层间分裂,在金属表面形成一层具有减摩作用的润滑膜[6],使得其可在潮湿环境提供有效润滑㊂目前,石墨作为金属基自润滑复合材料固体润滑剂的研究主要集中在改善不同钢种在不同工业应用中的摩擦磨损性能上,而制备时石墨与部分金属基体(Cu㊁Al等)润湿性较差,导致两者界面结合变差,影响复合材料的力学性能以及摩擦学性能,另外使用过程中产生的高温会导致石墨氧化和烧蚀,严重影响润滑效果[6-8]㊂对石墨进行金属化改性,如采用金属(Ni㊁Cu等)包覆石墨的办法,能有效改善石墨与基体的界面结合,同时防止石墨氧化和腐蚀,改善石墨高温润滑效果,从而提高复合材料摩擦学性能,扩大使用范围㊂张鑫等[9]采用Cu包覆石墨制备了Cu基粉末冶金摩擦材料,其材料表面形成的摩擦膜主要为氧化膜,而采用普通石墨时,由于材料表面较多的石墨会抑制氧化反应,会形成石墨膜,其对材料表面的保护效果不及氧化膜㊂但相对于原基体,两种材料摩擦性能均有明显提高㊂Zhao等[10]证明了石墨与青铜无法充分润湿,而加入Ni或Cu包覆石墨的复合材料可以明显提高石墨与基体的结合性,Ni包覆石墨青铜基材料具有更稳定的摩擦系数㊁更低的磨损率㊁更高的维氏硬度,包覆石墨的Ni也可以提高复合材料的耐蚀性㊂牛志鹏等[11]发现加入镀Ni石墨可以降低石墨与Al的润湿角,提高基体的力学性能,降低复合材料的摩擦系数和磨损率,使金相组织变得更加致密㊂但石墨表面光滑且亲水性差,难以实现完全包覆㊂罗虞霞等[12]发现,采用机械化整形处理石墨表面,可以获得更为完整的Ni包覆层㊂冀国娟等[13]发现,在石墨表面进行微氧化以及在化学包覆反应溶液中加入醇类表面活性剂,均可提高包覆率㊂综上,采用金属包覆石墨作为固体润滑剂可显著提高其高温润滑特性㊂然而,石墨表面包覆金属层的完整性是决定其润滑性能的关键因素㊂故进一步提高石墨表面包覆金属层的完整性以及连续性将继续成为研究的重点㊂1.2㊀BNBN导电性能强㊁热稳定性高,在大气环境中适用温度为500~800ħ,是高温自润滑材料的优良润滑剂㊂其润滑机理为[14-15]:高于500ħ时,BN 会在摩擦过程中剥落而转移到摩擦表面形成润滑膜,起减摩作用㊂蒋冰玉等[16]以Ni-Cr合金为基体材料,BN为固体润滑剂,制备出燃气轮机中减摩耐磨用的高温自润滑复合材料㊂目前,尽管BN 是一种人们熟知的高温固体润滑剂,但由于其存在有效性差㊁不可润湿等问题,使得人们对于BN 单独应用在金属基自润滑复合材料上的报道较少,其常与其他固体润滑剂协同润滑[17]㊂2㊀金属及其化合物2.1㊀金属常见的金属固体润滑剂有Pb㊁Al㊁Ag㊁Au㊁Sn㊁Bi㊁In等,其具有纯度高㊁原料易得㊁低温环境不会丧失润滑性能等优点㊂金属固体润滑剂在强辐射㊁真空㊁低温等极端工作条件非常适合作为金属基自润滑复合材料的固体润滑剂使用,常与Cu㊁Al㊁TiAl等金属基体组成复合材料㊂其润滑机理为:在摩擦热的作用下,由于热膨胀系数不同,金属逐渐从基体内扩散到摩擦表面形成润滑膜,起减摩作用,但其适用环境受温度限制严重㊂Yao等[18]发现,在200ħ时,Ag在剪切应力作用下扩散到摩擦表面,起减摩耐磨作用㊂但在600ħ时Ag完全失去润滑作用(图1)㊂Dong 等[19]发现,Cu-24Pb-x Sn合金的自润滑性能和力学性能随Sn含量的增加而增加,Pb含量的增加有效地削弱了以摩擦系数变化为特征的粘滑现象㊂李聪敏等[20]以Al-Cu-Mg合金为基体,添加低熔点组元Bi后合金抗咬合能力明显提升,发现带状富Bi 相涂覆在磨损表面,起到减摩自润滑作用㊂金属在强辐射㊁真空㊁低温等极端环境仍具有润滑特性,但是也存在着一些缺点,如:Pb本身有毒,对人体和环境都有危害,Ag㊁Au㊁In等金属作为固体润滑剂时成本太高;金属在空气中暴露的时间过长时,易发生氧化反应,影响润滑效果㊂2.2㊀金属氧化物常见的金属氧化物固体润滑剂有PbO㊁CuO㊁MoO3㊁SnO㊁ZnO等㊂金属氧化物是最早应用的高温固体润滑剂,常与Fe㊁Ni㊁NiAl等金属基体组成复合材料㊂由于金属氧化物具有较低的剪切强度,可有效避免摩400㊀燕山大学学报2023擦过程中的咬合现象㊂Peterson 等[21]考察了大量氧化物的高温摩擦学特性,发现PbO 等少数氧化物可实现较宽温度范围内的有效润滑㊂但是,由于PbO 危害环境,国外已限制其应用㊂Zhu 等[22]通过PM 制备了添加氧化物(ZnO /CuO)的NiAl-C-Mo 自润滑材料,发现氧化物在低温时几乎不起减摩作用㊂但当温度达到600ħ时,磨损表面形成了ZnO㊁CuO 和MoO 3层,表现出了良好的减摩耐磨效果㊂结果表明,金属氧化物在高温时润滑效果显著㊂但是,目前关于二组元氧化物的润滑机理还未得到统一㊂图1㊀TiAl 基自润滑复合材料磨损表面的微观结构演变示意图Fig.1㊀Schematic diagram of microstructure evolution of wear surface of TiAl based self-lubricating composite2.3㊀金属氟化物常见的金属氟化物固体润滑剂有CaF 2㊁BaF 2㊁LaF 3等㊂金属氟化物热稳定性良好,从500ħ到1000ħ的温度范围都能起到良好的减摩耐磨作用,其原因主要为金属氟化物在500ħ时经历了由脆性到塑性的转变㊂Longson [23]发现,CaF 2和BaF 2具有良好润滑性的原因是其在摩擦过程中由脆性向塑性转变以及氟元素与金属表面发生化学反应的共同作用㊂尽管对CaF 2和BaF 2润滑机理进行了大量研究,但是对于其转移润滑机理的全面认识还有赖于进一步研究㊂综上,由于金属氟化物特殊的润滑机制导致其在低温时不提供润滑,故单独采用金属氟化物作为金属基自润滑复合材料固体润滑剂的报道很少,其多与石墨㊁Ag 等固体润滑剂复合使用,达到宽温度范围有效润滑的目的㊂2.4㊀金属硫化物常见的金属硫化物固体润滑剂有MoS 2㊁WS 2㊁FeS㊁CrS 等㊂MoS 2属于六方晶系,具有层状结构,常与Fe㊁Al㊁Ag 等金属基体组成复合材料㊂MoS 2在大气环境中适用温度可达350ħ,润滑机理与石墨相似,由于具有低摩擦㊁低接触电阻等优点,广泛用作航空㊁航天机构中的滑动电接触材料[24]㊂WS 2因其良好的热稳定性和抗氧化性而广泛应用于高温环境㊂研究表明[25-27],在大气环境中通过在金属基体中掺入MoS 2或WS 2颗粒可显著提高Ni [25]㊁Al [26]㊁Fe [27]等金属基复合材料的摩擦学性能,使其满足使用要求㊂但是,MoS 2和WS 2会因大气湿度高㊁氧气的存在以及高温而导致润滑性能降低㊂通过掺杂金属或无定形碳可以保护MoS 2边缘位置免受氧化,从而提高MoS 2和WS 2在潮湿或较高温度条件下的摩擦学性能㊂Rigato 等[28]发现在MoS 2层状结构中掺杂Ti 增加了MoS 2层间距离,从而改善了其摩擦学性能㊂此外,研究发现,在MoS 2层状结构中掺杂Ni [29]㊁Cu [30]等金属可提高复合材料在潮湿环境和真空条件下的摩擦磨损性能㊂FeS 与MoS 2相比,具有优异的耐高温特性,因其较疏松的鳞片状结构能储存润滑油,可进一步提升润滑性能㊂尹延国等[31]发现FeS /Cu 基复合材料在在干摩擦过程中,FeS 颗粒聚集在摩擦表面形成一层硫化物固体润滑膜,具有较好的减摩㊁抗粘着作用,在油润滑条件下,润滑油膜和FeS 固体润滑膜可以起协同润滑作用㊂Lu 等[32]采用NiCr /Cr 3C 2和WS 2粉末在Ti 6Al 4V 基体上激光熔覆制备了Ti 2SC /CrS 自润滑耐磨复合涂层,由于原位合第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展401㊀成的自润滑Ti2SC和CrS的存在,自润滑抗磨复合涂层显示出比不添加WS2粉末的抗磨复合涂层更好的摩擦学性能㊂综上,MoS2和WS2在高温真空条件下具有优良的润滑特性,被认为高温真空条件下的首选固体润滑剂㊂在大气环境中,温度低于350ħ时,金属基-MoS2自润滑材料表现出优异的摩擦学性能㊂但是,MoS2在大气环境中高温时容易发生氧化[29-30],限制了其应用环境㊂故如何进一步提高MoS2在潮湿和较高温度条件下的摩擦学性能将继续成为研究的重点㊂2.5㊀金属硒化物常见的金属硒化物固体润滑剂有NbSe2㊂NbSe2导电性能优异,相对摩擦系数低,常与Ag㊁Cu[33-34]等金属基体组成复合材料,广泛应用于电接触领域㊂早在20世纪80年代,美国NASA便采用Ag-NbSe2自润滑材料来制作卫星上的电刷,并取得良好效果㊂Ag-NbSe2自润滑材料具有良好润滑性能的原因[33]为在摩擦热和变形挤压的共同作用下,部分NbSe2转移到摩擦表面,形成了NbSe2润滑膜,起减摩作用㊂孙建荣等[34]发现,高负载㊁真空条件下,添加纤维状NbSe2的Cu-石墨复合材料摩擦系数远低于原复合材料㊂因此, NbSe2常作为真空条件下的固体润滑剂使用㊂3㊀MAX金属陶瓷MAX金属陶瓷因为其原子结构和独特的化学键特性,使MAX金属陶瓷兼具金属和陶瓷的优点,如高硬度㊁高弹性模量,具有良好的抗氧化性㊁耐腐蚀性㊁导电导热性㊁辐照性能㊁高温机械和摩擦学性能等[35]㊂理论计算约有600余种能稳定存在的三元MAX金属陶瓷,如今可以通过实验合成80多种[36],如Ti3SiC2㊁Ti3AlC2㊁Ti2AlC㊁Ti2AlN㊁Ta2AlC等㊂目前,除Ti3SiC2和Ti3AlC2外,对于其他MAX金属陶瓷应用于金属基自润滑复合材料的研究鲜有报道㊂在材料基体中添加一定量的Ti3SiC2/Ti3AlC2颗粒润滑相能够显著提升金属基体的摩擦学性能㊂研究表明[37-39]不同温度下的微观结构以及反应产物对Ti3SiC2㊁Ti3AlC2的润滑性能有重要的影响㊂Zou等[38]用放电等离子烧结制备Ti3SiC2增强TiAl基复合材料,Ti3SiC2均匀分布在TiAl基质中,部分分解形成Ti5Si3和TiC,室温摩擦时复合材料表面形成Ti3SiC2润滑膜,550ħ摩擦时形成Fe-Ti-Al-Si-氧化物润滑膜,起润滑作用㊂朱咸勇等[39]发现,当试验温度低于400ħ在轻载条件下难以形成稳定氧化物润滑膜,其润滑特性主要依赖于特殊的层状形貌,而试验温度超过500ħ会促使材料表面形成氧化物润滑膜,起到减摩耐磨的作用㊂同时,MAX金属陶瓷添加量对复合材料摩擦学性能影响较为显著㊂陈海吉[40]使用放电等离子烧结制备Ti3AlC2/Cu复合材料,研究表明,随着Ti3AlC2添加量增加,复合材料摩擦磨损性能得到提高㊂研究发现当含量过高时会导致其致密度降低,影响摩擦学性能㊂烧结温度对MAX金属陶瓷自润滑复合材料性能也有重要影响㊂Zhou等人[41]发现烧结温度在900ħ以上时,在Cu和Ti3SiC2界面会形成Cu㊁TiC x㊁Ti3SiC2和Cu x Si y混合区从而提高系统的润湿性和耐磨性㊂综上,MAX金属陶瓷应用在摩擦材料的大多数情况下,由于摩擦过程中形成的氧化物润滑膜具有特殊的层状结构,使复合材料润滑效果更好㊂另外,表面改性以及较高的烧结温度可进一步提高其润滑效果㊂4㊀有机固体润滑剂除上述固体润滑剂外,还有一类性能优越㊁可用于极端环境(真空㊁强辐射)条件下的单一固体润滑剂-有机固体润滑剂㊂有机固体润滑剂种类很多,如聚四氟乙烯(PTFE)㊁三聚氰胺氰尿酸盐(MCA)等,但较低的适用温度(-270~275ħ)限制了其在金属基复合材料中的应用㊂PTFE是所有聚合物中摩擦系数最低的[42]㊂其抗剪切强度较低,受剪切力时聚合物链脱开,可提供润滑作用㊂同时,由于含F外壳的存在,其抗咬合性优异,常采用电沉积法与Ni[43]㊁Fe[44]等金属基体组成复合材料㊂MCA润滑特性与MoS2相似,滑动面间极易受力断裂,提供润滑作用㊂Tang 等[43]发现,由于润滑转移层的存在,Ni-Co-PTFE 复合材料显示出良好的摩擦学性能(摩擦系数0.08)㊂Xiang等[44]则指出PTFE的低摩擦系数以及40Cr钢的高强度是40Cr钢-PTFE复合材料具有良好摩擦学性能的重要原因㊂但是PTFE的力402㊀燕山大学学报2023学性能较差,线膨胀系数大,故将PTFE用作固体润滑材料时通常要添加填充物对其进行改性或对金属基体进行阳极氧化处理[45]㊂魏羟等[46]用Pb 粉㊁石墨㊁玻璃纤维填充PTFE制成Cu基镶嵌型关节轴承材料,显示出较好的摩擦磨损性能㊂但李同生等[47]发现,与含铅PTFE镶嵌轴承相比,无铅PTFE镶嵌轴承在工作时所形成的润滑膜最为完整㊁均匀,耐磨性更好㊂同时,对金属基体进行阳极氧化处理改性可进一步提高PTFE与基体金属基体的附着性[45]㊂综上,添加填充物对PTFE进行改性或对金属基体进行阳极氧化处理可大大提高复合材料的机械和摩擦学性能㊂5㊀碳纳米材料固体润滑剂近年来,纳米技术的快速发展推动了金属基自润滑复合材料的开发,出现了新型碳纳米材料固体润滑剂,例如碳纳米管(CNTs)㊁石墨烯(GPLs)等㊂由于其尺寸小,容易进入摩擦接触区域,形成保护摩擦膜,产生自润滑效应㊂同时,界面以下的新型碳纳米材料还可以防止应力集中而引发的严重磨损㊂5.1㊀碳纳米管CNTs具有良好的润滑特性,被认为是金属基自润滑复合材料中石墨的替代品㊂在这方面,有相关报道称已经成功开发了用于汽车工业的CNTs-金属基自润滑复合材料[48]㊂Orowan环化机制以及CNTs与金属基体之间热膨胀失配所产生的位错在增强Al/Cu-CNTs复合材料中起着重要作用[49]㊂为达到预想的润滑效果,CNTs在基体中的均匀分布以及界面调控就显得尤为重要㊂对此,研究者们做了大量的工作㊂2004年,Noguchi等[50]开发了一种新方法制备复合材料,首先让CNTs均匀分布在弹性体基体内,然后用Al来置换弹性体基体,从而保证CNTs均匀分布在Al基体内㊂2019年,周川等[51]采用混酸处理㊁分子水平法结合行星球磨两步混合工艺成功制备出Cu-CNTs复合粉末㊂混酸处理将含O官能团成功引入CNTs表面,提高了CNTs与基体的界面结合㊂以上研究均表明,均匀分布的CNTs可显著提高材料的机械和摩擦学性能㊂5.2㊀石墨烯片GPLs是目前已知最薄㊁最硬㊁导电性能最好的材料,具有良好的润滑特性,同时,可以通过晶粒细化㊁位错强化和应力转移来提高复合材料强度[52]㊂在过去的十多年里,绝大多数报道均表明在基体中均匀分布且结合良好的GPLs能够明显改善金属基复合材料的摩擦学性能㊂但是,聚集状态的GPLs增强效果较差,与石墨薄片几乎无差别㊂研究表明[53-55],不同的因素(例如GPLs的类型㊁含量㊁基体材料㊁混料方法和球磨时间等)会显著影响GPLs在金属基体中的分散性㊂为了保证GPLs均匀地分散在基体中,部分研究者在粉体混合工艺中采用氧化石墨烯代替石墨烯,先得到均匀混合的氧化石墨烯/合金粉体,再通过氧化石墨烯的热还原性质得到高度均匀的还原石墨烯/合金粉体[56]㊂Bastwros等[53]则研究了球磨时间对GPLs增强Al基复合材料的影响㊂发现经过10 min球磨后的材料综合性能反而降低,而60min 球磨后GPLs均匀分散在到Al基体内,在摩擦学性能上,GPLs显示出了良好的增强效果㊂另一方面,化学镀和电化学沉积法制备金属包覆型碳纳米材料,也可以确保GPLs均匀地分散在基体中㊂李远军[55]通过化学镀将纳米铜颗粒负载于还原氧化石墨烯表面的方法来确保其在Cu基体上均匀分布㊂但研究表明,化学镀和电化学沉积法一般仅适用于Cu㊁Ni㊁Ag等电负性较低的金属基体㊂综上,碳纳米材料可显著提高材料摩擦学和机械性能㊂但是,CNTs严重团聚以及与基体结合不牢固会减弱增强效果,甚至导致材料失效㊁降低使用寿命,从而进一步增加制造成本,限制其在金属基自润滑复合材料上的广泛应用㊂这就对制造方法㊁材料尺寸大小以及空间分布提出来更为苛刻的要求,但是,由于弱的层间相互作用,碳纳米管㊁石墨烯在实现超滑方面有很大的潜力[57]㊂因此,目前研究者们对于碳纳米材料固体润滑增强金属基自润滑复合材料的研究也主要集中在这四方面:1)提高碳纳米材料在金属基复合材料中分散的均匀性;2)对碳纳米材料与金属形成的界面组织进行调控;3)掺杂其他固体润滑剂,进一步提高金属的减摩耐磨性能;4)微观尺度上,研第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展403㊀究石墨烯对材料性能的作用机理㊂综上,单一固体润滑剂对使用环境具有选择性,无法实现宽温度范围(25~800ħ)以及多种环境下的有效润滑㊂常见单一固体润滑剂的性能及优缺点见表2[1-57]㊂表2㊀单一固体润滑剂性能及优缺点Tab.2㊀Performance and relative merits of single solid lubricant固体润滑剂适用温度/ħ摩擦系数μ优点存在的问题最新解决方法石墨-270~5500.05~0.3(大气中)廉价㊁减震性良好㊁可在潮湿环境提供有效润滑强度较低,仅在大气环境提供有效润滑对石墨粉末进行表面改性,如镍包覆石墨MoS2-270~3500.006~0.25(大气中)0.001~0.2(真空中)高温真空条件下稳定性优异大气环境易氧化失效掺杂金属或无定形碳BN500~8000.15~0.25(大气中)良好的高温固体润滑剂成本较高,低温润滑性差与低温固体润滑剂协同润滑Ag㊁Au-270~4000.08~0.2(大气中).0.08~0.15(真空中)导电性能优异在酸碱条件下无效,成本高与其他固体润滑剂协同润滑PbO200~6500.1~0.3(大气中)可实现宽温度范围有效润滑有毒物质,摩擦系数较高㊁且形成润滑膜易脱落已被其他固体润滑剂替代CaF2㊁BaF2㊁LaF3500~9000.2~0.4(大气中)可实现高温有效润滑低温润滑性差与低温固体润滑剂协同润滑MAX金属陶瓷400~8000.005(大气中)高温机械和摩擦学性能优异,导电性能良好与Fe等基体复合时,界面结合差,易脱落1)添加增强相;2)对Ti3SiC2㊁Ti3AlC2进行表面改性,如镀铜PTFE-270~2750.04~0.2(大气中)0.04~0.15(真空中)真空润滑性能优异,抗咬合性好300ħ以上失效,不耐高温㊁力学性能较差,线膨胀系数大1)添加填充物对PTFE进行改性;2)对金属基体进行阳极氧化处理碳纳米材料-270~5000.05~0.2(大气中)轻质,可显著提高复合材料机械学㊁摩擦学性能团聚以及界面结合严重影响润滑效果,生产成本高昂1)氧化石墨烯代替石墨烯;2)混酸处理;3)金属包覆碳纳米材料;4)掺杂其他固体润滑剂6㊀多元复合固体润滑剂早在20世纪60年代初,人们就已经发现,两种或者多种固体润滑剂混合使用时,由于不同固体润滑剂之间的协同作用,使得其润滑效果好于其中任何一种固体润滑剂单独作用㊂6.1㊀Ni基自润滑材料的多元复合固体润滑剂在过去的20年中,已经成功开发了一系列Ni 基的高温自润滑复合材料[58-62]㊂该类由Ni基体与固体润滑剂(Ag-BaF2/CaF2/LaF3-金属氧化物/无机盐)组成的自润滑复合材料,在很宽的温度范围(25~800ħ)和高强度(800ħ,500MPa的抗压强度)并存的情况下表现出优异的润滑性能(图2[59])㊂其良好的润滑特性(摩擦系数(0.23~ 0.34)和低磨损率(10-6~10-5mm3N-1m-1)解释为Ag㊁氟化物㊁无机盐的协同作用㊂当高于500ħ时,氟化物中的低共熔物从基体中逸出,发生由脆性到塑性的转变,可进一步提升润滑效果[60]㊂Zhen等[61]指出由于Ag膜的存在,真空环境中该类复合材料摩擦系数和磨损率均低于大气环境中的摩擦系数和磨损率,是一种很有潜力的航空㊁航天材料㊂此外Zhen等[62]的另一份研究表明,在Ag-BaF2-CaF2固体润滑剂的基础上再添质量分数为0.5%~1%的石墨可以使Ni基复合材料获得稳定的摩擦性能(摩擦系数(0.19~0.29)和磨损率(5.3ˑ10-6~2.3ˑ10-5mm3N-1m-1)㊂404㊀燕山大学学报2023图2㊀Ni 基自润滑复合材料的摩擦学性能Fig.2㊀Tribological properties of Ni basedself-lubricating composites6.2㊀Ni 3Al 基自润滑材料的多元复合固体润滑剂进一步研究表明[63-65],该类由Ni 3Al 基体与固体润滑剂(Ag-CaF 2-BaF 2)和增强材料(Cr,Mo 等金属元素)组成的自润滑复合材料,在从室温到1000ħ的宽温度范围内表现出低摩擦系数(μ<0.4)和低磨损率(10-6~10-4mm 3N -1m -1),且具有令人满意的机械性能(硬度>300HV,抗压强度>1000MP)㊂Zhu 等[65]采用热压烧结法制备的Ni 3Al-6.2BaF 2-3.8CaF 2-12.5Ag-20Cr 复合材料实现了室温到1000ħ的有效润滑(摩擦系数(0.24~0.37)和低磨损率(5.2ˑ10-5~2.3ˑ10-4mm 3N -1m -1))㊂Ni 3Al 基体良好的高温机械性能,Ag㊁氟化物㊁无机盐的协同润滑以及Cr 元素对基体的增强作用使得其可以实现更宽温度范围的有效润滑㊂与Ni 基自润滑复合材料相比,Ni 3Al 基自润滑复合材料则可实现更宽温度范围内的有效润滑,其润滑机理见图3[66]㊂6.3㊀TiAl 基自润滑材料的多元复合固体润滑剂近年来,由于航空㊁航天工业的需要,科研人员制备了一系列基于TiAl 基的高温自润滑复合材料[67-69]㊂该类由TiAl 基体与固体润滑剂(Ag-Ti 3SiC 2-BaF 2/CaF 2)组成的自润滑复合材料,具有硬度高(>500HV)㊁轻质(ρ<3.9g /cm 3)等优点㊂结果表明[66-68],Ag-Ti 3SiC 2-BaF 2-CaF 2润滑体系在宽温度范围内下具有良好的协同效应:低温时,银扩散到金属基体的摩擦表面形成了一层富Ag 的摩擦膜,高温时,由于BaF 2㊁CaF 2的挤压和Ti 的氧化,在摩擦表面形成了一层含氟化物和氧化物的摩擦膜㊂但是,从室温到800ħ的宽温度范围内其摩擦系数(μ>0.3)和磨损率(10-4mm 3N -1m -1)较高,摩擦学性能有待进一步提高㊂图3㊀宽温度范围内Ni 3Al 基自润滑复合材料的润滑机理Fig.3㊀Lubrication mechanism of Ni 3Al based self-lubricating composites in a wide temperature range㊀㊀综上,可得出:1)多元复合固体润滑剂的协同作用在宽温度范围内对改善复合材料的摩擦学性能起重要作用;2)选择高温机械性能优异的金属基体以及适当添加Cr㊁Mo 等金属元素可实现更宽温度范围的有效润滑;3)Ag 与氟化物/无机盐/MAX 金属陶瓷材料等高温固体润滑剂的组合具有极佳的协同润滑作用㊂6.4㊀Fe /Cu /Ag 等金属基自润滑材料的多元复合固体润滑剂㊀㊀人们对多元复合固体润滑剂对Fe [70-71]㊁Cu [72]㊁Ag [73]等金属基体性能影响也进行了大量研究㊂Li 等[71]发现以LaF 3和MoS 2作为润滑组元的Fe 基复合材料可显示出超低的摩擦系数(0.09),。

铸造短语 英汉对照

铸造短语 英汉对照

短语1 数值模拟:numerical simulation2 力学性能:mechanical property3 铝合金:aluminum alloy4 应力分析:stress analysis5 钛合金:titanium alloy6 表面处理:surface treatment7 电磁场:electromagnetic field8 抗拉强度:tensile strength9 晶粒细化:grain refinement10 工艺参数:process parameter11 有机合成:organic synthesis12 表面质量:surface quality13 定向凝固:directional solidification14 生产管理:production management15 制备工艺:preparation technology16 拉伸强度:tensile strength17 冷轧:cold rolling18 速度场:Velocity Field19 电子束:Electron beam20 ANSYS软件:ANSYS software21 电磁搅拌:electromagnetic stirring22 铸铁:cast iron23 隔振:vibration isolation24 动力学仿真:Dynamic Simulation25 铜合金:copper alloy26 离心铸造:centrifugal casting27 色差:color difference28 金属基复合材料:metal matrix composites29 应变速率:Strain Rate30 气力输送:pneumatic conveying31 压铸:Die Casting32 金属氧化物:metal oxide33 正电子湮没:Positron annihilation34 热效率:heat efficiency35 凝固组织:solidification structure36 界面反应:interfacial reaction37 模具设计:mold design38 置换通风:displacement ventilation39 镁合金:Mg alloy40 熔模铸造:Investment Casting41 高铬铸铁:high chromium cast iron42 电磁力:electromagnetic force 43 生产实践:production practice44 AZ91D镁合金:AZ91D magnesium alloy45 机械振动:mechanical vibration46 机械系统:mechanical system47 温差:temperature Difference48 传热模型:heat transfer model49 耐磨性能:wear resistance50 硅溶胶:silica sol51 生产系统:production system52 色散关系:dispersion relation53 超声振动:ultrasonic vibration54 知识表达:knowledge representation55 真空系统:Vacuum system56 工艺控制:process control57 TiAl合金:TiAl alloy58 离心力:Centrifugal force59 连续铸造:Continuous Casting60 液压控制:Hydraulic control61 球墨铸铁:nodular cast iron62 流变模型:rheological model63 时效处理:aging treatment64 小波网络:wavelet network65 软件包:software package66 弹簧钢:spring steel67 冷却速率:cooling rate68 铸钢:Cast steel69 水平连铸:horizontal continuous casting70 技术改造:technological transformation71 脉冲电流:pulse current72 凝固过程:Solidification Process73 气缸盖:cylinder head74 制备技术:preparation technology75 复合形法:Complex method76 工艺分析:process analysis77 动力学建模:dynamic modeling78 消失模铸造:Lost Foam Casting79 真空干燥:vacuum drying80 余热:waste heat81 系统控制:system control82 铝硅合金:Al-Si Alloy83 响应面分析法:Response surface methodology84 铸造工艺:casting process85 气缸套:cylinder liner86 SIMPLE算法:SIMPLE algorithm87 工艺优化:technology optimization88 流场:fluid field89 工艺过程:Technological process90 氮化硼:boron nitride91 精密铸造:investment casting92 热循环:thermal cycling93 表面缺陷:Surface defects94 节能技术:energy-saving technology95 低压铸造:Low Pressure Casting96 界面结构:interface structure97 铁水:hot metal98 Al-Cu合金:Al-Cu alloy99 AZ91镁合金:AZ91 magnesium alloy 100 凝固模拟:Solidification simulation101 碳酸钾:potassium carbonate102 等离子弧:plasma arc103 抗裂性:crack resistance104 模锻:die forging105 冲蚀磨损:erosion wear106 注射成形:injection molding107 热压缩变形:hot compression deformation108 激光淬火:laser quenching109 超声检测:ultrasonic inspection110 磨球:Grinding ball111 冷变形:cold deformation112 强韧化:strengthening and toughening 113 气泡:air bubble114 保温时间:holding time115 白口铸铁:white cast iron116 电磁铸造:electromagnetic casting117 断口形貌:fracture morphology118 氢含量:hydrogen content119 浇注温度:pouring temperature120 锥齿轮:bevel gear121 灰铸铁:gray iron122 喷丸:shot peening123 排气系统:exhaust system124 水玻璃:Sodium silicate125 挤压铸造:Squeezing Casting126 密度分布:density distribution127 渣浆泵:slurry pump128 分型面:parting surface 129 A356合金:A356 alloy130 静磁场:static magnetic field131 网格剖分:mesh generation132 电磁连铸:electromagnetic continuous casting133 快速制造:rapid manufacturing134 压铸模:die-casting die135 韧性断裂:ductile fracture136 ADAMS软件:ADAMS software137 弯曲变形:bending deformation138 缸体:cylinder block139 变频控制:frequency conversion control 140 热应力场:thermal stress field141 压铸机:Die Casting Machine142 TiNi合金:TiNi alloy143 碳当量:carbon equivalent144 析出相:precipitated phase145 保温材料:thermal insulation material 146 对甲苯磺酸:p-toluene sulphonic acid 147 组织性能:microstructure and property 148 半固态成形:Semi-solid Forming149 TC4合金:TC4 alloy150 疲劳破坏:fatigue failure151 熔池:molten pool152 超声处理:ultrasonic treatment153 阀体:Valve Body154 压缩变形:Compression Deformation 155 扩散层:Diffusion layer156 缸套:cylinder liner157 铸钢件:steel casting158 性能计算:Performance calculation 159 缸盖:cylinder head160 微波炉:microwave oven161 浇注系统:pouring system162 Al-Zn-Mg-Cu合金:Al-Zn-Mg-Cu alloy 163 炉衬:furnace lining164 规则推理:rule-based reasoning165 在线控制:on-line control166 共晶碳化物:eutectic carbide167 振动频率:vibrational frequency168 TA15钛合金:TA15 titanium alloy169 Cr12MoV钢:Cr12MoV steel170 变形镁合金:wrought magnesium alloy 171 功率超声:power ultrasound172 TiAl基合金:TiAl-based alloy173 Box-Behnken设计:Box-behnken design 174 专业课:specialized course175 金相组织:metallurgical structure176 模具寿命:die life177 研究应用:research and application 178 Al-Mg合金:Al-Mg alloy179 成本优化:cost optimization180 变形激活能:deformation activation energy181 干燥工艺:drying technology182 合金铸铁:alloy cast iron183 模具材料:die material184 铸态组织:as-cast microstructure185 电磁制动:electromagnetic brake186 球铁:ductile iron187 侧架:side frame188 气缸体:cylinder block189 洛伦兹力:Lorentz Force190 微观组织演变:microstructure evolution 191 显微组织:microscopic structure192 共晶组织:Eutectic structure193 冶金质量:metallurgical quality194 热震稳定性:thermal shock resistance 195 强迫对流:forced convection196 切削加工:cutting process197 过共晶Al-Si合金:Hypereutectic Al-Si Alloy198 定量金相:quantitative metallography 199 磁感应强度:Magnetic Flux Density 200 半固态浆料:Semi-solid Slurry201 电磁泵:electromagnetic pump202 超声衰减:Ultrasonic attenuation203 加热时间:heating time204 半连续铸造:Semi-continuous Casting 205 液压站:Hydraulic station206 三元硼化物:ternary boride207 内应力:inner stress208 热裂纹:hot crack209 黄麻纤维:jute fiber210 泡沫陶瓷:foam ceramics211 砂型铸造:Sand casting212 油润滑:oil lubrication213 预热温度:preheating temperature 214 维氏硬度:Vickers Hardness215 高温合金:high-temperature alloy216 拉速:casting speed217 铝熔体:aluminum melt218 异型坯:beam blank219 高钒高速钢:high vanadium high speed steel220 静液挤压:hydrostatic extrusion221 等轴晶:equiaxed grain222 摩擦角:friction angle223 初生相:Primary Phase224 转向节:steering knuckle225 快速成型技术:rapid prototyping technology226 冷坩埚:Cold Crucible227 A357合金:A357 Alloy228 焊接结构:welding structure229 耦合场:coupled field230 AZ80镁合金:AZ80 magnesium alloy 231 止推轴承:thrust bearing232 铝镁合金:Al-Mg alloy233 真空熔炼:vacuum melting234 铝锂合金:aluminum-lithium alloy235 充型过程:filling process236 AZ61镁合金:AZ61 magnesium alloy 237 声流:Acoustic streaming238 金属凝固:metal solidification239 高速钢轧辊:high speed steel roll240 石墨形态:graphite morphology241 磁粉检测:Magnetic particle testing 242 颗粒级配:particle size distribution243 型砂:molding sand244 收缩率:shrinkage rate245 Mg-Li合金:Mg-Li alloy246 自动生产线:automatic production line 247 高频磁场:High Frequency Magnetic Field248 组织与性能:microstructure and property249 连续定向凝固:continuous unidirectional solidification250 充型:mold filling251 失效机制:failure mechanism252 梯度分布:gradient distribution253 制动鼓:Brake drum254 摄动分析:perturbation analysis255 铸造企业:foundry enterprise256 超声波振动:Ultrasonic vibration257 测量系统分析:measurement system analysis258 固溶处理:solution heat treatment259 冷却速度:cooling velocity260 固液混合铸造:solid-liquid mixed casting 261 温度场分布:temperature distribution 262 部分重熔:Partial Remelting263 工艺措施:technological measures264 变形量:deformation amount265 模糊优化设计:Fuzzy optimal design 266 零缺陷:zero defect267 重力分离:gravitational separation268 晶粒:crystal grain269 离心力场:centrifugal force field270 凝固行为:Solidification Behavior271 铝铜合金:Al-Cu alloy272 组织和性能:microstructure and property 273 复合板:composite plate274 Al-Fe合金:Al-Fe alloy275 马氏体不锈钢:martensite stainless steel 276 冷却装置:cooling device277 铝合金车轮:aluminum alloy wheel 278 热应力分析:thermal stress analysis 279 Al含量:Al content280 挤压比:extrusion ratio281 相似准则:similarity criterion282 热疲劳裂纹:thermal fatigue crack283 原子团簇:atomic cluster284 湿型砂:green sand285 AZ91D合金:AZ91D alloy286 6061铝合金:6061 aluminum alloy287 锻造工艺:forging technology288 铸铁件:Iron casting289 表面复合材料:Surface composites 290 盲孔法:blind-hole method291 加热功率:heating power292 铸造合金:Cast Alloy293 低铬白口铸铁:Low chromium white cast iron294 初生硅:primary silicon 295 热节:Hot Spot296 锡青铜:tin bronze297 ZL101合金:ZL101 alloy298 真空感应熔炼:vacuum induction melting299 薄带连铸:strip casting300 真空压铸:vacuum die casting301 缩孔:shrinkage hole302 等温处理:Isothermal Treatment303 平均晶粒尺寸:average grain size304 抽芯:core pulling305 离心浇铸:Centrifugal casting306 铸铁管:cast iron pipe307 感应线圈:induction coil308 冷却介质:Cooling medium309 气体压力:gas pressure310 船用柴油机:marine diesel311 高温强度:high-temperature strength 312 3Cr2W8V钢:3Cr2W8V steel313 缺陷预测:defect prediction314 工艺方案:process scheme315 温度均匀性:temperature uniformity 316 电磁离心铸造:electromagnetic centrifugal casting317 横向应力:transverse stress318 超声声速:ultrasonic velocity319 残留应力:residual stress320 固化工艺:curing process321 精铸:Investment Casting322 铝锭:aluminum ingot323 短路过渡:short circuit transfer324 反重力铸造:counter-gravity casting 325 感应电炉:induction furnace326 稀土Y:rare earth Y327 工艺因素:Technological factor328 双辊铸轧:twin roll casting329 凝固速率:solidification rate330 含氢量:Hydrogen Content331 钢锭:steel ingot332 浆料制备:slurry preparation333 η相:η phase334 衬板:lining board335 压铸件:die casting336 水口堵塞:nozzle clogging337 陶瓷型芯:ceramic core338 车间布局:workshop layout339 安全操作:safe operation340 铸造不锈钢:cast stainless steel341 压铸模具:die casting die342 热裂:Hot Crack343 失效形式:failure form344 成形机理:forming mechanism345 AlSi7Mg合金:AlSi7Mg Alloy346 铸件缺陷:casting defect347 银合金:silver alloys348 反应层:reaction layer349 镍基高温合金:Ni base superalloy350 薄带:thin strip351 覆膜砂:coated sand352 CAE技术:CAE Technique353 性能预测:property prediction354 液态金属:liquid metals355 熔模精密铸造:investment casting356 空气压力:air pressure357 ZA合金:ZA alloy358 凝固传热:Solidification and heat transfer 359 侧向分型:Side Parting360 高温塑性:Hot Ductility361 黑斑:black spot362 点火温度:ignition temperature363 旋压机:spinning machine364 Al-Ti-B中间合金:Al-Ti-B master alloy 365 减排:discharge reduction366 射线检测:radiographic inspection367 耐热:heat resistant368 2024铝合金:2024 aluminum alloy369 技术现状:technology status370 复合变质:complex modification371 蠕墨铸铁:vermicular iron372 机械搅拌:mechanical agitation373 保温炉:holding furnace374 成形技术:forming technology375 碳化硅颗粒:SiC particle376 可锻铸铁:malleable iron377 模型控制:model control378 改性水玻璃:modified sodium silicate 379 熔炼工艺:melting process380 焊补:repair welding 381 异常组织:abnormal structure382 组织细化:structure refinement383 防止措施:preventing measures384 铸渗:Casting infiltration385 BT20钛合金:BT20 titanium alloy386 直流电场:direct current field387 铸造应力:casting stress388 初晶Si:primary Si389 夹紧装置:clamping device390 均衡凝固:Proportional solidification 391 熔模精铸:investment casting392 空心叶片:hollow blade393 ZL201合金:ZL201 alloy394 温轧:warm rolling395 不均匀变形:inhomogeneous deformation396 呋喃树脂砂:furan resin sand397 纸浆:paper pulp398 半连铸:semi-continuous casting399 锻锤:forging hammer400 延伸率:elongation rate401 焊接修复:welding repair402 冶金结合:metallurgical bond403 技术对策:technical measures404 结晶器振动:Mold Oscillation405 厚壁:thick wall406 WC颗粒:WC particles407 预处理技术:pretreatment technology 408 金属零件:metal part409 特种铸造:special casting410 低熔点合金:low melting point alloy 411 水模实验:water model experiment 412 复合管:clad pipe413 插装阀:plug-in valve414 金相试样:Metallographic specimen 415 抗吸湿性:humidity resistance416 近液相线铸造:near-liquidus casting 417 新设计:new design418 电机转子:motor rotor419 CAE:computer aided engineering420 交流变频:AC variable frequency421 下横梁:lower beam422 ZL102合金:ZL102 alloy423 模型参考控制:model reference control424 虚拟对象:virtual object425 加工图:processing maps426 立式离心铸造:vertical centrifugal casting427 抽芯机构:core pulling mechanism428 连铸连轧:casting and rolling429 残留强度:residual strength430 复合铸造:composite casting431 树脂砂:resin bonded sand432 AM60B镁合金:AM60B magnesium alloy 433 铸造CAE:casting CAE434 砂型:sand mould435 熔化:melting process436 高硼铸钢:high boron cast steel437 稳恒磁场:stable magnetic field438 Al-Ti-C晶粒细化剂:Al-Ti-C grain refiner 439 再生技术:regeneration technology 440 压铸工艺:die casting process441 管坯:tube billet442 厚大断面:Heavy section443 保护气体:protective gas444 性能特征:performance characteristics 445 Al-5%Fe合金:Al-5%Fe alloy446 半固态挤压:Semi-solid extrusion447 金属型铸造:Permanent mold casting 448 晶粒组织:grain structure449 综合经济效益:Comprehensive economic benefit450 半固态压铸:semi-solid die casting451 气膜:gas film452 硅酸乙酯:Ethyl Silicate453 自动化生产线:automatic production line454 Mg-Gd-Y-Zr合金:Mg-Gd-Y-Zr alloy455 渗透检测:Penetrant testing456 W-Cu复合材料:W-Cu composites457 存放时间:storage time458 ProCAST软件:ProCAST software459 滑板:sliding plate460 铸造铝合金:casting aluminum alloy 461 水玻璃砂:Water-glass Sand462 电脉冲:Electrical pulse463 蜡模:Wax Pattern464 悬浮铸造:suspension casting 465 D型石墨:D-type graphite466 工艺性能:technological performance 467 Al-1%Si合金:Al-1%Si alloy468 悬浮性:suspension property469 差压铸造:counter-pressure casting 470 工艺原理:process principle471 铸轧:continuous roll casting472 行波磁场:traveling magnetic field473 型壳:Shell Mold474 金属型:permanent mould475 脱模机构:demolding mechanism476 调压铸造:adjusted pressure casting 477 喷砂:sand blasting478 界面换热系数:interfacial heat transfer coefficient479 Al-Mg-Si-Cu合金:Al-Mg-Si-Cu alloy 480 电熔镁砂:fused magnesia481 充型速度:Filling Velocity482 泵体:pump body483 钢锭模:ingot mould484 Cu-Fe合金:Cu-Fe alloy485 辐射力:radiation force486 空化泡:Cavitation bubble487 渣池:slag pool488 原位生成:In-situ Synthesis489 热型连铸:heated-mold continuous casting490 缩松:dispersed shrinkage491 CO2气体保护焊:CO_2 arc welding 492 伺服控制系统:servo system493 端盖:End cover494 铸造技术:casting technology495 水力学模拟:Hydraulics simulation496 再生铝:secondary aluminum497 轴套:axle sleeve498 成形模具:forming die499 抗磨性能:Wear Resistance500 水模拟:water model501 快速铸造:rapid casting502 电磁软接触:electromagnetic soft-contact503 石膏型:plaster mold504 大型铸钢件:heavy steel casting505 移动磁场:traveling magnetic field506 轴承座:bearing seat507 混合稀土:rare earth508 铸态球铁:as-cast nodular iron509 砂芯:sand core510 铸造性能:casting properties511 真空差压铸造:vacuum counter-pressure casting512 玻璃模具:glass mold513 双联熔炼:duplex melting514 设备改进:improvement of equipment 515 铸坯质量:billet quality516 局部加压:Local Pressurization517 旧砂再生:used sand reclamation518 结晶速度:Crystallization rate519 壳体:shell body520 干强度:dry strength521 浇注系统设计:gating system design 522 慢压射:slow shot523 图像分析仪:image analysis system 524 温度曲线:Temperature profile525 水力效率:hydraulic efficiency526 单晶铜:single-crystal copper527 电渣重熔:electroslag refining528 铸造起重机:casting crane529 Cu-Cr合金:Cu-Cr alloys530 堆垛机:stacking machine531 巴氏合金:Babbitt alloy532 自抗扰控制器:auto-disturbance rejection controller(ADRC)533 陶瓷型:ceramic mold534 直流磁场:direct current magnetic field 535 漏气:air leakage536 泡沫陶瓷过滤器:foam ceramic filter 537 过共晶高铬铸铁:Hypereutectic High Cr Cast Iron538 壁厚差:wall thickness difference539 HPb59-1黄铜:HPb59-1 Brass540 旋转喷吹:Spinning Rotor541 水玻璃旧砂:used sodium silicate sand 542 冷却强度:cooling strength543 耐磨铸铁:wear resistant cast iron544 ZA35合金:ZA35 alloy545 钠基膨润土:sodium bentonite546 熔体净化:melt purification 547 油雾润滑:oil-mist lubrication548 初生α相:primary α phase549 铸造生产:foundry production550 高电位:High Potential551 钴基高温合金:cobalt base superalloy 552 Al-Zn-Mg-Cu-Zr合金:Al-Zn-Mg-Cu-Zr alloy553 水平连续铸造:Horizontal continuous casting554 自硬砂:no-bake sand555 微区分析:micro-area analysis556 顺序凝固:sequential solidification557 非枝晶组织:Non-dendritic microstructure558 反变形:reverse deformation559 铬青铜:Chromium bronze560 湿型铸造:green sand casting561 配料计算:burden calculation562 热-力耦合:Thermo-mechanical Coupling 563 浇注时间:Pouring time564 铸造速度:Casting velocity565 亚共晶铝硅合金:Hypoeutectic Al-Si Alloy566 搅拌功率:power consumption567 热电场:thermoelectricity field568 铸铝合金:cast aluminum alloy569 陶瓷型铸造:Ceramic mold casting570 热凝固:Thermal coagulation571 界面压力:interface pressure572 多尺度模拟:multiscale simulation573 输送链:Conveyor Chain574 关键措施:key measures575 冒口系统:Riser system576 开炉:blowing in577 铜锡合金:Cu-Sn alloy578 无铅黄铜:unleaded brass579 球墨铸铁管:ductile cast iron pipe580 二次枝晶间距:secondary dendrite arm spacing581 GA-BP网络:GA-BP network582 铝合金熔体:aluminum alloy melt583 生产条件:production conditions584 铬铁矿砂:chromite sand585 再生效果:regeneration effect586 导向叶片:Guide Vane587 金属管:Metal tube588 空心管坯:hollow billet589 超高强铝合金:ultra-high strength aluminum alloy590 流变曲线:flow curve591 蠕化剂:vermicularizing alloy592 波浪型倾斜板:wavelike sloping plate 593 凝固特性:solidification characteristics 594 磨头:grinding head595 反白口:reverse chill596 黑线:black line597 净化技术:purifying technology598 中间合金:master alloys599 捏合块:Kneading Block600 硅相:silicon phase601 低过热度浇注:low superheat pouring 602 3004铝合金:3004 aluminum alloy603 液态压铸:liquid die casting604 中频感应电炉:intermediate frequency induction electric furnace605 球墨铸铁件:Ductile iron casting606 凝固路径:solidification path607 喷枪:spraying gun608 ZL201铝合金:ZL201 aluminum alloy 609 质量改善:quality improvement610 气路:gas circuit611 补缩设计:Feeding design612 油底壳:Oil sump613 汽缸体:cylinder block614 CREM法:CREM process615 铸造机:Casting machine616 提高措施:improving measure617 SIMA法:SIMA method618 铬系白口铸铁:Chromium white cast iron 619 高合金钢:High alloy steels620 增压系统:pressurization system621 收缩缺陷:shrinkage defect622 卧式离心铸造:Horizontal Centrifugal Casting623 测控仪:measuring and controlling instrument624 精铸件:Investment Castings625 制动阀:Brake valve 626 金属成型:metal forming627 有机纤维:organic fiber628 大气采样器:air sampler629 钢支座:steel bearing630 低频磁场:low frequency magnetic field 631 破坏面:failure surface632 偏轨箱形梁:bias-rail box girder633 数值处理:data processing634 双辊薄带:twin-roll thin strip635 合成铸铁:Synthetic cast iron636 堆冷:stack cooling637 行星轧制:planetary rolling638 铸造缺陷:foundry defect639 二次冷却:second cooling640 炉衬材料:lining material641 弥散强化:dispersion hardening642 2D70铝合金:2D70 aluminum alloy 643 A356铝合金:A356 Al alloy644 元胞自动机方法:Cellular Automaton method645 铸造温度:casting temperature646 铸造涂料:Foundry coating647 耦合模拟:coupled simulation648 充型能力:Filling ability649 复合尼龙粉:nylon composite powder 650 改性纳米SiC粉体:modified SiC nano-powders651 炉外脱硫:external desulfurization652 绿色铸造:green casting653 净化方法:purification method654 制芯:Core making655 铸态球墨铸铁:as-cast ductile iron656 复合轧辊:compound roller657 冷隔:cold shut658 薄壁件:thin-wall part659 铸钢车轮:cast steel wheel660 铁水质量:quality of molten iron661 热物理性能:Thermo-physical properties 662 7050铝合金:7050 Al alloy663 半固态金属加工:semi-solid metal forming664 半固态铸造:semisolid casting665 表面反应:Surface reactions666 KBE:knowledge-based engineering(KBE)667 倾斜板:inclined plate668 弯销:dog-leg cam669 多边形效应:polygonal effect670 脱模剂:releasing agent671 铜包铝线:copper clad aluminum wire 672 球化衰退:nodularization degeneration 673 低过热度:low superheat674 升降机构:lifting mechanism675 SLS:selective laser sintering(SLS)676 溢流槽:spillway trough677 制浆技术:pulping technology678 浇注工艺:casting process679 变形行为:deformation behaviors680 转移涂料:transfer coating681 牵引速度:haulage speed682 WC/钢复合材料:WC/steel composites 683 泡沫模样:foam pattern684 皮下气孔:surface blowhole685 超高强度铝合金:ultrahigh strength aluminum alloy686 薄带铸轧:strip casting687 造型线:moulding line688 工具杆:tool rod689 铸锭组织:ingot microstructure690 复合变质剂:composite modifier691 发热剂:Heating Agent692 液相线半连续铸造:liquidus semi continuous casting693 Mg-Al-Zn合金:Mg-Al-Zn alloy694 洛仑兹力:Lorenz force695 散射比:scattering ratio696 翻转机构:turnover mechanism697 超声铸造:Ultrasonic Casting698 A356:A356 alloy699 Mg-Li-Al合金:Mg-Li-Al alloy700 复合磁场:electromagnetic field701 单缸机:single cylinder engine702 快速产品设计:Rapid Product Design 703 真空阀:Vacuum valve704 界面传热系数:Interfacial heat transfer coefficient705 液态金属冷却:liquid metal cooling 706 散射衰减:scattering attenuation707 电磁场频率:Electromagnetic Frequency 708 半连续铸锭:semicontinuous casting ingot709 凝固补缩:Solidification Feeding710 Mg-Zn合金:Mg-Zn alloy711 连铸-热轧区段:CC-HR region712 TC11钛合金:titanium alloy713 损坏机理:failure mechanism714 元素分布:Distribution of element715 原位TiC颗粒:in-situ TiC particles716 均匀化处理:uniform heat treatment 717 使用要求:application requirement718 初生相形貌:morphology of primary phase719 枝晶形貌:dendritic morphology720 铸造废弃物:foundry waste721 AZ91D:AZ91D Magnesium Alloy722 高压铸造:high pressure die casting 723 细化变质:Refinement and Modification 724 结疤:scale formation725 连续铸轧:continuous casting726 热变形行为:Thermal Deformation Behavior727 壳型铸造:shell mould casting728 消失模:evaporative pattern729 手机外壳:mobile phone shell730 热管技术:heat pipe731 水韧处理:water toughening process 732 阻燃镁合金:Ignition proof magnesium alloys733 除尘装置:dust collector734 悬浮率:suspending rate735 非线性估算法:nonlinear estimation method736 电解铝液:electrolytic aluminum melt 737 双金属复合:bimetal compound738 离心浇注:centrifugal pouring739 抗磨损:abrasion resistance740 薄壁铸件:thin-walled casting741 盖包法球化处理:tundish-cover nodulizing process742 无定形二氧化硅:amorphous silicon dioxide743 排气槽:air vent744 高铬白口铸铁:high chromium cast iron745 熔炼炉:smelting furnace746 过滤机理:Filtration mechanism747 汽车覆盖件模具:auto panel die748 低合金高强度钢:Low-alloy high-strength steel749 精铸模具:investment casting mould 750 铝板带:aluminum plate751 球状石墨:nodular graphite752 铸轧区:casting-rolling zone753 接线盒:junction box754 铁水净化剂:purifying agent for molten iron755 石墨块:graphite block756 优质铸件:high quality casting757 处理温度:treatment temperature758 高尔夫球头:golf head759 固相体积分数:solid volume fraction 760 纳米SiC颗粒:SiC nanoparticle761 检测仪器:testing instrument762 Mg17Al12相:Mg_(17)Al_(12) phase 763 攻关:tackling key problems764 硬化机理:Hardening mechanism765 真空吸铸:vacuum suction766 热分析技术:thermal analysis technology 767 高频调幅磁场:High Frequency Amplitude-modulated Magnetic Field768 坯料制备:blank production769 补缩通道:feeding channel770 水基涂料:water-based coating771 球铁件:Ductile Iron Castings772 稀土Er:rare earth Er773 陶瓷型壳:Ceramic shell774 精密电铸:precision electroforming 775 发气性:Gas evolution776 充型凝固:Mold Filling and solidification 777 铝带:aluminum strip778 新SIMA法:new SIMA method779 AZ91HP镁合金:AZ91HP magnesium alloy780 电子束冷床熔炼:electron beam cold hearth melting781 粘砂:metal penetration782 物理冶金学:physical metallurgy783 砂处理:Sand preparation 784 铸造裂纹:casting crack785 气冲造型:air impact molding786 金属模:metal mould787 磷共晶:phosphor eutectic788 近液相线半连续铸造:nearby liquidus semi-continuous casting789 液固反应:liquid-solid reaction790 呋喃树脂:furane resin791 汽缸盖:Cylinder Cap792 充型模拟:Simulation of mold filling 793 铸造工艺CAD:casting technology CAD 794 粘土砂:Clay sand795 冲天炉熔炼:cupola smelting796 射料充填过程:filling process797 半固态金属:semisolid metals798 大型铸件:heavy casting799 电机端盖:motor cover800 熔铸工艺:casting process801 加入方法:Joined technique802 区域熔化:zone melting803 真空除气:Vacuum Degassing804 相平衡热力学:phase equilibrium thermodynamics805 溢流系统:overflow system806 Al-Ti-C中间合金:Al-Ti-C master alloys 807 晶界碳化物:grain boundary carbide 808 净化装置:purification equipment809 液穴形状:sump shape810 铝合金铸造:Aluminum Alloy Casting 811 修模:Tool modification812 SKD61钢:SKD61 steel813 软化退火:Softening Annealing814 大齿轮:Large Gear815 合金渗碳体:Alloy cementite816 工艺性能试验:technological property tests817 硅碳比:Si/C ratio818 冷却曲线:Cooling Curves819 壁厚不均:non-uniform wall thickness 820 V法铸造:V process821 铸造系统:casting system822 电渣加热:electroslag heating823 残余内应力:residual stress824 表面清理:surface cleaning825 黄斑:macular region826 电磁振荡:Electromagnetic Oscillation 827 初始组织:initial structure828 气密性能:air permeability performance 829 电极调节:electrode adjustment830 气体速度:gas velocity831 抑制方法:suppressing method832 孔洞率:void ratio833 废品率:reject rate834 气动装置:pneumatic actuator835 应急发电机:emergency generator836 缺陷修复:Error repair837 有机高聚物:organic polymer838 理论成果:theoretical achievements 839 凝固曲线:Solidification curve840 元胞自动机法:cellular automaton841 ZL101铝合金:ZL101 Al alloy842 高韧性球墨铸铁:High toughness ductile iron843 搅拌方式:stirring method844 沉积坯尺寸:deposit dimension845 高锌镁合金:high zinc magnesium alloy 846 雕铣机:carves-milling machine847 铸造模拟:Casting simulation848 精益设计:lean design849 无余量精密铸造:Investment Casting 850 热顶铸造:hot-top casting851 羊油:mutton tallow852 压射速度:injection speed853 DOE试验:DOE experiment854 超声波振荡:ultrasonic oscillation855 酯固化:ester cured856 缸盖罩:cylinder head cover857 尺寸变化率:dimension variance rate 858 大型铸铁件:heavy iron castings859 单晶铜线材:copper single crystal wire 860 厚大断面球墨铸铁:heavy section ductile iron861 钛镍合金:Ti-Ni alloy862 实型铸造:Full Mold863 6082合金:6082 Alloy864 奥贝球铁:austenite-bainite nodular-iron 865 白口组织:white microstructure866 铸轧工艺参数:casting process parameters867 铸铁轧辊:cast iron milling roll868 强化处理:strengthen treatment869 半固态成型:semi-solid processing870 深腔:deep cavity871 耐热镁合金:Heat resistant magnesium alloys872 斜滑块:inclined sliding block873 回炉料:recycled scrap874 半固态坯:semi-solid billet875 感应熔炼:inductive melting876 链板:chain board877 含泥量:sediment percentage878 模料:mould material879 复合界面:compounded interface880 铸造方法:casting methods881 模温:mold temperature882 轻合金:light alloys883 增碳工艺:recarburation process884 定位装置:location equipment885 加压速率:pressurization rate886 半固态流变成形:Semi-solid Rheoforming887 复杂铸件:Complicated casting888 高强度灰铸铁:High strength grey cast iron889 针孔度:pinhole degree890 中频感应加热:intermediate frequency induction heating891 石墨转子:graphite rotor892 修磨机:Grinding machine893 动态顺序凝固:dynamic directional solidification894 针状组织:acicular structure895 粒度配比:particle size distribution896 铝合金壳体:aluminum alloy shell897 内冷铁:Internal chill898 铸件质量:quality of casting899 精炼效果:refining effect900 发动机缸体:cylinder body901 增碳剂:carburizing agent902 7005铝合金:7005Al alloys903 复合孕育:Multiple inoculations904 复合孕育剂:compound inoculation905 气孔缺陷:blowhole defect906 铁液质量:quality of molten iron907 钛铝合金:TiAl alloys908 7A09铝合金:7A09 aluminium alloy 909 SiC颗粒增强:SiC particle reinforcement 910 沉淀相:precipitated phases911 铝母线:aluminum bus912 凝固分数:solid fraction913 球化组织:spheroidized microstructure 914 蠕铁:vermicular iron915 组织均匀性:microstructure uniformity 916 压铸型:die-casting die917 镁合金压铸机:magnesium alloy die casting machine918 凝固微观组织:solidification microstructure919 灰铸铁件:Gray iron casting920 最大剪应力:ultimate shear stress921 热挤压成形:hot extrusion922 铝合金铸件:aluminium alloy cast923 抗湿性:humidity resistance924 耳子:rolling edge925 结合面:joint face926 推管:ejector sleeve927 黑点:black spot928 铝铸件:aluminum casting929 固相分数:Solid fraction930 快干硅溶胶:Quick-dry silica sol931 激冷铸铁:Chilled iron932 负压消失模铸造:Negative pressure EPC 933 LC9铝合金:LC9 aluminium alloy934 接触层:Contact layer935 工频炉:main frequency furnace936 消失模涂料:lost foam casting coating 937 高温均匀化:high temperature homogenization938 均热炉:pit furnace939 镁合金轮毂:magnesium wheel940 平砧:flat anvil941 铝合金扁锭:aluminum alloy slab942 凝固界面:solidifying interface943 低温冲击功:Low Temperature Impact Energy944 复合发泡剂:Composite Foaming Agent 945 交叉型芯:Crossed Core946 SCR连铸连轧:SCR continuous casting-rolling947 FS粉:FS powder948 AZ81镁合金:AZ81 alloy949 ZL109活塞:ZL109 piston950 掉砂:dropping sand951 型腔壁厚:cavity wall thickness952 铝件:aluminum part953 导向装置:guide mechanism954 彩色云图:color contour image955 柴油机缸体:Diesel engine cylinder block 956 圆盘铸锭机:casting wheel957 热风冲天炉:Hot-blast cupola958 充氧压铸:pore-free die casting959 铝钛硼细化剂:Al-Ti-B refiner960 保温冒口:Insulating riser961 共晶相:Eutectic phase962 夹砂:sand inclusion963 无冒口铸造:Riserless casting964 充芯连铸:continuous core-filling casting 965 熔体混合:melt mixing966 保护渣道:mold flux channel967 碱性酚醛树脂:alkaline phenolic resins 968 细深孔:Long-deep hole969 行星减速机:planetary reducer970 直接铸型制造:direct casting mold manufacturing971 引锭头:dummy bar head972 静置炉:holding furnace973 工艺出品率:process yield974 真空法:vacuum process975 石灰石砂:limestone sand976 整体浇注:monolithic casting977 混料工艺:mixing procedure978 螺旋套:screwy sheath979 胶凝机理:gelling mechanism980 覆砂铁型:permanent mould with sand facing981 球铁铸件:ductile iron casting982 成型率:molding rate983 球状组织:spherical structure984 电弧冷焊:arc cold welding985 钢液流场:flow field of molten steel。

钴基非晶磁环相对磁导率

钴基非晶磁环相对磁导率

钴基非晶磁环相对磁导率1. 引言钴基非晶磁环是一种具有优异磁性能的材料,广泛应用于电感器、变压器和传感器等领域。

其中,相对磁导率是评价钴基非晶磁环性能的重要指标之一。

本文将详细介绍钴基非晶磁环相对磁导率的相关知识。

2. 相对磁导率的定义相对磁导率是描述材料在外加磁场作用下,其自由电流密度与外加磁场强度之间关系的物理量。

它可以用数学公式表示为:其中,表示相对磁导率,表示材料的磁导率。

3. 钴基非晶磁环的特点钴基非晶磁环是一种由钴和其他合金元素组成的非晶态材料。

与晶态材料相比,钴基非晶磁环具有以下几个特点:•高饱和磁感应强度:钴基非晶磁环具有较高的饱和磁感应强度,可以在较小的体积内存储更多的能量。

•低矫顽力:钴基非晶磁环具有较低的矫顽力,即需要较小的外加磁场才能使其发生磁化反转,从而减少了能量损耗。

•宽工作温度范围:钴基非晶磁环可以在较宽的温度范围内保持稳定的性能,适用于各种工作环境。

4. 影响钴基非晶磁环相对磁导率因素钴基非晶磁环相对磁导率受到多个因素的影响,下面将介绍其中几个重要因素:4.1 合金成分合金成分是影响钴基非晶磁环相对磁导率的关键因素之一。

通过调整合金中钴和其他元素的含量,可以改变钴基非晶磁环的相对磁导率。

通常,增加合金中钴的含量可以提高相对磁导率。

4.2 热处理热处理是指将钴基非晶磁环在一定温度下进行加热和冷却的过程。

适当的热处理可以改善钴基非晶磁环的结晶状态,从而提高其相对磁导率。

4.3 外加磁场外加磁场是指施加在钴基非晶磁环上的外部磁场。

外加磁场的强度和方向会影响钴基非晶磁环内部自由电流密度分布,进而影响其相对磁导率。

通常情况下,较大的外加磁场可以使钴基非晶磁环发生更强的自发极化,从而提高其相对磁导率。

5. 测量方法测量钴基非晶磁环相对磁导率需要使用恰当的实验方法。

以下是一种常用的测量方法:1.准备样品:制备好具有代表性的钴基非晶磁环样品。

2.搭建测量装置:使用恰当的电路和设备搭建一个用于测量相对磁导率的实验装置。

铝合金电弧增材制造研究现状

铝合金电弧增材制造研究现状

第52卷第11期表面技术2023年11月SURFACE TECHNOLOGY·111·铝合金电弧增材制造研究现状张铂洋1,李旭2,张玉娇1,李英豪1,宗然1*(1.山东理工大学 机械工程学院,山东 淄博 255000;2.山东越浩自动化设备有限公司,山东 临沂 276000)摘要:电弧增材制造技术(Wire Arc Additive Manufacturing,WAAM)具有沉积速率高,成形速度快以及适合各种成形环境的优点,吸引了越来越多的高校及科研机构投入其中,如何进一步发挥电弧增材制造的优势是当下的研究热点。

阐述了铝合金电弧增材过程中热输入、电流方式和外加能场对成形件表面形貌、微观组织以及力学性能的影响。

当焊接电流较小或焊接速度较快时,热输入较低,熔融金属冷却速度快,形核率高,成形件为晶粒细小的等轴晶粒,提供给气孔的形成、聚集和长大的时间短,即热输入越低,成形件等轴晶区越宽,晶粒越细小,气孔缺陷越少,成形件机械性能越优异。

对比分析了不同电流方式的电弧增材制造成形件性能差异,发现脉冲和变极性电流方式的热输入比无脉冲电流方式低,成形件晶粒更精细、缺陷更少、机械性能更优异;脉冲和变极性电流方式都可以清理成形件表面氧化膜,获得平整的表面。

分析了电弧增材制造系统的优化方案,发现施加磁场、激光可以使得电弧更加集中,调控熔池流动,避免熔敷金属铺展不均匀;施加原位轧制、层间锤击以及超声喷丸可使得沉积层发生变形,在晶粒内产生大量位错;利用水箱或者添加保护气喷嘴可以降低电弧增材过程的热输入,获得晶粒细小、气孔缺陷少的成形件。

最后提出了电弧增材铝合金现阶段存在的问题以及解决方法。

关键词:铝合金;电弧增材;热输入;电流方式;外加能场中图分类号:TG456.2文献标识码:A 文章编号:1001-3660(2023)11-0111-17DOI:10.16490/ki.issn.1001-3660.2023.11.009Research Status of Arc Additive Manufacturing of Aluminum AlloyZHANG Bo-yang1, LI Xu2, ZHANG Yu-jiao1, LI Ying-hao1, ZONG Ran1*(1. School of Mechanical Engineering, Shandong University of Technology, Shandong Zibo 255000, China;2. Shandong Yuehao Automation Equipment Company Limited, Shandong Linyi 276000, China)ABSTRACT: Aluminum alloys have advantages of low density and high specific strength, so they are widely used in lightweight design fields such as aerospace and automobiles. With the development of the aerospace and automotive industries, aluminum alloy structural parts have developed towards high precision, large size and complex shapes, which puts forward higher requirements for the manufacturing technology of aluminum alloy parts. Wire Arc Additive Manufacturing (WAAM) has the advantages of high deposition rate, fast forming speed and is suitable for various forming environments, attracting more and收稿日期:2022-09-06;修订日期:2022-12-24Received:2022-09-06;Revised:2022-12-24基金项目:国家自然科学基金(51905321);山东省精密制造与特种加工重点实验室Fund:National Natural Science Foundation of China (51905321); Shandong Provincial Key Laboratory of Precision Manufacturing and Non-traditional Machining引文格式:张铂洋, 李旭, 张玉娇, 等. 铝合金电弧增材制造研究现状[J]. 表面技术, 2023, 52(11): 111-127.ZHANG Bo-yang, LI Xu, ZHANG Yu-jiao, et al. Research Status of Arc Additive Manufacturing of Aluminum Alloy[J]. Surface Technology, 2023, 52(11): 111-127.*通信作者(Corresponding author)·112·表面技术 2023年11月more universities and scientific research institutions for investigation. How to make full use of the advantages of WAAM to reduce or avoid defects in WAAM is a research hotpot.The effect of heat input, current waveform and external energy field on the surface morphology, microstructure, and mechanical properties of the WAAM parts is expounded. It is found that when the welding current is small or the welding speed is fast, the heat input of the WAAM is small. Therefore, the melting metal cooling speed is fast, the nucleation rate is high, the grain does not have enough time to grow up, so the forming part has fine equiaxed grains. When the heat input is low, the time for the formation, aggregation and growth of pores is shorter. In other words, the lower heat input, the wider equiaxed crystal zone, the smaller grains, the less pore defects, and the better mechanical properties of the forming parts. The reasons for the different properties of WAAM with different current modes were analyzed. It was found that the heat input of pulse current and variable polarity current mode was lower than that of no pulse current mode, and the oxide film on the surface of the forming part could be cleaned, so that the forming part with flat surface could be obtained. The optimization scheme of arc additive manufacturing system was analyzed. It was found that applying magnetic field and laser could make the arc more concentrated, control the molten pool flow, and avoid the uneven spread of molten metal. In situ rolling, interlayer hammering and ultrasonic shot peening could deform the sedimentary layer and produce a large number of dislocations in the grain. The heat input of arc additive could be reduced by using water tank or adding protective gas nozzles, and the formed parts with small grains and fewer porosity defects could be obtained.At present, the research of arc additive manufacturing of aluminum alloy mainly focuses on: reducing heat input by changing wire feeding speed, traveling speed and current mode and combining molding with other equipment to reduce the air hole defect of arc additive molding parts. However, the process parameters require a lot of experiments, which requires a lot of material cost and time cost. In the future, in order to make arc additive manufacturing technology be better applied to aluminum alloy manufacturing, it is necessary to develop a composite arc additive system with multi-energy field co-convergence, and adjust process parameters associated; establish the process parameters database and realize the sharing of manufacturing data;combine the numerical simulation with the experiment, verify the rationality of the simulation through the experiment, and explain the defects in the forming process and the mechanism of microstructure evolution from the perspectives of temperature field, flow field and stress field in the arc additive process, so as to guide the experiment.KEY WORDS: aluminum alloy; arc additive manufacturing; heat input; current mode; energy field铝合金由于具有密度小、比强度高及优良的综合力学性能等优点被广泛应用于航空航天、汽车等轻量化设计领域中[1],伴随着航空航天和汽车产业发展,铝合金结构件已经朝着高精度、大尺寸和复杂形状发展,这对铝合金部件的制造技术有了更高的要求。

磁性应用纳米材料的开发英文原文

磁性应用纳米材料的开发英文原文

NANO-SCALE MATERIALS DEVELOPMENT FOR FUTUREMAGNETIC APPLICATIONSpM.E.McHENRY and UGHLIN {Department of Materials Science and Engineering,Data Storage Systems Center,Carnegie MellonUniversity,Pittsburgh,PA 15213,USA(Received 1June 1999;accepted 15July 1999)Abstract ÐDevelopments in the ®eld of magnetic materials which show promise for future applications are reviewed.In particular recent work in nanocrystalline materials is reviewed,with either soft or hard beha-vior as well as advances in the magnetic materials used for magnetic recording.The role of microstructure on the extrinsic magnetic properties of the materials is stressed and it is emphasized how careful control of the microstructure has played an important role in their improvement.Important microstructural features such as grain size,grain shape and crystallographic texture all are major contributors to the properties of the materials.In addition,the critical role that new instrumentation has played in the better understanding of the nano-phase magnetic materials is demonstrated.#2000Published by Elsevier Science Ltd on behalf of Acta Metallurgica Inc.All rights reserved.Keywords:Soft magnetic materials;Hard magnetic materials;Recording media;Microstructure;Nano-phase1.INTRODUCTIONWhether it can be called a revolution or simply a continuous evolution,it is clear that development of new materials and their understanding on a smaller and smaller length scale is at the root of progress in many areas of materials science [1].This is particularly true in the development of new mag-netic materials for a variety of important appli-cations [2±5].In recent years the focus has moved from the microcrystalline to the nanocrystalline regime.This paper intends to summarize recent developments in the synthesis,structural character-ization,and properties of nanocrystalline and mag-nets for three distinct sets of magnetic applications:1.Soft magnetic materials.2.Hard magnetic materials.3.Magnetic storage media.The underlying physical phenomena that motivate these developments will be described.A unifying theme exists in the understanding of the relation-ships between microstructure and magnetic aniso-tropy (or lack thereof)in materials.The term ``nanocrystalline alloy''is used to describe those alloys that have a majority of grain diameters in the typical range from H 1to 50nm.This term will include alloys made by plasma processing [6±8],rapid solidi®cation,and deposition techniques where the initial material may be in the amorphous state and subsequently crystallized.We discuss processing methods to control chemistry and microstructural morphology on increasingly smaller length scales,and various developing experimental techniques which allow more accurate and quantitative probes of struc-ture on smaller length scales.We review the impact of microstructural control on the develop-ment of state of the art magnetic materials.Finally we o er a view to the future for each of these applications.Over several decades,amorphous and nanocrys-talline materials have been investigated for appli-cations in magnetic devices requiring either magnetically hard or soft materials.In particular,amorphous and nanocrystalline materials have been investigated for various soft magnetic applications including transformers,inductive devices,etc.In these materials it has been determined that an im-portant averaging of the magnetocrystalline aniso-tropy over many grains coupled within an exchange length is the root of the magnetic softness of these materials.The fact that this magnetic exchangeActa mater.48(2000)223±2381359-6454/00/$20.00#2000Published by Elsevier Science Ltd on behalf of Acta Metallurgica Inc.All rights reserved.PII:S 1359-6454(99)00296-7/locate/actamatpThe Millennium Special Issue ÐA Selection of Major Topics in Materials Science and Engineering:Current status and future directions,edited by S.Suresh.{To whom all correspondence should be addressed.length is typically nanometers or tens of nanometers illustrates the underlying importance of this length scale in magnetic systems.In rare earth permanent magnets [9],it has been determined that a microstructure containing two or more phases,where the majority phase is nanocrys-talline (taking advantage of the favorable high coer-civity in particles of optimum size)and one or more of the phases are used to pin magnetic domain walls leads to better hard magnetic properties.Still another exciting recent development has been the suggestion of composite spring exchange magnets [10]that combine the large coercivities in hard mag-nets with large inductions found in softer transition metal magnets.Again chemical and structural vari-ations on a nano-scale are important for determin-ing optimal magnetic properties.In the area of magnetic storage media future pro-gress will also rely on the ability to develop control over microstructure at smaller size scales so as to impact on storage densities.Here the issue of ther-mal stability of the magnetic dipole moment of ®ne particles has become a critical issue,with the so-called superparamagnetic limit on the horizon.The need to store information in smaller and smaller magnetic volumes pushes the need to develop media with larger magnetocrystalline anisotropies.2.DEFINITIONSTechnical magnetic properties [11,12]can be de®ned making use of a typical magnetic hysteresis curve as illustrated in Fig.1.Magnetic hysteresis [Fig.1(a)]is a useful attribute of a permanent mag-net material in which we wish to store a large meta-stable magnetization.Attributes of a good permenent magnet include:(a)large saturation and remnant inductions,B s and B r :a large saturation magnetization,M s ,and induction,B s ,are desirable in applications of both hard (and soft)magnetic materials;(b)large coercivities,H c :coercivity is a measure of the width of a hysteresis loop and a measure of the permanence of the magnetic moment;(c)high Curie temperature,T c :the ability to use soft magnetic materials at elevated tempera-tures is intimately dependent on the Curie tempera-ture or magnetic ordering temperature of the material.A large class of applications requires small hys-teresis losses per cycle.These are called soft mag-netic materials and their attributes include:(a)high permeability:permeability,mB a H 1 w ,is the material's parameter which describes the ¯ux density,B ,produced by a given applied ®eld,H .In high permeability materials we can produce very large changes in magnetic ¯ux density in very small ®elds;(b)low hysteresis loss:hysteresis loss rep-resents the energy consumed in cycling a material between ®elds H and ÀH and back again.The energy consumed in one cycle is W HM d B or the area inside the hysteresis loop.The hysteretic power loss of an a.c.device includes a term equal to the frequency multiplied by the hysteretic loss per cycle;(c)large saturation and remnant magneti-zations;(d)high Curie temperatures.The magnetization curve [Fig.1(a)]illustrates the technical magnetic properties of a ferromagnetic material.Its shape is determined by minimizing the material's magnetic free energy.The magnetic free energy consists of terms associated with the®eldFig.1.(a)Schematic of a hysteresis curve for a magnetic material de®ning some technical magnetic par-ameters and (b)rotation of atomic magnetic dipole moments in a 1808(Bloch)domain wall in a ferro-magnetic material.224McHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENTenergy(Zeeman energy),self-®eld(demagnetization energy),wall energy,and magnetic anisotropy energy.The magnetic Helmholtz free energy[13] can be determined by integrating a magnetic energy density as follows:F M 4A rr MM s!2ÀK1 rMÁnM s!2Àm0MÁH5d r1where A(r)is the local exchange sti ness related to the exchange energy,J and spin dipole moment,S A CJS2a a at0K,with C H1depending on crys-tal structure and a is the interatomic spacing),K1(r) is the(leading term)local magnetic anisotropy energy density,M is the magnetization vector,n is a unit vector parallel to the easy direction of mag-netization,and H is the sum of the applied®eld and demagnetization®eld vectors.The magnetic anisotropy energy describes the angular dependence of the magnetic energy,i.e.its dependence on angles y and f between the magnetization and an easy axis of magnetization.For the case of a uniaxial material the leading term in the anisotropy energy density has a simple K1sin2y form.The anisotropy energy can be further subdivided into magnetocrys-talline,shape and stress anisotropies,etc.For the purposes of the discussions here,however,we will devote most of our attention to the magnetocrystal-line anisotropy.The magnetic anisotropy represents a barrier to switching the magnetization.For soft magnetic ma-terials,a small magnetic anisotropy is desired so as to minimize the hysteretic losses and maximize the permeability.In soft materials,the desire for small magnetocrystalline anisotropy necessitates the choice of cubic crystalline phases of Fe,Co,Ni or alloys such as FeCo,FeNi,etc.(with small values of K1).In crystalline alloys,such as permalloy or FeCo,the alloy chemistry is varied so that the®rst-order magnetocrystalline anisotropy energy density, K1,is minimized.Similarly,stress anisotropy is reduced in alloys with nearly zero magnetostriction. Shape anisotropy results from demagnetization e ects and is minimized by producing materials with magnetic grains with large aspect ratios. Amorphous alloys are a special class of soft ma-terials where(in some notable cases)low magnetic anisotropies result from the lack of crystalline periodicity.For hard magnetic materials a large magnetic anisotropy is desirable.As discussed below,large magnetocrystalline anisotropy results from an ani-sotropic(preferably uniaxial)crystal structure,and large spin orbit rge magnetocrystal-line anisotropy is seen,for example in h.c.p.cobalt, in CoPt where spin±orbit coupling to the relativistic Pt electrons invokes large anisotropies,and impor-tantly in the rare earth permanent magnet ma-terials.In future discussions we will®nd it useful to describe several length scales that are associated with magnetic domains and domain walls[Fig. 1(b)].These are expressed through consideration of domain wall energetics.The energy per unit area in the wall can be expressed as a sum of exchange and anisotropy energy terms:g W g ex g K 2 where the anisotropy energy per unit volume,K,is multiplied by volume contained in a domain wall, A W d W,and divided by cross-sectional area to arrive at an anisotropy energy per unit area:g K KA W d WA WK d W K Na 3where d W Na(a is the lattice constant in the direction of rotation and N is the number of planes over which the rotation takes place)is the thickness of the wall.Thus g W can be expressed asg Wp2J ex S2Na2K1 Na 4where the®rst term considers the cost in exchange energy in rotating magnetic dipole moments in a 1808domain wall as illustrated in Fig.1(b).To determine the optimal wall thickness we di eren-tiate g W with respect to d W yielding:N eqp2J ex S2K1a3sX 5For Fe,N eq H300and the equilibrium thickness, t eq N eq a H50nm X Expressed in terms of the exchange sti ness,A ex,and the domain wall width, d W pA ex a K1pXAnother important length scale is the distance over which the perturbation due to the switching of a single spin decays in a soft material.This length is called the ferromagnetic exchange length,L ex, and can be expressed asL exA ex2ssX 6The ferromagnetic exchange length is H3nm for ferromagnetic iron-or cobalt-based alloys.The ratio of the exchange length to d W/p is a dimension-less parameter,k,called the magnetic hardness par-ameter:kp L exd WK1m0M2ssX 7For hard magnetic materials k is on the order of unity and thus there is little di erence between theMcHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENT225ferromagnetic exchange length and the domain wall width.On the other hand,for good soft magnetic materials,where K 1approaches zero,k can deviate substantially from unity.Structure sensitive magnetic properties may depend on defect concentration (point,line and pla-nar defects),atomic order,impurities,second phases,thermal history,etc.In multi-domain ma-terials,the domain wall energy density ,g 4 AK 1 1a 2g x ,is spatially varying as a result of local variations in properties due to chemical variation,defects,etc.A domain wall will prefer to locate itself in regions where the magnetic order parameter is suppressed,i.e.pinning sites .Since changes in induction in high-permeability materials occur by domain wall motion,it is desirable to limit variation of g (x )(pinning).This is one of the key design issues in developing soft magnetic materials,i.e.that of process control of the microstructure so as to optimize the soft magnetic properties.In hard materials development of two-phase microstructures with pinning phases is desirable.For ®ne particle magnets the possibility of ther-mally activated switching and consequent reduction of the coercivity as a function of temperature must be considered as a consequence of a superparamag-netic response.This is an important limitation in magnetic recording.Superparamagnetism refers to the thermally activated switching of the magnetiza-tion over rotational energy barriers (provided by magnetic anisotropy).Thermally activated switching is described by an Arrhenius law where the acti-vation energy barrier is K u h V i (h V i is the switching volume).The switching frequency becomes larger for smaller particle size,smaller anisotropy energydensity and at higher temperatures.Above a block-ing temperature,T B ,the switching time is less than the experimental time and the magnetic hysteresis loop is observed to collapse,i.e.the coercive force becomes zero.Above T B ,the magnetization scales with ®eld and temperature in the same manner as does a classical paramagnetic material,with the exception that the inferred dipole moment is a par-ticle moment and not an atomic moment.Below the blocking temperature,hysteretic magnetic re-sponse is observed for which the coercivity has the temperature dependence:H c H c 041À TT B 1a 25X 8In the theory of superparamagnetism [14,15],the blocking temperature represents the temperature at which the metastable hysteretic response is lost for a particular experimental timeframe.In other words,below the blocking temperature hysteretic response is observed since thermal activation is not su cient to allow the immediate alignment of par-ticle moments with the applied ®eld.For stability of information over H 10years,the blocking tempera-ture should roughly satisfy the relationship:T B K u h V i a 40k B X The factor of 40[16,17]represents ln o 0a o ,where o is the inverse of the 10year stab-ility time (H 10À4Hz)and o 0an attempt frequency for switching (H 1GHz).3.SOFT MAGNETIC MATERIALSApproaches to improving intrinsic and extrinsic soft ferromagnetic properties involve (a)tailoringFig.2.(a)Herzer diagram [18]illustrating dependence of the coercivity,H c ,with grain size in magnetic alloys and (b)relationship between permeability,m e (at 1kHz)and saturation polarization for soft mag-netic materials [19].226McHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENTchemistry and (b)optimizing the microstructure.Signi®cant in microstructural control has been rec-ognition that a measure of the magnetic hardness (the coercivity,H c )is roughly inversely proportional to the grain size (D g )for grain sizes exceeding H 0.1±1m m [where the D g exceeds the domain (Bloch)wall thickness,d W ].Here grain boundaries act as impediments to domain wall motion,and thus ®ne-grained materials are usually magnetically harder than large grain materials.Signi®cant recent development in the understanding of magnetic coer-civity mechanisms has led to the realization that for very small grain sizes D g `H 100nm ,[18],H c decreases rapidly with decreasing grain size [Fig.2(a)].This can be understood by the fact that the domain wall,whose thickness,d W ,exceeds the grain size,now samples several (or many)grains and ¯uc-tuations in magnetic anisotropy on the grain size length scale which are irrelevant to domain wall pinning.This important concept of random aniso-tropy suggests that nanocrystalline and amorphous alloys have signi®cant potential as soft magnetic materials.Soft magnetic properties require that nanocrystalline grains be exchange coupled and therefore processing routes yielding free standing nanoparticles must include a compaction method in which the magnetic nanoparticles end up exchange coupled.Random anisotropy [20,21]has been realized in a variety of amorphous and nanocrystalline ferro-magnets as illustrated in Fig.2(b)which shows two important ®gures of merit for soft magnetic ma-terials their magnetic permeability and their bined high permeabilities and magnetic inductions are seen for amorphous Fe-and Co-based magnets with more recent improvements in the envelope occurring with the development of nanocrystalline alloys FINEMET,NANOPERM and HITPERM.The last of these combines high permeabilities,large inductions with the potential for high temperature application due to the high Curie temperature of the a '-FeCo nanocrystalline phase.Typical attributes of nanocrystalline ferro-magnetic materials produced by an amorphous pre-cursor route are summarized in Table 1[22].The basis for the random anisotropy model is il-lustrated in Fig.3(a).The concept of a magnetic exchange length and its relationship to the domain wall width and monodomain size is important in the consideration of magnetic anisotropy in nano-crystalline soft magnetic materials.These length scales are de®ned by appealing to a Helmholtz free energy functional described above.These length scales again are:d W p A a K p and L ex A a 4p M 2s p X The extension of the random ani-sotropy model by Herzer [18]to nanocrystalline alloys has been used as the premise for describing e ective anisotropies in nanocrystalline materials.Herzer considers a characteristic volume whose lin-ear dimension is the magnetic exchange length,L ex H A a K 1a 2X The unstated constant of propor-tionality (k )for materials with very small K can beTable 1.Attributes of nanocrystalline ferromagnetic materials produced by an amorphous precursor routeAlloy name Typical composition Nanocrystalline phase B s (T)T c (8C)FINEMET Fe 73.5Si 13.5B 9Nb 3Cu 1a -FeSi,FeSi (DO 3)1.0±1.2<770NANOPERM Fe 88Zr 7B 4Cu a -Fe (b.c.c.)1.5±1.8770HITPERMFe 44Co 44Zr 7B 4Cua -FeCo (b.c.c.),a '-FeCo (B2)1.6±2.1>965Fig.3.(a)Cartoon illustrating N nanocrystalline grains of dimension D ,in a volume L 3ex X (b)TEMmicrographs for an annealed (Fe 70Co 30)88Hf 7B 4Cu HITPERM magnet ribbons [23].McHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENT227quite large.The Herzer argument considers N grains,with random crystallographic easy axes,within a volume of L 3ex ,to be exchange coupled.For random easy axes,a random walk over all N grains yields an e ective anisotropy that is reduced by a factor of 1/(N )1/2from the value K for any one grain,thus K eff K a N 1a 2X The number of grains in this exchange coupled volume is just N L ex a D 3,where D is the average diameter of individual grains.Treating the anisotropy self-con-sistently:K eff H KD 3a 2H K effA !3a 2HK 4D 6A 3!X 9Since the coercivity can be taken as proportional tothe e ective anisotropy,this analysis leads to yield Herzer's prediction that the e ective anisotropy and therefore the coercivity should grow as the sixth power of the grain size:H c H H K H D 6X10Other functional dependences of the coercivity on grain size have been proposed for systems with reduced dimensionality (i.e.thin ®lms)and sup-ported by experimental observations.The D 6power law is observed experimentally in a variety of alloys as illustrated in Fig.2(a).In FINEMET,NANOPERM and HITPERM nanocrystalline alloys,a common synthesis route has been employed resulting in a two-phase nano-crystalline microstructure.This involves rapid soli-di®cation processing of the alloy to produce an amorphous precursor.This is followed by primary (nano)crystallization of the ferromagnetic phase.For synthesis of a nanocrystalline material,the pri-mary crystallization temperature,T x1,is the usefulcrystallization event.In the amorphous precursor route to producing nanocrystalline materials,sec-ondary crystallization is typically of a terminal early transition metal±late transition metal (TL±TE)and/or late transition metal±metalloid (TL±M)phase.This phase is typically deleterious in that it lowers magnetic permeability by domain wall pin-ning.The secondary crystallization temperature,T x2,then represents the upper limit of use for nano-crystalline materials.A typical DTA study of crys-tallization [24,25]is shown in Fig.4(a).Crystallization reactions and kinetics have been examined in some detail for certain of these alloys.For example,Hsiao et al .[26]has examined the crystallization kinetics of a NANOPERM alloy using magnetization as the measure of the volume fraction transformed in the primary crystallization event.Time-dependent magnetization data,at tem-peratures above the crystallization temperature,are illustrated in Fig.4(b).Since the amorphous phase is paramagnetic at the crystallization temperature,the magnetization is a direct measure of the volume fraction of the a -Fe crystalline phase that has trans-formed.M (t )then measures the crystallization kin-etics.Figure 4(b)shows curves reminiscent of Johnson±Mehl±Avrami kinetics for a phase trans-formation.X (t )has been ®t to reveal activation energies of H 3.5eV and JMA kinetic exponents of H 3/2consistent with immediate nucleation and parabolic three-dimensional growth of nanocrystals.Detailed studies of NANOPERM and FINEMET [27,28]alloys have furthered the under-standing of the crystallization events.Ayers et al .[29±31]have proposed a model based on incipient clustering of Cu in FINEMET alloys prior to nucleation of the a -FeSi ferromagnetic nanocrystal-line phase.Hono et al .'s [32±34]atomic probe ®eld ion microscopy (APFIM)studies ofFINEMETFig.4.(a)Di erential thermal analysis (DTA)plot of heat evolved as a function of temperature for a Fe 44Co 44Zr 7B 4Cu 1alloy showing two distinct crystallization events [24,25].(b)Isothermal magnetiza-tion as a function of time (normalized by its value after 1h)for the NANOPERM compositionFe 88Zr 7B 4Cu at 490,500,520and 5508C,respectively [26].228McHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENTalso supported the important role of Cu in the crys-tallization process,though it was thought that Fe±Si nanocrystals grew near but not necessarily on the Cu clusters [Fig.5(b)].Recent three-dimensional APFIM results by Hono et al .elegantly con®rm the original Ayers mechanism.Clear inferences from magnetic measurements,EXAFS,etc.point to the role of partitioning of early transition metals and boron during primary crystallization of NANOPERM and HITPERM alloys [Fig.5(a)].A signi®cant issue in the use of nanocrystalline materials in soft magnetic applications is the strength and especially the temperature dependence of the exchange coupling between the nanocrystal-line grains.The intergranular amorphous phase,left after primary crystallization in FINEMET and NANOPERM,has a lower Curie temperature than the nanocrystalline ferromagnetic phase.This can give rise to exchange decoupling of the nanocrystal-line grains,and resulting magnetic hardening,at relatively low temperatures.HITPERM has been developed with the aim of not only increasing the Curie temperature of the nanocrystals (in this case a '-FeCo)but also in the intragranular amorphous phase.Figure 6(a)shows observations of magnetization as a function of temperature [22,24,25]for two alloys,one of a NANOPERM composition,and the other of a HITPERM composition.The amor-phous precursor to NANOPERM has a T c just above room temperature.The magnetic phase tran-sition is followed by primary crystallization at T x 1H 5008C ;secondary crystallization and ®nally T c of the nanocrystalline a -Fe phase at H 7708C.M (T )for HITPERM,shows a monotonic magnetization decrease up to T c for the amorphous phase.Above 400±5008C structural relaxation and crystallization of the a '-FeCo phase occurs.T x1is well below the Curie temperature of the amorphous phase,so that the magnetization of the amorphous phase is only partially suppressed prior to crystallization.It is this Curie temperature of the amorphous intergra-nular phase that is important to the exchange coup-ling of the nanocrystals in HITPERM.The soft magnetic properties of nanocrystalline magnetic alloys extend to high frequencies due to the fact that the high resistivities of these alloys limit eddy current losses.Figure 7(b)illustrates the frequency dependence of the real and imaginary components of the complex permeability,m 'and m 0,for a HITPERM alloy.m 0re¯ects the power loss due to eddy currents and hysteresis.The losses,m 0(T ),peak at a frequency of H 20kHz.This is re¯ective of the higher resistivity in the nanocrystal-line materials.AC losses re¯ect domain wall in a viscous medium.The largerresistivityFig.5.(a)Schematic representation of the concentration pro®le of Fe and Zr near an a -Fe nanocrystal for during primary crystallization of NANOPERM type alloys [22].(b)Proposed sequence of events inthe nanocrystallization of FINEMET alloys (after Hono et al .[32±34]).Fig.6.(a)M (T )for an alloy with a NANOPERM com-position Fe 88Zr 7B 4Cu and an alloy with a HITPERMcomposition,Fe 44Co 44Zr 7B 4Cu [24,25].McHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENT 229r 50mO cm at 300K)extends the large per-meability to higher frequencies where eddy currents (classical and those due to domain wall motion)dominate the losses.The resistivity of the nanocrys-talline materials is intermediate between the amor-phous precursor and crystalline materials of similar composition and is a signi®cant term in eddy cur-rent related damping of domain wall motion.4.HARD MAGNETIC MATERIALSOver the last few decades the most signi®cant advancements in permanent magnet materials has come in the area of so-called rare earth permanent magnets.These have a magnetic transition metal as the majority species and a rare earth metal as the minority species.The large size di erencebetweenFig.7.AC hysteresis loops for the HITPERM alloy at 0.06,4,10,and 40kHz.The sample was annealed at 6508C for 1h and the measurements were made at room temperature with a ®eld ampli-tude,H m 2X 5Oe [24,25].Fig.8.(a)Cartoon showing cellular structure [48]observed in many 2:17based magnets with cells con-taining the rhombohedral and hexagonal 2:17variants and 1:5intergranular phase;(b)crystal struc-tures of the same and (c)TEM picture (courtesy of J.Dooley)of cellular structure observed in 2:17-based magnet.230McHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENTthe rare earth and transition metal species gives rise to the observation of many anisotropic crystal structures in these systems.In such systems the transition metal(TM)species is responsible for most of the magnetization and TM±TM exchange determines the Curie temperature.On the other hand the rare earth(RE)species determines the magnetocrystalline anisotropy.The anisotropic4f-electron charge densities about the rare earth ion gives rise to large orbital moment and consequently large spin orbit interactions that are at the root of magnetocrystalline anisotropy.The development of large coercivities from materials with large(uniax-ial)magnetic anisotropies involves microstructural development aimed at supplying barriers to the ro-tation of the magnetization and pinning of domain walls.Systems based on Sm±Co[35±38]and Fe±Nd±B[39,40]have been of considerable recent interest.Of the two important classes of rare earth tran-sition metal permanent magnets,i.e.Sm±Co based and Nd2Fe14B alloys[39,40],Sm±Co alloys have much larger Curie temperatures,increasing in com-pounds with larger Co concentrations(e.g.the3:29 phase).The so-called1:5,1:7,and2:17alloys and newly discovered3:29materials[41,42],have received attention,where the ratios refer to the RE:TM concentrations.High Curie temperature, T c,interstitially doped(C,N),2:17magnets have also been studied extensively[43±47].The develop-ment of the Fe±Nd±B magnets has been motivated by the lower cost of Fe as compared with Co and Nd as compared with Sm.These magnets do,how-ever,su er from poorer high temperature magnetic properties due to their lower Curie temperatures. The Sm2Co17phase when compared with SmCo5 o ers larger inductions and Curie temperatures at the expense of some magnetic anisotropy.The2:17 materials have favorable and to date unmatched intrinsic properties:B r 1X2T(258C),intrinsic coer-civity i H c 1X2T(258C)and T c 9208C(e.g.in comparison to7508C for SmCo5).The higher three-dimensional metal content(Co)leads to their high values of T c.The2:17magnets currently in com-mercial production have a composition Sm(CoFeCuM)7.5.Additions of Fe are made to increase the remnant induction;Cu and M Zr, Hf,or Ti)additions are made to in¯uence precipi-tation hardening.Optimum hard magnetic proper-ties,notably coercivities are achieved in magnets in which the primary magnetic phase has a50±100nm grain size(approaching the monodomain size)as described below.Typical2:17Sm±Co magnets with large values of H c are obtained through a low temperature heat treatment used to develop a cellular microstructure (see Fig.8).Small cells of the2:17matrix phase are separated(and usually completely surrounded)by a thin layer of the1:5phase as illustrated in Fig.8. The cell interior contains both a heavily twinned rhombohedral modi®cation of the2:17phase along with coherent platelets of the so-called z-phase[48] is rich in Fe and M and has the hexagonal2:17 structure.Typical microstructures have a50±100nm cellular structure,with5±20nm thick cell walls, and display i H c of1.0±1.5T at room temperature. By1508C H c is diminished by H50%.The loss of H c undoubtedly continues with temperature.In the cellular microstructure shown in Fig.8the magnetic anisotropy of the1:5cell boundary phase is important in determining the coercivity. Coercivity at room temperature in2:17Sm±Co magnets is largely controlled by the magnetocrystal-line anisotropy of Sm3+ions in SmCo5in the cell walls.In a100nm cellular material the room tem-perature coercivity is twice that of conventional 2:17alloys.In Co-rich alloys(2:17,3:29,etc.)devel-opment of su cient magnetic anisotropy for hard applications is intimately related to having a prefer-ential easy c-axis and developing a®ne microstruc-ture.Optimization of the Sm(CoFeCuZr)z magnets dis-cussed above have been the subject of much recent work.In particular,improvement of properties at elevated temperatures for aircraft power generators has been of particular interest[49±52].Ma et al.[49]investigated the e ects of intrinsic coercivity on the thermal stability of2:17magnets up to 4508C.Recently,Liu et al.[52]have investigated the role of Cu content and stoichiometry,z,on the intrinsic coercivity at5008C in Sm(CoFeCuZr)z magnets.For magnets with z 8X5,i.e. Sm(Co bal Fe0.1Cu x Zr0.033)8.5,the optimum coercivity (4.0T at room temperature,1.0T at5008C)occurs for a Cu concentration x 0X088X The role of Cu has been elucidated through microstructural studies as decreasing the cell size while concurrently increasing the density of the lamellar z-phase in these alloys.The development of Sm±Co magnets,especially those with good high temperature magnetic proper-ties has resulted in extensive work on a so-called 1:7phase with a TbCu7structure[53].SmCo7is a metastable phase at room temperature.The struc-tures of SmCo7and Sm2Co17are both derived from the structure of SmCo5.The structure of Sm2Co17 can be viewed as one in which1/3of the Sm atoms in the SmCo5are replaced by dumbbells of Co in an ordered fashion.Kim[54,55]have studied the intrinsic coercivity of SmTM7magnets and attribu-ted higher coercivities at5008C to smaller cell sizes. Recent work[54±57]on SmCo7Àx Zr x magnets has been extended to alloys with composition RCo7Àx Zr x x 0±0X8,R Pr,Y or Er).A small amount of Zr substitution contributes to stabiliz-ation of the TbCu7structure,and improves the magneto-anisotropy®eld,H A.The choice and con-centration of various rare earth species in¯uences the easy axis of magnetization.Most recently there has been considerable interestMcHENRY and LAUGHLIN:NANO-SCALE MATERIALS DEVELOPMENT231。

粉末冶金原理-烧结解析

粉末冶金原理-烧结解析
●加压烧结(有压烧结) 施加外压力 (Applied pressure or pressure-assisted sintering) ,热等静压 HIP、热压HP等
按烧结过程有无液相出现
固相烧结:
单元系固相烧结:单相(纯金属、化合物、固溶体)粉末 的烧结:烧结过程无化学反应、无新相形成、无物质聚集 状态的改变。 多元系固相烧结:
烧结的机构和动力学问题
§3-2 烧结过程的热力学基础
一、烧结的基本过程
原始接触 孔隙球化
烧结颈长大
粉末等温烧结过程的三个阶段
等温烧结过程按时间大致可分为三个界限不十分明显的阶段: 1.粘结阶段 烧结初期,颗粒间的原始接触点或面转变成晶体结合,
烧结过程的驱动力
烧结热力学,即解决Why的问题
物质迁移方式Leabharlann 烧结动力学—烧结机构,即解决How的问题, 即物质迁移方式和迁移速度
上述理论在典型烧结体系中的应用
研究方法:
烧结几何学 烧结物理学
烧结化学
计算机模拟
烧结模型:两球模型、球-板模型
物质迁移机构:扩散、流动
组元间的反应(溶解、形成化合物) 及与气氛间的反应
但可能高于次要组分的熔点: WC-Co合金, W-Cu-Ni合金
(二) 烧结的重要性
1)粉末冶金生产中不可缺少的基本工序之一
(磁粉芯和粘结磁性材料例外)
烧 结 的
2)对PM制品的性能有决定的影响(烧结废品很难补救, 如铁基部件的脱渗碳和严重的烧结变形)
重 要 性
3)烧结消耗是构成粉末冶金产品成本的重要组成部分 (设备、高温、长时间、保护气氛)。
借助于建立物理、几何或化学模型, 进行烧结过程的计算机模拟(蒙特-卡 洛模拟)

不同预热温度WC_增强镍基合金堆焊层的微结构演化与摩擦学性能

不同预热温度WC_增强镍基合金堆焊层的微结构演化与摩擦学性能

第53卷第9期表面技术2024年5月SURFACE TECHNOLOGY·127·不同预热温度WC增强镍基合金堆焊层的微结构演化与摩擦学性能张春霖a,张丽a,李胜利a,李静a,张诗涵b,解志文b*(辽宁科技大学 a.材料与冶金学院 b.机械工程与自动化学院,辽宁 鞍山 114051)摘要:目的研究不同预热温度(200、400 ℃)条件下硬质颗粒增强镍基合金堆焊层的微观组织结构演化机理,以及对其力学性能、磨损性能的影响规律。

方法采用等离子弧焊接技术在42CrMo钢基体表面堆焊硬质WC颗粒增强镍基强化层,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、硬度计和摩擦磨损试验机,分析不同预热温度堆焊层的物相组成、微观组织形貌、力学性能和磨损性能,建立堆焊层制备工艺–微观组织结构–力学性能–磨损性能之间的强映射关系。

结果堆焊层主要由γ-Ni/Fe、WC、W2C、M7C3、M23C6、Ni2W4C、Cr3C2等物相组成,在预热温度200 ℃下堆焊层二次碳化物析出较少,发生了严重的WC颗粒沉降现象;在预热温度400 ℃下,堆焊层析出了大量的二次碳化物,WC颗粒沉降减弱,组织均匀性提高。

在400 ℃下预热,相较于200 ℃下预热,堆焊层的磨损质量减少了51.85%,磨损率减少了51.89%。

结论高预热温度和长保温时间可促进WC颗粒界面反应,驱动大面积二次碳化物的析出,有效缓解WC颗粒沉降,改善凝固组织中WC颗粒的分布均匀性,从而显著提高堆焊层的硬度和耐磨性。

关键词:预热温度;等离子堆焊;镍基WC涂层;微观组织;磨损机理中图分类号:TG174.44 文献标志码:A 文章编号:1001-3660(2024)09-0127-10DOI:10.16490/ki.issn.1001-3660.2024.09.012Microstructure Evolution and Tribological Property of WCReinforced Nickel Based Alloy Surfacing Layer Fabricated atDifferent Preheating TemperatureZHANG Chunlin a, ZHANG Li a, LI Shengli a, LI Jing a, ZHANG Shihan b, XIE Zhiwen b*(a. School of Materials and Metallurgy, b. School of Mechanical Engineering and Automation, University ofScience and Technology Liaoning, Liaoning Anshan 114051, China)ABSTRACT: Components in severe environment often fail to work due to abrasion, corrosion and fractures, surface strengthening technology has important applications in the fields of aerospace, steel and metallurgy. Nickel-WC is an ideal coating material for improving both wear resistance and corrosion resistance of components surfaces. However, WC bottom–concentrated situation generally occurs owning to large density of WC particles (16.5 g/cm3), which can cause stress收稿日期:2023-04-12;修订日期:2023-10-23Received:2023-04-12;Revised:2023-10-23基金项目:国家重点研发计划(2021YFB3702003)Fund:National Key Research and Development Program (2021YFB3702003)引文格式:张春霖, 张丽, 李胜利, 等. 不同预热温度WC增强镍基合金堆焊层的微结构演化与摩擦学性能[J]. 表面技术, 2024, 53(9): 127-136.ZHANG Chunlin, ZHANG Li, LI Shengli, et al. Microstructure Evolution and Tribological Property of WC Reinforced Nickel Based Alloy Surfacing Layer Fabricated at Different Preheating Temperature[J]. Surface Technology, 2024, 53(9): 127-136.*通信作者(Corresponding author)·128·表面技术 2024年5月concentration and increase the risk of cracking. WC bottom–concentrated situation is not desired in the fabricated process. In this study, WC particles reinforced Nickel alloy layers were prepared with different preheating schedule on 42CrMo steel substrate by powder plasma arc welding technology. The work aims to demonstrate the microstructure evolution of hard particle reinforced Nickel based alloy surfacing layers at different preheating temperature (200 ℃ and 400 ℃) and investigate the effects on the mechanical and tribology properties.DML-V03BD was used to deposit the target surfacing layers. The 42CrMo steel was used as the substrate, which was cleaned with alcohol. Ni40A powder and 45% (mass fraction) WC particles added in Ni40A powder were used as the materials of bonding layer and hard layer, respectively. Before the deposition experiments, the substrate was executed at different preheating schedules of 200 ℃/30 min and 400 ℃/6 h. The bonding layer was deposited on the substrate firstly and the hard layer was deposited on the bonding layer then. The welding current used for bonding layer and hard layer was (140±10)A. The pendulum width was 20 mm. 30% overlap rate between two single layers was executed. After the whole welding procedure, the samples were cooled to ambient temperature naturally. The phase composition was analyzed by X-ray diffractometer (XRD), the microstructure of the surface and cross-section of the samples was observed by scanning electron microscopy equipped with energy dispersive spectrometer (EDS) after standard metallographic etching procedures. The Rockwell hardness on the surface of the hard layer was executed at a load of 1 500 N for loading time of 5 s and the microhardness was executed with a microhardness tester on the cross-sectional of the samples with a load of 10 N for loading time of 10 s. The friction experiment was carried out by MS-T300 wear tester at a load of 20 N, rotation speed of 300 r/min, rotation radius of 5 mm and experiment time of 60 min, and the grinding ball was Si3N4 of ϕ6 mm. An electronic balance with an accuracy of 0.1 mg was used for weighing the mass loss and Alpha-step meter was used to measure the worn trace.The surfacing layer is mainly composed of γ-Ni/Fe, WC, W2C, M7C3, M23C6, Ni2W4C and Cr3C2. Surfacing layer at 200 ℃precipitates little secondary carbides, and WC bottom-concentrated situation is serious. Surfacing layer at 400 ℃ precipitates massive secondary carbides, WC bottom-concentrated situation becomes weakened and homogeneity of microstructure is improved. Higher preheating temperature and longer preheating time can promote the interfacial reaction of WC particles, drive the precipitation of large secondary carbides, reduce average density of residual WC particles, effectively alleviate WC bottom-concentrated situation, improve the uniformity of WC particle distribution in the solidification microstructure, and ultimately improve the hardness and wear resistance of the surfacing layer significantly. The wear mass loss and volume wear rate of surfacing layer at 400 ℃preheating temperature is reduced by up to 51.85% and 51.89% compared with those of the layer at 200 ℃ preheating temperature, respectively. The abrasive wear mechanism is more obvious with the increase of preheating temperature.KEY WORDS: preheating temperature; PTAW; Nickel based WC layer; microstructure; wear mechanisms处于极端工况环境下的机械零部件通常因摩擦、腐蚀、断裂而失效或报废,造成巨大的资源浪费和安全问题[1-2],亟须利用表面强化技术对钢铁冶金、矿山机械、石油化工等领域中的关键机械零部件进行表面强化,增强部件的表面耐磨性、耐蚀性等,延长其服役周期[3-5]。

终轧温度对超纯铁素体不锈钢组织_织构及成形性能的影响_刘海涛

终轧温度对超纯铁素体不锈钢组织_织构及成形性能的影响_刘海涛

第22卷第8期2010年8月钢铁研究学报Jour nal of Ir on and Steel ResearchV ol.22,No.8A ug ust 2010基金项目:国家自然科学基金资助项目(50734002)作者简介:刘海涛(1981 ),男,博士后; E -mail:liuhaitao81214@yah ; 收稿日期:2009-01-21终轧温度对超纯铁素体不锈钢组织、织构及成形性能的影响刘海涛, 马东旭, 刘振宇, 王国栋(东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110004)摘 要:研究了终轧温度对铌、钛双稳定化超纯Cr 17铁素体不锈钢的组织演变、织构演变及成形性能的影响。

研究结果表明,降低终轧温度能有效细化、均匀化热轧及退火组织。

降低终轧温度能增强冷轧退火板的 纤维再结晶织构、减轻偏离{111}<组分的程度。

降低终轧温度是提高r 值、降低 r 值、改善冷轧退火板成形性能的有效手段。

关键词:铁素体不锈钢;超纯化;终轧温度;显微组织;织构;成形性能中图分类号:T G 142 7,T G 113 2,T G 115 2 文献标志码:A 文章编号:1001-0963(2010)08-0031-05Effect of Finishing Temperature on Microstructure,Texture andFormability of Ultra -Purified Ferritic Stainless SteelLIU H a-i tao, M A Dong -x u, LIU Zhen -y u, WANG Guo -dong(State K ey L abo rato ry of Ro lling and Automat ion,N o rtheast er n U niversit y,Shenyang 110004,Liaoning,China)Abstract:T he effects o f finishing temperature on t he micro structur e,tex tur e and fo rmability o f an ultra -purif ied Cr17fer ritic stainless steel stabilized w ith N b and T i w ere investig ated.T he r esults show that the microstr uctur es of bot h hot ro lled band and annealed band are r efined and homo genized because o f low ing finishing temper atur e.T he final co ld rolled and annealed sheets exhibit st rong er -f iber recr ystallizatio n tex ture with a llev iativ e dev iatio n fr om {111}<due to lo wing finishing temper ature.A s a result,the fo rmability of final sheets is improv ed w ith increased r v alue and decr eased r value.Key words:ferr itic stainless steel;ultr a -pur ified;finishing t emperatur e;micr ostructure;tex ture;formability为了提高铁素体不锈钢的成形性能,特别是深拉伸性能,应尽量降低碳、氮含量,并加入铌、钛等稳定化元素以固定游离的碳和氮[1-3]。

TC11钛合金动态回复与动态再结晶高温本构模型研究

TC11钛合金动态回复与动态再结晶高温本构模型研究

第15卷第1期2024年2月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.15,No.1Feb. 2024TC11钛合金动态回复与动态再结晶高温本构模型研究朱宁远*, 陈秋明, 陈世豪, 左寿彬(江西理工大学机电工程学院,江西 赣州 341000)摘要:采用Gleeble-1500热模拟试验机在变形温度为900~1 050 ℃、应变速率为0.1~10 s -1的条件下,对TC11钛合金进行等温恒应变速率单轴压缩试验。

组织观测结果表明,在热变形过程中,TC11钛合金存在明显的动态再结晶现象,变形温度分别为900 ℃和950 ℃时,再结晶晶粒尺寸随应变速率增加而先增大后减小;变形温度分别达1 000 ℃和1 050 ℃时,α相含量大量减少,组织演变中动态再结晶机制占主导,晶粒细化明显。

为研究此现象对流变行为的影响,结合K-M 位错密度模型与动态再结晶分数模型,建立了基于动态回复与动态再结晶现象的流动应力高温本构模型。

将此本构模型预测结果与试验数据对比分析,相关性系数和平均相对误差分别为0.989和6.53%,表明所构建的考虑动态回复与动态再结晶的流动应力模型能够准确预测TC11钛合金热变形条件下的流动应力。

关键词:TC11钛合金;动态回复;动态再结晶;高温本构模型;K-M 位错密度模型中图分类号:TG301 文献标志码:AStudy on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallizationZHU Ningyuan *, CHEN Qiuming , CHEN Shihao, ZUO Shoubin(School of Mechanical and Electrical Engineering ,Jiangxi University of Science and Technology , Ganzhou 341000, Jiangxi , China )Abstract: Gleeble-1500 thermal simulation testing machine was used to perform an isothermal constant strain rate uniaxial compression test for TC11 titanium alloy under a deformation temperature of 900~1 050 ℃ and strain rate of 0.1~10 s -1. The microstructure observation results show that a significant dynamic recrystallization phenomenon occurs in TC11 titanium alloy during the thermal deformation process. Under the deformation temperatures of 900 ℃ and 950 ℃, the recrystallization grain size first increases and then decreases with increasing strain rate. Furthermore, as the deformation temperature reaches 1 000 ℃ and 1 050 ℃, the content of the α phase significantly decreases, and the microstructure evolution is dominated by dynamic recrystallization, accompanied by obvious grain refinement. To study the effect of the dynamic recrystallization phenomenon on rheological behavior, a high-temperature constitutive model of flow stress based on dynamic recovery and dynamic recrystallization was constructed in combination with the K-M dislocation density model and dynamic recrystallization fraction model. By comparing the prediction results of the constitutive model with the test data, the correlation coefficient and average relative error are 0.989 and 6.53%, respectively, which suggests that the constructed flow stress model with收稿日期:2022-12-12;修回日期:2023-03-14基金项目:国家自然科学基金资助项目(51905241);江西省自然科学基金资助项目(20202BABL214033)通信作者:朱宁远(1986— ),博士,副教授,主要从事金属材料成形与控性一体化研究。

均匀化处理对激光选区熔化GH3536_和GH4169_合金组织和显微硬度的影响

均匀化处理对激光选区熔化GH3536_和GH4169_合金组织和显微硬度的影响

2024 年第 44 卷航 空 材 料 学 报2024,Vol. 44第 1 期第 72 – 83 页JOURNAL OF AERONAUTICAL MATERIALS No.1 pp.72 – 83引用格式:耿硕,张冬云,李健民,等. 均匀化处理对激光选区熔化GH3536和GH4169合金组织和显微硬度的影响[J]. 航空材料学报,2024,44(1):72-83.GENG Shuo,ZHANG Dongyun,LI Jianmin,et al. Effect of homogenizing treatment on microstructure and microhardness of GH3536 and GH4169 alloy by selective laser melting[J]. Journal of Aeronautical Materials,2024,44(1):72-83.均匀化处理对激光选区熔化GH3536和GH4169合金组织和显微硬度的影响耿 硕1,2, 张冬云1,2*, 李健民1,2, 仪登豪1,2, 池煜璟1,2,黄 帅3, 张学军3(1.北京工业大学 物理与光电工程学院,北京 100124;2.北京市数字化医疗 3D 打印工程技术研究中心,北京 100124;3.中国航发北京航空材料研究院,北京 100095)摘要:GH3536和GH4169镍基高温合金常用来制造航空发动机等热端部件。

采用激光选区熔化(selective laser melting,SLM)最优工艺参数制备GH3536和GH4169合金试样,研究不同均匀化温度和保温时间对两种合金组织演变、平均晶粒尺寸和性能的影响,利用OM、SEM、EDS等方法表征其缺陷特征和微观组织,利用维氏硬度仪测试合金的显微硬度。

结果表明:成形态GH3536合金中存在更多缺陷,包括气孔、裂纹和未熔合;成形态GH4169合金中只存在气孔。

微波炉的发明者英文作文

微波炉的发明者英文作文

微波炉的发明者英文作文Ah, the microwave oven! Who would've thought a simple box could revolutionize the way we cook? It all startedwith this genius named Percy Spencer. You know, he was just working on radar technology one day and noticed that the chocolate bar in his pocket had melted. Yeah, that's right, a chocolate bar! And that's when the idea clicked.Spencer didn't just stop at noticing, though. He wenton to experiment, testing different food items and seeing how they reacted to this newfound microwave energy. And guess what? It worked! Food cooked faster, evenly, and without much effort. It was like magic!The microwave oven quickly became a household name. No longer did we have to slave over a hot stove for hours.With a simple push of a button, dinner was ready in minutes. And it wasn't just about convenience; it was also about the versatility. You could heat, cook, and even defrost foodwith this one magical box.Nowadays, the microwave is as ubiquitous as the fridge or the stove. It's hard to imagine a kitchen without one. And all because of this one man, Percy Spencer, who had a curious mind and the guts to experiment. So, wheneveryou're enjoying a quick meal from your microwave, remember to thank the guy who made it all possible!。

高铬钢在凝固和热处理过程中的组织演变

高铬钢在凝固和热处理过程中的组织演变

高铬钢在凝固和热处理过程中的组织演变曹阔1① 樊红亮1,2 何建国2 赵爱民②1 袁乃博4 董国卿4 周军4 刘杰兵4(1:北京科技大学钢铁共性技术协同创新中心 北京100083;2:北京理工大学 北京100083;3:钢铁研究总院有限公司特殊钢研究院 北京100083;4:邢台德龙机械轧辊有限公司 河北邢台054000)摘 要 利用热力学软件Thermo calc结合高温激光扫描共聚焦显微镜(HT LSCM)及扫描电子显微镜(SEM)、能谱仪(EDS)与电子背散射衍射(EBSD)等试验手段,探究高铬钢在凝固和热处理过程的组织演变规律,为实际热处理工艺制定提供理论依据。

结果表明:高铬钢在凝固过程发生共晶反应之后,会在奥氏体相表面再次形成针状富铬碳化物,随温度降低沿长轴快速长大,贯穿奥氏体基体。

高铬钢在1080℃保温过程中,析出颗粒状M7C3型碳化物,为淬火态高铬钢主要析出相。

回火后析出M23C6型碳化物,M7C3型碳化物无明显变化。

二次M23C6型碳化物在马氏体中析出与长大,是回火过程中主要相变。

关键词 高铬钢 相变 二次碳化物中图法分类号 TG249.4 TG333.17 文献标识码 ADoi:10 3969/j issn 1001-1269 2023 05 005MicrostructureEvolutionofHigh chromiumSteelduringSolidificationandHeatTreatmentCaoKuo1 FanHongliang1,2 HeJianguo3 ZhaoAimin1 YuanNaibo4DongGuoqing4 ZhouJun4 LiuJiebing4(1:CollaborativeInnovationCenterofSteelTechnology,UniversityofScienceandTechnologyBeijing,Beijing100083;2:BeijingInstituteofTechnology,Beijing100083;3:ResearchInstituteofSpecialSteels,CentralIronandSteelResearchInstitute,Beijing100083;4:XingtaiDelongMachinery&MillRollCo.,Ltd.,Xingtai054000)ABSTRACT UsingthermodynamicsoftwareThermo calccombinedwithhightemperaturelaserscanningconfocalmicroscope(HT LSCM)andscanningelectronmicroscope(SEM),energyspectrometer(EDS)andelectronbackscatteringdiffraction(EBSD)andotherexperimentalmeans,toinvestigatetheorganizationevolutionofhigh chromiumsteelinthesolidificationandheattreatmentprocess,inordertoprovideatheoreticalbasisforthedevelopmentoftheactualheattreatmentprocess.Theresultsshowthataftertheeutecticreactionoccursinthesolidificationprocessofhigh Crsteel,theneedle likechromium richcarbideswillbeformedonthesurfaceofaustenitephaseagain,andgrowrapidlyalongthelongaxiswiththetemperaturedecrease,andpenetratethroughtheaustenitematrix.Highchromiumsteelat1080℃insulationprocess,precipitationofgranularM7C3typecarbides,forthequenchedstateofhighchromiumsteelmainprecipitationphase.AftertemperingprecipitationofM23C6typecarbides,M7C3typecarbideshavenosignificantchange.SecondaryM23C6carbideprecipitationandgrowthinmartensite,isthemainphasechangeinthetemperingprocess.KEYWORDS Highchromiumsteel Phasetransformation SecondarycarbidesTotalNo.286October2023 冶 金 设 备METALLURGICALEQUIPMENT 总第286期2023年10月第5期 ①②作者简介:曹阔,男,1995年生,博士研究生,邮箱:470852297@qq.com通讯作者:赵爱民,邮箱:zhaoaimin@ustb.edu.cn1 前言高铬钢由于基体组织中丰富的Cr元素,可形成硬度较高的M7C3型共晶碳化物。

AZ31镁合金板材在热处理中组织和性能的演变

AZ31镁合金板材在热处理中组织和性能的演变

AZ31镁合金板材在热处理中组织和性能的演变王自启;曹晓卿;郭继祥;李黎忱;万里波【摘要】The effects of heat-treatment on the microstructure, mechanical and forming properties of AZ31 magnesium alloy rolled sheet at room temperature were investigated. When temperature is between 300℃ and 350℃,the results of microstructure showed that twins disappeared, and the grains turned homogeneous and fine after heat treatment. The results of mechanical and bulging properties indicated that yield strength descends and ultimate tensile strength slightly falls while tensile elongation and IE value increases. The best over-all properties can be obtained wben the sheet was treated at 350℃,when cooling for 15 min in the air.%研究了热处理对AZ31镁合金轧制板材显微组织、室温力学性能和成形性能的影响.热处理温度在300~350℃范围时,显微组织观察表明,热处理后孪晶消失、组织逐渐趋于均匀化、平均晶粒尺寸变小;力学性能和胀形性能测试结果表明,板材的屈服强度明显降低、抗拉强度略有下降、屈强比降低、伸长率提高,杯突值提高.在350℃、15min空冷处理后,AZ31镁合金板材的综合性能最好.【期刊名称】《新技术新工艺》【年(卷),期】2011(000)004【总页数】3页(P65-67)【关键词】AZ31镁合板材;热处理;显微组织;力学性能;成形性能【作者】王自启;曹晓卿;郭继祥;李黎忱;万里波【作者单位】太原理工大学材料科学与工程学院,山西,太原,030024;太原理工大学材料科学与工程学院,山西,太原,030024;太原理工大学材料科学与工程学院,山西,太原,030024;太原理工大学材料科学与工程学院,山西,太原,030024;太原理工大学材料科学与工程学院,山西,太原,030024【正文语种】中文【中图分类】TG146.2镁及镁合金具有密排六方晶体结构,室温下镁合金的塑性较差、变形困难,并且与晶粒大小及方向有关的各向异性表现比较明显,镁合金的这些缺陷限制了其广泛应用[1-2]。

7075铝合金热变形时动态再结晶晶粒度演化模型

7075铝合金热变形时动态再结晶晶粒度演化模型

7075铝合金热变形时动态再结晶晶粒度演化模型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着工业技术的迅猛发展,铝合金作为一种轻质、高强度的金属材料,在航空航天、汽车制造、电子设备等领域得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Materials Science and Engineering A 485 (2008) 318–324Microstructure evolution in hot worked and annealedmagnesium alloy AZ31A.G.Beer ∗,M.R.BarnettCentre for Material and Fibre Innovation,Geelong Technology Precinct,Deakin University,Geelong,Victoria 3217,AustraliaReceived 10February 2007;received in revised form 27July 2007;accepted 1August 2007AbstractThe present work examines the microstructure that evolves during the annealing of hot worked magnesium alloy AZ31.First,the influences of deformation and annealing conditions on the microstructures are assessed.It is found that the annealing behaviour is consistent with what one would expect for a recrystallization type reaction.Whilst both the deformation and annealing conditions influence the time required to reach a stable annealed microstructure,the grain size attained is governed solely by the prior deformation conditions employed.At the highest temperature and strain rate examined,the rate of recrystallization is quite high and the grain size was found to be approximately double when annealed for only 1s prior to quenching.Finally,semi-empirical equations are developed to predict the kinetics of recrystallization,as well as the evolution of grain size,during annealing.© 2007 Elsevier B.V. All rights reserved.Keywords:Hot working;Annealing;Dynamic recrystallization;Static recrystallization;Grain size;Magnesium alloy AZ311.IntroductionThe low density of wrought magnesium makes it an ideal choice for automotive applications,such as body panels and space frames.However,its widespread application is restricted due to its limited strength and ductility.Grain refinement is a promising technique for improving the strength and ductil-ity of wrought magnesium products due to the strong influence that grain size has on the mechanical properties.For example,reducing the grain size of extruded AZ31from 22␮m down to 3␮m has been shown to effectively double the compressive yield strength [1].In magnesium and its alloys,grain refinement is commonly achieved through the operation of dynamic recrystallization (DRX)during hot deformation [2–9].For the most common wrought alloy,AZ31,grain sizes as fine as 3–5␮m can be obtained [9].However,several authors have recently highlighted the increase in grain size that occurs following the subsequent annealing,or slow cooling,of hot-rolled [10–14]and extruded [14,15]magnesium alloys.Yamamoto and co-workers found that annealing hot-rolled AZ31at 400◦C for 1h increased the∗Corresponding author.Tel.:+61352273321;fax:+61352271103.E-mail address:aiden.beer@.au (A.G.Beer).grain size from between 5and 10␮m to over 50␮m [12].These observations illustrate the deterioration in the final mechani-cal properties that can be expected during the cooling or heat treatment of hot worked magnesium alloys.There is,however,confusion in the literature regarding the mechanism /s by which grains coarsen during annealing of hot worked magnesium alloys.In most cases it is stated that grain growth occurred during annealing (e.g.[10,16–19]),whilst oth-ers propose that static and/or metadynamic recrystallization may operate [9,15].Secondary recrystallization,or abnormal grain growth,has also been observed to operate in magnesium alloys but typically when high annealing temperatures are employed (450◦C and greater)[14,16,20].It has,however,been observed after the annealing of hot rolled AZ31at 250◦C when the anneal-ing time was 1000min [13].Factors that influence the operation of this grain coarsening in magnesium alloys have received little attention.A few stud-ies highlight the fact that the deformation conditions applied prior to annealing influences the way in which the microstruc-ture evolves [9–11,19].Yang et al.[19]found that,for the same annealing conditions,larger grain sizes were attained in AZ31samples that were compressed at a lower strain rate.In an earlier study,one of us examined the dependence of grain size on theZener–Hollomon parameter,Z (=˙εexp(Q DEF /RT )),following the annealing of AZ31samples compressed in a channel die [9].0921-5093/$–see front matter © 2007 Elsevier B.V. All rights reserved.doi:10.1016/j.msea.2007.08.001A.G.Beer,M.R.Barnett/Materials Science and Engineering A 485 (2008) 318–324319It was found that the grain size remained small at low values of Z,abnormally large grains were developed at intermediate val-ues of Z,and the annealed grain size decreased with increasing Z at high values of Z.In this earlier study,as well as in many oth-ers,a constant annealing time,typically in the order of hours,is employed.While it has been shown that longer annealing times generate larger grain sizes[14,16],the rate at which coarsen-ing occurs immediately following hot deformation has not been systematically examined.The present work investigates the influence of deformation and annealing conditions on the degree of grain size increase during the annealing of hot worked magnesium alloy AZ31.The data thus obtained are used to develop semi-empirical equations that describe the evolution of grain size during annealing and these are then verified with results from the literature.2.Experimental procedureThe material used in the current study is magnesium alloy AZ31(Mg–3%Al–1%Zn–0.2%Mn),purchased in the form of extruded rod,with an initial grain size of22.5␮-pression samples,15mm high and10mm in diameter,were machined such that the compression direction was parallel to the extrusion direction.Teflon tape was used as a lubricant and all samples were held at the test temperature for5min prior to deformation.Uniaxial compression testing was conducted at strain rates ranging between0.01and1s−1,and at temperatures rang-ing between300and400◦C.Deformation was carried out to an equivalent strain of1.5,after which the samples were held at the deformation temperature for times ranging from 1s to10,000s.After the annealing step,a spring-loaded lever immediately ejected samples into a water bath,and it is estimated that samples were quenched in less than 0.5s.For metallographic examination,samples were mounted in epoxy resin,ground with1200grit SiC paper and polished with 6and3␮m diamond paste.Samples were then chemically pol-ished for45s in10%nital and then etched for5s with acetic picral.The average grain sizes were determined from optical micrographs using a linear intercept method.3.ResultsThe microstructural evolution during the annealing of AZ31, for samples deformed at a temperature of350◦C and at three strain rates,and subsequently annealed at350◦C for increas-ing times,is presented in Fig.1.It can be seen that that larger grains are developed with increased annealing times,with the degree of grain coarsening being greater for the samples that were deformed at the lowest strain rate.It can also be seen that, for annealing times of100s and above,the microstructure isFig.1.The microstructural evolution of wrought AZ31deformed to a strain of1.5in compression,at a temperature of350◦C and strain rates between0.01and 1s−1,and subsequently annealed at the deformation temperature for increasing times:(A)350◦C,0.01s−1,1s;(B)350◦C,0.01s−1,100s;(C)350◦C,0.01s−1, 10,000s;(D)350◦C,0.1s−1,1s;(E)350◦C,0.1s−1,100s;(F)350◦C,0.1s−1,10,000s;(G)350◦C,1s−1,1s;(H)350◦C,1s−1,100s;(I)350◦C,1s−1,10,000s.320 A.G.Beer,M.R.Barnett/Materials Science and Engineering A 485 (2008) 318–324 unchanged in the samples deformed at the highest strain rate(Fig.1H and G)whilst the microstructure is still evolving forthe samples deformed at the lowest strain rate(Fig.1B and C),i.e.a stable annealed grain size is attained at earlier times withhigher deformation rates.To quantify the effects of deformation and annealing condi-tions on the microstructure,the evolution of the average grainsize is plotted against annealing time in Fig.2for a constantdeformation and annealing temperature(Fig.2(a))and a constantstrain rate(Fig.2(b)).With an increase in strain rate from0.01to1s−1(Fig.2(a)),the stable,or plateau,grain size(d PLATEAU)attained is reducedfrom approximately40␮m down to13␮m.It can also be seenthat with an increased strain rate,the time at which coarseningbegins is reduced,from approximately100s to less than10s,asis the time to reach the plateau grain size.An increase in both thedeformation and annealing temperature results in an increaseinFig.2.The influence of(a)strain rate(with a deformation and annealing tem-perature of350◦C)and(b)deformation and annealing temperature(with a strain rate of0.1s−1)on the evolution of the average grain size with annealing time after the hot deformation of magnesium alloy AZ31to a strain of1.5.Error bars indicate the variation in grain size determined from duplicate samples,being l–2␮m at small grain sizes up to5–6␮m at larger annealed grain sizes.Very little variation was observed for the time to reach the plateau grainsize.Fig. 3.The influence of the Zener–Hollomon parameter,Z (=˙εexp(135,000/RT)),on the plateau grain size,d PLATEAU,the dynamically recrystallized grain size,d DRX(from samples that were immediately quenched), and d(t=1s)(from samples that were annealed for1s prior to quenching), developed after the hot deformation of magnesium alloy AZ31to a strain of1.5 (annealing temperature equal to the deformation temperature).the grain size developed after1s annealing and in the plateaugrain size(Fig.2(b)).The time at which coarsening begins,aswell as the time to reach the plateau grain size,is similar for thethree temperatures.The combined influence of deformation temperature andstrain rate on the plateau grain size is shown in Fig.3,whered PLATEAU is plotted against the Zener–Hollomon parameter,Z(=˙εexp(Q DEF/RT)).Here,Q DEF is taken as the activation energy for self-diffusion(135kJ/mol)[22,23].Also included isthe dynamically recrystallized grain size,d DRX,measured fromsamples that were quenched immediately after deformation,andthe grain size of samples annealed for1s,d(t=1s).Both d PLATEAU and d DRX obey a power law relationship withZ,with the degree of grain coarsening(the difference between d DRX and d PLATEAU)increasing with decreasing values of Z.The plateau grain size ranges from two tofive times d DRX over the conditions examined here.Interestingly,similar plateau grain sizes are attained under equivalent deformation conditions(i.e. similar Z values),despite the fact that different annealing temper-atures are employed.The fact that the plateau grain size depends on the applied deformation conditions and not the annealing tem-perature is indicative of a recrystallization type reaction[21].It can also be seen that the grain sizes of samples annealed for 1s(d(t=1s))prior to quenching are similar to those that were quenched immediately(d DRX),apart from two instances.For these cases,the applied strain rate was1s−1and the average grain size has approximately doubled within the1s anneal time prior to quenching.4.DiscussionOf particular importance in the presentfindings are the fol-lowing points:(i)the high rate of grain coarsening,(ii)theA.G.Beer,M.R.Barnett/Materials Science and Engineering A 485 (2008) 318–324321 influence of Z on the annealed grain size,and(iii)the influenceof Z on the time to reach the plateau grain size.4.1.The high rate of grain coarseningAn importantfinding in the current study is that the rate ofgrain size increase during annealing after hot deformation isexpected to be quite high for the conditions encountered in com-mercial processes.Fig.3reveals that in some cases,when thestrain rate is1s−1,the grain size developed when the material hasbeen annealed for1s prior to quenching is approximately twicethat of when it has been quenched immediately.During high ratedeformation processes such as extrusion,when grain coarseningrates would be comparatively higher,it is unlikely that quench-ing rates would be sufficient to retain the DRX microstructure.Inthese cases,a stable annealed microstructure would be quicklydeveloped.However,the grain sizes developed in high rate com-mercial processes can be minimised by processing at the higheststrain rate or lowest temperature(highest value of Z)possible,as indicated by Fig.3.A study by Kawalla and co-workers[11]examined themicrostructures of rolled wedge-shaped AZ31specimens thatwere either quenched immediately or held at the deforma-tion temperature for up to60s prior to quenching.At thehighest strain,immediate quenching produced grain diametersof24–30␮m(with statically recrystallized grain diameters of27–30␮m obtained after annealing).The present work suggeststhat the rate of recrystallization induced coarsening is so highthat even the“immediate”quenching employed in that studymay have been insufficient to“lock in”the dynamically recrys-tallized grain size.4.2.The influence of Z on t(dPLATEAU)It is evident from Fig.2that the time at which coarseningbegins,and the time at which the plateau grain size is reached,isa strong function of strain rate(Fig.2(a))but relatively indepen-dent of the deformation and annealing temperature(Fig.2(b)).Similar observations have been made for the kinetics of metady-namic recrystallization(also referred to as post-dynamic staticrecrystallization)in C–Mn steel[22].Many studies have employed semi-empirical equations todescribe the kinetics of recrystallization in steel,for example[22,23].A similar approach is adopted in the current studyto model the recrystallization kinetics in magnesium(a lackof physical terms for magnesium currently restricts the devel-opment of a physically based recrystallization model).Whilstthese equations are of practical use,and include likely physicaldependencies to represent the physical processes occurring,theinterpretation the results in a physical sense is difficult,e.g.theactivation energy in Eq.(1)refers to the reaction as a whole andis unlikely to be constant[24].The time to reach the plateau grain size can thus be describedusing the expression(after[22,25]):t(dPLATEAU)=BZ r expQ REXRT(1)where B and r are constants.Eq.(1)excludes terms for strain(ε)or original grain size(d o)as the material was completely dynam-ically recrystallized prior to annealing and thus their influenceon the recrystallization kinetics is expected to be negligible[22].A plot of log(t(dPLATEAU))versus Z(with Q DEF equal to135kJ/mol),for equivalent annealing temperatures,is given inFig.4(a).A linear relationship is assumed,with the average gra-dient,r,found to be−1.22.A linear relationship is also assumedbetween ln(t(dPLATEAU))and1000/RT,for average values of Z(Fig.4(b)).Horizontal bars indicate errors due to using averagevalues of Z.In this plot,the average gradient,which correspondsto the activation energy for recrystallization,Q REX,was deter-mined to be200kJ/ing the determined values of r andQ REX,constant B in Eq.(1)was found to be2.7×10−3.Fig.4(a)reveals the combined roles of deformation tempera-ture and strain rate(Z),for a constant annealing temperature,ont(dPLATEAU).It is clear that at higher values of Z,the time to reachthe plateau grain size is decreased.That is,the kinetics of recrys-tallization is enhanced at high strain rates and low temperatures.This can be related to a higher stored energy(which provides thedriving force for recrystallization)in the dynamically recrystal-lized structure at higher values of Z.It is also evident that theFig. 4.The influence of(a)Zener–Hollomon parameter,Z(=˙εexp(135,000/RT)),and(b)1000/RT,on the time to reach the plateau grain size,t(dPLATEAU),during the annealing of hot deformed magnesium alloy AZ31.322 A.G.Beer,M.R.Barnett /Materials Science and Engineering A 485 (2008) 318–324kinetics of recrystallization is enhanced with higher annealing temperatures,which is expected due to the fact that recrystalliza-tion is controlled by thermally activated processes.The fact that Fig.2(b)indicates that the kinetics of recrystallization is insen-sitive to the deformation and annealing temperature is due to the “double”effect of temperature,whereby the increase in bound-ary mobility and nucleation rate with increasing temperature is offset by a decrease in the energy stored during deformation,which drives the reaction.4.3.The Influence of Z on d PLATEAUFig.3reveals that d PLATEAU obeys a power law relation-ship with Z and does not depend on the annealing temperature.This strong Z dependence is indicative of a recrystallization type reaction and is analogous to the Z dependence of the grain size during metadynamic recrystallization in steels,e.g.[22,26,27].As recrystallization involves both nucleation and growth,factors which influence these processes may alter their relative activity and will inherently influence the final grain size.The Z depen-dency of d PLATEAU in the current study is likely to be related to the influence of Z on the density of nucleation sites.The fact that the annealing temperature influences the kinetics of recrystal-lization (t (d PLATEAU ))but not the annealed grain size (d PLATEAU )indicates that the annealing temperature does not change the relative rates of nucleation and growth during recrystallization.The mean grain size,¯d,that evolves during recrystallization can be modelled by relating it to the dynamically recrystallized grain size (d DRX ),the fully recrystallized grain size (d PLATEAU )and the volume fraction recrystallized (X )through the expression (after [23]):¯d(t )=X 4/3(t )d PLATEAU +(1−X (t ))2d DRX (2)where d DRX and d PLATEAU are determined using the power law expressions given in Fig.3.X ,the fraction recrystallized,is described by the modified Avrami equation (as proposed byparison between the predicted and measured average grain sizes thatare developed during the annealing of hot deformed magnesium alloy AZ31for times ranging from 1to 10,000s (grey lines represent ±15%of the measured grain size).Sellars [25]):X =1−exp −4t t (d PLATEAU )n(3)where t (d PLATEAU )is given in Eq.(1)and the Avrami exponent,n ,was found to be 1.3.Predictions of the annealed grain sizes are compared with the actual values in Fig.5.It can be seen that the model provides a reasonable description of the grain size during annealing,with most predicted grain sizes being within ±15%of the measured grain size.The grain sizes attained after annealing hot compressed AZ31to a given annealing time have been examined previously [9,19].Using the model developed in the current study,predictions of the annealed grain sizes are compared with the published values in Figs.6and 7,with the predicted fraction recrystallized also shown.Yang et al.[19]examined the grain sizes attained in hot compressed samples that were subsequently annealed at tem-Fig.6.Predictions of annealed AZ31grain sizes from the literature with increasing annealing temperature:samples annealed at increasing temperatures for 1000s after compression to a strain of 1.2,at a temperature of 300◦C and at strain rates of (a)0.3s −1[19]and (b)0.003s −1[19].A.G.Beer,M.R.Barnett/Materials Science and Engineering A 485 (2008) 318–324323Fig.7.Predictions of annealed AZ31grain sizes from the literature with increas-ing Z(higher strain rates,lower deformation temperatures):samples annealed at 300◦C for30min after channel die compression to a strain of0.6at temperatures between300and400◦C and at strain rates between0.001and1s−1[9]. peratures between100and400◦C for1000s.These workers concluded that grain growth occurred during annealing.How-ever,the current recrystallization model(Fig.6(a)and(b)) predicts similar grain sizes,and a similar trend in the tempera-ture dependence of the average grain size.For the higher strain rate(Fig.6(a)),the model predicts that recrystallization occurs between473and523K.This coincides with the temperature range for rapid grain coarsening given by Yang and co-authors. Whilst the grain size is closely predicted for the high strain rate, to within2␮m(Fig.6(a)),the model over-predicts the grain size for the lower strain rate(Fig.6(b)).This may be related to the fact that,after such low strain rate deformation,the stored energy,and thus the driving force for recrystallization,would be low.As a consequence,the boundary mobility during recrys-tallization would also be low and boundaries would be more influenced by factors such as composition variation or the pres-ence of particles.Further work is required to quantify these effects.As mentioned earlier,one of us has examined the Z depen-dence of the grain size following the annealing,at300◦C for 30min,of samples compressed in a channel die[9].The result-ing behaviour was ascribed to grain growth and/or metadynamic recrystallization at low values of Z and static recrystallization at high values of Z.A similar trend in the Z dependence of the average grain size is predicted using the current recrystallization model(Fig.7).At low values of Z,the kinetics of recrystalliza-tion is slow and the average grain size is equivalent to that of the DRX grain size.The degree of recrystallization increases at intermediate values of Z,as does the average grain size.At high values of Z,recrystallization is complete and the fully annealed grain size decreases with increasing Z.Although a similar Z dependence is observed,the model predicts a grain size at the lower end of the observed range.This may be attributed to the lower strain applied in this study and the fact that the percentage DRX was not100%in all samples.Interestingly,the present modelfits the data for samples that were aligned for c-axis extension and c-axis compression,both of which had a com-parably higher DRX fraction than samples aligned for c-axis constraint.5.Conclusions1.The annealing behaviour of magnesium alloy AZ31is con-sistent with what one would expect for a recrystallization type reaction.2.The rate of recrystallization,in tests where the annealing tem-perature is the same as the deformation temperature,changes with strain rate but is insensitive to temperature.This is con-sistent with metadynamic recrystallization in other metals.3.The stable annealed grain size attained is governed solelyby the prior deformation conditions employed,with smaller annealed grain sizes being attained at higher Z conditions, which is again indicative of a recrystallization type reaction.4.The rate of grain coarsening is rapid at the highest temper-ature and strain rate examined.For high rate deformation processes,such as extrusion,quenching rates are unlikely to be high enough to retain the DRX microstructure.5.Equations were developed to predict the kinetics of recrys-tallization,as well as the evolution of grain size,during the annealing of hot worked AZ31.AcknowledgementsThis research was supported under the Australian Research Council’s Linkage funding scheme(project number LP0347685)and by Advanced Magnesium Technologies. References[1]M.R.Barnett,et al.,Acta Mater.52(2004)5093–5103.[2]S.E.Ion,F.J.Humphreys,S.H.White,Acta Metall.30(1982)1909–1919.[3]A.Mwembela,et al.,Magnesium Alloys and Their Applications,Werkstoff-Informationsgesellschaft,Wolfsburg,Germany,1998,pp.215–222.[4]A.Galiyev,R.Kaibyshev,G.Gottstein,Acta Mater.49(2001)1199–1207.[5]O.Sitdikov,R.Kaibyshev,Mater.Trans.42(2001)1928–1937.[6]H.Watanabe,et al.,Mater.Trans.42(2001)1200–1205.[7]A.G.Beer,M.R.Barnett,Magnesium Technology2002,TMS,Seattle,Washington,USA,2002,pp.193–198.[8]J.C.Tan,M.J.Tan,Mater.Sci.Eng.A339(2003)124–132.[9]M.R.Barnett,Mater.Trans.44(2003)571–577.[10]A.Galiyev,R.Kaibyshev,Mater.Sci.Forum467–470(2004)1175–1180.[11]R.Kawalla,N.Coung,A.Stolnikov,6th International Conference Magne-sium Alloys and Their Applications,Wiley-VCH,2004,pp.803–810.[12]A.Yamamoto,et al.,Mater.Sci.Forum(2004)669–672.[13]M.Eddahbi,et al.,Mater.Sci.Eng.A410–411(2005)308–311.[14]E.Essadiqi,C.Galvani,V.Kao,2nd International Light Metals TechnologyConference,LKR,St.Wolfgang,Austria,2005,pp.155–160.[15]J.Bohlen,et al.,Scripta Mater.53(2005)259–264.[16]M.T.Perez-Prado,O.A.Ruano,Scripta Mater.46(2002)149–155.[17]H.K.Kim,W.J.Kim,Mater.Sci.Eng.A385(2004)300–308.[18]H.K.Kim,J.Mater.Sci.39(2004)7101–7109.[19]X.Yang,H.Miura,T.Sakai,J.Jpn.Inst.Met.68(2004)946–951.324 A.G.Beer,M.R.Barnett/Materials Science and Engineering A 485 (2008) 318–324[20]G.T.Higgins,J.Nucl.Mater.8(1963)153–159.[21]F.J.Humphreys,M.Hatherly,Recrystallization and Related AnnealingPhenomena,Pergamon,Oxford,UK,1996,pp.369–392.[22]P.D.Hodgson,R.K.Gibbs,ISIJ Int.32(1992)1329–1338.[23]J.H.Beynon,C.M.Sellars,ISIJ Int.32(1992)359–367.[24]F.J.Humphreys,M.Hatherly,Recrystallization and Related AnnealingPhenomena,Pergamon,Oxford,UK,2004,p.230.[25]C.M.Sellars,J.A.Whiteman,Met.Sci.13(1979)187–194.[26]A.R.Morgridge,Bull.Mater.Sci.25(2002)291–299.[27]A.M.Elwazri,P.Wanjara,S.Yue,ISIJ Int.43(2003)1080–1088.。

相关文档
最新文档