甘肃省定西市临洮县2018届九年级数学下学期第四次月考试题(含答案)
最新18年九年级第四次模拟考试数学试题(附答案)
2018年初中学业水平考试第四次模拟数学科试题(考试时间120分钟,赋分120分)第Ⅰ卷(选择题 共36分)一、选择题(共12小题,每小题3分,满分36分)每小题都给出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑).1.5-的倒数是( )A .5-B .51-C .15D .5 2.下列计算正确的是( )A .236()a a =B .236a a a ⋅=C .236a a a +=D .632a a a ÷=3.下列各式从左到右的变形中,为因式分解的是( )A .()x a b ax bx -=-B .()()222111x y x x y -+=-++ C .()ax bx c x a b c ++=++ D .21(1)(1)y y y -=+-4.如图,已知⊙O 的半径为5,弦AB=8,则圆心O 到AB 的距离是( )A .1B .2C .3D .4 5.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )6. 将抛物线()2241y x =--先向左平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线的顶点坐标为( )A .(0,-3)B .(4,1) C.(8,1) D .(8,-3)7.下列四个命题中假命题的是( )A.对顶角相等B.三角形的外心在三角形的边上C.全等三角形对应角相等D.两直线平行,同位角相等.8.如图,AB 、BC 是⊙O 的弦,OM ∥BC 交AB 于M ,若∠AOC=100°,则∠AMO 的度数为( )A 50°B 35°C 25°D 20°9.如图是反比例函数1k y x=和2k y x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( )A.1B.2C.4D.810.如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C D CD的值为( ) A.32 B. 32- C. 23- D. 33-11.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( )A .B .2C .D .12.如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P .若AB=6,BC=33,则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE=29CE ; ④S 阴影=23.其中正确的个数为( ) A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 共84分)二、填空题(共6小题,每小题3分,满分18分)13. 12--= .14.函数y =中,自变量x 的取值范围是 . 15. 受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.将2.88亿元用科学记数法表示为 元.16.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是 .17. 二次函数y=x 2﹣bx+b ﹣2图象与x 轴交于点A (x 1,0),B (x 2,0),且0<x 1<1,2<x 2<3,则满足条件的b 的取值范围是 .18.如图,点(1A 在直线2:l y =上,过点1A 作112A B l ⊥交直线1:3l y x =于点1B ,以11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作222A B l ⊥,分别交直线2l 和1l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的边长为__________.(用含n 的代数式表示)三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本题满分10分,每小题5分)(1)计算:010120181()2cos 453---++.(2) 解不等式组26415x x -≤⎧⎨+<⎩①②,并写出该不等式组的所有整数解.20.(本题满分5分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC (顶点是网格线的交点).(1)先将△ABC 竖直向上平移5个单位,再水平向右平移4个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△A 1B 1C 1绕B 1点顺时针旋转90°,得△A 2B 1C 2,请画出△A 2B 1C 2;(3)若∠B=63.40,则∠C 1B 1A 2= .21. (本题满分7分)如图,直线y ax b =+与双曲线ky x=交于,A B 两点,与y 轴交于点C ,点A 的纵坐标为6,点B的坐标为()3,2--.(1)求双曲线和直线的解析式;(2)若点P 在x 轴上,且满足PC=OA ,求点P 的坐标.22. (本题满分7分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是____________部,中位数是___________部;扇形统计图中“1部”所在扇形的圆心角为____________度;(2)请将条形统计图补充完整;(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______________.23.(本题满分8分)某公司准备组织一批员工外出考察,若请4座的车若干台还差2人没有座位,若请6座的车8台则有一台车没有坐满人.(1)求这批员工共有多少人;(2)是否存在所请的每台车都刚好满座的方案,若存在,请帮该公司找出这些具体的租车方案.24. (本题满分8分)如图,在Rt ABC ∆中, 90=∠C ,以BC 为直径的⊙O 交AB 于点D,并且A ADE ∠=∠.(1)求证:直线DE 是⊙O 的切线.(2)若16AD =,10DE =,求BC 的长.25.(本题满分11分)如图,抛物线243(0)y mx mx m m =-+<与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,连接AC ,对称轴与x 轴交于点D .(1)求点A 、B 的坐标及对称轴的方程;(2)若∠OAC=450,求该抛物线的函数表达式;(3)在(2)的条件下,点P 在y 轴上,连接AP分别交对称轴和抛物线于点M 、N ,若PM=N 的坐标.26. (本题满分10分)如图,在△ABC中,P为AB上的点.(1)如图1,若∠ACP=∠则BP= ;(2)已知,M是PC的中点.①如图2,若∠ACP=∠PBM, 求证:222AC AP BPAP-=;②如图3,若AC=2, ∠ABC=450, ∠A=∠BMP=600, 求BP的长.2018年初中学业水平考试第四次模拟数学科试题参考答案一、选择题:1B 2A 3D 4C 5D 6A 7B 8A 9C 10B 11B 12C二、填空题:13. 14. 15.16. 17. 18.19. (本题满分10分)(1)解:原式.........4分...........5分(2) 解不等式①得........1分解不等式②得..........2分∴原不等式组的解为.........4分∴该不等式组的整数解为:.........5分20. (本题满分5分)(1)如图中的△A1B1C1为所求作的三角形.........2分(2)如图中的△A2B1C2为所求作的三角形.........4分(3)26.60..........5分21. (本题满分7分)解:(1)将点的坐标代入得.........1分解得所以双曲线的解析式为.......2分设,将代入解得∴.........3分将代入直线方程得.........4分解得∴直线的方程为...........5分(2)由直线方程得设,所以而 (6)或∴点P的坐标为和.........7分22. (本题满分7分)解(1)本次调查所得数据的众数是_ 1 部,中位数是__2 部;扇形统计图中“1部”所在扇形的圆心角为__126_度;..........3分(每空1分)(2)如图为所补全的条形图........5分(3).........7分23. (本题满分8分)解:设请4座的车台,则这批员工共有人.........1分解此不等式组得∵为正整数∴答: 这批员工共有46人..........5分(2)设当请4座的车台和6座的车台时刚好坐满人. 则有由此得.........6分∵∴..........7分∵为正整数∴刚好坐满人方案有4种:方案①,方案②方案③方案④..........8分24. (本题满分8分)解:(1)连结OD,则∠B=∠ODB.......1分∵∴∠A+∠B=900..........2分∵∴∠A+∠B=∠ADE+∠ODB=900∴∠ODE=900..........3分∴OD⊥AB∴直线是⊙O的切线..........4分(2)∵EC=ED=10.......5分连结CD,则∠ADC=900∴Rt△ABC∽Rt△ACD.......6分∴∴∴........8分25.(本题满分11分)解:(1)令得∵∴解得或∴A(3,0),B(1,0),对称轴的方程为:............3分(2)∵∠OAC=450∴OA=OC...............4分即∵∴...............5分∴抛物线的函数表达式为............6分(3)设,∵MD∥y轴∴∴由此得............7分∴∴即.............8分Ⅰ、当时,直线AP的方程为联立得........9分解这方程得(舍去)∴N(2,1)......................10分Ⅱ、当时,N,P,C三点重合,此时N(0,-3)综上,所求的N点的坐标为(2,1)或(0,-3)...................11分26. (本题满分10分)解:(1) ....................2分(2)①过M作MG∥AC交AB于G.......3分∴∠GMP=∠ACP=∠PBM, G为AP的中点∴△BMG∽△MPG.................4分∴∴...................5分∴∴................6分②过C作CG⊥AB于G,延长AB到E使BP=BE,并设BP=BE=,连结CE,则,BM∥EC∴................7分∵∠A=∠BMP∴∠ECP=∠BMP=∠A∴△ECP∽△EAC∴∴..............8分∴整理、化简得解得,(舍去)...............9分∴.................10分。
2018年甘肃省定西市中考数学试卷含答案解析,供大家考前复习备用
2018年甘肃省定西市中考数学试卷含答案解析,供大家考前复习备用临近中考,在今后一个月的复习中,要提高数学的复习效益,必须加强复习课模式的研究,使在有限的时间内最大限度地提高学生的效益,课堂上既要讲题,又要讲法,注意知识的梳理,形成条理、系统。
尤其是分析典型例题时,要讲出题目的价值,讲出思维过程,甚至是思考中的弯路和教训。
根据学生的实际情况,从资料中筛选出典型题目供学生练习,及时批改认真讲评。
在解题教学中加强解题策略的培养和解题思维的培养,加强“变式”教学,注意“一题多解”和“多题一解”的训练,使学生养成回顾和反思的习惯。
复习中要重视学生每一次测试,通过严格训练让学生过好四关,形成良好的思维品质和学习习惯,做到卷面规范、整洁。
(一)审题关审题要慢,答题要快,找出关键条件,挖掘隐含条件,寻找解题的突破口;(二)运算关准字当先,争取准又快。
为此,平时让同学们熟记的一些常用的中间结论非常重要;(三)书写关要一步一步答题,重视解题过程的语言表达,培养学生条理清晰,步步有据,规范简洁,优美整洁的答题习惯。
2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)由于片幅较长在这不将一一展示了,如需要完整版可以私我,免费赠送哦!。
2018年甘肃省定西市中考数学试卷(解析版)
2018年定西市中考数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【解答】解:﹣2018的相反数是:2018.故选:B.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【解答】解:x2•x=x3,符合题意;故选:D.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.1 11.1 10.9 10.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4D.k<4【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.12.(4分)使得代数式有意义的x的取值范围是x>3.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA (B,A)(C,A)(D,A)(E,A)(F,A)B (A,B)(C,B)(D,B)(E,B)(F,B)C (A,C)(B,C)(D,C)(E,C)(F,C)D (A,D)(B,D)(C,D)(E,D)(F,D)E (A,E)(B,E)(C,E)(D,E)(F,E)F (A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。
甘肃省定西市2018年中考数学试卷(含答案).doc
2018年甘肃省定西市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1. (3分)-2018的相反数是()A. —2018B. 2018C.—D.2013 20132. (3分)下列计算结果等于x3的是()A. x6*x2B. x4—xC. x+x2D. x2?x3. (3分)若一个角为65°则它的补角的度数为()A. 25°B. 35°C. 115°D. 125°4. (3分)已知空丄(a^ 0, b M 0),下列变形错误的是()2 3A. |二B. 2a=3bC. = 'D. 3a=2bb 3 a 225. (3分)若分式「’一的值为0,则x的值是()xA. 2 或-2B. 2C.- 2D. 06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数「与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D. 丁7. (3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A. k< —4B. k v- 4C. k<4D. k v48. (3分)如图,点E是正方形ABCD的边DC上一点,把△ ADE绕点A顺时针旋转90°到△ ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()EA. 5B. 0C. 7D.9. (3分)如图,。
A过点0(0, 0), C (衍,0), D (0, 1),点B是x轴下方。
A上的)A. 15°B. 30°C. 45°D. 60°10. (3分)如图是二次函数y=a^+bx+c (a, b, c是常数,a^0)图象的一部分,与x轴的交点A在点(2, 0)和(3, 0)之间,对称轴是x=1.对于下列说法:①ab v0;②2a+b=0;③3a+c>0;④a+b> m(am+b)(m为实数);⑤当-1 v x v3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11. _____________________________________________ (3 分)计算:2si n30 + (- 1)2018-(*)「1= _____________________________________ .二12. ________________________________________________ (3分)使得代数式—有意义的x的取值范围是______________________________________ .V z-313. ___________________________________________________________ (3分)若正多边形的内角和是1080°,则该正多边形的边数是___________________________ .14. (3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,贝U该几何体的侧面积为_______15. (3分)已知a, b, c是厶ABC的三边长,a, b满足| a-7|+ (b- 1)2=0, c为奇数,贝U c= ____ .16. (3分)如图,一次函数y=- x- 2与y=2x+m的图象相交于点P(n,- 4),则关于xf2 衣+lTi"^ —y —9的不等式组. 的解集为-x-2<0 ----------y=2x-^m/\ J=-x-217. (3分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为 _______ .18. (3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为 ______ .X-11■输入X ~►输出A工十4玄=1三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19. (4分)计算::,宁(宀-1)20. (4 分)如图,在△ ABC中,/ ABC=90.(1)作/ACB的平分线交AB边于点0,再以点0为圆心,0B的长为半径作。
2018年甘肃省定西市中考数学试卷(附五套中考模拟试卷)
2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( )2018.正确把握相反数的定义是解题关键.)A. - 2018B. 2018C.-------D. —-5—2018 2018【分析】直接利用相反数的定义分析得出答案.【解答】解:-2018的相反数是:故选:B.【点评】此题主要考查了相反数,2. 下列计算结果等于X ’的是(A 、 x 6-i-x 2 B. x 4 - x C. x+x 2 D. x 2,x 【分析】根据同底数慕的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A 、x 64-x 2=x 4,不符合题意;B 、 x 4-x 不能再计算,不符合题意;C 、 x+x ,不能再计算,不符合题意;D 、 x 2*x=x 3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数蓦的除法、乘法及同类项的定义.3. 若一个角为65° ,则它的补角的度数为()A. 25°B. 35°C. 115°D. 125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180° -65° =115° .故它的补角的度数为115。
.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180° .4. 已知并与(a 尹0, b 尹0),下列变形错误的是()9 k ?A. — =— B. 2a=3b C. — =— D. 3a=2b b 3 a 2【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由并坎,3a=2b,A 、 由原式可得:3a=2b,正确;B 、 由原式可得2a=3b,错误;C 、 由原式可得:3a=2b,正确;D 、 由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.若分式。
2018年九年级第四次模拟考试试卷数学答案
学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年中考模拟试卷(四) (答案)科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内.1.(3分)﹣2的相反数是(A ) A .2B .﹣2C .D .﹣2.(3分)二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是(A ) A .(1,3) B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)3.(3分)下列计算正确的是(C ) A .4B .C .2=D .34.(3分)如图所示的几何体的主视图是(A )A .B .C .D .5.(3分)一元二次方程x 2﹣3x +1=0的根的情况(B ) A .有两个相等的实数根 B .有两个不相等的实数根C .没有实数根D .以上答案都不对6.(3分)给出4个判断:①所有的等腰三角形都相似, ②所有的等边三角形都相似,③所有的直角三角形都相似, ④所有的等腰直角三角形都相似.其中判断正确的个数有(B ) A .1个 B .2个 C .3个 D .4个7.(3分)在Rt △ABC 中,∠C=90°,AC=9,sinB=,则AB=(A ) A .15B .12C .9D .68.(3分)如果点A (﹣2,y 1),B (﹣1,y 2),C (2,y 3)都在反比例函数的图象上,那么y 1,y 2,y 3的大小关系是(B ) A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 19.(3分)已知△ABC ∽△DEF ,点A 、B、C 对应点分别是D 、E 、F ,AB :DE=9:4,那么S △ABC :S △DEF 等于(D )A .3:2B .9:4C .16:81D .81:1610.(3分)如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是(B )A .B .C .D .二、填空题:(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.)11.(3分)一元二次方程x 2﹣5x=0的解为 x 1=0,x 2=5 .12.(3分)如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tanα=,则t 的值是13.(3分)已知反比例函数的图象经过点(m ,2)和(﹣2,3),则m 的值为 ﹣3 . 14.(3分)将抛物线y=2x 2先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是 y=2x 2+8x +5 .15.(3分)如图,D 是△ABC 的边AB 上的点,请你添加一个条件,使△ACD 与△ABC 相似,你密 封 线 内 不 要 答 题添加的条件是是 ∠ADC=∠ACB .第12题图 第15题图 第18题图16.(3分)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 9.6 米.17.(3分)在△ABC 中,若sinA=,tanB=,则∠C= 90° .18.(3分)如图,在平面直角坐标系中,函数y=(x >0常数k >0)的图象经过点A (1,2),B (m ,n )(m >1),过点B 作y 轴的垂线,垂足为C ,若△ABC 面积为2,求点B 的坐标 (3,) .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣|﹣4|+()﹣1﹣(﹣1)0﹣cos45°.解:原式=﹣4+2﹣1﹣2=﹣2﹣1﹣2=﹣5.20.(4分)在Rt △ABC 中,∠C=90°,AB=13,BC=5,求sinA ,cosA ,tanA . 解:由勾股定理得,AC===12,sinA==, cosA==, tanA==.21.(6分)如图,△ABC 在方格纸中(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S .解:(1)画出原点O ,x 轴、y 轴.(1分)B (2,1)(2分)(2)画出图形△A′B′C′.(5分) (3)S=×4×8=16.(7分)22.(6分)已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP=90°. 求证:△ADQ ∽△QCP .证明:在Rt △ADQ 与Rt △QCP 中,∵∠AQP=90°, ∴∠AQD +∠PQC=90°, 又∵四边形ABCD 是正方形,学校 班级 姓名 考号密 封 线 内 不 要 答 题∴∠D=∠C=90°, ∴∠PQC +∠QPC=90°, ∴∠AQD=∠QPC , ∴Rt △ADQ ∽Rt △QCP .23.(6分)将油箱注满k 升油后,轿车可行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系S=(k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?解:(1)由题意得:a=0.1,S=700, 代入反比例函数关系S=中, 解得:k=Sa=70, 所以函数关系式为:S=; (2)将a=0.08代入S=得:S===875千米,四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)已知反比例函数y=(m 为常数)的图象在第一、三象限.(1)求m 的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A 、B 的坐标分别为(0,3),(﹣2,0).求出函数解析式.解:(1)根据题意得1﹣2m >0, 解得m <; (2)∵四边形ABOC 为平行四边形,∴AD ∥OB ,AD=OB=2,而A 点坐标为(0,3), ∴D 点坐标为(2,3), ∴1﹣2m=2×3=6, ∴反比例函数解析y=.25.(7分)如图,山顶有一铁塔AB 的高度为20米,为测量山的高度BC ,在山脚点D 处测得塔顶A 和塔基B 的仰角分别为60°和45°.求山的高度BC .(结果保留根号)解:由题意知∠ADC=60°,∠BDC=45°, 在Rt △BCD 中,∵∠BDC=45°, ∴BC=DC , 在Rt △ACD 中, tan ∠ADC===,∴BC=10(+1),答:小山高BC 为10(+1)米.密 封 线 内 不 要 答 题26.(8分)已知反比例函数y=的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,﹣2).(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出y 1>y 2时自变量x 的取值范围.解:(1)∵反比例函数y 1=的图象经过点A ﹙1,4﹚, ∴k=1×4=4,∴反比例函数的表达式为y 1=.∵点B ﹙m ,﹣2﹚在反比例函数的图象上, ∴m==﹣2,∴点B 的坐标为(﹣2,﹣2).∵一次函数的图象经过点A 、B ,将这两个点的坐标代入y 2=ax +b ,得,解得:,∴一次函数的表达式为y 2=2x +2.(2)观察函数图象可知:当x <﹣2或0<x <1时,反比例函数图象在一次函数图象上方, ∴当x >0时,y 1>y 2的自变量x 的取值范围为0<x <1.27.(8分)如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O .(1)求证:△COM ∽△CBA ; (2)求线段OM 的长度.(1)证明:∵沿直线MN 对折,使A 、C 重合 ∴A 与C 关于直线MN 对称,∴AC ⊥MN , ∴∠COM=90°.在矩形ABCD 中,∠B=90°, ∴∠COM=∠B , 又∵∠ACB=∠ACB , ∴△COM ∽△CBA ;(2)解:∵在Rt △CBA 中,AB=6,BC=8,∴AC=10,∴OC=5,∵△COM ∽△CBA , ∴,∴OM=.学校 班级 姓名 考号密 封 线 内 不 要 答 题28.(10分)如图,直线y=2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y=﹣x 2+bx +c 与直线BC 交于点D (3,﹣4) (1)求直线BD 和抛物线对应的函数解析式;(2)在抛物线对称轴上求一点P 的坐标,使△ABP 的周长最小;(3)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵y=2x +2, ∴当x=0时,y=2, ∴B (0,2). 当y=0时,x=﹣1, ∴A (﹣1,0).∵抛物线y=﹣x 2+bx +c 过点B (0,2),D (3,﹣4), ∴,解得:,∴y=﹣x 2+x +2;设直线BD的解析式为y=kx +b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x +2;(2)对称轴为:x=,点A (﹣1,0)关于对称轴的对称点为:A'(2,0),则直线A'B 的解析式为:y=﹣x +2,当x=时,y=,此时P 点使△ABP 的周长最小; 直线A'B 与直线x=的交点P 的坐标是:(,);(3)存在,①如图①,当△MON ∽△BCO 时, 则=,即=,故MN=2ON .设ON=a ,则M (a ,2a ), 则﹣a 2+a +2=2a ,解得:a 1=﹣2(不合题意,舍去),a 2=1, ∴M (1,2);②如图②,当△MON ∽△CBO 时,=,即=,故MN=ON .设ON=n ,则M (n ,), 则﹣n 2+n +2=, 解得n 1=(不合题意,舍去),n 2=,故M (,).综上所述:存在这样的点M (1,2)或(,).。
(真题)2018年甘肃省定西市中考数学试卷(有答案)
2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:(环)A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c >0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。
甘肃狮西市临洮县2018届九年级数学下学期第四次月考试题(附答案)
甘肃省定西市临洮县2018届九年级数学下学期第四次月考试题一、选择题(本大题共10小题,每题3分,共计30分.)1.如图,在下面四个图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.2.下列计算正确是()A.3a2-a2=3 B.a2·a4=a8 C.(a3)2=a6 D.a6÷a2=a3 3.若3)2(2=-+-yx,则x-y的正确结果是()A.-1 B.1 C.-5 D.54.二次函数y=﹣2(x+1)2﹣3的对称轴是直线()A.直线x=3 B.直线x=-3 C.直线x=1 D.直线x=-15.某件商品原价为200元,连续两次提价x%后售价为288元,下列所列方程是()A.200(1+x)2=288 B.200(1-x)2=288 C.200(1+x%)2=288 D.200(1-x%)2=288 6.下列四个几何体中,主视图与其它三个不同的是()7.如图,△ABC 中,DE∥BC,AD∶DB=2∶3,则△ADE 与△ABC 的周长之比为()A.2∶3 B.4∶9 C.2∶5 D.4∶258.如图,AB是⊙O直径,若∠AOC =140°,则∠D的度数是()A.20° B.30° C.40° D.70°DB O ACFA BC D⎪⎨⎧-≥-+<-.421,15)1(3x x x x 9.这周的班会活动,王老师用 72 元钱买了笔记本和笔共 20 个作为活动奖品,其中笔记本每本 4 元,笔每只 3 元。
设王老师购买笔记本 x 本,笔 y 支,根据题意,下面列出的方程组 正确的是()A. 203472x y x y +=⎧⎨+=⎩B. 204372x y x y +=⎧⎨+=⎩C. 724320x y x y +=⎧⎨+=⎩D. 723420x y x y +=⎧⎨-=⎩10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )二、填空题(本大题共8小题,每题3分,共计24分.) 11..函数3x y -=的自变量x 的取值范围是 .12.因式分解ab 3-4ab = .13.李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为 . 14.sin90o= .15.一个多边形的内角和等于它的外角和,则这个多边形的边数为 .16.把二次函数 y =2(x -1)2+5 的图像向下平移 个单位,向 平移 个单位得到为y =2x 2的图像。
最新-2018年甘肃省定西市中考数学试卷及答案 精品
2.图1所示的物体的左视图(从左面看得到的视图)是()图1A.B.C.D.3.计算:a b a b-⎛⎫-÷=⎪()A .12mB .10m图2 图3 图410.如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA °,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则( ) A .2B .316.如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是图6 图7 图817.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为过点B 、C ,那么线段AO = cm .图9)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内图10(1)图10(2)cm)存在一种换算关系,下表是几组“鞋码”与鞋长图11(1)图11(2)日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿6000元,第二天捐款人数比第一天捐款人数多人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?图12x轴交于A、B两点,与y附加题:如果你的全卷得分不足分,则本题与28题附加的分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.分)本试卷第19题为:若20072008=,20082009b=,试不用..将分数化小数的方法比较图13图14(1)图14(2)图14(3)···································2分···································3分···································5分参加足球运动项目的学生占所有运动项目学生的比例为1=. ······36072O·················· 10分图14(1)图14(2)。
2018-2019学年九年级(下)第四次月考数学试卷(6月份)(含答案)
2018-2019学年九年级(下)第四次月考数学试卷(6月份)一.选择题(每小题4分,满分40分)1.的倒数是()A.4 B.C.D.﹣42.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米4.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.105.事件“关于y的方程a2y+y=1有实数解”是()A.必然事件B.随机事件C.不可能事件D.以上都不对6.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.如图,在圆O中,点A、B、C在圆上,∠OAB=50°,则∠C的度数为()A.30°B.40°C.50°D.60°8.某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米/小时,下列所列方程正确的是()A.B.C.D.9.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A (﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为()A.6 B.5 C.3 D.210.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3二.填空题(满分30分,每小题3分)11.一个正数a 的平方根分别是2m ﹣1和﹣3m +,则这个正数a 为 . 12.函数y =中,自变量x 的取值范围是 .13.等腰三角形的三边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣8x +n ﹣2=0的两根,则n 的值为 .14.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s 甲2=0.2,S 乙2=0.08,成绩比较稳定的是 (填“甲”或“乙”)15.已知x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两个实数根,则x 12+x 22+3x 1x 2= . 16.分解因式:x 2﹣9x = .17.已知抛物线y =2x 2﹣5x +3与y 轴的交点坐标是 .18.半径为5的大⊙O 的弦与小⊙O 相切于点C ,且AB =8,则小⊙O 的半径为 .19.现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2﹣3a +b ,如:3★5=32﹣3×3+5,根据定义的运算求2★(﹣1)= .若x ★2=6,则实数x 的值是 . 20.如图,直线y =x 与双曲线y =(x >0)交于点A ,将直线y =x 向下平移个6单位后,与双曲线y =(x >0)交于点B ,与x 轴交于点C ,则C 点的坐标为 ;若=2,则k = .三.解答题21.(12分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣.(2)先化简,再求值:(﹣x +1)÷,其中x =﹣2.22.(12分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.23.(14分)为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;(2)补全条形统计图;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.24.(12分)某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?25.(14分)从2开始,连续的偶数相加,它们和的情况如下表:加数的个数n和S1 2=1×22 2+4=6=2×33 2+4+6=12=3×44 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=.(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)26.(16分)如图在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A,B分别在x,y轴上,已知OA=3,点D为y轴上一点,其坐标为(0,1),CD=5,点P从点A出发以每秒1个单位的速度沿线段A﹣C﹣B的方向运动,当点P与点B重合时停止运动,运动时间为t秒(1)求B,C两点坐标;(2)①求△OPD的面积S关于t的函数关系式;②当点D关于OP的对称点E落在x轴上时,求点E的坐标;(3)在(2)②情况下,直线OP上求一点F,使FE+FA最小.参考答案一.选择题1.解:﹣的倒数是﹣4,故选:D.2.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.3.解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选D.4.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.5.解:∵△=1﹣4a2(﹣1)=4a2+1>0,原方程一定有实数解.∴方程a2y+y=1有实数解是必然事件.故选:A.6.解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.7.解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=80°,∴∠C=∠AOB=40°,8.解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:﹣=1,故选B.9.解:∵A(﹣1,a)在反比例函数y=﹣上,∴a=2,∴A(﹣1,2),∵点B在直线y=kx﹣1上,∴B(0,﹣1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设C(m,0),∴=,∴m=﹣3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6,故选:A.10.解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.二.填空题11.解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.12.解:根据题意得:,解得:x≥2且x≠3.故答案是:x≥2且x≠3.13.解:当2为底边长时,则a=b,a+b=8,∴a=b=4.∵4,4,2能围成三角形,∴n﹣2=4×4,解得:n=18;当2为腰长时,a、b中有一个为2,则另一个为6,∵6,2,2不能围成三角形,∴此种情况不存在.故答案为:18.14.解:∵S甲2=0.2,S乙2=0.08,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.15.解:根据题意得x1+x2=2,x1x2=﹣5,x 12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.16.解:原式=x•x﹣9•x=x(x﹣9),故答案为:x(x﹣9).17.解:当x=0时,y=3,即交点坐标为(0,3).18.解:连结OC,OA,如图,∵AB与小⊙O相切于点C,∴OC⊥AB,∴AC=BC=AB=4,在Rt△AOC中,∵OA=5,AC=4,∴OC==3,即小⊙O的半径为3.故答案为3.19.解:根据题意得:2★(﹣1)=22﹣3×2﹣1=4﹣6﹣1=﹣3;x★2=6变形得:x2﹣3x+2=6,即(x﹣4)(x+1)=0,解得:x=﹣1或4.故答案为:﹣3;﹣1或420.解:∵将直线y=x向下平移个6单位后得到直线BC,∴直线BC解析式为:y=x﹣6,令y=0,得x﹣6=0,∴C点坐标为(,0);∵直线y=x与双曲线y=(x>0)交于点A,∴A(,),又∵直线y=x﹣6与双曲线y=(x>0)交于点B,且=2,∴B(+,),将B的坐标代入y=中,得(+)=k,解得k=12.故答案为:(,0),12.三.解答题21.解:(1)原式=3+﹣1﹣2×+1﹣2 =3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.22.(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.23.解:(1)4÷8%=50(名)20÷50×360=0.4×360=144°(度)∴该校七(1)班共有50名学生;扇形统计图中C等级所对应扇形的圆心角等于144度.(2)50﹣(4+20+8+2)=50﹣34=16(名).(3)列表为:男1 男2 女1 女2男1 ﹣﹣男2男1 女1男1 女2男1男2 男1男2 ﹣﹣女1男2 女2男2女1 男1女1 男2女1 ﹣﹣女2女1女2 男1女2 男2女2 女1女2 ﹣﹣由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,∴恰好选到1名男生和1名女生的概率P==.故答案为:50、144.24.解:(1)设y与x的函数关系式为y=kx+b,将点(10,200),(15,150)代入y=kx+b,得:,解得:,∴y=﹣10x+300.当y=0时,﹣10x+300=0,解得:x=30.∴y与x的函数关系式为y=﹣10x+300(8≤x<30).(2)设每天获得的利润为w元,根据题意得:w=y(x﹣8)=(﹣10x+300)(x﹣8)=﹣10x2+380x﹣2400=﹣10(x﹣19)2+1210.∵a=﹣10<0,∴当x=19时,w取最大值,最大值为1210.答:当蜜柚定价为19元/千克时,每天获得的利润最大,最大利润是1210元.25.解:(1)当n=8时,S=8×9=72;故答案为:72;(2)根据特殊的式子即可发现规律,S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);故答案为:n(n+1);(3)102+104+106+…+200=(2+4+6+...+102+...+200)﹣(2+4+6+ (100)=100×101﹣50×51=7550.26.解(1)∵四边形OACB是矩形,∴BC=OA=3,在Rt△BCD中,∵CD=5,BC=3,∴BD==4,∴OB=5,∴B(0,5),C(3,5);(2)①当点P在AC上时,OD=1,BC=3,∴S=,当点在BC上时,OD=1,BP=5+3﹣t=8﹣t,∴S=×1×(8﹣t)=﹣t+4;(t≥0)②当点D关于OP的对称点落在x轴上时,点D的对称点是(1,0),∴E(1,0);(3)如图2∵点D、E关于OP对称,连接AD交OP于F,则AD的长度就是AF+EF的最小值,则点F即为所求.。
2018学年九年级数学第二学期第四次月考试卷华师大版 精品
A BCP·A DBC12018-2018学年第二学期九年级数学第四次月考试卷(华师大版)时间:120分钟 满分:150分一、选择题:(每小题4分,共40分)1、要使二次根式x 21-有意义,字母的取值范围是( )Ax≥21 Bx≤21 C x>21 Dx<212、两个相似三角形的相似比为4:9,那么这两个相似三角形的面积比为( ) A .2:3 B .4:9 C .4:81 D .16:813、若32=++-b a ,则2009)(b a +的值是( )(A)0 (B)1 (C)2018 (D)-14、方程013)2(4)3(=-+-+-mx x m m m 是关于x 的一元二次方程,则m=( ) (A)1 (B)1或2 (C)2 (D) -2或15、方程x x 22=的根是( )(A)x=2 (B) x=0 (C) x=0或x=2 (D) x=0或x=-26.气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是( ) A .本市明天将有80%的地区降水 B .本市明天将有80%的时间降水 C .明天肯定下雨 D .明天降水的可能性比较大7、关于x 的一元二次方程0)1(2=-+-a ax x 的根的情况是( ) (A)有两个不相等的实数根 (B)有两个相等的实数根(C)没有实数根 (D)有两个实数根8、如图,P 是Rt △ABC 斜边AB 上任意一点(A 、B 两点除外),过点P 作一直线,使截得的三角形与Rt △ABC 相似, 这样的直线可以作( )(A)1条 (B)2条 (C)3条 (D)4条 9、如图,已知△ACD ∽△ABC ,∠1=∠B ,下列各式正确的是( )(A)BC CD AB AC ABAD == (B) BC CDAB AC AC AD == (C) BC CD AC AB CD AD == (D)BC CD AC AB AB AD == 10.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图2中箭头所示方向运动,且每秒移动一个单位,那么第2018秒时质点所在位置的坐标是( ). A .(16,16)B .(44,44)C .(44,16)12 3xy1 23 … 图 1D .(16,44)二、填空题:(每小题3分,共18分)11.已知△ABC 中,AC =4,BC =3,AB =5,则cosA = .12.有一批服装100件,已知次品率为5%,则这批服装次品数为_______. 13.计算:sin30°·tan45°=14.△ABC 中,点D在AB 上,请填上一个你认为合适的条件 ,使得△ACD ~△ABC .15.若m =a a ---20082008,则am =______________. 16.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图4).如果小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ,那么sin θ= . 三、解答题17.(5分)计算:03282(2009)4s i n 45(1)(t a n 301)π+--+-+-18.(5分)解方程:x2-x -1=019.(10分) 如图,某小区A 、B 两楼之间距离MN=30米,两楼高都是20米,A 楼在B 楼正南,B 楼窗户朝南.B 楼内一楼住户的窗户离小区地面的距离DN=2米,窗户高CD=1.8米,当正午时刻太阳光线与地面成30°角时,A 楼的影子是否影响B 楼一楼住户采光?若影响,挡住该窗户多高?若不影响,请说明理由(2 1.414,3 1.732,5 2.236===)A 楼B 楼MNDC 图420.(10分)实验操作:甲乙两个不透明的纸盒中分别装有形状、大小、质地完全相同的两张和三张卡片,甲盒中两张卡片上分别标有数字1和2,乙盒中的三张卡片上分别标有数字3,4,5.小红从甲盒中随机抽取一张卡片,并将其卡片上的数字作为十位上的数字,在从乙盒中随机抽取一张卡片,将其卡片上的数字作为个位上的数字,从而组成一个两位数. 请你画出树状图或列表,并写出所有组成的两位数 求出所组成的两位数是奇数的概率。
甘肃省定西市临洮县2018届九年级数学下学期第四次月考试题
甘肃省定西市临洮县2018届九年级数学下学期第四次月考试题一、选择题(本大题共10小题,每题3分,共计30分.)1.如图,在下面四个图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.2.下列计算正确是()A.3a2-a2=3 B.a2·a4=a8 C.(a3)2=a6 D.a6÷a2=a3 3.若3)2(2=-+-yx,则x-y的正确结果是()A.-1 B.1 C.-5 D.54.二次函数y=﹣2(x+1)2﹣3的对称轴是直线()A.直线x=3 B.直线x=-3 C.直线x=1 D.直线x=-15.某件商品原价为200元,连续两次提价x%后售价为288元,下列所列方程是()A.200(1+x)2=288 B.200(1-x)2=288 C.200(1+x%)2=288 D.200(1-x%)2=288 6.下列四个几何体中,主视图与其它三个不同的是()7.如图,△ABC 中,DE∥BC,AD∶DB=2∶3,则△ADE 与△ABC 的周长之比为()A.2∶3 B.4∶9 C.2∶5 D.4∶258.如图,AB是⊙O直径,若∠AOC =140°,则∠D的度数是()A.20° B.30° C.40° D.70°9.这周的班会活动,王老师用 72 元钱买了笔记本和笔共 20 个作为活动奖品,其中笔记本每本 4 元,笔每只 3 元。
设王老师购买笔记本 x 本,笔 y 支,根据题意,下面列出的方程组正确的是DB O ACFA B C D⎪⎩⎪⎨⎧-≥-+<-.4221,15)1(3x x x x ( )A. 203472x y x y +=⎧⎨+=⎩B. 204372x y x y +=⎧⎨+=⎩C. 724320x y x y +=⎧⎨+=⎩D. 723420x y x y +=⎧⎨-=⎩10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )二、填空题(本大题共8小题,每题3分,共计24分.) 11..函数y =的自变量x 的取值范围是 .12.因式分解ab 3-4ab = .13.李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为 . 14.sin90o= .15.一个多边形的内角和等于它的外角和,则这个多边形的边数为 .16.把二次函数 y =2(x -1)2+5 的图像向下平移 个单位,向 平移 个单位得到为y =2x 2的图像。
【真题】2018年甘肃省定西市中考数学试卷含答案解析
2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c >0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。
甘肃省定西市临洮县2017-2018学年九年级下学期期中考试数学试题
甘肃省定西市临洮县2017-2018学年九年级下学期期中考试数学试题一、单选题1 . 观察下列每组图形,相似图形是( )A .AB .BC .CD .D2 . 反比例函数是 的图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3 . tan30°的值等于( )A .B .C .D .4 . 如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是( )A .B .C .D.5 . 在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A.B.C.D.6 . 在△ ABC中,若+=0,则∠ C的度数为()A.30°B.60°C.90°D.120°7 . 如图,在△ ABC中, DE∥ BC,, BC=12,则 DE的长是()A.3B.4C.5D.68 . 1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A .B .C .D .19 . 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10 . 如图,在锐角△ ABC 中, BC =6, S △ ABC =12,两动点 M , N 分别在边 AB , AC 上滑动,且 MN ∥ BC , MP ⊥ BC , NQ ⊥ BC ,得矩形 MPQN.设 MN 的长为 x ,矩形 MPQN 的面积为 y ,则 y 关于 x 的函数图象大致形状是( )A .AB .BC .CD .D二、填空题11 . 若△ ABC 与△ DEF 相似且面积之比为25∶16,则△ ABC 与△ DEF 的周长之比为 .12 . 如图是测得的两根木杆在同一时间的影子,那么它们是由__________形成的投影(填“太阳光”或“灯光”).13 . 菱形的两条对角线长分别为16和12,较长的对角线与菱形的一边的夹角为 θ,则cos θ=________.14 . 双曲线y=在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是__________.15 . 如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于________米.16 . 如图,反比例函数 y 1=和正比例函数 y 2= k 2 x的图象交于 A(-1,-3), B(1,3)两点.若> k 2 x,则 x的取值范围是____________________ .17 . 如图,已知点 A, B分别在反比例函数 y 1=-和 y 2=的图象上,若点 A是线段 OB的中点,则 k的值为________.18 . 如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.三、解答题19 . 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C (﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A 1BC 1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A 2B 2C 2,并直接写出C 2的坐标.20 . 计算:(1) 2 -1+·tan30°--(2018-π) 0.;(2) -sin60°(1-sin30°).21 . 反比例函数 y=的图象经过点 A(2,3).(1)求这个函数的解析式;(2)请判断点 B(1,6)是否在这个函数图象上,并说明理由.22 . 有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.23 . 如图,在△ ABD中, AC⊥ BD于点 C,,点 E是 AB的中点,tan D=2, CE=1,求sin∠ ECB的值和 AD的长.24 . 如图,直线 y= k 1 x+1与双曲线 y=相交于 P(1, m), Q(-2,-1)两点.(1)求 m的值;(2)若 A 1( x 1, y 1), A 2( x 2, y 2), A 3( x 3, y 3)为双曲线上三点,且 x 1< x 2<0< x 3,请直接说明y 1, y 2, y 3的大小关系;(3)观察图象,请直接写出不等式 k 1 x+1> 的解集.25 . 如图,小明同学用自制的直角三角形纸板 DEF测量树 AB的高度,他调整自己的位置,设法使斜边 DF保持水平,并且边 DE与点 B在同一直线上,已知纸板的两条直角边 DE=40cm,EF=20cm,测得边 DF离地面的高度 AC=1.5m, CD=8m,求树 AB的高度.26 . 如图,已知四边形 ABCD内接于⊙ O, A是的中点, AE⊥ AC于 A,与⊙ O及 CB的延长线交于点 F, E,且.(1)求证:△ ADC∽△ EBA;(2)如果 AB=8, CD=5,求tan∠ CAD的值.27 . 如图①, P为△ ABC所在平面上一点,且∠ APB=∠ BPC=∠ CPA=120°,则点 P叫作△ABC的费马点.(1)如果点 P为锐角△ ABC的费马点,且∠ ABC=60°.①求证:△ ABP∽△ BCP;②若 PA=3, PC=4,求 PB的长;(2)如图②,已知锐角△ ABC,分别以 AB, AC为边向外作正△ ABE和正△ ACD, CE和 BD相交于点 P,连接 AP.①求∠ CPD的度数;②求证:点 P为△ ABC的费马点.。
中考真题--甘肃省定西市2018年中考数学真题试题(含答案)
全国中考真题系列甘肃省定西市2018年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x3.(3分)若一个角为65°,则它的补角的度数为()A.25° B.35° C.115°D.125°4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:平均数若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15° B.30° C.45° D.60°10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:2sin30°+(﹣1)2018﹣()﹣1= .12.(3分)使得代数式有意义的x的取值范围是.13.(3分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(3分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c= .16.(3分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(3分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.(4分)计算:÷(﹣1)20.(4分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(6分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(6分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B 地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(6分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.(7分)“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.(7分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.26.(8分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.27.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.28.(10分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形P OP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.【解答】解:﹣2018的相反数是:2018.故选:B.2.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.3.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.4.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.5.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.6.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.7.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.8.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.9.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.12.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.13.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.14.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.15.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.16.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.17.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.18.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.【解答】解:原式=÷(﹣)=÷=•=.20.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.22.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.23.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.25.【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个的数表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)∵S△ACP=S△BOC∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)26.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.27.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=28.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析是为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.。
2017-2018学年甘肃省定西市陇西县、临洮县九年级(下)期中数学试卷(解析版)
2017-2018学年甘肃省定西市陇西县、临洮县九年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.观察下列每组图形,相似图形是()A. B.C. D.2.若反比例函数为y=,则这个函数的图象位于()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限3.tan30°的值等于()A. B. C. D.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B. C. D.5.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B. C. D.6.在△ABC中,若|sin A-|+(cos B-)2=0,则∠C=()A. B. C. D.7.如图,在△ABC中,DE∥BC,,BC=12,则DE的长是().A. 3B. 4C. 5D. 68.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D. 19.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 米B. 米C. 米D. 米10.锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,MP⊥BC,NQ⊥BC得矩形MPQN,设MN的长为X,矩形MPQN的面积为Y,则y关于x的函数图象大致形状是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)11.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为______.12.如图是测得的两根木杆在同一时间的影子,那么它们是由______形成的投影(填“太阳光”或“灯光”).13.菱形的两条对角线长分别为16和12,较长的对角线与菱形的一边的夹角为θ,则cosθ=______.14.双曲线y=在每个象限内,函数值y随x的增大而增大,则m的取值范围是______ .15.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于______米.16.如图,反比例函数和正比例函数y2=k2x的图象交于A(-1,-3)、B(1,3)两点,若>k2x,则x的取值范围是______.17.如图,已知点A,B分别在反比例函数y1=-和y2=的图象上,若点A是线段OB的中点,则k的值为______.18.下列是由几块小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有______个小立方块.三、计算题(本大题共1小题,共12.0分)19.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=______.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.四、解答题(本大题共8小题,共54.0分)20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.21.计算:(1)2-1+•tan30°--(2018-π)0;(2)-sin60°(1-sin30°).22.反比例函数y=的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个函数图象上,并说明理由.23.有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.24.如图,在△ABD中,AC⊥BD于点C,,点E是AB的中点,tan D=2,CE=1,求sin∠ECB的值和AD的长.25.如图,直线y=k1x+1与双曲线y=相交于P(1,m),Q(-2,-1)两点;(1)求m的值;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+1>的解集.26.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.答案和解析1.【答案】D【解析】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.根据相似图形的定义,形状相同,可得出答案.本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.2.【答案】D【解析】解:∵k=-2,∴函数的图象在第二、四象限,故选:D.根据比例系数的符号即可判断反比例函数的两个分支所在的象限.主要考查反比例函数的性质,用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积;比例系数小于0,反比例函数的两个分支在二、四象限.3.【答案】B【解析】【分析】本题考查了特殊角的三角函数值有关知识,根据各特殊角的三角函数值求解即可.【解答】解:tan30°=.故选B.4.【答案】C【解析】解:从上边看是一个实线的同心圆,故选:C.根据俯视图是从上边看得到的图形,可得答案.本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.【答案】B【解析】解:A、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0,故选项A错误.B、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交y 轴于正半轴,故选项B正确.C、y=ax+1(a≠0)的图象应该交y轴于正半轴,故选项C错误.D、由函数的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选:B.本题可先由反比例函数y=-图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.6.【答案】D【解析】解:∵|sinA-|+(cosB-)2=0,∴sinA=,A=30°;cosB=,B=30°.∴∠C=180°-30°-30°=120°.故选:D.根据特殊角的三角函数值和非负数的性质计算.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】非负数的性质(之一):有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,a n为非负数,且a1+a2+…+a n=0,则必有a1=a2=…=a n=0.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.7.【答案】B【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.本题主要考查相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.8.【答案】B【解析】解:如图,在直角△ABD中,AD=3,BD=4,则tan∠ABC==.故选:B.先在图中找出∠ABC所在的直角三角形,再根据三角函数的定义即可求出tan∠ABC的值.本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.9.【答案】C【解析】【分析】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.10.【答案】B【解析】解:作AD⊥BC于点D,交MN于点E,如下图所示,∵锐角△ABC中,BC=6,S△ABC=12,∴,解得,AD=4,∵两动点M,N分别在边AB,AC上滑动,且MN∥BC,MP⊥BC,NQ⊥BC得矩形MPQN,∴MP=ED,△AMN∽△ABC,∴又∵MN的长为x,矩形MPQN的面积为y,∴解得,AE=,∴ED=AD-AE=4-,∴MP=,∴矩形的面积y=x()==,∴y关于x的函数图象是二次函数,顶点坐标是(3,6),故选:B.根据题意可以表示出矩形的面积y与自变量x之间的函数关系式,从而可以得到y关于x的函数图象,本题得以解决.本题考查动点问题的函数图象,解题的关键是明确题意,可以列出相应的函数关系式,得到相应的函数的图象.11.【答案】5:4【解析】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形周长的比等于相似比求解.本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.【答案】太阳光【解析】解:由投影中光线是平行的可知它们是由太阳光形成的投影,故答案为:太阳光.根据平行投影与中心投影的定义即可判断.本题主要考查投影,解题的关键是熟练掌握平行投影与中心投影的定义.13.【答案】【解析】解:如图,AC=12,BD=16,∠ABD=θ,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=AC=6,BO=DO=BD=8,AB==10,在Rt△ABO中,cosθ=,故答案为:根据菱形的性质得AC⊥BD,AO=OC=AC=6,BO=DO=BD=8,然后在Rt△ABO中,利用余弦的定义求解.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线;菱形的面积等于对角线乘积的一半.14.【答案】m<1【解析】解:∵双曲线y=在每个象限内,函数值y随x的增大而增大,∴m-1<0,解得:m<1.故答案为:m<1.根据反比例函数的单调性结合反比例函数的性质,可得出关于m的一元一次不等式,解不等式即可得出结论.本题考查了反比例函数的性质以及解一元一次不等式,解题的关键是找出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质找出反比例系数k的取值范围是关键.15.【答案】10【解析】解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,根据题意得∠ADH=45°,所以△ADH为等腰直角三角形,所以AH=DH=8m,所以AB=AH+BH=8m+2m=10m.故答案为10.作DH⊥AB于H,如图,易得四边形BCDH为矩形,则DH=BC=8m,CD=BH=2m,利用平行投影得到∠ADH=45°,则可判断△ADH为等腰直角三角形,所以AH=DH=8m,然后计算AH+BH即可.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.16.【答案】x<-1或0<x<1【解析】解:根据反比例函数和正比例函数y2=k2x的图象交于A(-1,-3)、B(1,3)两点,利用图象得:>k2x时x的取值范围是x<-1或0<x<1.故答案为:x<-1或0<x<1所求不等式的解集即为反比例函数值大于一次函数值时x的范围,根据一次函数与反比例函数的交点坐标,即可确定出x的范围.此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练运用数形结合思想是解本题的关键.17.【答案】-8【解析】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=-的图象上,∴ab=-2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=-8.故答案是:-8.设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.本题考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.【答案】9【解析】解:∵由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6个正方体,主视图和左视图可得第2层最多有1+1=2个正方体,最上一层最多有1个正方体,∴组成该几何体的正方体最多有6+2+1=9个,.故答案为:9.由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,所以最底层最多有3×2=6个正方体,由主视图和左视图可得第2层最多有1+1=3个正方体,最上一层最多有1个正方体,相加可得组成组合几何体的正方体的个数.本题考查了由视图判断几何体;用到的知识点为:组合几何体最底层正方体的最多个数=行数×列数.19.【答案】2【解析】(1)证明:①∵∠PAB+∠PBA=180°-∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴=,∴PB2=PA•PC=12,∴PB=2;故答案为:2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CP,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°-∠BPC-∠APC=120°,∴P点为△ABC的费马点.(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB 的长即可;(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP 与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,费马点的定义,以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.20.【答案】解:(1)如图所示:△A1BC1,即为所求;(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(-6,4).【解析】(1)利用关于点对称的性质得出A1,C1,坐标进而得出答案;(2)利用关于原点位似图形的性质得出对应点位置进而得出答案.此题主要考查了位似变换以及旋转变换,根据图形的性质得出对应点位置是解题关键.21.【答案】解:(1)原式=+×-2-1=+1-2-1=-(2)原式=-(1-)=-=.【解析】(1)根据负整数指数幂,特殊角三角函数值,立方根,零次幂,可得答案;(2)根据特殊角三角函数值,可得答案.本题考查了实数的运算,利用负整数指数幂,特殊角三角函数值,立方根,零次幂解题是关键.22.【答案】解:(1)由题意得k=2×3=6,∴这个函数的解析式为y=;(2)点B在这个函数图象上.理由如下:在y=中,当x=1时,y=6,∴点B(1,6)在这个函数图象上.【解析】(1)将点A的坐标代入函数解析式,利用方程求得k的值;(2)将点B的坐标代入函数解析式进行验证.考查了待定系数法确定函数解析式,反比例函数图象上点的坐标特征,反比例函数图象上所有点的横纵坐标的乘积等于比例系数k.23.【答案】解:(1)如图所示:(2)由勾股定理得底面的斜边长为10cm,S底=×8×6=24(cm2),S侧=(8+6+10)×3=72(cm2),S全=72+24×2=120(cm2).【解析】(1)直接利用主视图和左视图.得出俯视图的长与宽,进而得出答案;(2)利用几何体的形状得出其表面积.此题主要考查了三视图以及几何体的表面积求法,正确得出几何体的形状是解题关键.24.【答案】解:∵AC⊥BD,∴∠ACB=∠ACD=90°.∵点E是AB的中点,CE=1,∴BE=CE=1,AB=2CE=2,∴∠B=∠ECB.∵=,∴设BC=3x,CD=2x.在Rt△ACD中,tan D=2,∴AC=4x.在Rt△ACB中,由勾股定理得AB==5x,∴sin∠ECB=sin B==.由AB=2,得x=,∴AD===2x=2×=.【解析】利用已知表示出BC,CD的长,再利用勾股定理表示出AB的长,进而求出sin∠ECB的值和AD的长.此题主要考查了解直角三角形,正确表示出AB的长以及锐角三角三角函数关系是解题关键.25.【答案】解:(1)把Q(-2,-1)代入y=得:k2=2,则反比例函数的解析式是y=,把P(1,m)代入反比例函数的解析式得:m=2;(2)根据图象可得:y2<y1<y3;(3)根据图象可得,解集是:-2<x<0或x>1.【解析】(1)把把Q(-2,-1)代入反比例函数的解析式求得函数解析式,然后把P代入求得m的值;(2)根据反比例函数的图象,根据自变量的相对位置,结合图象即可确定;(3)不等式k1x+1>的解集就是对相同的x的值,一次函数的图象在上边的部分x的范围.本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考.26.【答案】解:在△DEF和△DBC中,,∴△DEF∽△DBC,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.【解析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC即可得解.本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF和△DBC相似是解题的关键.27.【答案】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.【解析】(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.本题考查的是圆的综合题,涉及到弧、弦的关系,等腰三角形的性质,相似三角形的判定与性质等知识,根据题意作出辅助线,构造出相似三角形是解答此题的关键.第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省定西市临洮县2018届九年级数学下学期第四次月考试题一、选择题(本大题共10小题,每题3分,共计30分.)1.如图,在下面四个图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.2.下列计算正确是()A.3a2-a2=3 B.a2·a4=a8 C.(a3)2=a6 D.a6÷a2=a3 3.若3)2(2=-+-yx,则x-y的正确结果是()A.-1 B.1 C.-5 D.54.二次函数y=﹣2(x+1)2﹣3的对称轴是直线()A.直线x=3 B.直线x=-3 C.直线x=1 D.直线x=-15.某件商品原价为200元,连续两次提价x%后售价为288元,下列所列方程是()A.200(1+x)2=288 B.200(1-x)2=288 C.200(1+x%)2=288 D.200(1-x%)2=288 6.下列四个几何体中,主视图与其它三个不同的是()7.如图,△ABC 中,DE∥BC,AD∶DB=2∶3,则△ADE 与△ABC 的周长之比为()A.2∶3 B.4∶9 C.2∶5 D.4∶258.如图,AB是⊙O直径,若∠AOC =140°,则∠D的度数是()A.20° B.30° C.40° D.70°9.这周的班会活动,王老师用 72 元钱买了笔记本和笔共 20 个作为活动奖品,其中笔记本每本 4 元,笔每只 3 元。
设王老师购买笔记本 x 本,笔 y 支,根据题意,下面列出的方程组正确的是DB O ACFA B C D⎪⎩⎪⎨⎧-≥-+<-.4221,15)1(3x x x x ( )A. 203472x y x y +=⎧⎨+=⎩B. 204372x y x y +=⎧⎨+=⎩C. 724320x y x y +=⎧⎨+=⎩D. 723420x y x y +=⎧⎨-=⎩10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )二、填空题(本大题共8小题,每题3分,共计24分.) 11..函数y =的自变量x 的取值范围是 .12.因式分解ab 3-4ab = .13.李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为 . 14.sin90o= .15.一个多边形的内角和等于它的外角和,则这个多边形的边数为 .16.把二次函数 y =2(x -1)2+5 的图像向下平移 个单位,向 平移 个单位得到为y =2x 2的图像。
17.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②一元二次方程ax 2+bx+c=0的两根分别是x 1=-1,x 2=3;③abc >0;④2a-b=0;⑤b 2-4ac>0其中正确的结论是 . 18.如果一个数的平方等于-1,记作i 2=-1,这个数叫做虚数单位.形如 a+bi (a,b 为有理数)的数叫复数,其中a 叫这个复数的实部,b 叫做这个 复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:2(2)(35)(23)(15)54,(5)(34)535(4)3(4)152********(1)1917i i i i i i i i i i i i i i i ++-=++-=-+-=⨯+⨯-+⨯+⨯-=-+-⨯=--⨯-=-请根据以上内容的理解,利用以前学习的有关知识,将(1+i )(1-i )化简结果为_______. 三、解答题(本大题共10小题,共计66分.解答需写出必要的文字说明或演算步骤.) 19.(5分)计算:()02)2018(360sin 23312-+-︒--+π20.(5分)解不等式组,并求所有的非负整数解.21.(5分)已知三角形.求作:三角形的外接圆和内切圆(不写做法,但保留作图痕迹). 请回答:该作图的依据是_____________________________________.22.7分如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60度.如果这时气球的高度CD 为90米.且点A .D 、B 在同一直线上,求建筑物A .B 间的距离. 23.(7分)我乡某校举行全体学生“定点投篮”比赛,每位学生投40个,随机抽取了部分学生的投篮结果,并绘制成如下统计图表。
根据以上信息完成下列问题。
①本次抽取的学生人数为多少? ②统计表中的m=__________。
③扇形统计图中E 组所占的百分比; ④补全频数分布直方图。
⑤扇形统计图中“C 组”所对应的圆心角的度数。
⑥本次比赛中投篮个数的中位数落在哪一组。
⑦已知该校共有900名学生,如投进个数少于24个定为不合格,请你估计该校本次投篮比赛不合格的学生人数。
24.(7分)有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字1,2,3,4,B 布袋中有三个除标号外完全相同的小球,小球上分别标有数字2,4,6.小明先从A 布袋中随机取出﹣个小球,用m 表示取出的球上标有的数字,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字.(1)若用(m ,n )表示小明取球时m 与n 的对应值,请画出树形图或列表写出(m ,n )的所有取值;(2)求关于x 的一元二次方程x 2﹣mx+n=0有实数根的概率.25.(5分)如图,D 、E 、F 、B 在一条直线上,AB=CD,∠B=∠D ,BF=DE ,求证:四边形AECF 是平行四边形26.(7分)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 轴、y 轴交于点B,A ,与反比例函数的图像分别交于点C,D,CE ⊥x 轴于点E, tan ∠ABO=,OB=4,OE=2.(1)求该反比例函数和直线AB 的解析式; (2)求△CEB 的面积。
27.(8分)如图,已知AB 为⊙O 的直径,BD 为⊙O 的切线,过点B 的弦BC ⊥OD 交⊙O 于点C ,垂足为点M . (1)求证:CD 是⊙O 的切线;(2)当BC=BD ,且BD=6时,求图中阴影部分的面积(结果保留根号和π值).D28.(10分)如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.答案一、选择题1.A ;2.C ;3.A ;4.D ;5.C;6.D;7.C;8.A;9.B;10.B二、填空题11.x ≥3且x ≠4;12.ab(b+2)(b-2);13.9×1013;14.1;15.4;16.5、左、1;17.①②③⑤;18.2; 三、解答题19.解:原式=132323332+-⨯--+ =120解:①解15)1(3+<-x x 得2->x②解4221-≥-x x 得37≤x 不等式解集:372≤<-x所有非负整数解为:0,1,221.三角形三边垂直平分线的交点是三角形外接圆的圆心,三角形三个内角角平分线的交点是三角形内切圆的圆心 22题23题解:①学生人数为 100 , ②统计表中的m= 25 , ③扇形统计图中E 组所占的百分比是 20% ,④D 组人数为25,E 组人数为20⑤“C 组”所对应的圆心角的度数是 108 度, ⑥本次比赛中投篮个数的中位数落在 C 组, ⑦495%)30%15%10(900=++⨯人答:该校本次投篮比赛不合格的学生人数495人。
24.解:(1)如图所示:.(m ,n )所有取值是(4,2),(4,4),(4,6),(1,2),(1,4),(1,6), (2,2),(2,4),(2,6),(3,2),(3,4),(3,6). (2)由原方程得;△=m 2﹣2n .当m ,n 对应值为(4,2)(4,4),(4,6),(2,2),(3,2),(3,4),时,△≥0,原方程有实数根.故P (△≥0)=.故原方程有实数根的概率为.25.证明:∵DE BF =∴EF DE EF BF +=+ DF BE =在ABE ∆和CDF ∆中⎪⎩⎪⎨⎧=∠=∠=DF BE D B CDAB∴ABE ∆≌CDF ∆ ∴CFD AEB ∠=∠、AE=CF ∴AE ∥CF 又AE=CF∴四边形AECF 是平行四边形26.(1) 6y x =-, 122y x =-+ (2) S △CEB=9图(11)27. (1)证明:连接OC .∵OD ⊥BC ,O 为圆心, ∴OD 平分BC .∴DB =DC . ∴△OBD ≌△OCD (SSS). ∴∠OCD =∠OBD .又∵BD 为⊙O 的切线,∴∠OCD =∠OBD =90°. ∴CD 是⊙O 的切线.(2)解:∵DB ,DC 为切线,B ,C 为切点, ∴DB =DC .又∵DB =BC =6,∴BCD ∆为等边三角形. ∴∠BOC =360°-90°-90°-60°=120°, ∠OBM =90°-60°=30°,BM =3. ∴OM =3,OB =2 3 . ∴S 阴影部分=S 扇形OBC -S △OBC()360321202⨯⨯=π-12×6×3=4π-33. 28.解:(1)∵OB =OC =3, ∴B (3,0),C (0,3)∴,解得∴二次函数的解析式为y =﹣x 2+2x +3;(2)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,M (1, 4) 设直线MB 的解析式为y =kx +n ,则有解得∴直线MB 的解析式为y =﹣2x +6 ∵PQ ⊥x 轴,OQ =m ,∴点P 的坐标为(m ,﹣2m +6)S 四边形ACPQ =S △AOC +S 梯形PQOC =AO •CO +(PQ +CO )•OQ (1≤m <3)=×1×3+(﹣2m +6+3)•m =﹣m 2+m +; (3)存在-------------------------9分CM =,CN =,MN =①当CM =NC 时,,解得x 1=,x 2=1(舍去)此时N (,)②当CM =MN 时,,解得x 1=1+,x 2=1﹣(舍去),此时N (1+,4﹣)③当CN =MN 时,=解得x =2,此时N (2,2).所以:线段BM 上存在点N (,),(2,2),(1+,4﹣)使△NMC 为等腰三角形。