高二数学选修2-1逻辑命题经典练习题.doc

合集下载

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)(1)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)(1)

一、选择题1.数列{}n a 满足*111,(,0)n n a a ta t n N t +==+∈≠,则“ 12t =”是“数列{}n a 成等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1 B .2C .3D .43.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(],4-∞B .[]1,4C .(]1,4D .()1,44.已知a ,b 是两条直线,则“a ,b 没有公共点”是“a ,b 是异面直线”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件5.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立. 6.下列说法正确的是( ).A .若数列{}n a 为等差数列,则数列{}1n n a a ++为等差数列B .若14m ≤-,则函数2()lg lg f x x x m =+-无零点C .在ABC ∆中,若sin A <,则04A π<<D .直线m ⊄平面α,直线n ⊂平面α,则“//m n ”是“//m α”的充要条件7.已知条件p :()()30x m x m --->;条件q :2340x x +-<,若q 是p 的充分不必要条件,则实数m 的取值范围是( ) A .(,7)(1,)-∞-+∞B .(],7[1,)-∞-+∞C .()7,1-D .[]7,1-8.01a <<是函数()221=+f x ax 取值恒为正的( )条件 A .充分非必要B .必要非充分C .充要D .既不充分又不必要9.已知函数()222f x x x =-+,2log g xx t ,对[]10,2x ∀∈,21,162x ⎡⎤∃∈⎢⎥⎣⎦使得()()12f x g x =,则实数t 的取值范围( ) A .(],2-∞-B .[)2+∞,C .()2,2-D .[]22-,10.已知m ,n 为空间中两直线,α,β为两不同平面,已知命题:p 若m α⊂,m β⊥,则αβ⊥;命题:q 若m α⊂,n ⊂α,//m β,//n β,则//αβ.则p ,()q ⌝,()p q ∧,()p q ∨这四个命题中真命题的个数为( )A .1B .2C .3D .411.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0 B .1C .2D .312.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件二、填空题13.若命题“方程230x mx -+=在[]1,2上有解”为假命题,则m 的取值范围是______.14.已知命题p :x R ∀∈,240x mx ++≥;命题q :0(0,)x ∃∈+∞,000xe mx -=,若p q ∧为真命题,则实数m 的取值范围是_______________;15.已知命题:p x R ∀∈,210x mx ++≥;命题()0:0,q x ∃∈+∞,000xe mx -=,若p q ∨为假命题,则实数m 的取值范围是_______________;16.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”;②“1x =-”是“2560x x --=”的必要不充分条件;③命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->”;④命题“若x y =,则sin sin x y =”的逆否命题为真命题.其中所有正确命题的序号是_________.17.设x ∈R ,则“1x <”是“20x x -<”的__________条件.(填“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”)18.若“12x <<”是“230x ax -+<”的充分非必要条件,则实数a 的取值范围为______. 19.空间中,“ABC ∆的三个顶点到平面α距离相等”是“平面α平面ABC ”成立的________条件.20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是;其中正确的命题的是________.三、解答题21.设关于x 的不等式254x x ≤-的解集为A ,不等式2(2)20()x a x a a R -++≤∈的解集为B .(1)求集合A ,B ;(2)若x A ∈是x B ∈的必要条件,求实数a 的取值范围.22.已知0a >且1a ≠,命题:P 函数()log a f x x =在()0,∞+上为减函数,命题:Q 关于x 的不等式()22310x a x +-+≤有实数解.(1)如果P Q ∨为真且P Q ∧为假,求实数a 的取值范围. (2)命题:R 函数()2231ylg x a x ⎡⎤=+-+⎣⎦的值域包含区间[]1,3-,若命题R 为真命题,求实数a 的取值范围23.已知p :2a ≥,q :函数()()2lg 2f x ax x a =++的定义域为R .如果“p 或q ”为真命题,“p 且q ”为假命题,求实数a 的取值范围.24.已知a >0,且a ≠1.命题P :函数f (x )=log a x 在(0,+∞)上为增函数;命题Q :函数g (x )=x 2﹣2ax +4有零点.(1)若命题P ,Q 满足P 真Q 假,求实数a 的取值范围;(2)命题S :函数y =f (g (x ))在区间[2,+∞)上值恒为正数.若命题S 为真命题,求实数a 的取值范围. 25.已知函数()1-=+x af x a (0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭.(1)求实数a ;(2)若函数()1322⎛⎫=+- ⎪⎝⎭g x f x ,求函数()g x 的解析式; (3)已知命题p :“任意x ∈R 时,()220++≤g ax ax ”,若命题p ⌝是假命题,求实数a 的取值范围.26.已知命题:p 方程22242220x y x my m m +-++-+=表示圆;命题:q 方程22115x y m a+=--表示焦点在y 轴上的椭圆,若p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据充分必要条件的定义和等比数列的定义判断. 【详解】12t =时,由11a =得211122a =+=,311122a =+=,,1n a =,所以{}n a 是等比数列,充分性满足;反之若{}n a 是等比数列,则212a ta t t =+=,2322a ta t t t =+=+,123,,a a a 也成等比数列,所以2213a a a =,即2242t t t =+,又0t ≠,所以12t =,此时1(*)n a n N =∈,满足题意,必要性也满足, 应为充要条件. 故选:C . 【点睛】关键点点睛:本题考查充分必要条件的判断,考查等比数列的判断,掌握充分必要条件和等比数列的定义是解题关键.解题方法是充分性与必要性分别进行判断,充分性只要把12t =代入计算求出n a 即可判断,而必要性需由数列{}n a 是等比数列求出参数t ,因此可由开始的3项成等比数列求出t ,然后再检验对*n N ∈数列是等比数列即可. 2.B解析:B 【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定. 【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B. 【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.C解析:C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】 解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤, 解不等式2x a -<,即22x a -<-<,解得22a x a -<<+, 由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤. 因此,实数a 的取值范围是(]1,4. 故选:C. 【点睛】本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.4.B解析:B 【分析】根据异面直线的定义及充分条件、必要条件的概念求解即可. 【详解】因为a ,b 没有公共点,a ,b 可能平行也可能异面, 所以“a ,b 没有公共点”成立推不出“a ,b 是异面直线”, 反之,“a ,b 是异面直线”可以推出“a ,b 没有公共点”成立, 所以“a ,b 没有公共点”是“a ,b 是异面直线”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件,必要条件的判定,异面直线的概念,属于中档题.5.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.6.A解析:A 【分析】A:利用等差数列的定义进行判断;B:令lg t x =,则2()f t t t m =+-,结合二次函数的零点存在问题,进行判断;C:结合正弦函数,可解不等式,进而可判断A 的取值范围;D:判断由“//m n ”是否能推出“//m α”,再判断由“//m α”是否能推出“//m n ”. 【详解】解:数列{}n a 为等差数列,不妨设数列{}n a 通项公式为n a pn q =+,则1(1)n a p n q pn p q +++=++=.122n n n b a a pn p q +∴=+=++则1232n b pn p q +=++.12n n b b p +∴-=与n 无关. 故数列{}1n n a a ++为等差数列,A 正确. 令lg t x =,则2()f t t t m =+-,当14m =-时, 21()04f t t t =++=此时12t =-,即x =函数函数2()lg lg f x x x m =+-有零点,B 错误.由正弦函数图像可知,若sin A <则04A π<<或34A ππ<<,C 错误. 当“//m α”时,直线n ⊂平面α,不一定有“//m n ”,所以D 项错误.故选:A . 【点睛】本题考查了等差数列的定义,考查了函数的零点与方程的根,考查了三角函数不等式,考查了充分必要条件的判断.判断一个数列是否为等差数列,可利用等差数列的定义,即判断后一项与前一项的差是否为一个常数;求解三角函数不等式时,常常结合三角函数的图像进行求解;判断两个命题的关系时,通常分为两步,判断由p 是否能推出q ,以及判断由q 是否能推出p .7.B解析:B 【分析】解一元二次不等式求得条件q 中x 的范围,解一元二次不等式求得条件p 中x 的范围,根据q 是p 的充分不必要条件列不等式组,解不等式组求得m 的取值范围. 【详解】对于条件q ,()()234410x x x x +-=+-<,解得41x -<<.对于条件p ,由()()30x m x m --->,解得x m <或3x m >+.由于q 是p 的充分不必要条件,所以34m +≤-或m 1≥,解得(],7[1,)m ∈-∞-+∞. 故选:B 【点睛】本小题主要考查一元二次不等式的解法,考查根据充分不必要条件求参数的取值范围,属于中档题.8.A解析:A 【分析】根据一元二次函数的图象与性质,结合充分条件、必要条件的定义,进行判定,即可求解. 【详解】由题意,当01a <<时,函数()2210f x ax =+>恒成立,所以充分性成立;例如:当0a =时,函数()22110f x ax =+=>恒成立,所以函数()2210f x ax =+>恒成立时,01a <<不一定成立,所以必要性不成立,所以01a <<是函数()221=+f x ax 取值恒为正的充分非必要条件.故选:A . 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记一元二次函数的图象与性质是解答的关键,着重考查了推理与论证能力,属于基础题.9.D解析:D 【分析】求出()(),f x g x 的值域,A B ,由题意可得A B ⊆,列不等式求解即可. 【详解】()222f x x x =-+,当[]0,2x ∈时,()f x 的值域为[]1,2A =,2log g xx t ,1,162x ⎡⎤∈⎢⎥⎣⎦,()g x 的值域[]1,4t t B =-+,由条件可知A B ⊆,即[][]1,21,4t t ⊆-+,从而有1142t t -≤⎧⎨+≥⎩,可得22t -≤≤. 故选:D. 【点睛】本题主要考查全称命题与特称命题的综合应用,关键是要将问题进行转化,转化为值域之间的包含问题,是中档题.10.C解析:C 【分析】先判断每个命题的真假,再由复合命题的真值表确定真假。

高中数学课本选修2-1例习题精选

高中数学课本选修2-1例习题精选

高中数学选修2-1课本例习题精选一、简易逻辑1.判断下列命题的真假:(1)命题“若220x y +=,则,x y 全为0”的逆命题; (2)命题“全等三角形是相似三角形”的否命题. 2.写出下列命题的否定:(1)1994与2000都是5的倍数; (2)任何一个整数,都是奇数;(3)存在一个实数a ,能使210a +=成立; (4)每一个数列都是等差数列; (5)每个数列都有一项为“1”; (6)任何有理数都是实数.3.写出下列命题的“p 或q ”“p 且q ”“非p ”形式的命题,并判断其真假: (1):p 24是8的倍数,:q 24是6的倍数;(2):p 矩形的对角线相等,:q 矩形的对角线互相平分; (3):p 正方形的四条边相等,:q 正方形的四个角相等; (4):p π是无理数,:q π是有理数.4.请在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选择一个使命题正确的填写在各题横线上.(1)若A B ⊆,则“x A ∈”是“x B ∈”的_______条件; (2)“6x π∈”是“1sin 2x =”的________条件; (3)“αβ>”是“sin sin αβ>”的________条件;(4)在ABC 中,“A B >”是“sin sin A B >”的_________条件;(5)已知直线111222:,:l y k x b l y k x b =+=+,则“12k k =”是“12//l l 的_______条件;(6)“0ab >”是“方程221x y a b+=表示椭圆”的________条件; (7)“α是第二象限角”是“sin tan 0αα⋅<”的______条件;(8)“a b =”是“a b =”的_______条件;(9)“实数0λ=”是“向量0a λ⋅=”的________条件;(10)“四边形的两条对角线相等”是“四边形是等腰梯形”的_______条件. 5.填空题.(1)“一元二次方程2210ax x ++=有一个正根和一个负根”的一个充分不必要条件是___________; (2)“两个平面α和β,//αβ”的一个必要不充分条件是__________; (3)“函数[)2(0,)y x bx c x =++∈+∞是单调函数”的充要条件是________.二、空间向量1. 证明:若一条直线垂直于一个平面内的两条相交直线,则该直线与此平面垂直.2.一直两个不同的平面12,ππ的法向量分别为12,n n ,判断两平面是平行还是垂直: (1)12(1,2,3),(1,2,3)n n ==---; (2)12(2,2,3),(1,2,2)n n =-=---.3.已知直线l 的方向向量为s ,平面π的法向量为n ,且l π⊄,判断直线与平面是平行还是垂直: (1)2(1,1,1),(1,4,3)s n =-=-; (2)2(1,3,2),(2,6,4)s n =-=--.4.如图,在空间直角坐标系中有长方体ABCD A B C D ''''-,且2AB =,2,1AD AA '==,求异面直线A B '与C D '夹角的余弦值.5.已知直线1l 的方向向量为1(1,1,1)s =-,平面2l 的方向向量为2(1,2,0)s =-,求这两条直线夹角的余弦值.(课本45页练习1)6.如图所示,在空间直角坐标系中有单位正方体ABCD A B C D ''''-.求平面BCD A ''与平面ABCD 的夹角θ.7.如图,在空间直角坐标系中,四棱锥S ABCD -的底面ABCD 为直角梯形,090,1ABC SA AB BC ∠====,12AD =.求平面SAB 与平面SCD 夹角的余弦值.8.如图所示,在空间直角坐标系中有单位正方体ABCD A B C D ''''-.求对角线A C '与平面ABCD 的夹角θ的正弦值.9.已知直线l 的方向向量为(1,1,1)s =-,平面π的法向量为(1,2,3)n =-,求直线与平面夹角的余弦值.10.如图,在空间直角坐标系中有长方体ABCD A B C D ''''-,1,2AB BC ==,3AA '=.求点B 到直线A C '的距离.11.如图,长方体1111ABCD A B C D -中,1,2AB BC ==,13,AA M =是AD 的中点.求点M 到直线11AC 的距离.12.如图,在空间直角坐标系中有单位正方体ABCD A B C D ''''-. (1)证明:AC '是平面A BD '的法向量;(2)求点C 到平面A BD '的距离.13.已知点(1,2,3)M -,平面π经过点(1,2,0),(2,0,1),(0,2,2)A B C -,求点M 到平面π的距离.三、圆锥曲线1.已知两定点之间的距离为5cm ,动点到两定点距离之和为5cm ,那么动点的轨迹是椭圆吗?2. 如图所示,一圆形纸片的圆心为,O F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,则点P 到另一个焦点2F 的距离是________.4.已知椭圆两焦点坐标分别是(0,2),(0,2)-并且经过点35(,)22-,求椭圆的标准方程. 5.写出适合下列条件的椭圆的标准方程,并画出草图:(1)1a b ==,焦点在x 轴上; (2)焦点坐标为(0,4),(0,4),5a -=.6.若椭圆经过点(M -和N ,求椭圆的标准方程,并画出草图.例1.求椭圆22925225x y +=的长轴和短轴的长、离心率、焦点和顶点坐标,并用描点法画出它的图像.7.求下列各椭圆的长轴和短轴的长、离心率、焦点坐标、顶点坐标,并画出草图. (1)22416x y +=; (2)22981x y +=. 8.求适合下列条件的椭圆的标准方程:(1)长轴在x 坐标轴上,长轴的长等于12,离心率等于23; (2)经过点(6,0)P -和(0,8)Q .9.求满足下列条件的椭圆的标准方程,并画出草图: (1)310,5a e ==,焦点在x 轴上; (2)13,2c e ==,焦点在y 轴上; (3)长轴长是短轴长的2倍,椭圆经过点(3,0)P .10.ABC 两个顶点,A B 的坐标分别是(6,0),(6,0)-,边,AC BC 所在直线的斜率之积等于49-.求顶点C 的轨迹方程,并画出草图.11.设点12,F F 为椭圆22221(0)x y a b a b+=>>上左、右焦点,P为椭圆上异于左右顶点的一点,若12F PF θ∠=,求证:122tan2F PF Sb θ=.12.点M 到点(4,0)F 的距离比它到直线:60l x +=的距离小2求点M 的轨迹.13.平面上动点M 到定点(3,0)F 的距离比M 到直线1x =-的距离大2,求动点M 满足的方程,并画出相应的草图.14.根据下列条件求抛物线的标准方程: (1)已知抛物线的焦点坐标是(2,0)F ; (2)已知抛物线的准线方程是32x =-. 15.分别写出满足下列条件的抛物线的标准方程: (1)顶点在原点,关于x 轴对称,过点(4,4)M -; (2)顶点在原点,焦点是(5,0)F ;(3)焦点式(0,8)F -,准线是8y =.16.已知抛物线的焦点在x 轴正半轴上,求抛物线的标准方程、焦点坐标和准线方程.17.求下列抛物线的焦点坐标和准线方程.(1)2y =; (2)216x y =; (3)2250y x +=; (4)280x y +=. 18.已知抛物线22(0)y px p =>的焦点弦AB 的两端点坐标分别为11(,)A x y ,22(,)B x y ,则1212y y x x 的值一定等于( )A .-4B .4C .2pD .2p -19.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30o 的直线交C 于,A B 两点,则AB =________.例2.抛物线2y x =上到直线24x y -=的距离最小的点的坐标是( ) A.11,24⎛⎫ ⎪⎝⎭ B.()1,1 C.39,24⎛⎫ ⎪⎝⎭D.()2,4 20. 已知抛物线22(0)y px p =>的准线为l ,过(1,0)Ml 相交于点A ,与C的一个交点为B ,若AM MB =,则p =________.21.抛物线的顶点是椭圆221259x y +=的中心,而焦点是椭圆的左焦点,求抛物线方程. 22.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为( ) A.1 B.2 C.12D.4 23.已知两定点12(4,0),(4,0)F F -,曲线上的点P 到12,F F 的距离之差的绝对值为6,求曲线的方程,并画出草图.24. 若双曲线 的左、右焦点分别为,点在双曲线上,且,则 等于【 】.22:1916x y E -=12,F F P E 13PF =2PFA .11B .9C .5D .3 25.求满足下列条件的双曲线的标准方程: (1)3,4a b ==,焦点在x 轴上;(2)焦点为(0,10),(0,10)-,双曲线上的点到两个焦点距离之差的绝对值是16;(3)焦点为(0,5),(0,5)-,经过点. 26.求过点9(3,2),(,5)4-的双曲线的标准方程.27.求与椭圆221255x y +=共焦点,且过点的双曲线方程.28.相距2km 的两个哨所,A B 听到远处传来的炮弹爆炸声,在A 哨所听到爆炸声的时间比在B 哨所迟4s .已知当时的声速为340/m s ,试判断爆炸点在什么样的曲线上,并求出曲线的方程.练习4.如图所示,火力发电厂的冷却塔的外形是由双曲线绕其虚轴所在直线旋转所得到的曲面.已知塔的总高度为150m ,塔顶直径为70m ,塔的最小直径(喉咙直径)为67m ,喉部标高112.5m ,求双曲线的方程. 29.求下列双曲线的实轴和虚轴的长、焦距和离心率: (1)224x y -=-; (2)22981x y -=;(3)2211625x y -=; (4)221259y x -=.30.在直角坐标系中画出下列双曲线的草图,并求实轴和虚轴的长、焦距、离心率.(1)221169x y -=; (2)22520100x y -=;(3)221x y -=; (4)22169144x y -=-.31.若双曲线2215y x m-=的离心率(1,2)e ∈,求m 的取值范围. 32.已知双曲线与椭圆221925x y +=共焦点,它们的离心率之和为145,求双曲线方程.33. 与双曲线22132x y -=有共同的渐近线,且经过点A 的双曲线的方程为( )A .2211612y x -=B .22214y x -=C .2211827y x -=D .22164x y -=34. 已知双曲线22221(0,0)y x a b a b-=>> )A .y x =B .y =C .2y x =±D .12y x =±35.证明圆心为(3,4)M ,半径等于5的圆的方程是22(3)(4)25x y -+-=,并判断点(0,0),(1,0),(1,2)O A B -是否在这个圆上.36.两条曲线的方程是1(,)0f x y =和2(,)0f x y =.它们的交点是00(,)P x y .求证:方程12(,)(,)0f x y f x y λ+=的曲线也经过点P .(这里λ是任意实数)37.已知两点(1,0),(1,2)A B -,求到,A B 两点距离相等的点P 满足的方程.38.已知点P 到点(4,0)A -与点(4,0)B 的距离的平方和等于64,求点P 满足的方程. 39.已知圆心为C 的圆经过定点(0,2)F ,且与直线20y +=相切,求圆心C 满足的方程. 40.设(2,0),(2,0)M N -为平面上两点,动点P 满足6PM PN +=,求点P 的轨迹方程. 41.已知点(0,1)A -,在抛物线221y x =+上任取一点B ,求线段AB 的中点满足的方程.42.已知A 为椭圆2212516x y +=上的点,点B 的坐标为(2,1),且2AP PB =. 求点P 的轨迹方程.43.过椭圆22143x y +=的左焦点作直线交椭圆于1122(,),(,)A x y B x y 若121x x +=-,求AB 的长.44.已知双曲线22(8)1169x y --=,有一椭圆的右焦点和右顶点分别是双曲线的左焦点和左顶点,且椭圆焦点到相应准线的距离 2.25p =,求椭圆方程.45.若直线:(1)1l y a x =+-与曲线2:C y ax =恰好有一个公共点,试求实数a 的取值集合. 46.如果直线1y kx =-与双曲线224x y -=没有公共点,求k 的取值范围. 47.求直线0x y -=被曲线2222x y +=截得的弦长.48.直线220x y -+=与椭圆2244x y +=相交于,A B 两点.求,A B 两点的距离.49.已知椭圆221164x y +=,求以点(2,1)P -为中点的弦所在直线方程.50.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ).A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=。

(典型题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)

(典型题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)

一、选择题1.已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2.下列命题中为真命题的是( )A .若命题p :“2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--≤”B .直线,a b 为异面直线的充要条件是直线,a b 不相交C .“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充要条件D .0x ≠则12x x+≥ 3.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23; ②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③一组数据a ,0,1,2,3,若该组数据的平均值为1,则样本的标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为ˆˆˆy a bx=+中,ˆ2b=,1x =,3y =,则ˆ1a =. 其中真命题为( )A .①②④B .②④C .②③④D .③④ 4.下列四个命题中,真命题的个数是( )①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”;③命题“所有幂函数()af x x =的图象经过点()1,1”; ④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”.A .1B .2C .3D .45.9k >是方程22194x y k k +=--表示双曲线的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6.下列说法中正确的是( )A .命题“若x y =,则22x y =”的逆命题为真命题B .若p q ∧为假命题,则,p q 均为假命题C .若p q ∧为假命题,则p q ∨为真命题D .命题“若两个平面向量,a b 满足||||||a b a b ⋅>⋅,则,a b 不共线”的否命题是真命题. 7.已知p :0x ∃∈R ,002lg x x -=;q :x ∀∈R ,2230x x -+≤.则下列为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .p q ∨D .()p q ⌝∨ 8.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 9.命题p :在数列{}n a 中,“132n n a a -=,2,3,4,n =”是“{}n a 是公比为32的等比数列”的充分不必要条件;命题q :若k ϕπ=,k ∈Z ,则()()()sin 0f x x ωϕω=+≠为奇函数,则在四个命题()()p q ⌝∨⌝,p q ∧,()p q ⌝∧,()p q ∨⌝中,真命题的个数为( )A .1B .2C .3D .410.01a <<是函数()221=+f x ax 取值恒为正的( )条件A .充分非必要B .必要非充分C .充要D .既不充分又不必要 11.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈-⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( )A .a b >B .a b <C .a b >D .22a b > 12.下列说法正确的是( )A .“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠或2x ≠-”B .如果p 是q 的充分条件,那么p ⌝是q ⌝的充分条件C .若命题p 为真命题,q 为假命题,则p q ∧为假命题D .命题“若αβ=,则sin sin αβ=”的否命题为真命题二、填空题13.下列命题中假命题的序号是________.①若“1x >则21x >”的逆命题;②“若1sin 2α≠,则6πα≠”;③“若0xy =,则0x =且0y =”的逆否命题;④“在ABC 中,若sin sin A B >,则A B >”.14.已知{}|13A x x =-<<, {}11|B x x m =-<<+,若x B ∈成立的一个必要不充分条件是x A ∈,则实数m 的取值范围是_______________.15.已知a R ∈,命题“存在x ∈R ,使230x ax a --≤”为假命题,则a 的取值范围为______.16.给出下列命题:①已知a ,b 是正数,且11a a b b+>+,则a b >; ②命题“x R ∃∈,使得2210x x -+<”的否定是真命题;③将()1023化成二进位制数是()210111;④某同学研究变量x ,y 之间的相关关系,并求得回归直线方程,他得出一个结论:y 与x 负相关且 4.326 4.5y x =--,其中正确的命题的序号是__________(把你认为正确的序号都填上).17.若命题“*n N ∃∈,260n nt -+≤”是真命题,则实数t 的取值范围是______. 18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”;②“1x =-”是“2560x x --=”的必要不充分条件;③命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->”;④命题“若x y =,则sin sin x y =”的逆否命题为真命题.其中所有正确命题的序号是_________.19.给出下列命题:①1y =是幂函数;②函数2()2log xf x x =-的零点有且只有1;2)0x -≥的解集为[2,)+∞;④“1x <”是“2x <”的充分非必要条件;其中真命题的序号是______________.20.“200,20o x R x x m ∃∈++≤”是假命题,则实数m 的取值范围是 ________. 三、解答题21.已知:46p x -≤,2:2240q x x --≤,若p q ∨为真,p q ∧为假,求实数x 的取值范围.22.(1)已知命题p :()20a a a R -<∈,命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈,若命题“p 且q ”为假命题,命题“p 或q ”为真命题,求实数a 的取值范围;(2)已知集合{}22|440A x x x a =-+-≤,{}2|41270B x x x =+-≤,若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.23.已知集合{}{}222430(0),540A x x ax a a B x x x =-+≤>=-+≥,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.24.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.25.已知命题:p 方程22242220x y x my m m +-++-+=表示圆;命题:q 方程22115x y m a+=--表示焦点在y 轴上的椭圆,若p 是q 的必要不充分条件,求实数a 的取值范围.26.设命题p :实数x 满足22430x ax a -+≤其中a ≠0,命题q :实数x 满足2260280x x x x ⎧--≤⎨+->⎩,若命题p 是命题q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用函数3y x =,2x y =的单调性,结合充分条件和必要条件的性质判断即可.【详解】函数3y x =在R 上单调递增,则33b a a b <⇔<函数2x y =在R 上单调递增,则22a b a b <⇔<则“33a b <”是 “22a b <”的充要条件故选:C【点睛】本题主要考查了判断充要条件,涉及了利用函数的单调性比较大小,属于中档题. 2.A解析:A【分析】A ,根据一个是特称命题的否定,变为全称命题,即可判断;B ,根据空间中两条直线的位置关系得到结果;C ,根据两条直线垂直的条件得到a 的值;D 、根据基本不等式得到,这个不等式大于等于2或小于等于2-.【详解】解:对于A ,根据特称命题的否定形式知道:命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”,故A 是真命题;对于B ,直线a ,b ,为异面直线的充要条件是直线a ,b 不相交且不平行,故B 为假命题;对于C ,“直线0x ay -=与直线0x ay +=互相垂直” ⇔ “1a =±”,故“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充分不必要条件,故C 为假命题;对于D ,若0x >,则12x x +,或若0x <,则12x x +-,故D 为假命题. 故选:A .【点睛】本题考查命题的否定,考查函数的值域,考查空间中两条直线的位置关系,考查特称命题和全称命题的否定,属于中档题. 3.B解析:B【分析】利用概率统计中的系统抽样、平均数、众数、中位数及线性回归直线方程的概念及应用,对选项逐项判定,即可求解.【详解】由题意,对于①中,7,,33,46x 的公差为4671341d -==-, 所以71320x =+=,即样本中另一位同学的编号为20,所以不正确; 对于②中,数据1,2,3,3,4,5的平均数为12344536x +++++==, 众数为3,中位数为3332+=,所以数据的平均数、众数和中位数是相同的,所以是正确. 对于③中,数据a ,0,1,2,3的平均数为01236155a a x +++++===,解得1a =-, 所以方差为2222221[(11)(01)(11)(21)(31)]25s =--+-+-+-+-=,对于④中,因为ˆ2b=,所以ˆˆ2y a x =+,根据回归直线方程ˆˆ2y a x =+必过样本中心点(1,3),即ˆ321a=+⨯,解答ˆ1a =,所以是正确的. 故选:B .【点睛】本题主要考查了命题的真假判定及应用,着重考查了系统抽样、平均数、众数、中位数的概念与计算,以及线性回归方程的应用,属于中档试题.4.C解析:C【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()a f x x =的图象判断.④由()222222a b a b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性.【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确.②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a b a b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.5.B解析:B【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->,∴方程22194x y k k +=--表示双曲线, 反之,若已知方程22194x y k k +=--表示双曲线, (9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件. 故选:B .【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用6.D解析:D【分析】A 中,利用四种命题的的真假判断即可;B 、C 中,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题;D 中,写出该命题的否命题,再判断它的真假性.【详解】对于A ,命题“若x y =,则22x y =”的逆命题是:若22x y =,则x y =;因为y x =-也成立.所以A 不正确;对于B ,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题,所以B 错误;C 错误; 对于D ,“平面向量,a b 满足||||||a b a b ⋅>⋅”,则,a b 不共线的否命题是,若“平面向量,a b 满足||||||a b a b ⋅≤⋅”,则,a b 共线; 由||||cos a b a b θ⋅=⋅⨯知:||||||a b a b ⋅≥⋅,一定有||||||a b a b ⋅=⋅,cos 1θ=±, 所以,a b 共线,D 正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题.7.C解析:C【分析】先分别判定命题,p q 的真假,再根据或且非判断复合命题真假.【详解】令()2lg (1)10,(10)70f x x x f f =--=-<=>,,且函数()f x 在(0,)+∞上连续, 所以0(1,10)x ∃∈,000()0,2lg f x x x =∴-=;因此命题p 为真命题;2223(1)20x x x -+=-+>∴命题q 为假命题;因此p q ∧为假命题;()()p q ⌝∧⌝为假命题;p q ∨为真命题;()p q ⌝∨为假命题; 故选:C【点睛】本题考查零点存在定理以及命题真假判定,考查基本分析判断能力,属基础题.8.C解析:C【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案.【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件.故选:C.【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.9.B解析:B【分析】可判断p 为假命题,q 为真命题,继而可判断()()p q ⌝∨⌝,p q ∧,()p q ⌝∧,()p q ∨⌝的真假.【详解】因为当0n a =时也有132n n a a -=,2,3,4,n =,但{}n a 是等差数列,不是等比数列,因此充分性不成立.又因为当{}n a 是公比为32的等比数列时,有132n n a a -=,2,3,4,n =,所以必要性成立,所以命题p 为假命题;当,k k ϕπ=∈Z 时,可以推得()sin s n ()i f x x x ωϕω=+=±为奇函数;当()()sin f x x ωϕ=+为奇函数时,可以得到k ϕπ=,故命题q 为真命题,因此()()p q ⌝∨⌝真,p q ∧假,()p q ⌝∧真,()p q ∨⌝假,故选:B .【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,概念理解,数学运算的能力,属于中档题.10.A解析:A【分析】根据一元二次函数的图象与性质,结合充分条件、必要条件的定义,进行判定,即可求解.【详解】由题意,当01a <<时,函数()2210f x ax =+>恒成立,所以充分性成立; 例如:当0a =时,函数()22110f x ax =+=>恒成立, 所以函数()2210f x ax =+>恒成立时,01a <<不一定成立,所以必要性不成立, 所以01a <<是函数()221=+f x ax 取值恒为正的充分非必要条件.故选:A .【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记一元二次函数的图象与性质是解答的关键,着重考查了推理与论证能力,属于基础题.11.D解析:D【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解.【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增, 所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>.故选:D.【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.12.C解析:C【分析】写出“若24x =,则2x =或2x =-”的否命题,即可A 选项;根据原命题与逆否命题的等价性,判断B 选项;根据且命题的性质判断C 选项;写出该命题的否命题,举例说明,判断D 选项.【详解】“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠且2x ≠-”,故A 错误; 因为p 是q 的充分条件,所以由p 能推出q ,所以q ⌝能推出p ⌝,即p ⌝是q ⌝的必要条件故B 错误;命题p 为真,q 为假,则p q ∧为假命题,故C 正确;命题“若αβ=,则sin sin αβ=”的否命题为“若αβ≠,则sin sin αβ≠”,所以否命题为假命题,例如当30,150αβ=︒=︒时,sin sin αβ=,故D 错误.故选:C【点睛】本题主要考查了写出命题的否命题并且判断真假,原命题与逆否命题的等价性应用,属于中档题.二、填空题13.①③【分析】根据四种命题的关系判断①②③由正弦定理判断④【详解】①若则的逆命题是若则这显然是假命题如;②若则的逆否命题是若则是真命题原命题也是真命题;③若则且的逆否命题是若或则是假命题④在中若则由得解析:①③【分析】根据四种命题的关系判断①②③,由正弦定理判断④.【详解】①若“1x >则21x >”的逆命题是若21x >,则1x >,这显然是假命题,如2x =-;②“若1sin 2α≠,则6πα≠”的逆否命题是若6πα=,则1sin 2α=,是真命题,原命题也是真命题; ③“若0xy =,则0x =且0y =”的逆否命题是若0x ≠或0y ≠,则0xy ≠,是假命题, ④在ABC 中,若sin sin A B >,则由sin sin a b A B=得a b >,∴A B >,为真命题. 故答案为:①③【点睛】关键点点睛:本题考查命题的真假判断,在一个命题不能或不易判断其真假时,可考虑其逆否命题,判断出逆否命题的真假后,原命题的真假随之而得.特别是对一些否定性命题,含有至少、至多等词语的命题.常常选择判断其逆否命题的真假来判断原命题的真假. 14.【分析】先依题意判断集合B 是集合A 的真子集再讨论集合B 是否空集求参数m 的取值范围即可【详解】因为成立的一个必要不充分条件是所以推不出且可推出故集合B 是集合A 的真子集当时即集合A 的真子集符合题意;当时 解析:{}|2m m <【分析】先依题意判断集合B 是集合A 的真子集,再讨论集合B 是否空集求参数m 的取值范围即可.【详解】因为x B ∈成立的一个必要不充分条件是x A ∈,所以x A ∈推不出x B ∈,且x B ∈可推出x A ∈,故集合B 是集合A 的真子集.当11m +≤-时即2m ≤-,B =∅集合A 的真子集,符合题意;当11m +>-时即2m >-,要使集合B 是集合A 的真子集,则需13m +<,即2m <,故22m -<<;综上,实数m 的取值范围是2m <.故答案为:{}|2m m <.【点睛】结论点睛:本题考查必要不充分条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 15.【分析】将条件转化为任意恒成立此时有从而解出实数a 的取值范围【详解】命题:存在使为假命题即恒成立则即:解得故实数a 的取值范围为故答案为:【点睛】本题考查由命题的真假求参数的范围考查一元二次不等式的应 解析:()12,0-【分析】将条件转化为任意x ∈R ,230x ax a -->恒成立,此时有∆<0,从而解出实数a 的取值范围.【详解】命题:“存在x ∈R ,使230x ax a --≤”为假命题即230x ax a -->恒成立,则∆<0,即:2120a a ∆=+<,解得120a -<<,故实数a 的取值范围为()12,0-故答案为:()12,0-【点睛】本题考查由命题的真假求参数的范围,考查一元二次不等式的应用,体现了等价转化的思想,属于中等题.16.②③④【分析】①中作差法即可判断命题为假;②中完全平方式非负性判断命题为真;③中熟悉进制规则详见解析;④中回归方程的正负相关性即可得出命题为真【详解】①中作差法可知:∵ab 是正数∴可知①错;②中命题解析:②③④【分析】①中作差法即可判断命题为假;②中完全平方式非负性判断命题为真;③中熟悉进制规则,详见解析;④中回归方程的正负相关性即可得出,命题为真.【详解】①中作差法可知:1(1)(1)01(1)(1)a a a b a b b a b b b b b b++-+--==>+++ ∵a ,b 是正数,∴b a >,可知①错;②中命题的否定为:“x R ∀∈,使得2210x x -+≥”,即“x R ∀∈,使得2(1)0x -≥”显然为真命题,故②正确;③中则,∵()43210(2)1023120212121210111=⨯+⨯+⨯+⨯+⨯=,故③正确;④中,∵y 与x 负相关,∴所求回归直线方程中x 前面的系数为负数,符合常理,故④正确.故答案为:②③④.【点睛】 本题通过对命题的判断,考查了学生对不等式,进制,回归方程等等知识的掌握程度,相对来讲比较综合,需要学生有较强逻辑思维,且数学知识掌握牢固,为中等难度题型. 17.【分析】若则t 存在性问题中只需要t 大于等于n+最小值即可对于n+最小值可以结合对勾函数求但是一定要注意n 只能是正整数故可以得最小值是5进而得t 的取值范围【详解】解:若n2﹣nt+6≤0则t 所以只需要解析:[)5,+∞【分析】若*n N ∃∈,260n nt -+≤,则*n N ∃∈,t 6n n +,存在性问题中,只需要t 大于等于n +6n 最小值即可,对于n +6n最小值可以结合对勾函数求,但是一定要注意n 只能是正整数,故可以得最小值是5,进而得t 的取值范围.【详解】解:若*n N ∃∈,n 2﹣nt +6≤0,则*n N ∃∈,t 6n n+, 所以只需要t 大于等于n +6n最小值即可. 当*n N ∃∈时,根据对勾函数的性质可知,n +6n ≥5. 所以,t ≥5,故答案为:[5.+∞).【点睛】本题考查存在性问题求参数t 取值范围,是中档题.18.④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若解析:④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断.【详解】解:①根据否命题的定义可知,命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题,得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为:④.【点睛】本题考查命题的真假判断,以及充分必要条件、四种命题的关系和真假性的判断,属于基础题.19.④【分析】没有零点的解集为是的充分非必要条件【详解】①是常数函数或者考虑所以不是幂函数故错;②根据指数函数和对数函数的图象和性质得:函数没有零点故错;③或解得或故的解集为错;④但是推不出因此是的充分解析:④【分析】01,0y x x ==≠,2()2log x f x x =-2)0x -≥的解集为[){}2,1+∞,“1x <”是“2x <”的充分非必要条件.【详解】①1y =是常数函数,或者考虑01,0y x x ==≠,所以不是幂函数.故错;②根据指数函数和对数函数的图象和性质得:函数2()2log x f x x =-没有零点,故错;102)020x x x ->⎧-≥⇔⎨-≥⎩,或1x =,解得2x ≥或1x =2)0x -≥的解集为[){}2,1+∞,错; ④“1x <”⇒“2x <”,但是“2x <”推不出“1x <”,因此“1x <”是“2x <”的充分不必要条件,正确.故答案为:④.【点睛】此题考查幂函数概念辨析,函数零点讨论,解不等式,根据集合的包含关系讨论充分条件和必要条件,知识容量大,综合性强. 20.【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可【详解】由题意可知命题为真命题据此有:求解不等式可得实数的取值范围是【点睛】本题主要考查命题的否定等价转化的数学思想等知识意在考查学生 解析:1m【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可.【详解】由题意可知,命题“2,20x R x x m ∀∈++>”为真命题,据此有:440m ∆=-<,求解不等式可得实数m 的取值范围是1m >.【点睛】本题主要考查命题的否定,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(][)6,104,2--【分析】 解不等式46x -≤和22240x x --≤,由题意得出p 、q 一真一假,然后分情况讨论,进而可求得实数x 的取值范围.【详解】 解不等式46x -≤,即646x -≤-≤,解得210x -≤≤;解不等式22240x x --≤,解得46x -≤≤. :210p x ∴-≤≤,:46q x -≤≤,因为p q ∨为真,p q ∧为假,所以p 、q 一真一假,若p 真q 假,则(]6,10x ∈;若q 真p 假,则[)4,2x ∈--.综上所述,实数x 的取值范围是(][)6,104,2--. 【点睛】本题考查利用复合命题的真假求参数的取值范围,同时也考查了绝对值不等式和一元二次不等式的求解,考查运算求解能力,属于中等题.22.(1)11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭;(2)112a ≥或112a ≤-. 【分析】(1)分别计算命题,p q 为真、假时参数a 的取值范围,再根据题意可知命题p ,q 一真一假,进而分情况求解a 的取值范围即可.(2)由题意可知B A ⊆,再分0a ≥与0a <两种情况,分别根据区间端点满足的条件列式计算即可.【详解】(1)若命题p :()20a a a R -<∈为真,解得01a <<. 若p 为假,则0a ≤或1a ≥;若命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈为真, 则21640a ∆=-≤,解得1122a -≤≤,若q 为假,则12a <-或12a >. 由命题p 且q 为假,p 或q 为真可知命题p ,q 一真一假.若命题p 真,q 假,则011122a a a <<⎧⎪⎨-⎪⎩或,解得112a <<; 若命题p 假,q 真,则1,01122a a a ≥≤⎧⎪⎨-≤≤⎪⎩,解得102a -≤≤. 综上可知,实数a 的取值范围是11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭. (2)因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,71,22B ⎡⎤=-⎢⎥⎣⎦,()(){}|220A x x a x a =-+--≤, 当0a ≥时,[]2,2A a a =-+,此时应有122722a a ⎧+≥⎪⎪⎨⎪-≤-⎪⎩,即112a ≥, 当0a <时,[]2,2A a a =+-,此时应有122722a a ⎧-≥⎪⎪⎨⎪+≤-⎪⎩,即112a ≤-. 故112a ≥或112a ≤- 【点睛】本题主要考查了根据命题的真假以及充分与必要条件等求解参数范围的问题,属于中档题. 23.[)10,4,3⎛⎤+∞ ⎥⎝⎦.【分析】先化简两个集合,再根据充分必要性得到A 是B 的真子集,再列式计算即可.【详解】解:{}{}224303(0)A x x ax a x a x a a =-+≤=≤≤>, {}2540{1B x x x x x =-+≥=≤或4}x ≥,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集, 故310a a ≤⎧⎨>⎩或40a a ≥⎧⎨>⎩,103a ∴<≤或4a ≥, ∴实数a 的取值范围是[)10,4,3⎛⎤+∞ ⎥⎝⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.203a -≤< 【分析】p 是q 的充分不必要条件,则集合A 是集合B 的子集,运用区间端点值之间的关系可求a 的取值范围.【详解】解:0a <,由22430x ax a -+<得3a x a <<,设{}3A x a x a =<<,由260x x --≤得23x -≤≤,设{}23B x x =-≤≤, p 是q 的充分不必要条件,A ∴ B ,323a a ≥-⎧∴⎨≤⎩0a <203a ∴-≤<. 【点睛】 本题是命题真假的判断与应用,考查了必要条件问题,属于中档题.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.25.45a ≤<【分析】分别求出命题p ,q 为真命题时参数m 的取值范围,因为p 是q 的必要不充分条件,转化为集合的包含关系,求参数的取值范围.【详解】解:由22242220x y x my m m +-++-+=,得:()()2222x y m m m -++=-++表示圆, 220m m ∴-++>,解得:12m -<<,q 表示焦点在y 上的椭圆,所以015m a <-<-,若p 是q 必要不充分条件,则6205a a -≤⎧⎨<-⎩, 45a ∴≤<.故答案为:45a ≤<.【点睛】关键点点睛:利用圆和椭圆的方程的等价条件是解决本题的关键.26.12a ≤≤.【分析】求出命题,p q 为真时和x 的范围,再根据必要不充分条件得出a 的范围.【详解】命题p :22430x ax a -+≤,()(3)0x a x a --≤,0a >时,3a x a ≤≤,0a <时,3a x a ≤≤,命题q :2260280x x x x ⎧--≤⎨+->⎩23x ⇒<≤, 命题p 是命题q 的必要不充分条件,则命题q 是命题p 的充分不必要条件, ∴0a <不合题意,从而0a >,∴233a a ≤⎧⎨≥⎩,解得12a ≤≤. ∴a 的取值范围是12a ≤≤.【点睛】本题考查由必要不充分条件求参数范围.掌握充分必要条件与集合包含关系是解题关键.。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(包含答案解析)(2)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(包含答案解析)(2)

一、选择题1.“a b >”是“b a a b e e ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.""6a π=是()tan a π-=的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b < 4.下列说法错误的是( ) A .“若2560x x -+=,则2x =”的逆否命题是“若2x ≠,则2560x x -+≠” B .“2x >”是“2230x x +->”的充分不必要条件C .“x R ∀∈,2650x x -+≠”的否定是“0x R ∃∈,200650x x -+=”D .若“p q ∧”为假命题,则,p q 均为假命题 5.9k >是方程22194x y k k +=--表示双曲线的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6.已知p :0x ∃∈R ,002lg x x -=;q :x ∀∈R ,2230x x -+≤.则下列为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .p q ∨D .()p q ⌝∨ 7.已知()0,x π∈,则“6x π>”是“1sin 2x >”成立的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题9.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10.下列命题中真命题的是( )A .命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠B .“22am bm <”是“a b <”的充要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠,则p 是q 的必要不充分条件 11.命题“[]1,2x ∃∈,2ln 0x x a +-≤”为假命题,则a 的取值范围为( )A .(),1-∞B .(),0-∞C .(],ln 22-∞+D .(),ln 24-∞+ 12.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( )A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞二、填空题13.有下列五个命题:①函数y =2020x在区间(,0)(0,)-∞+∞上是单调递减的;②“0k ≠”是“函数1y kx =+的图像表示一条直线”的充分不必要条件;③函数y =[)0,+∞上是单调递减的;④函数y x =--{|1}y y ≤;⑤22(2)5y x a x =+-+在(4,+∞)上是增函数,则实数a 的取值范围是2a >-;⑥已知函数()y f x =在R 上是单调递增的,若0a b +>,则()()()()f a f b f a f b +>-+-.其中所有正确命题的题号是__________.14.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 15.若命题“存在,x R ∈220x x a ++≤”是假命题,则实数a 的取值范围是________. 16.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈,②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈.其中正确的个数是___________17.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件;②函数31()13f x x x =-++有两个零点; ③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 既与定圆22(2)4x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是28(0)y x x =≠;⑤若对任意的正数x ,不等式x e x a ≥+恒成立,则实数a 的取值范围是1a ≤. 其中正确的命题序号是________.18.若命题“存在实数x ,使得()222(2)40a x a x -+--≥成立”是假命题,则实数a 的取值范围是________.19.已知命题P :“1a ≠或2b ≠”,Q :“3a b +≠”,则P 是Q 成立的______ 20.命题“,11x x ∀∈+≥R ”的否定是_________.三、解答题21.已知命题p :实数x 满足27100,x x -+≤命题q :实数x 满足22430.x mx m -+≤其中m > 0.(1)若m =4且命题p , q 都为真命题,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.已知集合{}220A xx x =-->∣,集合{}22(25)50,B x x k x k k R =+++<∈∣ (1)求集合B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数k 的取值范围.23.已知命题p :方程22122x y a a +=-表示焦点在x 轴上的双曲线,命题q :复平面内表示复数()()32R z a ai a =-+∈的点位于第二象限.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 是假命题,q 是真命题,求实数a 的取值范围.24.已知命题p :1232a t a a ⎛⎫-<≤+>- ⎪⎝⎭,命题q :方程222143x y t t +=+表示焦点在x 轴上的椭圆.(1)当1a =时,判断“命题p ”是“命题q ”成立的什么条件?(2)若命题p 是命题q 成立的充分不必要条件,求实数a 的取值范围.25.已知集合{}{}222430(0),540A x x ax a a B x x x =-+≤>=-+≥,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.26.不等式:2112x x -≤+的解集为A . (1)求集合A ;(2)若不等式2(1)10ax a x +--≤的解集为B ,且x A ∈是x B ∈的必要条件,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】构造函数()x f x e x =+利用单调性判断.【详解】设()x f x e x =+,()e 10x f x '=+>,所以()f x 为增函数,由于a b >,所以()()f a f b >,所以b a a b e e ->-;反之b a a b e e ->-成立,则有()()f a f b >,所以a b >.所以是充要条件,故选C.【点睛】本题主要考查充要条件的判定,明确两者之间的推出关系是判定的关键.2.A解析:A【解析】 由6πα=,可得56ππα-=,得1sin()2πα-=,但由1sin()2πα-=不一定能够得到“6πα=”,即“6πα=”是()1sin 2πα-=的充分不必要条件,故选A. 3.B解析:B【分析】举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项.【详解】 因为311123112ln12ln 2,2ln 2ln ,ee e e -<--<-所以CD 不成立; 因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.4.D解析:D【分析】根据逆否命题的定义、集合间的关系、全称命题的否定、p q ∧为假命题的定义,对选项进行一一验证,即可得答案.【详解】对A ,根据逆否命题的定义可知命题正确,故A 正确;对B ,若2230x x +->,则1x >或3x <-,所以“2x >”是“2230x x +->”的充分不必要条件,故B 正确;对C ,因为全称命题的否定是特称命题,且将结论否定,故C 正确;对D ,若“p q ∧”为假命题,则p 、q 中只要有一个为假命题,故D 错误.故选:D.【点睛】本题考查命题真假性的判断,考查对概念的理解与应用,属于基础题.5.B解析:B【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->,∴方程22194x y k k +=--表示双曲线, 反之,若已知方程22194x y k k +=--表示双曲线, (9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件. 故选:B .【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用6.C解析:C【分析】先分别判定命题,p q 的真假,再根据或且非判断复合命题真假.【详解】令()2lg (1)10,(10)70f x x x f f =--=-<=>,,且函数()f x 在(0,)+∞上连续, 所以0(1,10)x ∃∈,000()0,2lg f x x x =∴-=;因此命题p 为真命题;2223(1)20x x x -+=-+>∴命题q 为假命题;因此p q ∧为假命题;()()p q ⌝∧⌝为假命题;p q ∨为真命题;()p q ⌝∨为假命题; 故选:C【点睛】本题考查零点存在定理以及命题真假判定,考查基本分析判断能力,属基础题. 7.B解析:B【分析】 求出不等式1sin 2x >在()0,x π∈上的解,然后利用集合的包含关系即可得出结论. 【详解】 ()0,x π∈,解不等式1sin 2x >,得566x ππ<<, 5,66ππ⎛⎫ ⎪⎝⎭ ,6ππ⎛⎫ ⎪⎝⎭,因此,“6x π>”是“1sin 2x >”成立的必要不充分条件. 故选:B.【点睛】 本题考查必要不充分条件的判断,涉及正弦不等式的求解,考查推理能力与运算求解能力,属于中等题.8.C解析:C【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D.【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是“若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C.【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.9.B解析:B【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断.【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件,故选:B.【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题. 10.A解析:A【分析】A. 根据四种命题的结构形式及转化来判断.B.利用特殊值法,当 0m =时,逆命题不成立.C. 若p q ∧为假命题,由结论“一假则假”来判断.D 用等价命题来判断.【详解】命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠, 故A 正确;若22am bm <,则0m ≠,可得a b <,反之a b <,0m =,22am bm <不成立,故B 错误;若p q ∧为假命题,则p ,q 中至少有一个为假命题,故C 错误;对于实数x ,y ,p :8x y +≠,q :2x ≠或6y ≠,由2x =且6y =,可得8x y +=,即p 可得q ,反之由q 推不到p ,则p 是q 的充分不必要条件,故D 错误. 故选:A【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础题. 11.A解析:A【分析】由于命题为假命题,则它的逆否命题一定为真,得出其逆否命题,构造函数2ln y x x =+,利用单调性得出函数2ln y x x =+在[]1,2的最小值,即可得到a 的取值范围.【详解】若“[]1,2x ∃∈,使得2ln 0x x a +-≤”为假命题,可得当[]1,2x ∈时,2ln x x a +>恒成立只需()2min ln a x x<+又函数2ln y x x =+在[]1,2上单调递增,所以1a <. 故选:A【点睛】本题主要考查了原命题与逆否命题等价性的应用以及函数不等式恒成立问题,属于中档题. 12.A解析:A【分析】由题意,可先解出p ⌝:31x -≤≤与q ⌝:x a ≤,再由p ⌝是q ⌝的充分不必要条件列出不等式即可得出a 的取值范围.【详解】 由条件:12p x +>,解得1x >或3x <-,故p ⌝:31x -≤≤,由条件:q x a >得q ⌝:x a ≤,∵p ⌝是q ⌝的充分不必要条件,∴1a ≥,故选:A .【点睛】本题以不等式为背景考查充分条件必要条件的判断,考查了推理判断能力,准确理解充分条件与必要条件是解题的关键.二、填空题13.②④⑥【分析】根据单调性的定义判断命题①③⑤⑥根据充分不必要条件的定义判断②结合二次函数性质求出函数值域判断④【详解】函数例如此时函数在不是减函数①错误;时函数的图象是一条直线充分的但时函数的图象也解析:②④⑥【分析】根据单调性的定义判断命题①③⑤⑥,根据充分不必要条件的定义判断②,结合二次函数性质求出函数值域判断④.【详解】 函数2020y x =,例如11x =-,21x =,此时122020202020202020x x =-<=,函数在(,0)(0,)-∞+∞不是减函数,①错误;0k ≠时,函数1y kx =+的图象是一条直线,充分的,但0k =时函数1y kx =+的图象也是一条直线,不必要.②正确;函数y =的定义域是[1,1]-,③错误;2(1)121)2y x x =--=-+-+=-+,0≥,所以21)1≥,21)21y =-+≤,值域为(,1]-∞,④正确;22(2)5y x a x =+-+22(2)5(2)x a a =+-+--在(4,+∞)上是增函数,则24a -+≤,2a ≥-,⑤错;0a b +>,则,a b b a >->-,又函数()y f x =在R 上是单调递增,则()(),()()f a f b f b f a >->-,所以()()()()f a f b f a f b +>-+-,⑥正确. 故答案为:②④⑥.【点睛】关键点点睛:本题考查函数的单调性,函数的值域与充分不必要条件.单调性中强调区间内自变量的任意性,即函数()f x 在(,)a b 和(,)m n 是都是增函数,不能直接说明()f x 在(,)(,)a b m n 上是增函数(减函数也是如此).14.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围.【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min 2a x x≤-, 因为22y x x =-图象开口向上,对称轴为1x =,则()2min 2121x x -=-=-,∴1a ≤-,故答案为: (],1-∞-.【点睛】本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.15.【分析】根据所给的特称命题的否定:任意实数是真命题得到判别式小于0解不等式即可【详解】命题存在的否定任意实数是真命题解得:故答案为:【点睛】本题考查命题的否定写出正确的全称命题并且根据这个命题是一个 解析:1a >【分析】根据所给的特称命题的否定:任意实数x ,220x x a ++>是真命题,得到判别式小于0,解不等式即可.【详解】命题“存在x ∈R , 220x x a ++≤”的否定“任意实数x , 220x x a ++>”是真命题,∴440a ∆=-<,解得:1a >,故答案为:1a >.【点睛】本题考查命题的否定,写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况,属于容易题.16.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3【分析】根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假.【详解】①由2011÷5=402…1,所以2011∈[1],故①正确;②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确;④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.17.①③⑤【分析】①用导数法求出在R 上的增函数的充要条件与对比即可判断结果;②求出函数的极值并判断正负即可判断结论;③列出从AB 中各任意取一个数所有情况算出两数之和等于4的基本事件即可求出概率判断结论真 解析:①③⑤【分析】①用导数法求出()sin f x ax x =-在R 上的增函数的充要条件,与2a >对比即可判断结果;②求出函数31()13f x x x =-++的极值,并判断正负,即可判断结论; ③列出从A ,B 中各任意取一个数所有情况,算出两数之和等于4的基本事件,即可求出概率,判断结论真假;④按求轨迹的方法求出动点轨迹方程,即可判断结论,或举出反例;⑤构造函数(),(0,)x f x e x x =-∈+∞,求出最小值或取值范围,进而得出a 的范围,即可判断命题真假.【详解】①()sin f x ax x =-在R 上的增函数,()cos 0,cos ,f x a x a x x R '∴=-≥≥∈恒成立,1a ≥.“2a >”是“1a ≥”的充分不必要条件,所以①正确; ②321()1,()1(1)(1)3f x x x f x x x x '=-++=-+=--+, ()0,11,()0,1f x x f x x ''>-<<<<-或1x >,()f x 递增区间是(1,1)-,递减区间是(,1),(1,)-∞-+∞,()f x ∴极大值为5(1),()3f f x =的极小值为1(1)3f -=, ()f x 只有一个零点,②不正确;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,所以情况有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种取法,两数之和等于4有2种取法,所以概率为13,③正确; ④设圆心(,)C x y ,定圆22(2)4x y -+=圆心为(2,0),半径为2||2x =+,平方化简得244||y x x -=,当0x >时,28y x =,当0,0x y ==,C 在定圆上不合题意,当0x <时,0y =,④不正确;⑤设(),(0,),()10x x f x e x x f x e '=-∈+∞=->在(0,)x ∈+∞上恒成立,(),(0,)x f x e x x =-∈+∞单调递增,()(0)1f x f >=,不等式x e x a ≥+在(0,)x ∈+∞上恒成立,1a ∴≤,⑤正确.故答案为:①③⑤.【点睛】本题考查命题真假的判定,涉及到:充分不必要条件判断、函数零点、古典概型概率、轨迹方程、不等式恒成立问题,属于中档题.18.(﹣22【分析】由原命题的否定为真命题得到∀实数x 使得(a ﹣2)x2+2(a ﹣2)x ﹣4<0成立然后分二次项系数为0和不为0讨论当二次项系数不为0时需要二次项系数小于0且判别式小于0求解【详解】命题解析:(﹣2,2].【分析】由原命题的否定为真命题得到∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立,然后分二次项系数为0和不为0讨论,当二次项系数不为0时,需要二次项系数小于0,且判别式小于0求解.【详解】命题“存在实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4≥0成立”是假命题,则其否定为“∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立”是真命题,当a =2时,原不等式化为﹣4<0恒成立;当a ≠2时,则()2204(2)1620a a a -⎧⎨=-+-⎩<<,解得﹣2<a <2. 综上,实数a 的取值范围是(﹣2,2].故答案为:(﹣2,2].【点睛】本题考查命题的真假判断与应用,考查了复合命题的真假判断,训练了不等式恒成立的解法,是中档题.19.必要非充分条件【分析】可以考虑逆否命题的充分必要性即得解【详解】先考虑充分性即考虑是否成立其逆否命题为::且显然不成立所以P 是Q 成立的非充分条件;再考虑必要性即考虑是否成立其逆否命题为::且显然成立 解析:必要非充分条件【分析】可以考虑逆否命题的充分必要性,即得解.【详解】先考虑充分性,即考虑P Q ⇒是否成立,其逆否命题为:Q P ⌝⇒⌝,:Q ⌝“3a b +=”,P ⌝:“1a =且2b =”,显然Q P ⌝⇒⌝不成立,所以P 是Q 成立的非充分条件;再考虑必要性,即考虑Q P ⇒是否成立,其逆否命题为:P Q ⌝⇒⌝,:Q ⌝“3a b +=”,P ⌝:“1a =且2b =”,显然P Q ⌝⇒⌝成立,所以P 是Q 成立的必要条件.所以P 是Q 成立必要非充分条件.故答案为必要非充分条件【点睛】本题主要考查充分必要条件的判断,考查逆否命题,意在考查学生对这些知识的理解掌握水平.20.【分析】根据全称命题的否定是特称命题解答【详解】由题意命题为全称命题则它的否定为:故答案为:【点睛】本题考查含一个量词的命题的否定属于基础题 解析:,11x x ∃∈+<R【分析】根据全称命题的否定是特称命题解答。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试(答案解析)(1)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试(答案解析)(1)

一、选择题1.已知函数()y f x =的定义域为R ,有下面三个命题,命题p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有()()()+<+f x a f x f a 恒成立,命题1q :()y f x =在R 上是严格减函数,且()0f x >恒成立;命题2q :()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =,则下列说法正确的是( ) A .1q 、2q 都是p 的充分条件 B .只有1q 是p 的充分条件 C .只有2q 是p 的充分条件D .1q 、2q 都不是p 的充分条件2.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1B .2C .3D .43.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要 4.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝5.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.6.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .47.命题:p 关于x 的不等式2240x ax ++>对一切x ∈R 恒成立,:q 函数()()32xf x a =-是增函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数a 取值范围为( ) A .()(),22,-∞-+∞ B .(][),21,2-∞-C .(](],21,2-∞-D .(][),22,-∞-+∞8.设0a >,0b >.下列说法正确的是( ) A .2ln 2ln a b a b +<+则a b > B .2ln 2ln a b a b +<+则a b < C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b <9.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.9k >是方程22194x y k k +=--表示双曲线的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件11.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 12.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件二、填空题13.已知{}|13A x x =-<<, {}11|B x x m =-<<+,若x B ∈成立的一个必要不充分条件是x A ∈,则实数m 的取值范围是_______________.14.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 15.给出下列命题: ①已知a ,b 是正数,且11a ab b+>+,则a b >; ②命题“x R ∃∈,使得2210x x -+<”的否定是真命题; ③将()1023化成二进位制数是()210111;④某同学研究变量x ,y 之间的相关关系,并求得回归直线方程,他得出一个结论:y 与x 负相关且 4.326 4.5y x =--,其中正确的命题的序号是__________(把你认为正确的序号都填上). 16.1122(,),(,)A x y B x y 是坐标平面内异于原点O 的两点,则“12121x x y y =-”是“OA OB ⊥”的______________17.已知命题:P 方程2410x x m ++-=有两个不等的负根;命题:q 方程24420x x m ++-=无实根.若P 、q 两命题中一真一假,则m 的取值范围是__________.18.已知命题P :“1a ≠或2b ≠”,Q :“3a b +≠”,则P 是Q 成立的______ 19.命题“,11x x ∀∈+≥R ”的否定是_________.20.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________.三、解答题21.已知集合A =233|1,,224y y x x x ⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,B ={x|x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围. 22.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.23.若函数()y f x =满足“存在正数λ,使得对定义域内的每一个值1x ,在其定义域内都存在2x ,使12()()f x f x λ=成立”,则称该函数为“依附函数”.(1)分别判断函数①()2x f x =,②2()log g x x =是否为“依附函数”,并说明理由; (2)若函数()y h x =的值域为[,]m n ,求证:“()y h x =是‘依附函数’”的充要条件是“0[,]m n ∉”.24.已知[]:1,1p m ∀∈-,253a a --:q x R ∃∈,220x ax ++<.若p 为真而q 为假,求a 的取值范围.25.给定两个命题:p 对任意实数x 都有不等式210ax ax ++>恒成立;:q 关于x 的方程20x x a --=有实数根;若p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.26.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先由命题1q 成立时,利用单调性和函数值为正,结合不等式性质即推出命题p 成立,再由命题2q 成立时,利用单调性和函数零点,推出命题p 成立,即得结果. 【详解】命题1q 成立,即()y f x =在R 上是严格减函数,且()0f x >恒成立, 故取0a >时,对任意的x ∈R ,x a x +>,则()()f x a f x +<,()0f a >即0()f a <,故()()()+<+f x a f x f a ,即命题1q 可推出命题p ,1q 是p 的充分条件; 命题2q 成立,()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =, 故取00a x =<时,对任意的x ∈R ,x a x +<,则()()f x a f x +<,0()()0f a f x ==,()()()f x a f x f a +<+,即命题2q 可推出命题p , 2q 是p 的充分条件;故1q 、2q 都是p 的充分条件. 故选:A. 【点睛】本题解题关键在于分别由命题1q 、2q ,利用函数的单调性和值的分布特征去证明命题p ,即突破难点.2.B解析:B 【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定. 【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B. 【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.B解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.4.D解析:D根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.5.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.6.C解析:C①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.7.B解析:B 【分析】先求得命题,p q 为真命题时,a 的取值范围.根据“p q ∨”为真命题,“p q ∧”为假命题可知,p q 一真一假,由此进行分类讨论,求得a 的取值范围.【详解】当p 为真命题时,24160a ∆=-<,解得22a -<<. 当q 为真命题时,321,1a a -><.由于“p q ∨”为真命题,“p q ∧”为假命题,所以,p q 一真一假. 当p 真q 假时,221a a -<<⎧⎨≥⎩,解得12a ≤<;当p 假q 真时,221a a a ≤-≥⎧⎨<⎩或,解得2a ≤-.综上所述,实数a 的取值范围是(][),21,2-∞-.故选:B 【点睛】本小题主要考查一元二次不等式恒成立问题,考查根据含有逻辑联结词命题的真假性求参数的取值范围,考查分类讨论的数学思想方法,属于基础题.8.B解析:B举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项. 【详解】因为311123112ln12ln 2,2ln 2ln ,ee e e-<--<-所以CD 不成立;因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B 【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.9.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭,即112xm ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件.故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.10.B解析:B 【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->, ∴方程22194x y k k +=--表示双曲线,反之,若已知方程22194x y k k +=--表示双曲线,(9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件.【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用11.C解析:C 【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案. 【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件. 故选:C. 【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.12.C解析:C 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥ 且224x y+≤ ,422x y ∴≤⇒⇒+≤ ,等号成立的条件是x y =,又x y +≥,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.二、填空题13.【分析】先依题意判断集合B 是集合A 的真子集再讨论集合B 是否空集求参数m 的取值范围即可【详解】因为成立的一个必要不充分条件是所以推不出且可推出故集合B 是集合A 的真子集当时即集合A 的真子集符合题意;当时 解析:{}|2m m <【分析】先依题意判断集合B 是集合A 的真子集,再讨论集合B 是否空集求参数m 的取值范围即可. 【详解】因为x B ∈成立的一个必要不充分条件是x A ∈,所以x A ∈推不出x B ∈,且x B ∈可推出x A ∈,故集合B 是集合A 的真子集.当11m +≤-时即2m ≤-,B =∅集合A 的真子集,符合题意;当11m +>-时即2m >-,要使集合B 是集合A 的真子集,则需13m +<,即2m <,故22m -<<;综上,实数m 的取值范围是2m <. 故答案为:{}|2m m <. 【点睛】结论点睛:本题考查必要不充分条件的应用,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.14.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-. 【点睛】本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.15.②③④【分析】①中作差法即可判断命题为假;②中完全平方式非负性判断命题为真;③中熟悉进制规则详见解析;④中回归方程的正负相关性即可得出命题为真【详解】①中作差法可知:∵ab 是正数∴可知①错;②中命题解析:②③④ 【分析】①中作差法即可判断命题为假; ②中完全平方式非负性判断命题为真; ③中熟悉进制规则,详见解析;④中回归方程的正负相关性即可得出,命题为真. 【详解】 ①中作差法可知:1(1)(1)01(1)(1)a a a b a b b ab b b b b b++-+--==>+++ ∵a ,b 是正数, ∴b a >,可知①错;②中命题的否定为:“x R ∀∈,使得2210x x -+≥”, 即“x R ∀∈,使得2(1)0x -≥”显然为真命题,故②正确;③中则,∵()43210(2)1023120212121210111=⨯+⨯+⨯+⨯+⨯=,故③正确;④中,∵y 与x 负相关, ∴所求回归直线方程中x 前面的系数为负数,符合常理,故④正确.故答案为:②③④. 【点睛】本题通过对命题的判断,考查了学生对不等式,进制,回归方程等等知识的掌握程度,相对来讲比较综合,需要学生有较强逻辑思维,且数学知识掌握牢固,为中等难度题型.16.充分不必要条件【分析】由可推出得到;但是不一定能推出【详解】由题:是坐标平面内异于原点的两点所以均为非零向量若则即即;若取不能得到所以是的充分不必要条件故答案为:充分不必要条件【点睛】此题考查通过向解析:充分不必要条件 【分析】 由“12121x x y y =-”可推出“0OA OB ⋅=”得到“OA OB ⊥”;但是“OA OB ⊥”不一定能推出“12121x x y y =-”【详解】由题:1122(,),(,)A x y B x y 是坐标平面内异于原点O 的两点, 所以1122(,),(,)OA x y OB x y ==,均为非零向量,若12121x x y y =-,则12120x x y y +=,即0OA OB ⋅=,即OA OB ⊥;若OA OB ⊥,取1212210,0,(0,),(,0),0x y A y B x x y ==≠,不能得到12121x x y y =-, 所以“12121x x y y =-”是“OA OB ⊥”的充分不必要条件. 故答案为:充分不必要条件 【点睛】此题考查通过向量垂直关系的坐标表示进行充分条件和必要条件的辨析.17.【分析】首先求出当两个命题是真命题时的取值范围再根据两命题中一真一假列不等式求的取值范围【详解】若方程有两个不等的负根则解得:若方程无实根则解得:当真假时解得:;当假真时解得:综上可知:的取值范围是 解析:(1,3][5,)⋃+∞【分析】首先求出当,p q 两个命题是真命题时,m 的取值范围,再根据P 、q 两命题中一真一假,列不等式求m 的取值范围. 【详解】:p 若方程有两个不等的负根,则()1212164104010m x x x x m ⎧∆=-->⎪+=-<⎨⎪=->⎩ , 解得:15m <<:q 若方程无实根,则()164420m ∆=-⨯-<,解得:3m >,当p 真q 假时,153m m <<⎧⎨≤⎩ ,解得:13m <≤;当p 假q 真时,153m m m ≤≥⎧⎨>⎩或 ,解得:5m ≥,综上可知:m 的取值范围是13m <≤或5m ≥. 故答案为:(1,3][5,)⋃+∞ 【点睛】本题考查根据命题的真假求参数的取值范围,重点考查根据一元二次方程实数根求参数的取值范围,属于基础题型.18.必要非充分条件【分析】可以考虑逆否命题的充分必要性即得解【详解】先考虑充分性即考虑是否成立其逆否命题为::且显然不成立所以P 是Q 成立的非充分条件;再考虑必要性即考虑是否成立其逆否命题为::且显然成立解析:必要非充分条件 【分析】可以考虑逆否命题的充分必要性,即得解. 【详解】先考虑充分性,即考虑P Q ⇒是否成立,其逆否命题为:Q P ⌝⇒⌝,:Q ⌝“3a b +=”,P ⌝:“1a =且2b =”, 显然Q P ⌝⇒⌝不成立,所以P 是Q 成立的非充分条件; 再考虑必要性,即考虑Q P ⇒是否成立,其逆否命题为:P Q ⌝⇒⌝,:Q ⌝“3a b +=”,P ⌝:“1a =且2b =”, 显然P Q ⌝⇒⌝成立,所以P 是Q 成立的必要条件. 所以P 是Q 成立必要非充分条件. 故答案为必要非充分条件 【点睛】本题主要考查充分必要条件的判断,考查逆否命题,意在考查学生对这些知识的理解掌握水平.19.【分析】根据全称命题的否定是特称命题解答【详解】由题意命题为全称命题则它的否定为:故答案为:【点睛】本题考查含一个量词的命题的否定属于基础题解析:,11x x ∃∈+<R【分析】根据全称命题的否定是特称命题解答。

新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)

新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)

一、选择题1.下列说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .命题“2000,10x x x ∃∈++<R ”的否定是“2,10x R x x ∀∈++<” C .命题“若x y =,则sin sin x y =”的逆否命题为假命题D .若椭圆22221(0)x y a b a b +=>>22221x y a b -=的渐近线方程为12y x =±2.“函数()2()311f x ax a x =--+在区间[)1+∞,上是增函数”是“01a ≤≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.若数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=,下面给出关于数列{}n a 的四个命题:①{}n a 可以是等差数列;②{}n a 可以是等比数列;③{}n a 可以既是等差又是等比数列;④{}n a 可以既不是等差又不是等比数列.正确命题的个数为( ). A .1B .2C .3D .44.在等比数列{}n a 中,“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 5.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b <6.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”; ②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个7.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题8.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件9.下列命题中正确命题的个数是( )①对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++>; ②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题; ③设a ,b 是非零向量,则“a b =”是“a b a b +=-”的必要不充分条件; ④3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A .1B .2C .3D .410.命题“[]1,2x ∃∈,2ln 0x x a +-≤”为假命题,则a 的取值范围为( ) A .(),1-∞B .(),0-∞C .(],ln 22-∞+D .(),ln 24-∞+11.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.已知命题p :2,20x R x x m ∃∈++≤,命题q :幂函数113()m f x x +-=在(0,)+∞是减函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数m 的取值范围是_________.14.已知命题:p x R ∀∈,210x mx ++≥;命题()0:0,q x ∃∈+∞,000xe mx -=,若p q ∨为假命题,则实数m 的取值范围是_______________;15.若命题“存在,x R ∈220x x a ++≤”是假命题,则实数a 的取值范围是________. 16.已知直线1:20l x ay ++=和2:(2)360l a x y a -++=,则1l ∥2l 的充要条件是a =______.17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为__________.19.已知命题p :存在[]0,1x ∈,使得0x a e -≥成立,命题:q 对任意x ∈R ,240x x a ++> 恒成立,若命题p q ∧⌝是真命题,则实数a 的取值范围是______________. 20.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件; (2)对于实数a ,b ,c ,如果ac >bc ,则a >b ; (3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______三、解答题21.已知集合A =233|1,,224y y x x x ⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,B ={x|x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围. 22.已知命题{}:2131p A x a x a =-<<+,命题{}:14q B x x =-<<.(1)若p 是q 的充分条件,求实数a 的取值范围.(2)是否存在实数a ,使得p 是q 的充要条件?若存在,求出a 的值;若不存在,请说明理由.23.已知命题p :[]1,1m ∀∈-,不等式2572a a m -+≥+恒成立;命题q :220x ax ++=有两个不同的实数根,若p q ∨为真,且p q ∧为假,求实数a 的取值范围.24.已知命题甲:对任意实数x ∈R ,不等式223022ax ax x x -+-+≥恒成立;命题乙:已知*x y R ∈,满足3x y xy +=-,且a xy ≤恒成立.(1)分别求出甲、乙为真命题时,实数a 的取值范围; (2)求实数a 的取值范围,使命题甲、乙中有且只有一个真命题.25.已知0a >,命题:p 函数2(1)y a x =-在(0,)+∞上为增函数;命题:q 当1,22x ⎡⎤∈⎢⎥⎣⎦时函数11()f x x x a=+>恒成立.如果p q ∨为真命题,p q ∧为假命题,求a 的范围. 26.已知命题:p 方程22242220x y x my m m +-++-+=表示圆;命题:q 方程22115x y m a+=--表示焦点在y 轴上的椭圆,若p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用四种命题的逆否判断A 的正误,命题的否定判断B 的正误;根据充分条件与必要条件判断C 的正误;根据椭圆的离心率可得,a b 关系,进而求得双曲线的渐近线方程; 【详解】解:对于A ,命题“若21x =,则1x =”的否命题为:“若21x ≠,则1x ≠”,故A 错误; 对于B ,命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈ 均有210x x ++≥”,故B 错误;对于C ,因为原命题为真命题,故其逆否命题也为真命题,故C 错误;对D ,因为122c b a a a ==⇒=,所以双曲线22221x y a b -=的渐近线方程为12y x =±,故 D 正确.故选:D. 【点睛】本题考查命题的真假的判断与应用,考查四种命题的逆否关系,命题的否定以及充要条件的判断,是基本知识的综合应用.2.C解析:C 【解析】0a <时,“函数()()2311f x ax a x =--+在区间[)1,+∞上不是增函数”,0a =时,()1f x x =+在[)1,+∞上是增函数,0a >时,令3112a a-≤,得01a <≤,∴“()()2311f x ax a x =--+在区间[)1,+∞上是增函数” 的充分必要条件“01a ≤≤”,故选C.3.C解析:C 【分析】根据题意得到14n n a a --=或13n n a a -=,结合等差数列和等比数列的定义,即可判定. 【详解】由题意知,数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=, 所以14n n a a --=或13n n a a -=,则:对于①中,数列{}n a 可以是公差为4的等差数列; 对于②中,数列{}n a 可以是公比为3的等比数列;对于③中,若数列{}n a 既是等差又是等比数列,则此时数列{}n a 必为非零的常数列, 则公差为0,公比为1,由①②可知,③不正确;对于④{}n a 中,数列{}n a 可以既不是等差又不是等比数列,例如:1,5,15,19,,满足题设条件,此数列既不是等差又不是等比数列,所以④正确. 故选:C. 【点睛】本题主要以命题的真假判定与应用为载体,考查了等差数列、等比数列的定义及判定,其中解答中熟记等差数列、等比数列的定义,合理判定是解答的关键,着重考查推理与运算能力.4.B解析:B 【分析】由韦达定理可得2101a a ⋅=,且a 2和a 10均为负值,由等比数列的性质可得61a =-,故必要性满足充分性不满足. 【详解】∵由2a ,10a 是方程2410x x ++=的两根, ∴2102104,1a a a a +=-⋅=, ∴a 2和a 10均为负值,由等比数列的性质可知a 6为负值,且622101a a a =⋅=, ∴61a =-,故“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的必要不充分条件, 故选:B . 【点睛】本题考查充分条件、必要条件,根据充分条件和必要条件的定义,结合等比数列的性质、二次方程根与系数关系等进行判断即可,属于基础题.5.B解析:B 【分析】举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项. 【详解】因为311123112ln12ln 2,2ln 2ln ,ee e e-<--<-所以CD 不成立;因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.6.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.7.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误; 若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.8.B解析:B 【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断. 【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件, 故选:B. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题.9.A解析:A 【分析】①根据特称命题的否定是全称命题,判断①错误;②原命题与它的逆否命题真假性相同,判断它的逆否命题的真假性即可; ③利用向量的平行四边形法则,转化为平行四边形的对角线的关系,判断即可; ④计算直线()320m x my ++-=与直线650mx y -+=互相垂直的等价条件为0,3m =,即可.【详解】对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++≥,故①不正确;命题“已知x ,y R ∈,,若3x y +≠,则2x ≠或1y ≠”的逆否命题为:“已知x ,y R ∈,,若2x =且=1y ,则3x y +=”为真命题,故②正确;设a ,b 是非零向量,则“a b =”是“a b a b +=-”的既不充分也不必要条件,故③不正确;直线()320m x my ++-=与直线650mx y -+=互相垂直,则0,3m =,故④不正确. 故选:A 【点睛】本题考查了命题的否定,逆否命题,充要条件等知识点,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.10.A解析:A 【分析】由于命题为假命题,则它的逆否命题一定为真,得出其逆否命题,构造函数2ln y x x =+,利用单调性得出函数2ln y x x =+在[]1,2的最小值,即可得到a 的取值范围. 【详解】若“[]1,2x ∃∈,使得2ln 0x x a +-≤”为假命题,可得当[]1,2x ∈时,2ln x x a +>恒成立只需()2minln a x x <+又函数2ln y x x =+在[]1,2上单调递增,所以1a <. 故选:A 【点睛】本题主要考查了原命题与逆否命题等价性的应用以及函数不等式恒成立问题,属于中档题.11.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.12.A解析:A 【分析】由椭圆22360mx y m +-=的焦距为4,分类讨论求得1c =或5c =时,再结合充分条件和必要条件的判定方法,即可求解. 【详解】由题意,椭圆22360mx y m +-=可化为22162x y m+=,当03m <<时,4c ==,解得1c =,当3m >时,4c ==,解得5c =, 即当1c =或5c =时,椭圆22360mx y m +-=的焦距为4,所以“1m =”是“椭圆22360mx y m +-=的焦距为4”的充分不必要条件. 故选:A . 【点睛】本题主要考查了椭圆的标准方程及几何性质,以及充分条件、必要条件的判定,其中解答中熟记椭圆的标准方程和几何性质,结合充分条件、必要条件的判定求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.【分析】化简命题可得化简命题可得由为真命题为假命题可得一真一假分两种情况讨论对于真假以及假真分别列不等式组分别解不等式组然后求并集即可求得实数的取值范围【详解】对命题因为所以解得;命题因为幂函数在是 解析:(,1](2,3)-∞【分析】化简命题p 可得1m ,化简命题q 可得23m <<,由p q ∨为真命题,p q ∧为假命题,可得,p q 一真一假,分两种情况讨论,对于p 真q 假以及p 假q 真分别列不等式组,分别解不等式组,然后求并集即可求得实数m 的取值范围. 【详解】对命题p ,因为2,20x R x x m ∃∈++≤,所以440m -≥,解得1m ; 命题q ,因为幂函数113()m f x x +-=在(0,)+∞是减函数, 所以1103m +<-,解得23m <<; 因为“p q ∨”为真命题,“p q ∧”为假命题,所以,p q 一真一假, 若p 真q 假,可得1m 且3m ≥或2m ≤,解得1m ; 若p 假q 真,可得1m ,且23m <<,解得23m <<;实数m 的取值范围是(,1](2,3)-∞,故答案为:(,1](2,3)-∞.【点睛】本题通过判断或命题、且命题以及非命题的真假,综合考查函数的单调性以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意: (1)原命题与其非命题真假相反; (2)或命题“一真则真”; (3)且命题“一假则假”.14.【分析】先求出命题为真命题时的取值范围以及当命题为真命题时的取值范围由为假命题可知两个命题均为假命题由此可求得实数的取值范围【详解】若命题为真命题则解得;若命题为真命题则关于的方程在上有解则令其中则 解析:()(),22,e -∞-【分析】先求出命题p 为真命题时m 的取值范围,以及当命题q 为真命题时m 的取值范围,由p q ∨为假命题可知两个命题均为假命题,由此可求得实数m 的取值范围. 【详解】若命题p 为真命题,则240m ∆=-≤,解得22m -≤≤;若命题q 为真命题,则关于x 的方程0xe mx -=在()0,∞+上有解,则x e m x=. 令()x e f x x =,其中0x >,则()()21x x e f x x-'=. 当01x <<时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增. 所以,()()1f x f e ≥=,则m e ≥.因为命题p q ∨为假命题,则命题p 、q 均为假命题,则22m m m e ⎧-⎨<⎩或,所以,2m <-或2m e <<. 因此,实数m 的取值范围是()(),22,e -∞-.故答案为:()(),22,e -∞-.【点睛】本题考查利用复合命题的真假求参数,同时也考查了利用导数研究函数的零点问题,考查计算能力,属于中等题.15.【分析】根据所给的特称命题的否定:任意实数是真命题得到判别式小于0解不等式即可【详解】命题存在的否定任意实数是真命题解得:故答案为:【点睛】本题考查命题的否定写出正确的全称命题并且根据这个命题是一个解析:1a >【分析】根据所给的特称命题的否定:任意实数x ,220x x a ++>是真命题,得到判别式小于0,解不等式即可. 【详解】命题“存在x ∈R , 220x x a ++≤”的否定 “任意实数x , 220x x a ++>”是真命题,∴440a ∆=-<,解得:1a >,故答案为:1a >. 【点睛】本题考查命题的否定,写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况,属于容易题.16.3【分析】根据直线平行关系求出的取值即为其充要条件【详解】直线和则∥即解得:或当时:和平行;当时:和重合不满足平行所以故答案为:3【点睛】此题考查根据两条直线平行求参数的值根据平行关系求参数注意考虑解析:3 【分析】根据直线平行关系求出a 的取值即为其充要条件. 【详解】直线1:20l x ay ++=和2:(2)360l a x y a -++=, 则1l ∥2l ,即()32a a =-,2230a a --=, 解得:3a =或1a =-,当3a =时:1:320l x y ++=和2:3180l x y ++=平行;当1a =-时:1:20l x y -+=和2:3360l x y -+-=重合,不满足平行, 所以3a =. 故答案为:3 【点睛】此题考查根据两条直线平行求参数的值,根据平行关系求参数,注意考虑直线重合的情况.17.【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.18.【分析】使是假命题则使是真命题对是否等于进行讨论当时不符合题意当时由二次函数的图像与性质解答即可【详解】使是假命题则使是真命题当即转化为不是对任意的恒成立;当使即恒成立即第二个式子化简得解得或所以【解析:m >【分析】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,对1m +是否等于0进行讨论,当10m +=时不符合题意,当10m +≠时,由二次函数的图像与性质解答即可. 【详解】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,当10m +=,即1m =-,()2110m x mx m +-+->转化为20x ->,不是对任意的x ∈R 恒成立;当10m +≠,x R ∀∈,使()2110m x mx m +-+->即恒成立,即()()()2104110m m m m +>⎧⎪⎨--+-<⎪⎩ ,第二个式子化简得234m >,解得m >或m <所以3m >【点睛】本题考查命题间的关系以及二次函数的图像与性质,解题的关键是得出x R ∀∈,使()2110m x mx m +-+->是真命题这一条件,属于一般题.19.【分析】先确定各命题为真时实数的取值范围再根据复合命题真假得各命题真假最后求交集得结果【详解】命题:存在使得成立所以最小值1即所以;命题对任意恒成立所以;因为命题是真命题所以是真命题是假命题即【点睛 解析:[]1,4a ∈先确定各命题为真时实数a 的取值范围,再根据复合命题真假得各命题真假,最后求交集得结果. 【详解】命题p :存在[]0,1x ∈,使得0x a e -≥成立,所以x a e ≥的最小值1,即所以1a ≥; 命题:q 对任意x R ∈,240x x a ++> 恒成立,所以24404a a ,-;因为命题p q ∧⌝是真命题,所以p 是真命题,q 是假命题,即14a ≤≤ 【点睛】本题考查命题真假以及不等式恒成立与存在性问题,考查基本分析转化与求解能力,属中档题.20.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互解析:(3)(4) 【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可. 【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4) 【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.三、解答题21.34m ≥或34m ≤-.【分析】试题分析:首先将集合,A B 进行化简,再根据命题p 是命题q 的充分条件知道A B ⊆,利用集合之间的关系,就可以求出实数m 的取值范围.化简集合A ,由2312y x x =-+,配方,得237416y x ⎛⎫=-+ ⎪⎝⎭. 3,24x ⎡⎤∈⎢⎥⎣⎦,min 716y ∴=,max 2y =.7,216y ⎡⎤∴∈⎢⎥⎣⎦,7|216A y y ⎧⎫∴=≤≤⎨⎬⎩⎭化简集合B ,由21x m +≥,21x m -≥,{}2|1B x m =≥-命题p 是命题q 的充分条件,A B ∴⊆.27116m ∴-≤, 解得34m ≥,或34m ≤-.∴实数m 的取值范围是33,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 22.(1)(][],20,1-∞-;(2)不存在,理由见解析.【分析】(1)由已知得A B ⊆,分为A =∅或A ≠∅两种情况来讨论,建立不等式(组),求解可得出实数a 的取值范围.(2)由已知可得A B =,根据集合相等建立不等式组可得结论. 【详解】(1)集合{}2131A x a x a =-<<-,集合{}14B x x =-<<. 因为p 是q 的充分条件,所以A B ⊆,∴集合A 可以分为A =∅或A ≠∅两种情况来讨论:当A =∅时,满足题意,此时2131a a -≥-,解得:2a ≤-; 当A ≠∅时,要使A B ⊆成立,需满足211314012131a a a a a -≥-⎧⎪+≤⇒≤≤⎨⎪-<+⎩, 综上所得,实数a 的取值范围(][],20,1-∞-.(2)假设存在实数a ,使得p 是q 的充要条件,那么A B =, 则必有211314a a -=-⎧⎨+=⎩,解得01a a =⎧⎨=⎩,综合得a 无解.故不存在实数a ,使得A B =, 即不存在实数a ,使得A 是B 的充要条件. 【点睛】本题考查充分必要条件,集合间的关系,根据集合间的关系求参数的范围,属于中档题.23.1a -≤或4a <<. 【分析】先求出当p 真、q 真时,a 的取值范围,由p 、q 一真一假列式计算即可. 【详解】命题p 真:[]1,1m ∀∈-,不等式2572a a m -+≥+恒成立()2max 57231a a m a ⇒-+≥+=⇒≤或4a ≥;命题q 真:220x ax ++=有两个不同的实数根280a a ⇒∆=->⇒<-a >若p q ∨为真,且p q ∧为假,则p 、q 一真一假,当p 真q假时,141a a a a ≤≥⎧⎪-≤⎨-≤⎪⎩或当p 假q真时,144a a a a <<⎧⎪⇒<<⎨-⎪⎩∴实数a的取值范围为:1a -≤≤或4a <<. 【点睛】本题考查了复合命题真假的判断,考查了一元二次不等式的解法,考查了计算能力与分类讨论思想的应用,属于基础题.24.(1)甲为真命题时,012a ≤≤;乙为真命题时,9a ≤(2)912a <≤或0a < 【分析】(1)甲为真命题时,先转化为一元二次不等式恒成立问题,根据二次函数图象解得实数a 的取值范围,乙为真命题时,利用基本不等式求得xy 最小值,再根据恒成立得实数a 的取值范围;(2)分类求交集:甲真乙假与乙真甲假,最后求并集得结果. 【详解】 (1)222303022ax ax ax ax x x -+∴-+-+≥≥ 当0a =时,03≥成立;当0a ≠时,要使230ax ax -+≥恒成立,需2012120a a a a >⎧∴<≤⎨-≤⎩ 综上,甲为真命题时,012a ≤≤;*33,9x y R x y xy xy ∈+=-≥≥≥,,(当且仅当3x y ==时取等号) a xy ≤恒成立,min )9a xy ∴=≤(综上, 乙为真命题时,9a ≤(2)命题甲、乙中有且只有一个真命题,即甲真乙假与乙真甲假,所以0129a a ≤≤⎧⎨>⎩或1209a a a ><⎧⎨≤⎩或即912a <≤或0a < 【点睛】本题考查不等式恒成立问题以及根据命题真假求参数范围,考查综合分析求解能力,属中档题.25.10,[1,)2⎛⎤⋃+∞ ⎥⎝⎦. 【分析】分别求出命题,p q 为真时的参数范围,然后由复合命题的真值表得出结论. 【详解】命题p 为真,则10a ->,1a <,∴01a <<, 命题q 为真,则由于12x x +≥,当且仅当1x =时等号成立,∴12a<,又0a >,∴12a >, p q ∨为真命题,p q ∧为假命题,则,p q 一真一假,p 真q 假,则102a <≤,p 假q 真,则1a ≥,∴a 的取值范围是10,[1,)2⎛⎤⋃+∞ ⎥⎝⎦.【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:26.45a ≤<【分析】分别求出命题p ,q 为真命题时参数m 的取值范围,因为p 是q 的必要不充分条件,转化为集合的包含关系,求参数的取值范围. 【详解】解:由22242220x y x my m m +-++-+=,得:()()2222x y m m m -++=-++表示圆,220m m ∴-++>,解得:12m -<<,q 表示焦点在y 上的椭圆,所以015m a <-<-, 若p 是q 必要不充分条件, 则6205a a -≤⎧⎨<-⎩,45a ∴≤<.故答案为:45a ≤<.【点睛】关键点点睛:利用圆和椭圆的方程的等价条件是解决本题的关键.。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(有答案解析)(1)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(有答案解析)(1)

一、选择题1.已知函数()y f x =的定义域为R ,有下面三个命题,命题p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有()()()+<+f x a f x f a 恒成立,命题1q :()y f x =在R 上是严格减函数,且()0f x >恒成立;命题2q :()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =,则下列说法正确的是( ) A .1q 、2q 都是p 的充分条件 B .只有1q 是p 的充分条件 C .只有2q 是p 的充分条件 D .1q 、2q 都不是p 的充分条件 2.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要3.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( ) A .1B .2C .3D .44.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .45.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”; ②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个6.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题8.已知数列{}n a 和{}n b 满足n n b a =,则“数列{}n a 为等比数列”是“数列{}n b 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知函数()222f x x x =-+,2log g xx t ,对[]10,2x ∀∈,21,162x ⎡⎤∃∈⎢⎥⎣⎦使得()()12f x g x =,则实数t 的取值范围( ) A .(],2-∞-B .[)2+∞,C .()2,2-D .[]22-,10.已知圆()2221:0C x y r r +=>与圆222:68160C x y x y +-++=,则“02r <<”是“两圆没有公共点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件; ③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .012.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.给出如下四个命题:①把二进制数(2)110011化为十进制数,结果为51;②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变,方差不变;③从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立;④若“p q ∧”为假命题,则p 、q 均为假命题.其中正确的命题的序号是________. 14.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上)15.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 16.有下列四个命题: ①“若1xy=,则lg lg 0x y +=”;②“若sin cos 3παα+=,则α是第一象限角”的否命题;③“若0b ≤,则方程2220x bx b b -++=有实根”的逆否命题; ④“若A B B ⋃=,则A B ⊆的逆命题. 其中是真命题的有________.17.下列命题:①设A ,B 为两个集合,则“A B ⊆”是“A B A =”的充分不必要条件;②0x ∃>,10x x-<;③“|1|1x ->”是“22x x >”的充要条件;④n N ∀∈,代数式241n n ++的值都是质数.其中的真命题是________.(填写序号)18.空间中,“ABC ∆的三个顶点到平面α距离相等”是“平面α平面ABC ”成立的________条件.19.“直线l 垂直于平面α内的无数条直线”是“l α⊥”的________条件(填“充分非必要”或“必要非充分”或“充要”或“既非充分也非必要”). 20.命题“,11x x ∀∈+≥R ”的否定是_________.三、解答题21.已知命题p :实数x 满足27100,x x -+≤命题q :实数x 满足22430.x mx m -+≤其中m > 0.(1)若m =4且命题p , q 都为真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.已知命题p :方程22122x ya a +=-表示焦点在x 轴上的双曲线,命题q :复平面内表示复数()()32R z a ai a =-+∈的点位于第二象限. (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 是假命题,q 是真命题,求实数a 的取值范围. 23.已知命题p : 1x 和2x 是方程220x mx --=的两个实根,不等式22153a a x x --≥-对任意实数[1,1]m ∈-恒成立;命题q :不等式2210ax x +->有解.命题p 为真命题.(1)求实数a 的取值范围;(2)q ⌝是真命题,求实数a 的取值范围.24.已知a R ∈,p :“[]1,3x ∀∈,20x a -≥”,q :“方程2220x ax ++=无实数解”. (1)若p 为真命题,求实数a 的取值范围;(2)若“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围. 25.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合; (2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合. 26.已知命题:p 方程22242220x y x my m m +-++-+=表示圆;命题:q 方程22115x y m a+=--表示焦点在y 轴上的椭圆,若p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先由命题1q 成立时,利用单调性和函数值为正,结合不等式性质即推出命题p 成立,再由命题2q 成立时,利用单调性和函数零点,推出命题p 成立,即得结果. 【详解】命题1q 成立,即()y f x =在R 上是严格减函数,且()0f x >恒成立, 故取0a >时,对任意的x ∈R ,x a x +>,则()()f x a f x +<,()0f a >即0()f a <,故()()()+<+f x a f x f a ,即命题1q 可推出命题p ,1q 是p 的充分条件; 命题2q 成立,()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =, 故取00a x =<时,对任意的x ∈R ,x a x +<,则()()f x a f x +<,0()()0f a f x ==,()()()f x a f x f a +<+,即命题2q 可推出命题p , 2q 是p 的充分条件;故1q 、2q 都是p 的充分条件. 故选:A. 【点睛】本题解题关键在于分别由命题1q 、2q ,利用函数的单调性和值的分布特征去证明命题p ,即突破难点.2.B解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.3.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1a b e e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③,故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.4.C解析:C 【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.5.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.6.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭,即112xm ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件. 故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.7.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.8.A解析:A 【分析】根据等比数列定义可证得11n n n na b q b a ++==,可知充分性成立;通过反例可确定必要性不成立,从而得到结果. 【详解】若数列{}n a 为等比数列,公比为q ,则11n n n na b q b a ++== {}n b ∴为等比数列,充分性成立设数列{}n b 的通项公式为2nn b = {}n b ∴为等比数列,公比2q若数列{}n a 为:2,4,8,16,32,--⋅⋅⋅,满足12n na a +=,但{}n a 不是等比数列必要性不成立∴“数列{}n a 为等比数列”是“数列{}n b 为等比数列”的充分而不必要条件故选:A 【点睛】本题考查充分条件与必要条件的判定,涉及到等比数列定义的应用;关键是能够明确数列成等比数列需满足的条件.9.D解析:D 【分析】求出()(),f x g x 的值域,A B ,由题意可得A B ⊆,列不等式求解即可. 【详解】()222f x x x =-+,当[]0,2x ∈时,()f x 的值域为[]1,2A =,2log g xx t ,1,162x ⎡⎤∈⎢⎥⎣⎦,()g x 的值域[]1,4t t B =-+,由条件可知A B ⊆,即[][]1,21,4t t ⊆-+,从而有1142t t -≤⎧⎨+≥⎩,可得22t -≤≤. 故选:D. 【点睛】本题主要考查全称命题与特称命题的综合应用,关键是要将问题进行转化,转化为值域之间的包含问题,是中档题.10.A解析:A 【分析】由两圆方程得到圆心坐标和半径;根据两圆没有公共点可知两圆外离或内含,由此得到圆心距和两圆半径之间关系,构造出不等式,解得充要条件,进而确定结果. 【详解】由圆1C 方程知:圆心()0,0,半径为r圆2C 方程可整理为:()()22349x x -++=,圆心为()3,4-,半径3r '=∴两圆圆心距5d ==若两圆没有交点,则两圆外离或内含,满足d r r '>+或d r r '<- 即53r >+或53r <-,解得:02r <<或8r >∴“02r <<”是“两圆没有公共点”的充分不必要条件故选:A【点睛】本题考查充分条件与必要条件的判定,关键是能够根据圆与圆的位置关系构造不等式求得“两圆没有公共点”的充要条件,进而根据包含关系得到结果;易错点是忽略两圆内含时,两圆没有公共点的情况,造成求解错误.11.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.12.A解析:A 【分析】由椭圆22360mx y m +-=的焦距为4,分类讨论求得1c =或5c =时,再结合充分条件和必要条件的判定方法,即可求解. 【详解】由题意,椭圆22360mx y m +-=可化为22162x y m+=,当03m <<时,4c ==,解得1c =,当3m >时,4c ==,解得5c =, 即当1c =或5c =时,椭圆22360mx y m +-=的焦距为4,所以“1m =”是“椭圆22360mx y m +-=的焦距为4”的充分不必要条件. 故选:A . 【点睛】本题主要考查了椭圆的标准方程及几何性质,以及充分条件、必要条件的判定,其中解答中熟记椭圆的标准方程和几何性质,结合充分条件、必要条件的判定求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.①③【分析】①根据二进制与十进制的关系转换后可判断②利用均值与方差的计算公式可判断③根据事件的关系判断④根据且的真假判断【详解】对于①正确;对于②将一组数据中的每个数据都加上或减去同一个常数后平均值解析:①③ 【分析】①根据二进制与十进制的关系转换后可判断,②利用均值与方差的计算公式可判断,③根据事件的关系判断,④根据“且”的真假判断. 【详解】对于①543210(2)11001112120202121251=⨯+⨯+⨯+⨯+⨯+⨯=正确;对于②,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,均值改变,方差不变,错误;对于③,从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,“至多一个红球”为“一红一白或两白”,“都是红球”为“两红”,则事件“至多一个红球”与“都是红球”互斥且对立,正确;对于④,若“p q ∧”为假命题,则p ,q 至少有一个为假命题,则④不正确;答案:①③. 【点睛】方法点睛:本题命题的真假判断,解题时需对每个命题进行判断,要求掌握相应的知识,考查的知识点较多,属于中档题.14.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总有(为解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.15.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-. 【点睛】本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.16.③④【分析】当为负数则无意义可判断①;写出命题的否定可判断②;判断原命题的真假进而可判断③;写出原命题的逆命题可判断④【详解】①若则可能均为负数此时无意义故错误;②若则是第一象限角的否命题是若则不是解析:③④ 【分析】当x ,y 为负数,则lg x lg +0y =无意义,可判断①;写出命题的否定,可判断②;判断原命题的真假,进而可判断③;写出原命题的逆命题,可判断④ 【详解】 ①“若1xy=,则x ,y 可能均为负数,此时lgx lg +0y =无意义”,故错误;②“若sin cos α+3πα=,则α是第一象限角”的否命题是“若sin cos α+3πα≠,则α不是第一象限角”,错误;③“若0b ,则方程2220x bx b b -++=有实根”为真命题,故它的逆否命题也为真命题,正确;④“若A B B ⋃=,则A B ⊆”的逆命题是“若A B ⊆,则A B B ⋃=”,正确. 故答案为:③④ 【点睛】本题考查的知识点是四种命题,对数函数的定义域,难度中档.17.②③【分析】①根据子集概念是的充分必要条件;②取特殊值使不等式成立判断命题为真;③根据不等式性质可知可判断命题正确;④由于n2+n+41=n (n+1)+41根据乘法分配律和质数的定义得到n=40或n解析:②③ 【分析】①根据子集概念,“A B ⊆”是“AB A =”的充分必要条件;②取特殊值12x =,使不等式成立,判断命题为真;③根据不等式性质可知2|1|1(1)1x x ->⇔->,可判断命题正确;④由于n2+n+41=n (n+1)+41,根据乘法分配律和质数的定义得到n=40或n=41时,n2+n+41不是质数,可判断命题错误. 【详解】对于①根据子集及交集的定义可知,A B A B A AB A A B ⊆⇒==⇒⊆,所以“A B ⊆”是“AB A =”的充分必要条件;②存在特殊值12x =,使不等式成立,判断命题为真;③根据不等式性质可知22|1|1(1)120x x x x ->⇔->⇔->,可判断“|1|1x ->”是“22x x >”的充要条件正确;④由于n 2+n+41=n (n+1)+41,根据乘法分配律和质数的定义得到n=40或n=41时,n 2+n+41分别能被40或41整除,所以不是质数,可判断命题错误.故答案为:②③ 【点睛】本题主要考查了命题,充分条件,必要条件,质数的概念,属于中档题.18.必要不充分【解析】【分析】根据ABC 与平面位置关系判定充要关系【详解】当ABC 不在平面同侧时ABC 到平面距离也可相等即的三个顶点到平面距离相等时平面与平面ABC 可相交所以充分性不成立当平面平面ABC解析:必要不充分 【解析】 【分析】根据A,B,C 与平面α位置关系判定充要关系. 【详解】当A,B,C 不在平面α同侧时,A,B,C 到平面α距离也可相等,即ABC ∆的三个顶点到平面α距离相等时,平面α与平面ABC 可相交,所以充分性不成立,当平面α平面ABC 时,A,B,C 到平面α距离必相等,所以必要性成立,故答案为:必要不充分 【点睛】本题考查线面位置关系以及充要关系判定,考查基本分析判断能力,属基础题.19.必要不充分【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论【详解】根据线面垂直的定义可知直线与平面内任意无数条直线都垂直当直线与平面内无数条直线都垂直时直线与平面垂直不一定成立∴直解析:必要不充分 【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论. 【详解】根据线面垂直的定义可知,直线l 与平面α内任意无数条直线都垂直, 当直线l 与平面α内无数条直线都垂直时,直线l 与平面α垂直不一定成立, ∴“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的必要不充分条件. 故答案为必要不充分. 【点睛】本题主要考查充分条件和必要条件的判断,利用线面垂直的定义是解决本题的关键,注意“无数条”和“任意条”的区别.20.【分析】根据全称命题的否定是特称命题解答【详解】由题意命题为全称命题则它的否定为:故答案为:【点睛】本题考查含一个量词的命题的否定属于基础题解析:,11x x ∃∈+<R【分析】根据全称命题的否定是特称命题解答。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)(1)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)(1)

一、选择题1.设x ∈R ,则“1x >”是“2320x x -+<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.以下四个命题中,真命题的个数是( )①存在正实数M ,N ,使得()log log log a a a M N MN +=;②“若函数()f x 满足()()201920200f f ⋅<,则()f x 在()2019,2020上有零点”的否命题;③函数()()()log 320,1a f x x a a =->≠的图象过定点()1,0; ④“1x =-”是“2230x x --=”的必要不充分条件. A .1B .2C .3D .43.已知实数0x >,0y >,则“1xy <”是“1133log log 0x y +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝5.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 6.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23; ②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③一组数据a ,0,1,2,3,若该组数据的平均值为1,则样本的标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为ˆˆˆy a bx=+中,ˆ2b=,1x =,3y =,则ˆ1a =. 其中真命题为( ) A .①②④B .②④C .②③④D .③④7.命题:p 关于x 的不等式2240x ax ++>对一切x ∈R 恒成立,:q 函数()()32xf x a =-是增函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数a 取值范围为( )A .()(),22,-∞-+∞B .(][),21,2-∞-C .(](],21,2-∞-D .(][),22,-∞-+∞8.下列有关命题的说法错误的是( )A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题9.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .310.已知点A ,B ,C 不共线,则“AB 与AC 的夹角为3π”是“AB AC BC +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件12.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件; ③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .0二、填空题13.下列命题中假命题的序号是________.①若“1x >则21x >”的逆命题;②“若1sin 2α≠,则6πα≠”;③“若0xy =,则0x =且0y =”的逆否命题;④“在ABC 中,若sin sin A B >,则A B >”. 14.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.15.设函数()f x 、()g x 的定义域均为R ,若对任意12,x x R ∈,且12x x <,具有12()()f x f x ≤,则称函数()f x 为R 上的单调非减函数,给出以下命题:① 若()f x 关于点(,0)a 和直线x b =(b a ≠)对称,则()f x 为周期函数,且2()b a -是()f x 的一个周期;② 若()f x 是周期函数,且关于直线x a =对称,则()f x 必关于无穷多条直线对称;③ 若()f x 是单调非减函数,且关于无穷多个点中心对称,则()f x 的图象是一条直线;④若()f x 是单调非减函数,且关于无穷多条平行于y 轴的直线对称,则()f x 是常值函数;以上命题中,所有真命题的序号是_________16.若命题“2,390x R x ax ∃∈-+≤”为假命题,则实数a 的取值范围是_______.17.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________.18.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________.19.设:p 对任意的x ∈R 都有22x x a ->, q :存在0x R ∈,使20220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,则实数a 的取值范围是______. 20.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若m 1≥,则22(1)30mx m x m -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是____________三、解答题21.已知1:22x p x +>-,2:50q x ax -+>. (1)若p ⌝为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.22.已知函数()1-=+x af x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭.(1)求实数a ;(2)若函数()1322⎛⎫=+- ⎪⎝⎭g x f x ,求函数()g x 的解析式; (3)已知命题p :“任意x ∈R 时,()220++≤g ax ax ”,若命题p ⌝是假命题,求实数a 的取值范围.23.已知集合206x A x x +⎧⎫=<⎨⎬-⎩⎭,{}22|210,0B x x x m m =<+->-.(1)求集合,A B ;(2)请在:①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面的问题中,若问题中的实数m 存在,求出m 的取值范围;若不存在,说明理由.若x A ∈是x B ∈成立的___________条件,判断实数m 是否存在? (注:如果选择多个条件分别解答,按第一个解答计分)24.设命题:p 实数x 满足22430x ax a -+<,其中0a >.命题q :实数x 满足302x x-≥-. (1)若1a =,且p q ∧为真,求实数x 的取值范围.(2)p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.25.已知2:,2p x R x x a ∀∈+≥,()2:431q x -≤,2:(21)(1)0r x a x a a -+++≤. (1)若命题p 为真命题,求实数a 的取值范围; (2)若q 是r 的充分不必要条件,求实数a 的取值范围.26.已知命题p :不等式220ax ax -+>对一切实数x 恒成立,命题q :11m a m -≤≤+.(1)若p 是假命题,求实数a 的取值范围;(2)若⌝p 是q 的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先解不等式2320x x -+<得12x <<,再根据基本关系判定即可得答案. 【详解】解:解不等式2320x x -+<得12x <<, 因为()()1,21,+∞,所以“1x >”是“2320x x -+<”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】根据对数的运算判断①;根据零点存在性定理判断②;根据对数函数的性质判断③,根据充分条件、必要条件判断④; 【详解】解:对于①,根据对数运算法则知正确;对于③,无论a 取何值都有()10f =,所以函数()f x 的图象过定点()1,0,故正确; 对于②,函数()f x 在()2019,2020上有零点时,函数()f x 在2019x =和2020x =处的函数值不一定异号,故其逆命题是错误的,所以否命题也是错误的;对于④,当1x =-时,2230x x --=,当2230x x --=时,1x =-或3x =,所以是充分不必要条件,故④错误. 故选:B 【点睛】本题考查命题真假性的判断以及相关知识点,属于中档题.3.C解析:C 【分析】 由不等式111333log log log 0x y xy +=>,求得01xy <<,结合充要条件的判定方法,即可求解. 【详解】由题意,实数0x >,0y >,不等式111333log log log 0x y xy +=>,解得01xy <<,所以实数0x >,0y >,则“1xy <”是“1133log log 0y +>”的充要条件. 故选:C. 【点睛】本题主要考查了充要条件的判定,以及对数的运算性质,其中解答中熟记充要条件的判定方法,以及熟练应用对数的运算性质是解答的关键,着重考查推理与运算能力,属于基础题.4.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.5.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.6.B解析:B 【分析】利用概率统计中的系统抽样、平均数、众数、中位数及线性回归直线方程的概念及应用,对选项逐项判定,即可求解. 【详解】由题意,对于①中,7,,33,46x 的公差为4671341d -==-, 所以71320x =+=,即样本中另一位同学的编号为20,所以不正确; 对于②中,数据1,2,3,3,4,5的平均数为12344536x +++++==,众数为3,中位数为3332+=,所以数据的平均数、众数和中位数是相同的,所以是正确. 对于③中,数据a ,0,1,2,3的平均数为01236155a a x +++++===,解得1a =-,所以方差为2222221[(11)(01)(11)(21)(31)]25s =--+-+-+-+-=,对于④中,因为ˆ2b=,所以ˆˆ2y a x =+,根据回归直线方程ˆˆ2y a x =+必过样本中心点(1,3),即ˆ321a=+⨯,解答ˆ1a =,所以是正确的. 故选:B . 【点睛】本题主要考查了命题的真假判定及应用,着重考查了系统抽样、平均数、众数、中位数的概念与计算,以及线性回归方程的应用,属于中档试题.7.B解析:B 【分析】先求得命题,p q 为真命题时,a 的取值范围.根据“p q ∨”为真命题,“p q ∧”为假命题可知,p q 一真一假,由此进行分类讨论,求得a 的取值范围.【详解】当p 为真命题时,24160a ∆=-<,解得22a -<<. 当q 为真命题时,321,1a a -><.由于“p q ∨”为真命题,“p q ∧”为假命题,所以,p q 一真一假. 当p 真q 假时,221a a -<<⎧⎨≥⎩,解得12a ≤<;当p 假q 真时,221a a a ≤-≥⎧⎨<⎩或,解得2a ≤-.综上所述,实数a 的取值范围是(][),21,2-∞-.故选:B 【点睛】本小题主要考查一元二次不等式恒成立问题,考查根据含有逻辑联结词命题的真假性求参数的取值范围,考查分类讨论的数学思想方法,属于基础题.8.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确; 否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误; 若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.9.C解析:C 【分析】判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案. 【详解】取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真. 故选:C . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.10.A解析:A 【分析】利用向量数量积的性质,可判断AB AC BC +>与AB 与AC 的夹角为3π的推出关系,即可求解. 【详解】当AB 与AC 的夹角为3π时 222=||+2+||2=2||||cos03AB AC AB AB AC AC AB AC AB AC π+⋅⋅⋅⋅>,,222222=||+2+||||2+||||AB AC AB AB AC AC AB AB AC AC AC AB ∴+⋅>-⋅=-,||AB AC AC AB BC ∴+>-=,当AB AC BC +>时,2222222=||+2+||||2+|||||AB AC AB AB AC AC AB AB AC AC AC AB BC +⋅>-⋅=-=,化简得:0AB AC ⋅>, A ,B ,C 不共线,∴AB 与AC 的夹角为锐角,所以“AB 与AC 的夹角为3π”是“AB AC BC +>”的充分不必要条件, 故选:A 【点睛】本题主要考查了数量积的运算性质,充分不必要条件,属于中档题.11.A解析:A 【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可. 【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立. 故选:A . 【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.12.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.二、填空题13.①③【分析】根据四种命题的关系判断①②③由正弦定理判断④【详解】①若则的逆命题是若则这显然是假命题如;②若则的逆否命题是若则是真命题原命题也是真命题;③若则且的逆否命题是若或则是假命题④在中若则由得解析:①③ 【分析】根据四种命题的关系判断①②③,由正弦定理判断④. 【详解】①若“1x >则21x >”的逆命题是若21x >,则1x >,这显然是假命题,如2x =-; ②“若1sin 2α≠,则6πα≠”的逆否命题是若6πα=,则1sin 2α=,是真命题,原命题也是真命题;③“若0xy =,则0x =且0y =”的逆否命题是若0x ≠或0y ≠,则0xy ≠,是假命题, ④在ABC 中,若sin sin A B >,则由sin sin a bA B=得a b >,∴A B >,为真命题.故答案为:①③ 【点睛】关键点点睛:本题考查命题的真假判断,在一个命题不能或不易判断其真假时,可考虑其逆否命题,判断出逆否命题的真假后,原命题的真假随之而得.特别是对一些否定性命题,含有至少、至多等词语的命题.常常选择判断其逆否命题的真假来判断原命题的真假.14.【分析】先分别求出命题和命题为真命题时表示的集合即可求出和表示的集合根据必要不充分条件所表示的集合间关系即可求出【详解】对于命题由可解出则表示的集合为或设为A 对于命题则设表示的集合为B 是的必要不充分 解析:(][),99,-∞-⋃+∞【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出. 【详解】 对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则110xm x m ,设q ⌝表示的集合为B ,p ⌝是q ⌝的必要不充分条件,B ∴ A ,当0m >时,110xm x m的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥; 当0m =时,{}1B x x =≠,不满足题意; 当0m <时,110xm x m的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-, 综上,m 的取值范围是(][),99,-∞-⋃+∞. 故答案为:(][),99,-∞-⋃+∞. 【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.15.②④【分析】根据题意依次分析题目中所给的4个命题综合即可得答案【详解】解:根据题意依次分析4个命题:①若f (x )关于点(a0)和直线x =b (b≠a )对称则f (x )为周期函数则函数f (x )的周期为4|解析:②④ 【分析】根据题意,依次分析题目中所给的4个命题,综合即可得答案. 【详解】解:根据题意,依次分析4个命题:①,若f (x )关于点(a ,0)和直线x =b (b ≠a )对称,则f (x )为周期函数, 则函数f (x )的周期为4|b ﹣a |,则2(b ﹣a )不一定是f (x )的一个周期;①错误; ②,若f (x )是周期函数,且关于直线x =a 对称,则每个周期中都至少一条对称轴,②正确;③,如图:f (x )满足f (x )是单调非减函数,且关于无穷多个点中心对称,其图象不是一条直线;③错误;④,若f (x )是单调非减函数,且关于无穷多条平行于y 的直线对称,则函数f (x )的图象只能是一条水平的直线,f (x )是常值函数,④正确; ②④正确; 故答案为:②④. 【点睛】本题考查抽象函数的性质,关键是理解单调非减函数的性质,考查推理能力与数形结合思想.16.【分析】先求出当命题为真命题时的范围其补集即为命题为假命题时的范围【详解】由题当命题为真命题时即或则当命题为假命题时故答案为【点睛】本题考查由命题的真假求参数范围问题考查转换思想考查运算能力解析:22a -<< 【分析】先求出当命题为真命题时a 的范围,其补集即为命题为假命题时a 的范围 【详解】由题,当命题“2,390x R x ax ∃∈-+≤”为真命题时,()223499360a a ∆=--⨯=-≥,即2a ≥或2a ≤-,则当命题“2,390x R x ax ∃∈-+≤”为假命题时, 22a -<< 故答案为22a -<< 【点睛】本题考查由命题的真假求参数范围问题,考查转换思想,考查运算能力17.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t tt >->,求解2t t-的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】 若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,21104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立 令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识.18.【分析】根据必要不充分条件得到集合之间的关系从而求解出参数的取值范围【详解】因为是的必要不充分条件所以又因为所以因为所以即的取值范围是:【点睛】集合:若是的必要不充分条件则有:;若是的充分不必要条件 解析:0a ≤【分析】根据必要不充分条件得到集合,A B 之间的关系,从而求解出参数的取值范围. 【详解】因为“x A ∈”是“x B ∈”的必要不充分条件,所以BA ,又因为{}|22,B x x x R =-<∈,所以()0,4B =,因为(),A a =+∞,所以0a ≤,即a 的取值范围是:0a ≤. 【点睛】集合()(){|},{|}A x x p x B x x q x =∈=∈: 若“x A ∈”是“x B ∈”的必要不充分条件,则有:B A ;若“x A ∈”是“x B ∈”的充分不必要条件,则有:AB .19.【解析】【分析】分别求出命题为真命题的的范围由为真为假可得一真一假再由集合运算求解【详解】由题意:对于命题对任意的即恒成立△得即;对于命题存在使△得解得或即或为真为假一真一假①真假时得;②假真时得综 解析:(2,1)[1,)--+∞【解析】 【分析】分别求出命题,p q 为真命题的a 的范围,由p q ∨为真,p q ∧为假,可得,p q 一真一假,再由集合运算求解. 【详解】由题意:对于命题p ,对任意的x ∈R ,22x x a ->,即220x x a -->恒成立,∴△440a =+<,得1a <-,即:1p a <-;对于命题q ,存在0x R ∈,使20220x ax a ++-=, ∴△244(2)0a a =--,得220a a +-,解得1a 或2a -,即:1q a 或2a -.p q ∨为真,p q ∧为假, p ∴,q 一真一假,①p 真q 假时,121a a <-⎧⎨-<<⎩,得21a -<<-;②p 假q 真时,112a a a -⎧⎨-⎩或,得1a .综上,(2,1)[1a ∈--,)+∞. 故答案为:(2,1)[1--,)+∞.【点睛】本题主要考查复合命题真假关系的应用,求出命题为真命题的a 的范围是解决本题的关键,是中档题.20.①③④【解析】对于①若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于②矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②错误;对于③其逆命题为:若的解集是则解析:①③④ 【解析】对于①“若0x y +>,则00x y >>且”的逆命题为“若00x y >>且,则0x y +>”故逆命题为真命题,则否命题也为真,故①正确;对于②“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”为假命题,故其逆命题也为假,故②错误;对于③其逆命题为:若()22130mx m x m -+++>的解集是R ,则1m ≥,当该不等式解集为R 时,1.0m =时,不合题意,2.()()241430m m m m >⎧⎪⎨=+-+<⎪⎩解得1m ,故逆命题为真,即③正确;对于④,原命题为真,故逆否命题也为真,故④正确,即正确的序号为①③④,故答案为①③④.三、解答题21.(1)2x ≤或5x ≥(2)a <【分析】(1)先解分式不等式得出25x <<,再由p 与p ⌝的关系得出p ⌝为真时x 的取值范围; (2)由题意得出q 是p 的必要不充分条件,从而得到5a x x<+对于任意25x <<恒成立,由基本不等式求出5x x+的最小值,即可得出实数a 的取值范围. 【详解】 (1)122x x +>-等价于()()12220x x x ⎧+->⎨-≠⎩,解得25x << :25p x ∴<<,由p ⌝为真知:2x ≤或5x ≥;(2)q ⌝是p ⌝的充分不必要条件,则q 是p 的必要不充分条件.故2:50q x ax -+>对于任意25x <<恒成立 故5a x x <+,由基本不等式可知5x x+≥x =故a < 【点睛】本题主要考查了根据非命题的真假求参数,根据充分不必要条件求参数,属于中档题.22.(1)12a =(2)11()22xg x ⎛⎫=- ⎪⎝⎭(3)[0,4] 【分析】(1)因为函数()1-=+x af x a (0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭,可得1212a a -+=,即可求得答案;(2)因为()121121x x a f x a --=+=+,13()22g x f x ⎛⎫=+- ⎪⎝⎭,即可求得答案; (3)命题p ⌝是假命题,故命题p 是真命题,当x ∈R 时,()220++≤g ax ax 恒成立,函数11()22xg x ⎛⎫=- ⎪⎝⎭,不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立,即可求得答案. 【详解】 (1)函数()1-=+x af x a(0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭.1212a a-∴+= ,即121a a-=解得:12a =, (2)由(1)12a =∴()121121x x a f x a --=+=+1122131311()1222222x xg x f x ⎛⎫+- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴=+-=-+=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 11()22xg x ⎛⎫∴=- ⎪⎝⎭(3)命题p ⌝是假命题,故命题p 是真命题,∴当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22xg x ⎛⎫=- ⎪⎝⎭ ∴不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立, 即221122++⎛⎫≤⎪⎝⎭ax ax 在R 上恒成立根据指数函数单调可知:12xy ⎛⎫= ⎪⎝⎭是减函数 ∴221ax ax ++≥在R 上恒成立即210ax ax ++≥在R 上恒成立, 当0a =时,不等式化为10≥成立;当0a ≠时,则需满足240a a a >⎧⎨-≤⎩, 解得04a <≤,综上所述,实数a 的取值范围是[0,4].【点睛】本题主要考查了求解函数解析式和根据不等式恒成立求参数范围,解题关键是掌握函数的基础知识和含参数一元二次不等式恒成立的解法,属于难题.23.(1){}26A x x =-<<,{}11B x m x m =-<<+;(2)答案见解析. 【分析】(1)根据一元二次不等式的解法求解即可得答案;(2)选:①充分不必要条件,则集合A 是集合B 的真子集,再根据集合关系求解即可; 选:②必要不充分条件,则集合B 是集合A 的真子集,再根据集合关系求解即可; 选:③充要条件,则B A =,再根据集合关系求解即可; 【详解】 解:(1)不等式()()202606x x x x +<⇔+-<-,故{}26A x x =-<<, 不等式()()22011021x x m x m x m <⇔+----+<-,由于0m >, 故{}11B x m x m =-<<+ (2)选:①充分不必要条件由(1)知{}26A x x =-<<,{}11B x m x m =-<<+, 因为若x A ∈是x B ∈成立的充分不必要条件, 所以集合A 是集合B 的真子集; 所以6121mm ≤+⎧⎨-≥-⎩,解得5m ≥,所以实数m 的取值范围为:[)5,+∞ 选:②必要不充分条件由(1)知{}26A x x =-<<,{}11B x m x m =-<<+, 因为若x A ∈是x B ∈成立的必要不充分条件, 所以集合B 是集合A 的真子集;所以6121m m ≥+⎧⎨-≤-⎩,解得3m ≤,又因为0m >,故03m <≤所以实数m 的取值范围为:(]03,; 选:③充要条件由(1)知{}26A x x =-<<,{}11B x m x m =-<<+, 因为若x A ∈是x B ∈成立的充要条件,所以B A =,所以6121m m =+⎧⎨-=-⎩,方程组无解.所以不存在实数m 使得x A ∈是x B ∈成立的充要条件; 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是qq 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是qq 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是qq 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是qq 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 24.(1)()2,3;(2)(]1,2. 【分析】(1)分别求解两个命题为真命题时x 的取值范围,再求交集;(2)首先根据命题的等价性转化为q 是p 的充分不必要条件,得到B A ≠⊂,再求参数a 的取值范围. 【详解】()1由()224300x ax a a -+<>,得3a x a <<即p 为真命题时3a x a << 由302x x-≥-, 得()()3202x x x ⎧--≥⎨≠⎩即23x <≤,即q 为真命题时,23x <≤1a =时,:13p x <<由p q ∧为真,知,p q 均为真命题,则1323x x <<⎧⎨<≤⎩得23x <<,所以实数x 的取值范围为()2,3()2设{}{}3,23A x a x a B x x =<<=<≤由题意知q 是p 的充分不必要条件,所以B A ≠⊂有0233a a <≤⎧⎨>⎩12a ∴<≤所以实数a 的取值范围为(]1,2.25.(1)(],1-∞-;(2)10,2⎡⎤⎢⎥⎣⎦.【分析】(1)由全称命题为真,结合一元二次不等式恒成立即可得解; (2)由一元二次不等式结合命题间的关系可转化条件为112x x ⎧⎫≤≤⎨⎬⎩⎭{}1x a x a ≤≤+,即可得解. 【详解】(1)若命题p 为真,则不等式220x x a +-≥对x R ∀∈恒成立, 所以440a ∆=+≤,1a ≤-, 所以实数a 的取值范围为(],1-∞-; (2)命题q 等价于112x ≤≤,命题r 等价于1a x a ≤≤+, 因为q 是r 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭{}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且上述等号不同时成立,所以102a ≤≤,所以实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.【点睛】解决本题的关键是合理转化条件:将全称命题为真转化为一元二次不等式恒成立,将命题间的关系转化为集合间的关系.26.(1)()[)08-∞⋃+∞,,;(2)()[)19-∞-⋃+∞,,. 【分析】(1)根据假命题的定义,进行转化求解即可;(2)根据充分条件和必要条件的定义和关系建立不等式关系进行求解即可. 【详解】解:(1)当命题p 是真命题时:当0a =时,220ax ax -+>可化为20>,成立;当0a ≠时,2()420a a a >⎧⎨∆=--⋅<⎩,解得08a <<,综上所述,实数a 的取值范围是[)08,, 当命题p 是假命题时,实数a 的取值范围是()[)08-∞⋃+∞,,, ()2⌝p 是q 的必要不充分条件,则[]11m m -+,是()[)08-∞⋃+∞,,的真子集, 即10+<m 或18m -≥, 解得 1m <-或9m ≥,∴实数m 的取值范围是()[)19-∞-⋃+∞,,.【点睛】关键点睛:本题的解题关键在于,应用命题真假的定义和充分必要条件的定义分别列出相应的不等式进行求解。

(压轴题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)

(压轴题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)

一、选择题1.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b <.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1B .2C .3D .4 2.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(],4-∞B .[]1,4C .(]1,4D .()1,4 3.下列说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .命题“2000,10x x x ∃∈++<R ”的否定是“2,10x R x x ∀∈++<”C .命题“若x y =,则sin sin x y =”的逆否命题为假命题D .若椭圆22221(0)x y a b a b +=>>22221x y a b -=的渐近线方程为12y x =±4.""6a π=是()tan a π-= ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 5.已知命题4:0,4p x x x ∀>+≥;0x 命题001:(0,),22x q x ∃∈+∞=,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题6.命题“存在[]1,0x ∈-,使得20x x a +-≤”为真命题的一个充分不必要条件是( )A .14a ≥-B .14a > C .12a ≥- D .12a >- 7.下列说法正确的是( ). A .若数列{}n a 为等差数列,则数列{}1n n a a ++为等差数列B .若14m ≤-,则函数2()lg lg f x x x m =+-无零点C .在ABC ∆中,若sin 2A <,则04A π<<D .直线m ⊄平面α,直线n ⊂平面α,则“//m n ”是“//m α”的充要条件8.已知命题()0:0,p x ∃∈+∞,00122019x x +=;命题:q 在ABC ∆中,若sin sin A B >,则cos cos A B <.下列命题为真命题的是( ) A .p q ∧ B .()p q ∨⌝C .()()p q ⌝∨⌝D .()p q ∧⌝ 9.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题10.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件11.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.已知命题2:230p x x --<,命题:q x a <,若q 的一个充分不必要条件是p ,则a 的取值范围是( )A .[)3,+∞B .()3,+∞C .(],1-∞-D .(),1-∞-二、填空题13.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.14.给出以下四个结论:①函数()211x f x x -=+的对称中心是1,2;②若关于x 的方程10x k x-+=在()0,1∈x 没有实数根,则k 的取值范围是2k ≥; ③在ABC 中,“cos cos b A a B =”是“ABC 为等边三角形”的充分不必要条件; ④若()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后为奇函数,则ϕ最小值是π12. 其中正确的结论是______15.已知函数22(1)(1)3y a x a x =-+-+(x ∈R ),写出0y >的充要条件________. 16.关于以下结论:①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π;③若向量0a b ⋅=,则向量a b ⊥;④20182019log 2019log 2020>.以上结论正确的个数为______.17.已知命题P :“1a ≠或2b ≠”,Q :“3a b +≠”,则P 是Q 成立的______ 18.若命题“2,390x R x ax ∃∈-+≤”为假命题,则实数a 的取值范围是_______. 19.有下列命题:①“若0x y +>,则00x y >>且”的否命题;②“矩形的对角线相等”的否命题;③“若m 1≥,则22(1)30mx m x m -+++>的解集是R ”的逆命题;④“若7a +是无理数,则a 是无理数”的逆否命题.其中正确命题的序号是____________20.已知,R αβ∈,则“αβ=”是“tan tan αβ=”的_________________条件(选填:“充分不必要”;“必要不充分”;“充要”;“既不充分也不必要”).三、解答题21.设集合{}2230A x x x =+-<,集合{}1B x x a =+<.(1)若3a =,求A B ; (2)设命题p :x A ∈,命题q :x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.22.已知集合A =233|1,,224y y x x x ⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,B ={x|x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围.23.已知命题p :方程22122x y a a +=-表示焦点在x 轴上的双曲线,命题q :复平面内表示复数()()32R z a ai a =-+∈的点位于第二象限.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 是假命题,q 是真命题,求实数a 的取值范围.24.若函数()y f x =满足“存在正数λ,使得对定义域内的每一个值1x ,在其定义域内都存在2x ,使12()()f x f x λ=成立”,则称该函数为“依附函数”.(1)分别判断函数①()2x f x =,②2()log g x x =是否为“依附函数”,并说明理由; (2)若函数()y h x =的值域为[,]m n ,求证:“()y h x =是‘依附函数’”的充要条件是“0[,]m n ∉”.25.已知1:22x p x +>-,2:50q x ax -+>. (1)若p ⌝为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.26.设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足2680x x -+<. (1)若1m =,且p 为真,q 为假,求实数x 的取值范围;(2)若0m >,且q 是p 的充分不必要条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定.【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B.【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 2.C解析:C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤, 解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤. 因此,实数a 的取值范围是(]1,4.故选:C.【点睛】本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.3.D解析:D【分析】利用四种命题的逆否判断A 的正误,命题的否定判断B 的正误;根据充分条件与必要条件判断C 的正误;根据椭圆的离心率可得,a b 关系,进而求得双曲线的渐近线方程;【详解】解:对于A ,命题“若21x =,则1x =”的否命题为:“若21x ≠,则1x ≠”,故A 错误; 对于B ,命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈ 均有210x x ++≥”,故B 错误;对于C ,因为原命题为真命题,故其逆否命题也为真命题,故C 错误;对D ,因为122c b a a a ==⇒=,所以双曲线22221x y a b -=的渐近线方程为12y x =±,故 D 正确. 故选:D.【点睛】本题考查命题的真假的判断与应用,考查四种命题的逆否关系,命题的否定以及充要条件的判断,是基本知识的综合应用.4.A解析:A【解析】 由6πα=,可得56ππα-=,得1sin()2πα-=,但由1sin()2πα-=不一定能够得到“6πα=”,即“6πα=”是()1sin 2πα-=的充分不必要条件,故选A. 5.C解析:C【分析】根据均值不等式得到p 为真命题,根据指数函数单调性得到q 为假命题,对比选项得到答案.【详解】0x >时,44x x +≥=,当2x =时等号成立,故p 为真命题; 当0x >时,0221x >=,故q 为假命题.则()p q ∧⌝是真命题,()p q ⌝∧是假命题.故选:C.【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力. 6.B解析:B【分析】“存在[]1,0x ∈-,使得20x x a +-≤”为真命题,可得()2min a x x ≥+,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在[]1,0x ∈-,使得20x x a +-≤”为真命题,所以()22min min111244a x x x ⎡⎤⎛⎫≥+=+-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 因此上述命题得个充分不必要条件是14a >. 故选:B.【点睛】 本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.7.A解析:A【分析】A:利用等差数列的定义进行判断;B:令lg t x =,则2()f t t t m =+-,结合二次函数的零点存在问题,进行判断;C:结合正弦函数,可解不等式,进而可判断A 的取值范围;D:判断由“//m n ”是否能推出“//m α”,再判断由“//m α”是否能推出“//m n ”.【详解】解:数列{}n a 为等差数列,不妨设数列{}n a 通项公式为n a pn q =+,则1(1)n a p n q pn p q +++=++=.122n n n b a a pn p q +∴=+=++则1232n b pn p q +=++.12n n b b p +∴-=与n 无关.故数列{}1n n a a ++为等差数列,A 正确.令lg t x =,则2()f t t t m =+-,当14m =-时, 21()04f t t t =++= 此时12t =-,即10x =函数函数2()lg lg f x x x m =+-有零点,B 错误. 由正弦函数图像可知,若sin 2A <,则04A π<<或34A ππ<<,C 错误. 当“//m α”时,直线n ⊂平面α,不一定有“//m n ”,所以D 项错误.故选:A .【点睛】本题考查了等差数列的定义,考查了函数的零点与方程的根,考查了三角函数不等式,考查了充分必要条件的判断.判断一个数列是否为等差数列,可利用等差数列的定义,即判断后一项与前一项的差是否为一个常数;求解三角函数不等式时,常常结合三角函数的图像进行求解;判断两个命题的关系时,通常分为两步,判断由p 是否能推出q ,以及判断由q 是否能推出p . 8.C解析:C【分析】判断出命题p 、q 的真假,即可判断出各选项中命题的真假,进而可得出结论.【详解】函数()2x f x x =+在()0,+∞上单调递增,()()1012019f x f ∴>=>,即命题p 是假命题;又sin sin A B >,根据正弦定理知a b >,可得A B >,余弦函数cos y x =在()0,π上单调递减,cos cos A B ∴<,即命题q 是真命题. 综上,可知()()p q ⌝∨⌝为真命题,p q ∧、()p q ∨⌝、()p q ∧⌝为假命题.故选:C.【点睛】本题考查复合命题真假的判断,解答的关键就是判断出各简单命题的真假,考查推理能力,属于中等题.9.C解析:C【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D.【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是“若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C.【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.10.B解析:B【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断.【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件,故选:B.【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题. 11.A解析:A【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可.【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立.故选:A .【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.12.A解析:A【分析】根据充分条件和必要条件的定义进行求解即可.【详解】解:由2230x x --<得13x , q 的一个充分不必要条件是p ,3a ∴,故选:A .【点睛】本题主要考查充分条件和必要条件的应用,根据不等式关系是解决本题的关键,属于基础题.二、填空题13.3【分析】根据命题得否命题逆命题逆否命题再判断真假(本题举反例说明为假命题)【详解】若m =2n =3则2>-3但22<32所以原命题为假命题则逆否命题也为假命题若m =-3n =-2则(-3)2>(-2)解析:3【分析】根据命题得否命题、逆命题,逆否命题,再判断真假,(本题举反例说明为假命题)【详解】若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.【点睛】本题考查四种命题关系及其真假,考查简单应用以及判断能力.14.①【分析】对四个结论逐个分析可选出答案【详解】对于①其图象由的图象向左平移1个单位再向上平移2个单位得到故的对称中心为即①正确;对于②由可得令且显然函数在上单调递减则又因为时故在的值域为所以当时关于 解析:①【分析】对四个结论逐个分析,可选出答案.【详解】对于①,()213211x f x x x -==-++,其图象由3y x =-的图象向左平移1个单位,再向上平移2个单位得到,故()f x 的对称中心为1,2,即①正确; 对于②,由10x k x -+=,可得1k x x =-. 令()1g x x x=-,且()0,1∈x ,显然函数()g x 在()0,1∈x 上单调递减, 则()()10g x g >=,又因为0x →时,1+x x -→∞,故()g x 在0,1的值域为0,,所以当0k ≤时,关于x 的方程10x k x-+=在()0,1∈x 没有实数根,即②错误; 对于③,先来判断充分性,当cos cos b A a B =时,可得sin cos sin cos =B A A B ,所以()sin cos sin cos sin 0B A A B B A -=-=,即B A =,所以ABC 为等腰三角形,不能推出ABC 为等边三角形,即充分性不成立;再来判断必要性,当ABC 为等边三角形时,可得B A =,则sin cos sin cos =B A A B ,故cos cos b A a B =,即必要性成立,故③不正确; 对于④,()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,得到()πsin 223g x x φ⎛⎫=-- ⎪⎝⎭,由()g x 为奇函数,可得πsin 203φ⎛⎫--= ⎪⎝⎭,则()π2π3φk k +=∈Z ,解得()ππ26k φk =-∈Z ,当1k =时,ϕ取得最小正值为π3,故④不正确.所以,正确的结论是①.故答案为:①.【点睛】本题考查函数的对称中心,考查三角函数的平移变换及奇偶性的应用,考查利用参变分离法解决方程的解的存在性问题,考查充分性与必要性的判断,考查学生的推理论证能力与计算求解能力,属于中档题.15.或【分析】根据不等式的性质结合充要条件的定义进行求解即可【详解】若则当即或当时不等式等价为满足条件当时不等式等价为不满足条件当时要使则解之得:或综上:或反之也成立故答案为:或【点睛】本题考查充分必要 解析:1a ≥或1311a <-【分析】根据不等式的性质结合充要条件的定义进行求解即可.【详解】若22(1)(1)30y a x a x =-+-+>,则当210a -=,即1a =或1a =-,当1a =时,不等式等价为30>,满足条件,当1a =-时,不等式等价为230x -+>,32x <,不满足条件, 当1a ≠±时,要使0y >,则22210(1)12(1)0a a a ⎧->⎨∆=---<⎩,解之得:1a >或1311a <-, 综上:1a ≥或1311a <-, 反之也成立.故答案为:1a ≥或1311a <-. 【点睛】本题考查充分必要条件的应用,考查二次函数的性质,考查逻辑思维能力和运算能力,属于常考题. 16.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2【分析】对命题逐一分析正误,得出结论即可.【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下: ∵220182019lg 2019lg 2020(lg 2019)lg 2018lg 2020log 2019log 2020lg 2018lg 2019lg 2018lg 2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()2+⋅<= 2220182020(lg )(lg 2019)2+<=. ∴2(lg 2019)lg 2018lg 20200-⋅>;∴20182019log 2019log 2020>.故②④正确;正确的个数为2个;故答案为:2.【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.17.必要非充分条件【分析】可以考虑逆否命题的充分必要性即得解【详解】先考虑充分性即考虑是否成立其逆否命题为::且显然不成立所以P 是Q 成立的非充分条件;再考虑必要性即考虑是否成立其逆否命题为::且显然成立 解析:必要非充分条件【分析】可以考虑逆否命题的充分必要性,即得解.【详解】先考虑充分性,即考虑P Q ⇒是否成立,其逆否命题为:Q P ⌝⇒⌝,:Q ⌝“3a b +=”,P ⌝:“1a =且2b =”,显然Q P ⌝⇒⌝不成立,所以P 是Q 成立的非充分条件;再考虑必要性,即考虑Q P ⇒是否成立,其逆否命题为:P Q ⌝⇒⌝,:Q ⌝“3a b +=”,P ⌝:“1a =且2b =”,显然P Q ⌝⇒⌝成立,所以P 是Q 成立的必要条件.所以P 是Q 成立必要非充分条件.故答案为必要非充分条件【点睛】本题主要考查充分必要条件的判断,考查逆否命题,意在考查学生对这些知识的理解掌握水平.18.【分析】先求出当命题为真命题时的范围其补集即为命题为假命题时的范围【详解】由题当命题为真命题时即或则当命题为假命题时故答案为【点睛】本题考查由命题的真假求参数范围问题考查转换思想考查运算能力解析:22a -<< 【分析】先求出当命题为真命题时a 的范围,其补集即为命题为假命题时a 的范围【详解】由题,当命题“2,390x R x ax ∃∈-+≤”为真命题时,()223499360a a ∆=--⨯=-≥, 即2a ≥或2a ≤-,则当命题“2,390x R x ax ∃∈-+≤”为假命题时, 22a -<<故答案为 22a -<<【点睛】本题考查由命题的真假求参数范围问题,考查转换思想,考查运算能力19.①③④【解析】对于①若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于②矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②错误;对于③其逆命题为:若的解集是则解析:①③④【解析】对于①“若0x y +>,则00x y >>且”的逆命题为“若00x y >>且,则0x y +>”故逆命题为真命题,则否命题也为真,故①正确;对于②“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”为假命题,故其逆命题也为假,故②错误;对于③其逆命题为:若()22130mx m x m -+++>的解集是R ,则1m ≥,当该不等式解集为R 时,1.0m =时,不合题意,2.()()2041430m m m m >⎧⎪⎨=+-+<⎪⎩解得1m ,故逆命题为真,即③正确;对于④,原命题为真,故逆否命题也为真,故④正确,即正确的序号为①③④,故答案为①③④.20.既不充分也不必要【解析】如果两个角为直角则它们的正切值不存在反过来如果两个角的正切值相等它们可能相差故反之不成立综上所述应填既不充分也不必要条件解析:既不充分也不必要【解析】如果两个角为直角,则它们的正切值不存在,反过来,如果两个角的正切值相等,它们可能相差k π,故反之不成立.综上所述,应填既不充分也不必要条件.三、解答题21.(1){}41x x -<<;(2)02a ≤≤.【分析】(1)化简集合,A B ,即得解; (2)化简集合,A B ,得到集合B 是集合A 的真子集,解不等式组1311a a --≥-⎧⎨-≤⎩即得解. 【详解】(1){}{}223031A x x x x x =+-<=-<<.因为3a =,所以{}{}3142B x x x x =+<=-<<-, 因此{}41A B x x ⋃=-<<;(2){}31A x x =-<<,{}{}111B x x a x a x a =+<=--<<-,因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集,因此有1311a a --≥-⎧⎨-≤⎩,解得02a ≤≤. 【点睛】本题主要考查集合的关系和运算,考查一元二次不等式和绝对值不等式的解法,考查必要不充分条件的应用,意在考查学生对这些知识的理解掌握水平.22.34m ≥或34m ≤-. 【分析】试题分析:首先将集合,A B 进行化简,再根据命题p 是命题q 的充分条件知道A B ⊆,利用集合之间的关系,就可以求出实数m 的取值范围.【详解】化简集合A ,由2312y x x =-+,配方,得237416y x ⎛⎫=-+ ⎪⎝⎭. 3,24x ⎡⎤∈⎢⎥⎣⎦,min 716y ∴=,max 2y =. 7,216y ⎡⎤∴∈⎢⎥⎣⎦,7|216A y y ⎧⎫∴=≤≤⎨⎬⎩⎭化简集合B ,由21x m +≥,21x m -≥,{}2|1B x m=≥- 命题p 是命题q 的充分条件,A B ∴⊆.27116m ∴-≤, 解得34m ≥,或34m ≤-. ∴实数m 的取值范围是33,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 23.(1)(0,1);(2)[1,3).【分析】(1)根据双曲线的标准方程求解; (2)再求出q 为真命题的a 的范围,由(1)得p 为假时a 的范围,求交集可得结论.【详解】(1)方程22122x y a a +=-表示焦点在x 轴上的双曲线,则0220a a >⎧⎨-<⎩,解得01a <<, 所以a 的范围是(0,1);(2)由(1)得p 为假时,(,0][1,)a ∈-∞+∞,又()32z a ai =-+对应点坐标为(3,2)a a -,该点在第二象限,则3020a a -<⎧⎨>⎩,解得0<<3a ,所以命题p 是假命题,q 是真命题时,13a ≤<.即a 的取值范围是[1,3).【点睛】本题考查命题的真假以及复合命题的真假,考查双曲线的标准方程和复数的几何意义,属于基础题.24.(1)①是,②不是;理由详见解析(2)详见解析.【分析】(1)①可取1λ=,说明函数()2x f x =是“依附函数”; ②对于任意正数λ,取11x =,此时关于2x 的方程12()()g x g x λ=无解,说明2()log g x x =不是“依附函数”;(2)先证明必要性,再证明充分性,即得证.【详解】(1)①可取1λ=,则对任意1x ∈R ,存在21x x =-∈R ,使得12221x x ⋅=成立, (说明:可取任意正数λ,则221log x x λ=-)∴()2x f x =是“依附函数”,②对于任意正数λ,取11x =,则1()0g x =,此时关于2x 的方程12()()g x g x λ=无解,∴2()log g x x =不是“依附函数”. (2)必要性:(反证法)假设0[,]m n ∈,∵()y h x =的值域为[,]m n ,∴存在定义域内的1x ,使得1()0h x =,∴对任意正数λ,关于2x 的方程12()()h x h x λ=无解,即()y h x =不是依附函数,矛盾,充分性:假设0[,]m n ∉,取0mn λ=>,则对定义域内的每一个值1x ,由1()[,]h x m n ∈,可得1[,][,]()m n h x n m λλλ∈=, 而()y h x =的值域为[,]m n ,∴存在定义域内的2x ,使得21()()h x h x λ=,即12()()h x h x λ=成立, ∴()y h x =是“依附函数”.【点睛】本题主要考查函数的新定义,考查充分必要条件的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.(1)2x ≤或5x ≥(2)a <【分析】(1)先解分式不等式得出25x <<,再由p 与p ⌝的关系得出p ⌝为真时x 的取值范围; (2)由题意得出q 是p 的必要不充分条件,从而得到5a x x <+对于任意25x <<恒成立,由基本不等式求出5x x+的最小值,即可得出实数a 的取值范围. 【详解】(1)122x x +>-等价于()()12220x x x ⎧+->⎨-≠⎩,解得25x << :25p x ∴<<,由p ⌝为真知:2x ≤或5x ≥;(2)q ⌝是p ⌝的充分不必要条件,则q 是p 的必要不充分条件.故2:50q x ax -+>对于任意25x <<恒成立故5a x x <+,由基本不等式可知5x x+≥x =故a <【点睛】本题主要考查了根据非命题的真假求参数,根据充分不必要条件求参数,属于中档题.26.(1)12x <≤;(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】(1)先化简命题,p q ,得到1324x x x <<⎧⎨≤≥⎩或,即得解; (2)先化简命题,p q ,得到243m m ≤⎧⎨<⎩或243m m <⎧⎨≤⎩,即得解. 【详解】(1)若1m =,命题2:430,13p x x x -+<∴<<;命题q :2680x x -+<,则24x <<,因为p 为真,q 为假,所以x 的取值范围为1324x x x <<⎧⎨≤≥⎩或,即12x <≤; (2)q 是p 的充分不必要条件,命题p ;3m x m <<,命题q :2680x x -+<,则24x <<,所以243m m ≤⎧⎨<⎩或243m m<⎧⎨≤⎩,所以4,23m ⎡⎤∈⎢⎥⎣⎦. 【点睛】方法点睛:充分必要条件的判定常用的方法有:(1)定义法;(2)集合法;(3)转化法.在解答此类问题时,要根据已知条件灵活选择.。

高二数学选修2-1第一章《常用逻辑用语》测试题含答案(2套)

高二数学选修2-1第一章《常用逻辑用语》测试题含答案(2套)

常用逻辑用语综合测试题一、选择题:(本题共10小题,50分)2.a=1”是“函数()||f x x a =-在区间[1, +∞)上为增函数”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 5.“a 和b 都不是偶数”的否定形式是 ( )A .a 和b 至少有一个是偶数B .a 和b 至多有一个是偶数C .a 是偶数,b 不是偶数D .a 和b 都是偶数6.设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 7.若命题“p 或q ”为真,“非p ”为真,则 ( ) A .p 真q 真 B .p 假q 真 C .p 真q 假 D .p 假q 假 9.2x 2-5x -3<0的一个必要不充分条件是( )A .-21<x <3B .-21<x <0C .-3<x <21D .-1<x <6二填空题11.下列命题中_________为真命题.①“A ∩B =A ”成立的必要条件是“A B ”; ②“若x 2+y 2=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题; ④“圆内接四边形对角互补”的逆否命题.12.若p :“平行四边形一定是菱形”,则“非p ”为___ _____.14.设p 、q 是两个命题,若p 是q 的充分不必要条件,那么非p 是非q 的 条件. 15. 若函数()|21|2xf x a =--有两个零点,则a 应满足的充要条件是 三、解答题17.(12分)给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.18.已知集合}53|{><=x x x M 或,}0)8)((|{≤--=x a x x P .(1)求实数a 的取值范围,使它成为}85|{≤<=x x P M 的充要条件;(2)求实数a 的一个值,使它成为}85|{≤<=x x P M 的一个充分但不必要条件; (3)求实数a 的取值范围,使它成为}85|{≤<=x x P M 的一个必要但不充分条件.21. (06年上海卷)在平面直角坐标系xOy 中,直线l 与抛物线x y 22=相交于A 、B 两点.(1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.解:(1)证法一:设过点T(3,0)的直线l 交抛物线y 2=2x 于点A (x 1,y 1)、B (x 2,y 2).①当直线l 的钭率不存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于点A (3,6)、B(3,-6). ∴⋅=3;②当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)y x y k x =⎧⎨=-⎩得 2122606ky y k y y --=⇒=- 又 ∵ 22112211,22x y x y ==,∴3)(41212212121=+=+=⋅y y y y y y x x OB OA综上所述,命题“如果直线l 过点T(3,0),那么OB OA ⋅=3”是真命题。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)(2)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)(2)

一、选择题1.设x ∈R ,则“1x >”是“2320x x -+<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知命题:p 关于x 的方程210x ax ++=没有实根;命题:0q x ∀≥,20x a ->.若p ⌝和p q ∧都是假命题,则实数a 的取值范围是( ) A .()(),21,-∞-⋃+∞ B .(]2,1- C .(]1,2D .[)1,23.已知:11p x -≤, 2:230q x x --≥, 则p 是q ⌝的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x >x +1 C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 05.若数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=,下面给出关于数列{}n a 的四个命题:①{}n a 可以是等差数列;②{}n a 可以是等比数列;③{}n a 可以既是等差又是等比数列;④{}n a 可以既不是等差又不是等比数列.正确命题的个数为( ). A .1B .2C .3D .46.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假7.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”; ②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真;④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个8.下列命题中正确命题的个数是( )①对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++>; ②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题; ③设a ,b 是非零向量,则“a b =”是“a b a b +=-”的必要不充分条件; ④3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A .1B .2C .3D .49.已知直线l 过原点,圆C :()()22234x y -+-=,则“直线l 的斜率为512”是“直线l 与圆C 相切”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件10.下列命题中真命题的是( )A .命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠B .“22am bm <”是“a b <”的充要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠,则p 是q 的必要不充分条件 11.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( ) A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞12.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件; ③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .0二、填空题13.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 14.若“x l >”是“x a ≥”的充分不必要条件,则a 的取值范围为______. 15.已知集合261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,3{|log ()}1B x x a ≥=+,若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________. 16.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”;②“1x =-”是“2560x x --=”的必要不充分条件;③命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->”;④命题“若x y =,则sin sin x y =”的逆否命题为真命题.其中所有正确命题的序号是_________.17.给出下列命题:①1y =是幂函数;②函数2()2log xf x x =-的零点有且只有1;③1(2)0x x --≥的解集为[2,)+∞;④“1x <”是“2x <”的充分非必要条件;其中真命题的序号是______________.18.若命题p :∃x ∈R ,ax 2+4x +a <﹣2x 2+1是假命题,则实数a 的取值范围是________. 19.设命题p :12x <<;命题q :()(1)0x a x --≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____.20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.已知0a >,命题()()230p x x +-≤:,命题11q a x a -≤≤+:. (1)若5a =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围; (2)若q ⌝ 是p ⌝的必要条件,求实数a 的取值范围.22.(1)已知命题p :()20a a a R -<∈,命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈,若命题“p 且q ”为假命题,命题“p 或q ”为真命题,求实数a 的取值范围;(2)已知集合{}22|440A x x x a =-+-≤,{}2|41270B x x x =+-≤,若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.23.命题:p 方程210x mx ++=有两个不等的实数根, 命题:q 方程244210()x m x +++=无实数根.若“p 或q ”为真命题,“p 且q ”为假命题.求m 的取值范围.24.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合;(2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合.25.设函数(),,x x P f x x x M∈⎧=⎨-∈⎩,其中,P M 是非空数集.记()(){}()(){}|,,|f p y y f x x P f M y y f x x M ==∈==∈,. (1)若[]()0,3,,1P M ==-∞-,求()()f p f M ⋃;(2)若P M ⋂=∅,且()f x 是定义在R 上的增函数,写出满足条件的集合P ,M ,并说明理由;(3)判断命题“若P M ⋃≠R ,则()()f p f M ⋃≠R ”的真假,并加以证明. 26.已知条件4:11p x ≤--,条件22:q x x a a +<-,且q ⌝的一个充分不必要条件是p ⌝,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先解不等式2320x x -+<得12x <<,再根据基本关系判定即可得答案. 【详解】解:解不等式2320x x -+<得12x <<, 因为()()1,21,+∞,所以“1x >”是“2320x x -+<”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.D解析:D 【分析】计算出当命题p 为真命题时实数a 的取值范围,以及当命题q 为真命题时实数a 的取值范围,由题意可知p 真q 假,进而可求得实数a 的取值范围.【详解】若命题p 为真命题,则240a ∆=-<,解得22a -<<;若命题q 为真命题,0x ∀≥,20x a ->,则()min21xa <=.由于p ⌝和p q ∧都是假命题,则p 真q 假,所以221a a -<<⎧⎨≥⎩,可得12a ≤<.因此,实数a 的取值范围是[)1,2. 故选:D. 【点睛】本题考查利用复合命题、全称命题的真假求参数,考查计算能力,属于中等题.3.A解析:A 【分析】利用不等式的解法求出p , q ,然后求出q ⌝,即可得到答案 【详解】:11p x -≤,化为111x -≤-≤,解得02x ≤≤ 2:230q x x --≥,解得3x ≥或1x ≤-则q ⌝:13x -<<则p 是q ⌝的充分不必要条件 故选A 【点睛】本题主要考查了必要条件,充分条件以及充要条件的判定定理,不等式的解法,属于基础题.4.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.5.C解析:C 【分析】根据题意得到14n n a a --=或13n n a a -=,结合等差数列和等比数列的定义,即可判定. 【详解】由题意知,数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=, 所以14n n a a --=或13n n a a -=,则:对于①中,数列{}n a 可以是公差为4的等差数列; 对于②中,数列{}n a 可以是公比为3的等比数列;对于③中,若数列{}n a 既是等差又是等比数列,则此时数列{}n a 必为非零的常数列, 则公差为0,公比为1,由①②可知,③不正确;对于④{}n a 中,数列{}n a 可以既不是等差又不是等比数列,例如:1,5,15,19,,满足题设条件,此数列既不是等差又不是等比数列,所以④正确. 故选:C. 【点睛】本题主要以命题的真假判定与应用为载体,考查了等差数列、等比数列的定义及判定,其中解答中熟记等差数列、等比数列的定义,合理判定是解答的关键,着重考查推理与运算能力.6.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.7.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.8.A解析:A 【分析】①根据特称命题的否定是全称命题,判断①错误;②原命题与它的逆否命题真假性相同,判断它的逆否命题的真假性即可; ③利用向量的平行四边形法则,转化为平行四边形的对角线的关系,判断即可; ④计算直线()320m x my ++-=与直线650mx y -+=互相垂直的等价条件为0,3m =,即可.【详解】对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++≥,故①不正确;命题“已知x ,y R ∈,,若3x y +≠,则2x ≠或1y ≠”的逆否命题为:“已知x ,y R ∈,,若2x =且=1y ,则3x y +=”为真命题,故②正确;设a ,b 是非零向量,则“a b =”是“a b a b +=-”的既不充分也不必要条件,故③不正确;直线()320m x my ++-=与直线650mx y -+=互相垂直,则0,3m =,故④不正确. 故选:A 【点睛】本题考查了命题的否定,逆否命题,充要条件等知识点,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.9.B解析:B 【分析】由题求得过原点且与圆C 相切的直线方程,即可判断命题关系 【详解】由题,圆C 是圆心为()2,3,半径为2的圆,当直线l 的斜率不存在时,直线方程为0x =,此时圆心到直线距离为2,等于半径,即此时相切;当直线l 的斜率存在时,设直线为0kx y ,则圆心到直线距离为2d ==,解得512k =, 所以“直线l 的斜率为512”是“直线l 与圆C 相切”的充分不必要条件, 故选:B 【点睛】本题考查充分不必要条件的判定,考查过圆外一点的圆的切线方程10.A解析:A 【分析】A. 根据四种命题的结构形式及转化来判断.B.利用特殊值法,当 0m =时,逆命题不成立.C. 若p q ∧为假命题,由结论“一假则假”来判断. D 用等价命题来判断. 【详解】命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠, 故A 正确;若22am bm <,则0m ≠,可得a b <,反之a b <,0m =,22am bm <不成立,故B 错误;若p q ∧为假命题,则p ,q 中至少有一个为假命题,故C 错误;对于实数x ,y ,p :8x y +≠,q :2x ≠或6y ≠,由2x =且6y =,可得8x y +=,即p 可得q ,反之由q 推不到p ,则p 是q 的充分不必要条件,故D 错误.故选:A 【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础题.11.A解析:A 【分析】由题意,可先解出p ⌝:31x -≤≤与q ⌝:x a ≤,再由p ⌝是q ⌝的充分不必要条件列出不等式即可得出a 的取值范围. 【详解】由条件:12p x +>,解得1x >或3x <-,故p ⌝:31x -≤≤, 由条件:q x a >得q ⌝:x a ≤, ∵p ⌝是q ⌝的充分不必要条件, ∴1a ≥, 故选:A . 【点睛】本题以不等式为背景考查充分条件必要条件的判断,考查了推理判断能力,准确理解充分条件与必要条件是解题的关键.12.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.二、填空题13.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-. 【点睛】本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.14.【分析】根据充分条件和必要条件的定义进行求解即可【详解】若是的充分不必要条件则则故答案为【点睛】本题主要考查充分条件和必要条件的判断比较基础判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题则 解析:a 1≤【分析】根据充分条件和必要条件的定义进行求解即可. 【详解】若“x l >”是“x a ≥”的充分不必要条件,则(1,)[,)a +∞⊆+∞,则a 1≤, 故答案为a 1≤ 【点睛】本题主要考查充分条件和必要条件的判断,比较基础.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.15.(-∞0【分析】由集合AB 得到元素的范围根据x ∈A 是x ∈B 的必要不充分条件知即可求得a 的范围【详解】由得x2-x -6≥0即x≤-2或x≥3∴A ={x|x≤-2或x≥3}由得x +a≥3即x≥3-a 则B解析:(-∞,0] 【分析】由集合A 、B 得到元素的范围,根据“x ∈A ”是“x ∈B ”的必要不充分条件知B A ,即可求得a 的范围 【详解】由261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,得x 2-x -6 ≥ 0 即x ≤-2或x ≥ 3 ∴ A ={x |x ≤-2或x ≥ 3}由31log ()x a ≥+,得x +a ≥ 3,即x ≥ 3-a , 则B ={x |x ≥ 3-a }由题意知:B A∴ 3-a ≥ 3,得a ≤ 0.故答案为:(-∞,0]【点睛】本题考查了必要条件,应用必要条件与对应集合间的包含关系解不等式,求参数范围 16.④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若解析:④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断.【详解】解:①根据否命题的定义可知,命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题,得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为:④.【点睛】本题考查命题的真假判断,以及充分必要条件、四种命题的关系和真假性的判断,属于基础题.17.④【分析】没有零点的解集为是的充分非必要条件【详解】①是常数函数或者考虑所以不是幂函数故错;②根据指数函数和对数函数的图象和性质得:函数没有零点故错;③或解得或故的解集为错;④但是推不出因此是的充分解析:④【分析】01,0y x x ==≠,2()2log x f x x =-2)0x -≥的解集为[){}2,1+∞,“1x <”是“2x <”的充分非必要条件.【详解】①1y =是常数函数,或者考虑01,0y x x ==≠,所以不是幂函数.故错;②根据指数函数和对数函数的图象和性质得:函数2()2log xf x x =-没有零点,故错;102)020x x x ->⎧-≥⇔⎨-≥⎩,或1x =,解得2x ≥或1x =2)0x -≥的解集为[){}2,1+∞,错; ④“1x <”⇒“2x <”,但是“2x <”推不出“1x <”,因此“1x <”是“2x <”的充分不必要条件,正确.故答案为:④.【点睛】此题考查幂函数概念辨析,函数零点讨论,解不等式,根据集合的包含关系讨论充分条件和必要条件,知识容量大,综合性强. 18.【分析】利用命题p 为假命题得到非p 为真命题即∀x ∈Rax2+4x+a≥﹣2x2+1恒成立即可求出实数a 的取值范围【详解】∵∃x ∈Rax2+4x+a <﹣2x2+1是假命题∴非p 为真命题即∀x ∈Rax2解析:[)2,+∞【分析】利用命题p 为假命题,得到非p 为真命题,即∀x ∈R ,ax 2+4x +a ≥﹣2x 2+1恒成立,即可求出实数a 的取值范围.【详解】∵∃x ∈R ,ax 2+4x +a <﹣2x 2+1是假命题,∴非p 为真命题,即∀x ∈R ,ax 2+4x +a ≥﹣2x 2+1恒成立,∴∀x ∈R ,(a +2)x 2+4x +a ﹣1≥0恒成立,若a +2=0,即a =﹣2,不等式等价为4x ﹣3≥0,解得x 34≥,不满足条件. 若a +2≠0,要使不等式恒成立,则必有()()20164210a a a +⎧⎨=-+-≤⎩>,即2260a a a -⎧⎨+-≥⎩>, ∴223a a a -⎧⎨≥≤-⎩>或,解得a ≥2. 故答案为a ≥2.【点睛】本题主要考查含有量词的命题的否定的应用,命题p 为假命题,得到非p 为真命题,是解决本题的关键.19.【解析】【分析】先解不等式再利用充分不必要条件的性质得到a 的范围【详解】当a=1时的解为x=1与已知不相符;当a >1时1≤x≤a 因为是的充分不必要条件所以a≥2当a <1时a≤x≤1与已知不相符故答案解析:[2,)+∞【解析】【分析】先解不等式()()10x a x --≤,再利用充分不必要条件的性质得到a 的范围.【详解】当a=1时,()()10x a x --≤的解为x=1,与已知不相符;当a >1时,1≤x≤a,因为p 是q 的充分不必要条件,所以a≥2,当a <1时,a≤x≤1,与已知不相符.故答案为:[)2,+∞【点睛】本题主要考查一元二次不等式的解法,考查充分不必要条件的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力. 20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题‚错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一 解析:④【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A 时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p: ,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断. 三、解答题21.(1){|42x x -≤<-或36}x <≤ ;(2)02a <.【分析】(1)将5a =,代入命题q ,求出x 的取值范围,由“p 或q ”为真命题,“p 且q ”为假命题,可知p 与q 一真一假,分类讨论当p 真q 假和当p 假q 真时,解不等式进行求解即可;(2)0a >,23p x -≤≤:,11q a x a -≤≤+:,分别求出p 和q ,根据q ⌝是p ⌝的必要条件,可得p 是q 的必要条件,从而求出a 的范围.【详解】解:(1)当5a =时,命题 23p x -≤≤:;命题46q x -≤≤:. “p 或q ”为真命题,“p 且q ”为假命题,p q ∴, 一真一假,①当p 真q 假时,23x -,且4x <-或6x > ,∴无解;②当p 假q 真时,2x <-或3x >,且46x - ,∴ 42x -≤<-或36x <≤,综上得,x 的范围是{|42x x -≤<-或36}x <≤ .(2)命题23p x -≤≤:,命题11q a x a -≤≤+:, q ⌝∵是p ⌝的必要条件,p ∴是q 的必要条件,又0a >, 2113a a ∴--+ ,∴ 02a <.【点睛】本题考查命题真假的判断,以及充分条件和必要条件的定义和不等式的解法及其性质,考查分类讨论的思想和运算能力.22.(1)11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭;(2)112a ≥或112a ≤-. 【分析】(1)分别计算命题,p q 为真、假时参数a 的取值范围,再根据题意可知命题p ,q 一真一假,进而分情况求解a 的取值范围即可.(2)由题意可知B A ⊆,再分0a ≥与0a <两种情况,分别根据区间端点满足的条件列式计算即可.【详解】(1)若命题p :()20a a a R -<∈为真,解得01a <<. 若p 为假,则0a ≤或1a ≥;若命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈为真, 则21640a ∆=-≤,解得1122a -≤≤,若q 为假,则12a <-或12a >. 由命题p 且q 为假,p 或q 为真可知命题p ,q 一真一假.若命题p 真,q 假,则011122a a a <<⎧⎪⎨-⎪⎩或,解得112a <<; 若命题p 假,q 真,则1,01122a a a ≥≤⎧⎪⎨-≤≤⎪⎩,解得102a -≤≤.综上可知,实数a 的取值范围是11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭. (2)因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,71,22B ⎡⎤=-⎢⎥⎣⎦,()(){}|220A x x a x a =-+--≤, 当0a ≥时,[]2,2A a a =-+,此时应有122722a a ⎧+≥⎪⎪⎨⎪-≤-⎪⎩,即112a ≥, 当0a <时,[]2,2A a a =+-,此时应有122722a a ⎧-≥⎪⎪⎨⎪+≤-⎪⎩,即112a ≤-. 故112a ≥或112a ≤- 【点睛】本题主要考查了根据命题的真假以及充分与必要条件等求解参数范围的问题,属于中档题. 23.3m ≤-或2m >或21m -≤<-【分析】根据题意可知,p q 命题一个是真命题,一个是假命题;先求出两个命题都为真时参数的范围,再分类讨论,先交后并即可.【详解】若p 真:则可得240m =->,解得2m >或2m <-, 若q 真:则可得()2162160m =+-<,解得3<1m -<-. 因为“p 或q ”为真命题,“p 且q ”为假命题,故可得,p q 一个是真命题,一个是假命题.当p 真q 假,则2m >或2m <-,且3m ≤-或1m ≥-,解得3m ≤-或2m >. 当p 假q 真222131m m m -⎧⇒-<-⎨-<<-⎩∴3m ≤-或2m >或21m -≤<-.【点睛】本题考查由命题的真假求参数的范围问题,属基础题.24.(1){2,3};(2){3}.【分析】(1)解方程确定集合,A B ,再根据命题p 为真求得a ;(2)题意说明x C ∈是x A ∈的充分条件,由此可求得m 值.【详解】由题意{1,2}A =,(1)2a =时,{1}B =满足题意,2a ≠时,{1,1}B a =-,则∵x B ∀∈,都有x A ∈,∴12a -=,3a =,∴a 的取值集合是{2,3};(2)∵“x A ∈”是“x C ∈”的必要条件,∴x C x A ∈⇒∈.若280m ∆=-=,即m =±C =或{C =均不合题意,又C ≠∅,∴0∆>,因此12{,}C x x =,又12,x A x A ∈∈,因此不妨设11x =,22x =,则123m x x =+=. ∴m 的取值集合是{3}. 【点睛】关键点点睛:本题考查由充分必要条件求参数,解题方法是根据充分条件,必要条件的定义得出集合中元素的性质,从而得出结论.也可由充分必要条件与集合包含之间的关系确定集合的关系,从而得出结论.25.(1)[)0,+∞;(2){}0M =,()(),00,P =-∞+∞,理由见解析;(3)真命题,证明见解析【分析】(1)由[]()0,3,,1P M ==-∞-,结合()f x 的解析式,可求出()f p ,()f M ,进而可求出()()f p f M ⋃;(2)易知()00=f ,根据()f x 的单调性,可得0x <时,()0f x <,0x >时,()0f x >,进而可得()(),00,P =-∞+∞,再由P M ⋂=∅,可求出M ; (3)利用反证法,假设原命题为假,进而推出矛盾,可知假设是错误的,原命题为真命题.【详解】 (1)因为[]()0,3,,1P M ==-∞-,所以()[](),0,3,,1x x f x x x ⎧∈⎪=⎨-∈-∞-⎪⎩, 所以()[]{}[]|,0,30,3f p y y x x ==∈=,()(){}()|,11,f M y y x x ==-∈-∞-=+∞,, 所以()()[)0,f p f M ⋃=+∞.(2)因为()f x 是定义在R 上的增函数,且()00=f ,所以0x <时,()0f x <;0x >时,()0f x >, 由(),,x x P f x x x M ∈⎧=⎨-∈⎩,可得(),0P -∞⊆,()0,P +∞⊆, 因为P M ⋂=∅,所以{}0M =,()(),00,P =-∞+∞.(3)该命题为真命题,证明如下:假设原命题为假,即存在非空数集,P M ,且P M ⋃≠R ,但()()f p f M ⋃=R .首先证明()0PM ∈, 假若()0P M ∉,则0,0P M ∉∉,所以()()0,0f P f M ∉∉,即()()0f p f M ∉⋃,与()()f p f M ⋃=R 矛盾,所以()0P M ∈;若存在()0x P M ∉,且00x ≠,则00,x P x M ∉∉,所以()()00,x f P x f M ∉-∉,因为()()f p f M ⋃=R ,所以()()00,x f M x f P ∈-∈,则00,x p x M -∈-∈,所以()00f x x -=-,且()()000f x x x -=--=,因为00x ≠,所以00x x -≠,即()0f x -有两个不同的值,不满足函数的概念, 所以假设错误,即原命题为真命题.【点睛】关键点点睛:本题考查新定义函数,解题关键是根据新定义的特点,弄清新定义的性质,按照新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,考查学生的逻辑推理能力,计算求解能力,属于中档题.26.[1,2]-【分析】先求出条件,p q 对应的x 取值范围,再根据题意可得p 是q 的一个必要不充分条件,由集合关系即可求出.【详解】 由411x ≤--,得:31p x -≤<, 由22x x a a +<-,得[]()(1)0x a x a +--<, 当12a =时,:q ∅;当12a <时,:(1,)q a a --;当12a >时,:(,1)q a a --. 由题意得,p 是q 的一个必要不充分条件, 当12a =时,满足条件; 当12a <时,则[)(1,)3,1a a ---,得11,2a ⎡⎫∈-⎪⎢⎣⎭; 当12a >时,[)(,1)3,1a a ---得1,22a ⎛⎤∈ ⎥⎝⎦. 综上,[1,2]a ∈-.【点睛】本题考查根据条件的关系求参数,属于基础题.。

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

一、选择题1.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 3.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题 ②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->” ④1a b +>是a b >的一个必要不充分条件 A .0B .1C .2D .34.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.5.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( )A .1B .2C .3D .47.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题8.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真9.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 10.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >11.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④12.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若12,[3,4]x x ∀∈∃∈R ,使2211221225x x x x x ax +++-成立,则实数a 的取值范围是______. 14.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上)15.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 16.“14a =”是“对任意的正数x ,均有1ax x +≥”的________条件.17.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈. 其中正确的个数是___________ 18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________. 19.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件; (2)对于实数a ,b ,c ,如果ac >bc ,则a >b ; (3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______ 20.给出下列四个命题中:①命题“若x ≥2且y ≥3,则x +y ≥5”为假命题.②命题“若x 2-4x +3=0,则x =3”的逆否命题为:“若x ≠3,则x 2-4x +3≠0”. ③“x >1”是“|x |>0”的充分不必要条件④关于x 的不等式|x +1|+|x -3|≥m 的解集为R ,则m ≤4. 其中所有正确命题的序号是______.三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=,(1)若q 是真命题,求实数m 的取值范围; (2)若()p q ∧⌝为真命题,求实数m 的取值范围.23.已知p :2430x x -+<,q :()()210x m x m m R -++<∈.(1)求不等式2430x x -+<的解集;(2)若q 是p 的必要不充分条件,求m 的取值范围.24.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论. 25.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合; (2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合. 26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别判断两个命题p , q 的真假,结合复合命题真假关系进行判断即可. 【详解】对于命题p ,取1x =时,10<不成立,故命题p 为假命题, 对于命题 q ,1x =-时,23(1)(1)->-成立,故命题 q 为真命题,所以p q ∧为假命题,p q ⌝∧为真命题,p q ∧⌝为假命题,p q ⌝∧⌝为假命题,故选:B 【点睛】本题主要考查复合命题真假关系的判断,结合条件判断命题p ,q 的真假是解决本题的关键.2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.4.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1abe e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.7.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误;若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.8.C解析:C【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.10.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.二、填空题13.【分析】先整理为关于的不等式恒成立求出相应的最值后得不等式在时能成立分离参数整理为求出诉最大值可得结论【详解】由得∴当时取得最小值∴使成立即使成立设设则∴即∴在时是增函数∴在上有∴故答案为:【点睛】 解析:(,5]-∞【分析】先整理为关于1x 的不等式恒成立,求出相应的最值后,得不等式222222154x x x ax -+--+-在2[3,4]x ∈时能成立,分离参数整理为223414x a x ≤++,求出223414x x ++诉最大值可得结论. 【详解】由2211221225x x x x x ax ≥++-+,得2212122(2)5x x x x ax +-≥-+-, ∴当2112x x =-时,()21212x x x +-取得最小值()22222221211224x x x x x ⎛⎫⎛⎫-+--=-+- ⎪ ⎪⎝⎭⎝⎭ ∴2[3,4]x ∃∈,使222222154x x x ax -+--+-成立,即2[3,4]x ∃∈,使223414a x x ++成立. 设3414t y t=++,设1234t t ≤<≤,则12120,316t t t t -<>, ∴12121212121233()(316)44444t t t t t t y y t t t t ---=+--=0<,即12y y <, ∴3414t y t=++在[3,4]∈时,是增函数. ∴223414x y x =++在[3,4]上有max 5y =,∴5a ≤. 故答案为:(,5]-∞. 【点睛】思路点睛:本题考查双变量不等式恒成立求参数范围.解题方法是先整理为以1x 为变量的不等式恒成立,又转化为关于2x 的不等式能成立,分离参数后求得函数的最值.14.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.15.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-.本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.16.充分不必要【分析】当时对任意的正数x 均有反过来当对任意的正数x 均有时通过讨论有成立即可判断【详解】当时对任意的正数x 均有当且仅当时等号成立;当对任意的正数x 均有时当时令此时不符合题意;当时显然不满足解析:充分不必要 【分析】当14a =时,对任意的正数x ,均有141a x x x x+=+≥,反过来,当对任意的正数x ,均有1a x x +≥时,通过讨论有14a ≥成立,即可判断.【详解】 当14a =时,对任意的正数x ,均有141a x x x x +=+≥==, 当且仅当12x =时等号成立; 当对任意的正数x ,均有1ax x+≥时,当0a <时,令0x =>,此时0ax x+=,不符合题意; 当0a =时,1≥x ,显然不满足题意;当0a >时,有1ax x+≥, 解得有14a ≥, 所以“14a =”是“对任意的正数x ,均有1ax x +≥”的充分不必要条件故答案为:充分不必要 【点睛】本题考查了充分性和必要性的判断,属于一般题.17.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假. 【详解】①由2011÷5=402…1,所以2011∈[1],故①正确; ②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确; ④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3 【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.18.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.19.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互解析:(3)(4) 【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可. 【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4) 【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.20.②③④【分析】命题的判断一一进行判断即可对于①显然为假命题;对于②逆否命题条件和结论都否定正确;对于③若x >1则|x|>0若|x|>0则x 不一定大于1;对于④f (x )=|x+1|+|x ﹣3|表示数轴解析:②③④ 【分析】命题的判断,一一进行判断即可.对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和. 【详解】对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和,最小为4,所以m 4≤.故答案为②③④. 【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解答题21.(1)[)2,3;(2)12a <<. 【分析】(1)当1a =时,分别求出p ,q 成立的等价条件,利用p q ∧为真可得x 的取值范围; (2)由题可得q 是p 的充分不必要条件,得Q P ,从而可得a 的取值范围. 【详解】(1)当1a =时,由()()130x x --<,得p :13x <<, 由428x ≤≤,得:q 23x ≤≤,由p ∧q 为真,即p ,q 均为真命题,因此x 的取值范围是[)2,3. (2)若¬p 是¬q 的充分不必要条件,可得q 是p 的充分不必要条件,由题可得命题p 对应的集合{}3P x a x a =<<,命题q 对应的集合{}23Q x x =≤≤, 所以Q P ,因此2a <且33a <,解得12a <<. 即实数a 的取值范围是12a <<. 【点睛】本题考查充分必要条件的定义和应用,考查复合命题的真假判断,考查分析解决问题的能力,属于基础题.22.(1)2m ≥-;(2)2m <-. 【分析】(1)由题意知,q 是真命题等价于方程2210x x m +--=有实根,利用判别式0∆≥即可求解;(2)由题意知,分别求出p 、q ⌝为真命题时实数m 的取值范围,然后再取交集即可. 【详解】(1)因为0:R,q x ∃∈200210x x m +--=为真命题, 所以方程2210x x m +--=有实根, 所以判别式()4410m ∆=++≥, 所以实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<, 若:R,p x ∀∈()221x m x >+为真命题,则220mx x m -+<对任意的x ∈R 恒成立, 当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有2440m m <⎧⎨-<⎩,1m ∴<-, 由(1)知,若q ⌝为真命题,则2m <-, 又()p q ∧⌝为真,故p 、q ⌝均为真命题,所以实数m 需满足12m m <-⎧⎨<-⎩,解得2m <-,所以实数m 的取值范围为2m <-. 【点睛】本题考查利用复合命题的真假求参数的取值范围;考查运算求解能力和逻辑思维能力;熟练掌握复合命题的真假判断是求解本题的关键;属于中档题. 23.(1){}3|1x x <<(2)()3,+∞ 【分析】(1)分解因式得()()130x x --<,进而求解即可;(2)先将命题q 中不等式分解为()()10x m x --<,所以讨论m 与1的大小,当1m 时,不等式()210x m x m -++<的解是1x m <<,由q 是p 的必要不充分条,则2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,即可求解,同理讨论当1m <与1m =时的情况.【详解】解:(1)因为2430x x -+<,所以()()130x x --<,所以13x <<, 所求解集为{}|13x x <<.(2)因为q :()()210x m x m m R -++<∈,则()()10x m x --<当1m 时,不等式()210x m x m -++<的解是1x m <<,因为q 是p 的必要不充分条件,所以2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,所以3m >;当1m <时,不等式()210x m x m -++<的解是1m x <<,因为{}{}||131x x x m x <<⋂<<=∅,不合题意; 当1m =时,不等式2430x x -+<的解集为∅,不合题意. 综上,m 的取值范围是()3,+∞. 【点睛】本题考查含参数的一元二次不等式的解法,考查由充分必要条件求参数的范围,考查运算能力与分类讨论思想.24.充分不必要条件,证明见解析. 【分析】利用给出的定义、向量共面定理即可判断出关系. 【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面.p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出, 不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面, 即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示. p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.25.(1){2,3};(2){3}. 【分析】(1)解方程确定集合,A B ,再根据命题p 为真求得a ; (2)题意说明x C ∈是x A ∈的充分条件,由此可求得m 值. 【详解】 由题意{1,2}A =,(1)2a =时,{1}B =满足题意,2a ≠时,{1,1}B a =-, 则∵x B ∀∈,都有x A ∈,∴12a -=,3a =, ∴a 的取值集合是{2,3};(2)∵“x A ∈”是“x C ∈”的必要条件,∴x C x A ∈⇒∈.若280m ∆=-=,即m =±C =或{C =均不合题意, 又C ≠∅,∴0∆>,因此12{,}C x x =,又12,x A x A ∈∈, 因此不妨设11x =,22x =,则123m x x =+=.∴m 的取值集合是{3}.【点睛】关键点点睛:本题考查由充分必要条件求参数,解题方法是根据充分条件,必要条件的定义得出集合中元素的性质,从而得出结论.也可由充分必要条件与集合包含之间的关系确定集合的关系,从而得出结论. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<,故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤<②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)

一、选择题1.下列命题错误的是( )A .命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=无实数根,则0m ≤”B .“6πθ=”是“()1sin 22k θπ+=”的充分不必要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++≥ 2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”3.“函数()2()311f x ax a x =--+在区间[)1+∞,上是增函数”是“01a ≤≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是 A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝5.已知三个正数a ,b ,c 满足3a b c a ≤+≤,()2235b a a c b ≤⋅+≤,则以下四个命题正确的是( )1p :对任意满足条件的a ,b ,c ,均有b c ≤;2p :存在一组实数a ,b ,c ,使得b c >; 3p :存在满足条件的a ,b ,c ,使得64b a c ≤+; 4p :对任意满足条件的a ,b ,c ,均有64b a c >+.A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p6.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( ) A .1B .2C .3D .47.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6B .()2,6C .(][),26,-∞+∞D .()(),26,-∞+∞8.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假D .“p ∨q ”为真,“¬p ”为真9.01a <<是函数()221=+f x ax 取值恒为正的( )条件 A .充分非必要B .必要非充分C .充要D .既不充分又不必要10.已知直线l 过原点,圆C :()()22234x y -+-=,则“直线l 的斜率为512”是“直线l 与圆C 相切”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件11.设:22x p ≤,2:log 0q x <,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.已知命题p :任意[1,2]x ∈,20x a -≥,命题q :存在x ∈R ,2220x ax ++=.若命题p 与q 都是真命题,求实数a 的取值范围________.14.由命题p :“矩形有外接圆”,q :“矩形有内切圆”组成的复合命题“p 或q ”“p 且q ”“非p ”形式的3个命题中真命题有__________个(只填真命题的个数). 15.关于以下结论: ①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π; ③若向量0a b ⋅=,则向量a b ⊥; ④20182019log 2019log 2020>. 以上结论正确的个数为______.16.空间中,“ABC ∆的三个顶点到平面α距离相等”是“平面α平面ABC ”成立的________条件.17.“对任意的正数x ,结论21a x x+≥恒成立”的充要条件为______.18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________.19.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________.20.“200,20o x R x x m ∃∈++≤”是假命题,则实数m 的取值范围是 ________.三、解答题21.已知命题p :方程2220x ax a +-=在[]1,1-上有解;命题q :只有一个实数0x 满足不等式20020x ax a ++≤,若命题“p q ∨”是假命题,求a 的范围.22.已知0a >且1a ≠,命题:P 函数()log a f x x =在()0,∞+上为减函数,命题:Q 关于x 的不等式()22310x a x +-+≤有实数解.(1)如果P Q ∨为真且P Q ∧为假,求实数a 的取值范围. (2)命题:R 函数()2231ylg x a x ⎡⎤=+-+⎣⎦的值域包含区间[]1,3-,若命题R 为真命题,求实数a 的取值范围23.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥. (1)当1a =时,求集合B . (2)问:12a ≥是A B =∅的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.24.已知集合{}{}222430(0),540A x x ax a a B x x x =-+≤>=-+≥,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.25.已知0m >,2:4120p x x --≤, :22q m x m -≤≤+.(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,命题p 、q 其中一个是真命题,一个是假命题,求实数x 的取值范围. 26.已知条件:p 对任意[3,4]x ∈,不等式2223x m m -≥-恒成立;条件:q 当[0,1]x ∈时,函数221m x x a =-++.(1)若p 是真命题,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】对于A ,命题的逆否命题,既要交换条件、结论,又要否定条件及结论,所以‘命题“若m >0,则方程x 2+x-m=0有实数根”的逆否命题为:“若方程x 2+x-m=0无实数根,则m≤0”,故正确; 对于B “6πθ=”⇒“()1sin 22k θπ+=” 但“()1sin 22k θπ+=” 不能推出“6πθ=” 故正确;对于C ,p ∧q 为假命题,则p ,q 有一个为假命题即可,故错误; 对于D ,命题的否定先换量词,再否定结论,故正确. 故选C .2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【解析】0a <时,“函数()()2311f x ax a x =--+在区间[)1,+∞上不是增函数”,0a =时,()1f x x =+在[)1,+∞上是增函数,0a >时,令3112a a-≤,得01a <≤,∴“()()2311f x ax a x =--+在区间[)1,+∞上是增函数” 的充分必要条件“01a ≤≤”,故选C.4.D解析:D 【解析】试题分析:不难判断命题p 为真命题,命题q 为假命题,从而¬p 为假命题,¬q 为真命题,所以根据复合命题的真值表得A 、B 、C 均为假命题,故选D .考点:本题考查复合命题真假的判断.点评:本题直接考查复合命题的真值判断,属于基础题型.5.C解析:C 【分析】取特殊值,结合原命题与否定的真假关系,即可得出答案. 【详解】取2,1,3b c a ===,满足条件3a b c a ≤+≤,()2235b a a c b ≤⋅+≤,此时b c >则2p 为真命题,由于2p 的否定为1p ,则1p 为假命题取1,2a b c ===,满足条件3a b c a ≤+≤,()2235b a a c b ≤⋅+≤,此时也满足64b a c ≤+,则3p 为真命题,由于3p 的否定为4p ,则4p 为假命题故选:C 【点睛】本题主要考查了判断命题的真假,属于中档题.6.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1abe e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确;若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.7.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6]. 故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.8.C解析:C 【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.A解析:A 【分析】根据一元二次函数的图象与性质,结合充分条件、必要条件的定义,进行判定,即可求解. 【详解】由题意,当01a <<时,函数()2210f x ax =+>恒成立,所以充分性成立;例如:当0a =时,函数()22110f x ax =+=>恒成立,所以函数()2210f x ax =+>恒成立时,01a <<不一定成立,所以必要性不成立,所以01a <<是函数()221=+f x ax 取值恒为正的充分非必要条件.故选:A . 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记一元二次函数的图象与性质是解答的关键,着重考查了推理与论证能力,属于基础题.10.B解析:B 【分析】由题求得过原点且与圆C 相切的直线方程,即可判断命题关系 【详解】由题,圆C 是圆心为()2,3,半径为2的圆,当直线l 的斜率不存在时,直线方程为0x =,此时圆心到直线距离为2,等于半径,即此时相切;当直线l 的斜率存在时,设直线为0kx y ,则圆心到直线距离为2d ==,解得512k =, 所以“直线l 的斜率为512”是“直线l 与圆C 相切”的充分不必要条件, 故选:B 【点睛】本题考查充分不必要条件的判定,考查过圆外一点的圆的切线方程11.B解析:B 【分析】先化简两个命题,再根据充分必要条件的定义分析判断得解. 【详解】由题得:1p x ≤,:01q x <<,设(,1],B (0,1)A =-∞=,所以B 是A 的真子集, 所以p 是q 的必要非充分条件. 故选:B 【点睛】本题主要考查指数对数不等式的解法,考查充分必要条件的判断,意在考查学生对这些知识的理解掌握水平.12.A解析:A 【分析】由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案. 【详解】 解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<, ∴:11p x -<<,由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件; 当3a >时,解得:q x a >或3x <,满足条件; 当3a <时,解得:3q x >或x a <,∴13a ≤<, 综上:1a ≥, 故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.【分析】分别根据命题为真命题得到和或再计算得到答案【详解】即恒成立即;存在即解得或综上所述:故答案为:【点睛】本题考查了根据命题的真假确定参数范围意在考查学生的计算能力和转化能力属于常考题型解析:(,-∞【分析】分别根据命题为真命题得到1a ≤和a ≥a ≤.【详解】[1,2]x ∈,20x a -≥,即2a x ≤恒成立,即{}2min1a x≤=;存在x ∈R ,2220x ax ++=,即2480a ∆=-≥,解得a ≥a ≤综上所述:a ≤故答案为:(,-∞. 【点睛】本题考查了根据命题的真假确定参数范围,意在考查学生的计算能力和转化能力,属于常考题型.14.1【分析】先判断两个命题的真假再判断复合命题的真假即得解【详解】由题得命题:矩形有外接圆是真命题;:矩形有内切圆是假命题所以或是真命题且是假命题非是假命题故答案为:1【点睛】本题主要考查命题真假的判解析:1 【分析】先判断两个命题的真假,再判断复合命题的真假即得解. 【详解】由题得命题p :“矩形有外接圆”,是真命题;q :“矩形有内切圆”,是假命题. 所以“p 或q ”是真命题,“p 且q ”是假命题,“非p ”是假命题. 故答案为:1 【点睛】本题主要考查命题真假的判断,考查复合命题真假的判断,意在考查学生对这些知识的理解掌握水平.15.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2 【分析】对命题逐一分析正误,得出结论即可. 【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下:∵220182019lg2019lg2020(lg2019)lg2018lg2020log 2019log 2020lg2018lg2019lg2018lg2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()2+⋅<=2220182020(lg)(lg 2019)2+<=. ∴2(lg2019)lg2018lg20200-⋅>; ∴20182019log 2019log 2020>. 故②④正确;正确的个数为2个; 故答案为:2. 【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.16.必要不充分【解析】【分析】根据ABC 与平面位置关系判定充要关系【详解】当ABC 不在平面同侧时ABC 到平面距离也可相等即的三个顶点到平面距离相等时平面与平面ABC 可相交所以充分性不成立当平面平面ABC解析:必要不充分 【解析】 【分析】根据A,B,C 与平面α位置关系判定充要关系. 【详解】当A,B,C 不在平面α同侧时,A,B,C 到平面α距离也可相等,即ABC ∆的三个顶点到平面α距离相等时,平面α与平面ABC 可相交,所以充分性不成立,当平面α平面ABC 时,A,B,C 到平面α距离必相等,所以必要性成立,故答案为:必要不充分 【点睛】本题考查线面位置关系以及充要关系判定,考查基本分析判断能力,属基础题.17.∪【分析】对任意的正数x 结论恒成立等价于a2≥(xx2)max(x >0)令y=x2+x(x >0)利用二次函数的单调性即可得出【详解】对任意的正数x 结论恒成立等价于a2≥(xx2)maxx >0令y=x解析:12⎛⎤-∞- ⎥⎝⎦,∪12⎡⎫+∞⎪⎢⎣⎭, 【分析】“对任意的正数x ,结论21a x x+≥恒成立”等价于a 2≥(x -x 2)max (x >0).令y =-x 2+x (x >0),利用二次函数的单调性即可得出. 【详解】“对任意的正数x ,结论21a x x+≥恒成立”等价于a 2≥(x -x 2)max ,x >0. 令y =-x 2+x =-21()2x -+14≤14,当x =12时,取等号. ∴a 2≥14. 解得a 12≥或a ≤-12. 故答案为:12⎛⎤-∞- ⎥⎝⎦,∪12⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题考查了二次不等式的恒成立问题,考查了充要条件的判定方法,考查了推理能力与计算能力,属于基础题.18.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断.【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④.【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础. 19.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t t t >->,求解2t t -的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R 当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,201104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞ 故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识. 20.【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可【详解】由题意可知命题为真命题据此有:求解不等式可得实数的取值范围是【点睛】本题主要考查命题的否定等价转化的数学思想等知识意在考查学生 解析:1m【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可.【详解】由题意可知,命题“2,20x R x x m ∀∈++>”为真命题,据此有:440m ∆=-<,求解不等式可得实数m 的取值范围是1m >.【点睛】本题主要考查命题的否定,等价转化的数学思想等知识,意在考查学生的转化能力和计算三、解答题21.2a >且8a ≠或2a <-【分析】先根据条件求出命题,p q 的等价命题,再根据命题“p q ∨”是假命题求解即可.【详解】由2220x ax a +-=,得:()()20x a x a -⋅+=, 解得:2a x =或x a =-, 当命题p 为真命题时,12a ≤或1a -≤, 所以22p a ⇔-≤≤, 又因为“只有一个实数0x 满足不等式20020x ax a ++≤”,即抛物线22y x ax a =++与x 轴只有一个交点,所以280a a ∆=-=,解得:0a =或8a =,即q ⇔0a =或8a =,若命题“p q ∨”是假命题,即命题,p q 均为假命题,所以有:2a >且8a ≠或2a <-【点睛】本题考查了命题的等价命题的计算以及p q ∨为假命题的等价命题,考查了学生的计算能力,属于一般题.22.(1)112a <<或52a ≥,(2)a ≥a ≤ 【分析】(1)首先分别算出P 真,Q 真a 的范围,再根据P ,Q 一真一假分别讨论即可. (2)首先设2()(23)1g x x a =+-+,将题意转化为min 1()10g x ≤,解不等式即可. 【详解】(1)因为函数()log a f x x =在()0,∞+上为减函数,所以P 真:01a <<.因为关于x 的不等式()22310x a x +-+≤有实数解,Q 真:2(23)40a ∆=--≥,解得52a ≥或102a <≤. 因为P Q ∨为真且P Q ∧为假,所以P ,Q 一真一假.当P 真Q 假时,01111521122a a a a <<⎧⎪⇒<<⎨<<<<⎪⎩或. 当P 假Q 真时,15512022a a a a >⎧⎪⇒≥⎨≥<≤⎪⎩或. 综上112a <<或52a ≥. (2)设2()(23)1g x x a =+-+, 因为函数()2231y lg x a x ⎡⎤=+-+⎣⎦的值域包含区间[]1,3-, 等价于min 1()10g x ≤,即24(23)1410a --≤, 218(23)5a -≥,解得a ≥a ≤ 【点睛】本题第一问考查逻辑连接词,同时考查了二次不等式的有解问题,第二问考查对数函数的值域问题,属于中档题.23.(1)[2,0]B =-;(2)充分非必要条件.【分析】(1)根据绝对值的性质解不等式得集合B ;(2)解不等式得集合,A B ,由AB =∅求出a 的范围,再判断是什么条件. 【详解】(1)由110x -+≥得11x +≤,111x -≤+≤,20x -≤≤,所以[2,0]B =-; (2)由题意(31,32)A a a =-+,[1,1]B a a =---+,若AB =∅,则321a a +≤--或311a a -≥-+,解得34a ≤-或12a ≥. ∴12a ≥是A B =∅的充分非必要条件. 【点睛】本题考查解绝对值不等式,考查解一元二次不等式,考查充分必要条件的判断,掌握集合的包含关系与充分必要条件之间的联系是解题关键.24.[)10,4,3⎛⎤+∞ ⎥⎝⎦.【分析】先化简两个集合,再根据充分必要性得到A 是B 的真子集,再列式计算即可.【详解】解:{}{}224303(0)A x x ax a x a x a a =-+≤=≤≤>, {}2540{1B x x x x x =-+≥=≤或4}x ≥,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集,故310a a ≤⎧⎨>⎩或40a a ≥⎧⎨>⎩,103a ∴<≤或4a ≥, ∴实数a 的取值范围是[)10,4,3⎛⎤+∞ ⎥⎝⎦.【点睛】 结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 25.(1)[)4,+∞;(2)[)(]3,26,7--.【分析】(1)由p 是q 的充分条件,可得出[][]2,62,2m m -⊆-+,可得出关于正实数m 的不等式组,由此可解得实数m 的取值范围;(2)求出q ,分p 真q 假和p 假q 真两种情况讨论,求出两种不同情况下x 的取值范围,综合可求得结果.【详解】解:解不等式24120x x --≤,解得26x -≤≤,即:26p x -≤≤.(1)p 是q 的充分条件,[]2,6-∴是[]2,2m m -+的子集,故02226m m m >⎧⎪-≤-⎨⎪+≥⎩,解得:4m ≥,所以m 的取值范围是[)4,+∞; (2)当5m =时,:37p m -≤≤,由于命题p 、q 其中一个是真命题,一个是假命题,分以下两种情况讨论:①p 真q 假时,2673x x x -≤≤⎧⎨><-⎩或,解得x ∈∅; ②p 假q 真时,6237x x x ><-⎧⎨-≤≤⎩或,解得32x -≤<-或67x <≤. 所以实数x 的取值范围为[)(]3,26,7--.【点睛】 结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 26.(1)[]1,4-;(2)[]1,3-.【分析】(1)把命题p 转化为当[3,4]x ∈时,2min (22)3x m m -≥-,即可求解;(2)根据二次函数的性质,求得[1,4],[,1]A B a a =-=+,根据p 是q 的必要不充分条件,得到B 是A 的真子集,列出不等式组,即可求解.【详解】(1)由题意,对任意[3,4]x ∈,不等式2223x m m -≥-恒成立,即当[3,4]x ∈时,2min (22)3x m m -≥-,又由3x =时,min (22)4x -=,即243m m ≥-,解得14m -≤≤,即实数m 的取值范围[]1,4-.(2)对于命题q :当[0,1]x ∈时,函数221m x x a =-++,当[0,1]x ∈时,函数2221(1)[,1]m x x a x a a a =-++=-+∈+,记[1,4],[,1]A B a a =-=+,因为p 是q 的必要不充分条件,所以B 是A 的真子集, 可得114a a ≥-⎧⎨+≤⎩且“=”不能同时成立,解得13a -≤≤, 经验证,当1,3a =-时满足题意,所以实数a 的取值范围[]1,3-.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.。

新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)

新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(包含答案解析)

一、选择题1.已知命题:p 关于x 的方程210x ax ++=没有实根;命题:0q x ∀≥,20x a ->.若p ⌝和p q ∧都是假命题,则实数a 的取值范围是( ) A .()(),21,-∞-⋃+∞ B .(]2,1- C .(]1,2D .[)1,22.设0a >,0b >,则“1a b +≤”是“114a b+≥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.下列说法中正确的是( )A .命题“若x y =,则22x y =”的逆命题为真命题B .若p q ∧为假命题,则,p q 均为假命题C .若p q ∧为假命题,则p q ∨为真命题D .命题“若两个平面向量,a b 满足||||||a b a b ⋅>⋅,则,a b 不共线”的否命题是真命题. 4.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( )A .[]2,6B .()2,6C .(][),26,-∞+∞ D .()(),26,-∞+∞5.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真6.下列命题中正确的是( ) A .“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的充分不必条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a 、b 、c 为非零向量,则“a b a c ⋅=⋅”是“b c =”的充要条件D .p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++> 7.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题8.已知函数()222f x x x =-+,2log g xx t ,对[]10,2x ∀∈,21,162x ⎡⎤∃∈⎢⎥⎣⎦使得()()12f x g x =,则实数t 的取值范围( ) A .(],2-∞-B .[)2+∞,C .()2,2-D .[]22-,9.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.下列命题正确的是( )A .“若x =3,则x 2﹣2x ﹣3=0”的否命题是:“若x =3,则x 2﹣2x ﹣3≠0”B .在△ABC 中,“A >B ”是“sinA >sinB ”的充要条件 C .若p ∧q 为假命题,则p ∨q 一定为假命题D .“存在x 0∈R ,使得e x 0≤0”的否定是:不存在x 0∈R ,使得e 0x >0”11.条件甲:关于x 的不等式 sincos 1a x b x +>的解集为空集,条件乙:1a b +≤,则甲是乙的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件12.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件;③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .0二、填空题13.若0, 0a >b >,则“4a b +≤”是 “4ab ≤”的_____条件14.若“x l >”是“x a ≥”的充分不必要条件,则a 的取值范围为______.15.已知a R ∈,命题“存在x ∈R ,使230x ax a --≤”为假命题,则a 的取值范围为______.16.“1x ≠或2y ≠”是“3x y +≠”的__________条件(填写“充分非必要、必要非充分、充要、既不充分也非必要”)17.设:12p x <<,:21x q >,则p 是q 成立的________条件18.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,则实数m 的最大值为__________. 19.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若m 1≥,则22(1)30mx m x m -+++>的解集是R ”的逆命题;④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是____________ 20.“”是“”的_____条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题21.设{}2:8200p P x x x =--≤,:q 非空集合{}11S x m x m =-≤≤+,且p 是q 的充分不必要条件,求实数m 的取值范围.22.已知命题p :方程2220x ax a +-=在[]1,1-上有解;命题q :只有一个实数0x 满足不等式20020x ax a ++≤,若命题“p q ∨”是假命题,求a 的范围.23.已知命题p : 1x 和2x 是方程220x mx --=的两个实根,不等式22153a a x x --≥-对任意实数[1,1]m ∈-恒成立;命题q :不等式2210ax x +->有解.命题p 为真命题.(1)求实数a 的取值范围;(2)q ⌝是真命题,求实数a 的取值范围.24.已知0c >,设p :函数x y c =在R 上递减; q :不等式|2|1x x c +->的解集为R ,如果“p 或q ”为真,且“p 且 q ”为假,求c 的取值范围.25.已知p :2a ≥,q :函数()()2lg 2f x ax x a =++的定义域为R .如果“p 或q ”为真命题,“p 且q ”为假命题,求实数a 的取值范围. 26.已知函数()1-=+x af x a (0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭.(1)求实数a ;(2)若函数()1322⎛⎫=+- ⎪⎝⎭g x f x ,求函数()g x 的解析式; (3)已知命题p :“任意x ∈R 时,()220++≤g ax ax ”,若命题p ⌝是假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】计算出当命题p 为真命题时实数a 的取值范围,以及当命题q 为真命题时实数a 的取值范围,由题意可知p 真q 假,进而可求得实数a 的取值范围.【详解】若命题p 为真命题,则240a ∆=-<,解得22a -<<;若命题q 为真命题,0x ∀≥,20x a ->,则()min21xa <=.由于p ⌝和p q ∧都是假命题,则p 真q 假,所以221a a -<<⎧⎨≥⎩,可得12a ≤<.因此,实数a 的取值范围是[)1,2. 故选:D. 【点睛】本题考查利用复合命题、全称命题的真假求参数,考查计算能力,属于中等题.2.A解析:A 【分析】先利用基本不等式证明充分性成立,再举反例说明必要性不成立即可. 【详解】解:因为0a >,0b >,所以1a b ≤+≤,所以104ab <≤, 所以14ab≥(当且仅当12a b ==时取等号),所以114a b +≥≥=(当且仅当12a b ==时取等号).所以“1a b +≤”是“114a b+≥”的充分条件. 反之,当13a =,1b =时114a b +≥,但是1a b +>,所以“1a b +≤”是“114a b +≥”的不必要条件. 故选:A. 【点睛】本题主要考查基本不等式的应用、充分条件与必要条件,属于中档题.3.D解析:D 【分析】A 中,利用四种命题的的真假判断即可;B 、C 中,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题;D 中,写出该命题的否命题,再判断它的真假性. 【详解】对于A ,命题“若x y =,则22x y =”的逆命题是:若22x y =,则x y =;因为y x =-也成立.所以A 不正确;对于B ,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题,所以B 错误;C 错误;对于D ,“平面向量,a b 满足||||||a b a b ⋅>⋅”,则,a b 不共线的否命题是,若“平面向量,a b 满足||||||a b a b ⋅≤⋅”,则,a b 共线; 由||||cos a b a b θ⋅=⋅⨯知:||||||a b a b ⋅≥⋅,一定有||||||a b a b ⋅=⋅,cos 1θ=±, 所以,a b 共线,D 正确. 故选:D. 【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题.4.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6]. 故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.5.C解析:C 【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【分析】由两直线平行与系数的关系式求得m 判断A;由线面垂直的判定定理判断B ;由平面向量的数量积的运算判断C ;写出特称命题的否定判断D ,综合可得答案. 【详解】解:由直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行⇔223203220m m m m m ⎧+--=⎨-+--≠⎩()()()(),可得m =“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的既不充分也不必条件,故A 错误;直线l 垂直平面α内无数条直线不一定有直线垂直平面,故“直线l 垂直平面α内无数条直线”不是“直线l 垂直于平面α”的充分条件,故B 错误;a 、b 、c 为非零向量,由“a b a c ⋅=⋅”不能得到“b c =”,反之由“b c =”能够得到“a b a c ⋅=⋅”,故“a b a c ⋅=⋅”是“b c =”的必要不充分条件,故C 错误;p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++>,故D 正确; 故选:D. 【点睛】本题主要考查命题真假的判断,涉及全称命题与特称命题的否定的书写、充分必要条件的判断等知识点,属于中档题.7.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.8.D解析:D 【分析】求出()(),f x g x 的值域,A B ,由题意可得A B ⊆,列不等式求解即可. 【详解】()222f x x x =-+,当[]0,2x ∈时,()f x 的值域为[]1,2A =,2log g xx t ,1,162x ⎡⎤∈⎢⎥⎣⎦,()g x 的值域[]1,4t t B =-+,由条件可知A B ⊆,即[][]1,21,4t t ⊆-+,从而有1142t t -≤⎧⎨+≥⎩,可得22t -≤≤. 故选:D. 【点睛】本题主要考查全称命题与特称命题的综合应用,关键是要将问题进行转化,转化为值域之间的包含问题,是中档题.9.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.10.B解析:B 【分析】写出命题的否命题判断A ;ABC ∆中,由正弦定理判断B 的正误;若“p q ∧”为假命题,则p 、q 至少一个是假命题,判断C ;利用命题的否定形式判断D . 【详解】对于A ,命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠”,故A 不正确.对于B ,ABC ∆中,“A B >” ⇔ “a b >”;由正弦定理得“a b >” ⇔ “sin sin A B >”;“ A B >” ⇔ “sin sin A B >”所以B 正确;对于C ,若“p q ∧”为假命题,所以p 、q 至少一个是假命题,所以C 错误;对于D ,“存在0x R ∈,使得00x e ”的否定是:不存在0x R ∈,使得00x e >”,不满足命题的否定形式,所以D 不正确; 故选:B . 【点睛】本题考查复合命题的真假与构成其简单命题的真假的关系:“p q ∧”有假则假,全真则真;“p ∨q ”有真则真,全假则假;“p ⌝”真假相反;考查命题的否定与否命题的区别以及考查三角形中正弦定理,是基本知识的考查.11.A解析:A 【分析】分别求出条件甲、乙所对应的,a b 的关系式,比较两个关系式所表示的图形,可得出结论. 【详解】 由题意,当0ab 时,不等式 sincos 1a x b x +>的解集为空集,当,a b 不都为0时,()sin cos a x b x x ϕ+=+,sin ϕ=,cos ϕ=.因为()22sin 1a b x ϕ++>的解集为空集,所以221a b +≤,即221a b +≤. 如下图,221a b +≤表示以原点为圆心,半径为1的圆及其内部,1a b +≤表示为圆内接正方形及其内部,所以甲是乙的必要不充分条件. 故答案为:A.【点睛】本题考查充分性与必要性的判断,考查三角函数的恒等变换,考查不等式表示的平面区域,考查学生的计算能力与推理能力,属于中档题.12.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.二、填空题13.充分不必要【分析】根据题意利用基本不等式可判定充分性是成立的可举出反例说明必要性不成立即可得到答案【详解】当时由基本不等式可得当时有解得充分性是成立的;例如:当时满足但此时必要性不成立综上所述是的充解析:充分不必要 【分析】根据题意,利用基本不等式,可判定充分性是成立的,可举出反例,说明必要性不成立,即可得到答案. 【详解】当0,0a b >>时,由基本不等式,可得a b +≥当4a b +≤时,有4a b +≤,解得4ab ≤,充分性是成立的; 例如:当1,4a b ==时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故答案为充分不必要条件. 【点睛】本题主要考查了充分不必要条件的判定,其中解答中熟记充分条件、必要条件的判定方法,以及合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.14.【分析】根据充分条件和必要条件的定义进行求解即可【详解】若是的充分不必要条件则则故答案为【点睛】本题主要考查充分条件和必要条件的判断比较基础判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题则 解析:a 1≤【分析】根据充分条件和必要条件的定义进行求解即可. 【详解】若“x l >”是“x a ≥”的充分不必要条件,则(1,)[,)a +∞⊆+∞,则a 1≤, 故答案为a 1≤ 【点睛】本题主要考查充分条件和必要条件的判断,比较基础.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.15.【分析】将条件转化为任意恒成立此时有从而解出实数a 的取值范围【详解】命题:存在使为假命题即恒成立则即:解得故实数a 的取值范围为故答案为:【点睛】本题考查由命题的真假求参数的范围考查一元二次不等式的应 解析:()12,0-【分析】将条件转化为任意x ∈R ,230x ax a -->恒成立,此时有∆<0,从而解出实数a 的取值范围. 【详解】命题:“存在x ∈R ,使230x ax a --≤”为假命题 即230x ax a -->恒成立,则∆<0, 即:2120a a ∆=+<,解得120a -<<,故实数a 的取值范围为()12,0-故答案为:()12,0-【点睛】本题考查由命题的真假求参数的范围,考查一元二次不等式的应用,体现了等价转化的思想,属于中等题.16.必要不充分【分析】取得到不充分;考虑必要性对应命题的逆否命题为真得到必要性;得到答案【详解】取得到故不充分;考虑必要性对应命题的逆否命题:若且则易知成立必要性;故答案为必要不充分【点睛】本题考查了必 解析:必要不充分【分析】取0,3x y ==得到3x y +=,不充分;考虑必要性对应命题的逆否命题为真,得到必要性;得到答案.【详解】取0,3x y ==得到3x y +=,故不充分;考虑必要性对应命题的逆否命题:若1x =且2y = ,则3x y +=易知成立,必要性; 故答案为必要不充分【点睛】本题考查了必要不充分条件,意在考查学生的推断能力,取特殊值可以快速得出结论,是解题的关键.17.充分不必要【解析】【分析】根据充分必要条件的定义判断即可【详解】由解得即因为所以是成立的充分不必要条件故答案为:充分不必要【点睛】本题主要考查了充分条件必要条件的判定属于中档题解析:充分不必要【解析】【分析】根据充分必要条件的定义判断即可.【详解】由21x >解得0x >,即:0q x >,因为120x x <<⇒>,012x x ><<,所以p 是q 成立的充分不必要条件,故答案为:充分不必要【点睛】本题主要考查了充分条件,必要条件的判定,属于中档题.18.【分析】根据题意转化为利用可将函数进行换元利用对勾函数求函数的最大值【详解】当时又设设当时取得最大值若为真命题即的最大值是5故填:5【点睛】本题考查了根据全称命题的真假求参数取值范围的问题考查了转化解析:5【分析】根据题意转化为()2max log 4log 2x m x ≤+,利用21log 2log x x =,可将函数进行换元,利用对勾函数求函数的最大值.【详解】当[]2,8x ∈时,[]2log 1,3x ∈ 又21log 2log x x = ,设[]2log 1,3x t =∈ , 设24log 4log 2x y x t t =+=+当1t =时,取得最大值max 5y =.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,()2max log 4log 2x m x ≤+ ,即5m ≤,m ∴的最大值是5.故填:5.【点睛】本题考查了根据全称命题的真假,求参数取值范围的问题,考查了转化与化归的思想,若存在0x ,使()0m f x ≤,即()()max m f x ≤,若0x ∀,使()0m f x ≤恒成立,所以()()min m f x ≤,需注意时任意还是存在问题.19.①③④【解析】对于①若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于②矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②错误;对于③其逆命题为:若的解集是则解析:①③④【解析】对于①“若0x y +>,则00x y >>且”的逆命题为“若00x y >>且,则0x y +>”故逆命题为真命题,则否命题也为真,故①正确;对于②“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”为假命题,故其逆命题也为假,故②错误;对于③其逆命题为:若()22130mx m x m -+++>的解集是R ,则1m ≥,当该不等式解集为R 时,1.0m =时,不合题意,2.()()2041430m m m m >⎧⎪⎨=+-+<⎪⎩解得1m ,故逆命题为真,即③正确;对于④,原命题为真,故逆否命题也为真,故④正确,即正确的序号为①③④,故答案为①③④.20.必要不充分条件【解析】【分析】由a2>1解得a>1或a<-1由a3>1解得a>1进而判断出结论【详解】由a2>1解得a>1或a<-1由a3>1解得a>1因为(-∞-1)∪(1+∞)⊃≠(1+∞)所以解析:必要不充分条件【解析】【分析】 由,解得或,由解得,进而判断出结论. 【详解】 由,解得或, 由解得, 因为, 所以“”是“”的必要不充分条件, 故答案是:必要不充分条件.【点睛】该题考查的是有关必要不充分条件的判断,涉及到的知识点有不等式的解法,必要不充分条件的定义,属于简单题目. 三、解答题21.[)9,+∞【分析】首先求出集合P ,再根据p 是q 的充分不必要条件,可得所以P S ,即可得到不等式组,解得即可;【详解】解:由28200x x --,解得210x -.{}|210P x x ∴=-≤≤. 非空集合{}11S x m x m =-≤≤+.因为p 是q 的充分不必要条件,所以P S ,所以11012m m +≥⎧⎨-≤-⎩解得9m ≥ 即[)9,m ∈+∞【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.22.2a >且8a ≠或2a <-【分析】先根据条件求出命题,p q 的等价命题,再根据命题“p q ∨”是假命题求解即可.【详解】由2220x ax a +-=,得:()()20x a x a -⋅+=, 解得:2a x =或x a =-, 当命题p 为真命题时,12a ≤或1a -≤, 所以22p a ⇔-≤≤, 又因为“只有一个实数0x 满足不等式20020x ax a ++≤”,即抛物线22y x ax a =++与x 轴只有一个交点,所以280a a ∆=-=,解得:0a =或8a =,即q ⇔0a =或8a =,若命题“p q ∨”是假命题,即命题,p q 均为假命题,所以有:2a >且8a ≠或2a <-【点睛】本题考查了命题的等价命题的计算以及p q ∨为假命题的等价命题,考查了学生的计算能力,属于一般题.23.(1)a ≥6或a ≤-1.(2){}1a a ≤-.【分析】 (1)根据题意得到1212,2,x x m x x +=⎧⎨=-⎩,计算12x x -=12max 3x x -=,代入解不等式得到答案.(2)讨论a >0,a =0,a <0三种情况,根据命题的真假得到1a ≤-,再计算交集得到答案.【详解】(1)∴命题p 是真命题,∵x 1,x 2是方程x 2-mx-2=0的两个实根,∴1212,2,x x m x x +=⎧⎨=-⎩ ∴12x x -== ∴当[1,1]m ∈-时, 12max 3x x -=, 由不等式a 2-5a -3≥12x x -对任意实数m ∈[-1,1]恒成立,可得a 2-5a -3≥3,解得a ≥6或a ≤-1, 则当命题p 为真命题时,a ≥6或a ≤-1.(2)∵命题p 是真命题,命题q 是假命题, 命题q :不等式ax 2+2x -1>0有解.①当a >0时,显然有解;②当a =0时,2x -1>0有解;③当a <0时,∵ax 2+2x -1>0,∴Δ=4+4a >0,∴-1<a <0.从而命题q :不等式ax 2+2x -1>0有解时,a >-1.∵命题q 是假命题,∴a ≤-1 611a a a ≥≤-⎧∴⎨≤-⎩或,所以a 的取值范围为{}1a a ≤-.【点睛】本题考查了根据命题的真假求参数,意在考查学生的计算能力和推断能力.24.[)10,1,2⎛⎤+∞ ⎥⎝⎦【分析】 计算p 为真时()0,1c ∈,q 为真时12c >,讨论p 真q 假,或p 假q 真两种情况,分别计算得到答案.【详解】p :函数x y c =在R 上递减,故()0,1c ∈;q :不等式|2|1x x c +->的解集为R ,当2x c ≥时,|2|221x x c x c +-=->,即12c x <-,故min 11222c x c ⎧⎫<-=-⎨⎬⎩⎭, 解得12c >; 当2x c <时,|2|21x x c c +-=>,解得12c >. 综上所述:12c >. “p 或q ”为真,且“p 且 q ”为假,故p 真q 假,或p 假q 真.当p 真q 假时,0112c c <<⎧⎪⎨≤⎪⎩,故10,2c ⎛⎤∈ ⎥⎝⎦;当p 假q 真时,112c c ≥⎧⎪⎨>⎪⎩,故[)1,c ∈+∞. 综上所述:[)10,1,2c ⎛⎤∈+∞ ⎥⎝⎦.【点睛】本题考查了根据命题的真假求参数,意在考查学生的计算能力和转化能力. 25.()1,2【分析】由二次函数和不等式的性质分别可得q 真时的a 的取值范围,再由“p 或q ”为真命题,“p 且q ”为假命题,则p ,q 一真一假,分类讨论取并集可得.【详解】解:由q 为真知24400a a ⎧∆=-<⎨>⎩,1a >.由“p 或q ”为真命题,“p 且q ”为假命题知,p 和q 一个为真,一个为假,若p 真q 假,此时a 不存在;若p 假q 真,此时12a <<,综上,实数a 的取值范围为()1,2.【点睛】本题考查了含有联结词的命题的真假,掌握复合命题的真假和分类讨论是关键,考查了推理和运算能力,属于中档题.26.(1)12a =(2)11()22x g x ⎛⎫=- ⎪⎝⎭(3)[0,4] 【分析】(1)因为函数()1-=+x a f x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭,可得1212a a -+=,即可求得答案;(2)因为()121121x x a f x a --=+=+,13()22g x f x ⎛⎫=+- ⎪⎝⎭,即可求得答案; (3)命题p ⌝是假命题,故命题p 是真命题,当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22x g x ⎛⎫=-⎪⎝⎭,不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立,即可求得答案. 【详解】(1)函数()1-=+x a f x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭. 1212a a -∴+= ,即121a a -= 解得:12a =, (2)由(1)12a = ∴()121121x x a f x a --=+=+1122131311()1222222x xg x f x ⎛⎫+- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴=+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11()22xg x ⎛⎫∴=- ⎪⎝⎭ (3)命题p ⌝是假命题,故命题p 是真命题, ∴当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22xg x ⎛⎫=- ⎪⎝⎭∴不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立, 即221122++⎛⎫≤ ⎪⎝⎭ax ax 在R 上恒成立 根据指数函数单调可知:12x y ⎛⎫= ⎪⎝⎭是减函数 ∴221ax ax ++≥在R 上恒成立即210ax ax ++≥在R 上恒成立,当0a =时,不等式化为10≥成立;当0a ≠时,则需满足2040a a a >⎧⎨-≤⎩, 解得04a <≤,综上所述,实数a 的取值范围是[0,4].【点睛】本题主要考查了求解函数解析式和根据不等式恒成立求参数范围,解题关键是掌握函数的基础知识和含参数一元二次不等式恒成立的解法,属于难题.。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(含答案解析)(2)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(含答案解析)(2)

一、选择题1.使不等式2x x 60--<成立的一个充分不必要条件是( )A .2x 0-<<B .3x 2-<<C .2x 3-<<D .2x 4-<<2.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1 B .2C .3D .43.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝4.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”5.""6a π=是()tan a π-=的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 6.已知a ,b 是两条直线,则“a ,b 没有公共点”是“a ,b 是异面直线”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件7.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6 B .()2,6C .(][),26,-∞+∞ D .()(),26,-∞+∞8.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.已知数列{}n a 和{}n b 满足n n b a =,则“数列{}n a 为等比数列”是“数列{}n b 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.下列命题中正确命题的个数是( )①对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++>;②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题; ③设a ,b 是非零向量,则“a b =”是“a b a b +=-”的必要不充分条件; ④3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A .1B .2C .3D .411.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.若命题“方程230x mx -+=在[]1,2上有解”为假命题,则m 的取值范围是______. 14.已知a R ∈,命题“存在x ∈R ,使230x ax a --≤”为假命题,则a 的取值范围为______.15.命题“若实数a b ,满足25a b +>,则2a =且3b =”的否命题是________命题(填“真”或 “假”).16.若命题“p :x R ∀∈,2210ax x ++>”是假命题,则实数a 的取值范围是______.17.关于函数()f x =的性质描述,正确的是__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.18.命题“,11x x ∀∈+≥R ”的否定是_________.19.设集合{1,2}A =,2{|10}B x x ax =--≤,若x A ∈是x B ∈的充分条件,则实数a 的取值范围是________20.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________.三、解答题21.已知命题:|1|2a α-<,β:方程2(2)10x a x +++=没有正根.求实数a 的取值范围,使得命题,αβ有且只有一个真命题.22.已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x ≤1+m (m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围.23.设函数2lg(4-3)y x x =-+的定义域为A ,函数2,(0)(0)1y x m m x =∈>+,的值域为B .(1)当2m =时,求AB ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.24.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥. (1)当1a =时,求集合B . (2)问:12a ≥是A B =∅的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.25.已知集合{}12A x x =-≤≤,{}22210B x x mx m =-+-≤.(1)命题p :x A ∈,命题q :x B ∈,且p 是q 的必要不充分条件,求实数m 的取值范围;(2)若x A ∀∈,243x m x +≥+恒成立,求实数m 的取值范围.26.已知命题p :关于x 的方程x 2-(3m -2)x +2m 2-m -3=0有两个大于1的实数根. (1)若命题p 为真命题,求实数m 的取值范围;(2)命题q :3-a <m <3+a ,是否存在实数a 使得p 是q 的必要不充分条件,若存在,求出实数a 的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先求解二次不等式,然后确定其成立的一个充分不必要条件即可. 【详解】由260x x --<得()()230x x +-<,得23x -<<, 若使不等式260x x --<成立的一个充分不必要条件, 则对应范围是()2,3-的一个真子集, 即20x -<<,满足条件, 故选A . 【点睛】本题主要考查充分条件和必要条件的应用,转化为集合真子集关系是解决本题的关键.2.B解析:B 【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定. 【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B. 【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.4.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式.所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.5.A解析:A 【解析】 由6πα=,可得56ππα-=,得1sin()2πα-=,但由1sin()2πα-=不一定能够得到“6πα=”,即“6πα=”是()1sin 2πα-=的充分不必要条件,故选A. 6.B解析:B 【分析】根据异面直线的定义及充分条件、必要条件的概念求解即可. 【详解】因为a ,b 没有公共点,a ,b 可能平行也可能异面, 所以“a ,b 没有公共点”成立推不出“a ,b 是异面直线”, 反之,“a ,b 是异面直线”可以推出“a ,b 没有公共点”成立, 所以“a ,b 没有公共点”是“a ,b 是异面直线”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件,必要条件的判定,异面直线的概念,属于中档题.7.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6]. 故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.8.C【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案. 【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件. 故选:C. 【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.9.A解析:A 【分析】根据等比数列定义可证得11n n n na b q b a ++==,可知充分性成立;通过反例可确定必要性不成立,从而得到结果. 【详解】若数列{}n a 为等比数列,公比为q ,则11n n n na b q b a ++== {}n b ∴为等比数列,充分性成立设数列{}n b 的通项公式为2nn b = {}n b ∴为等比数列,公比2q若数列{}n a 为:2,4,8,16,32,--⋅⋅⋅,满足12n na a +=,但{}n a 不是等比数列必要性不成立∴“数列{}n a 为等比数列”是“数列{}n b 为等比数列”的充分而不必要条件故选:A 【点睛】本题考查充分条件与必要条件的判定,涉及到等比数列定义的应用;关键是能够明确数列成等比数列需满足的条件.10.A【分析】①根据特称命题的否定是全称命题,判断①错误;②原命题与它的逆否命题真假性相同,判断它的逆否命题的真假性即可; ③利用向量的平行四边形法则,转化为平行四边形的对角线的关系,判断即可; ④计算直线()320m x my ++-=与直线650mx y -+=互相垂直的等价条件为0,3m =,即可.【详解】对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++≥,故①不正确;命题“已知x ,y R ∈,,若3x y +≠,则2x ≠或1y ≠”的逆否命题为:“已知x ,y R ∈,,若2x =且=1y ,则3x y +=”为真命题,故②正确;设a ,b 是非零向量,则“a b =”是“a b a b +=-”的既不充分也不必要条件,故③不正确;直线()320m x my ++-=与直线650mx y -+=互相垂直,则0,3m =,故④不正确. 故选:A 【点睛】本题考查了命题的否定,逆否命题,充要条件等知识点,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.11.A解析:A 【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可. 【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立. 故选:A . 【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.12.A解析:A 【分析】由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案. 【详解】 解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<, ∴:11p x -<<,由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件; 当3a >时,解得:q x a >或3x <,满足条件; 当3a <时,解得:3q x >或x a <,∴13a ≤<, 综上:1a ≥, 故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.【分析】先求出方程在上有解为真命题时的取值范围即在上有解然后再求补集即可得到答案【详解】若方程在上有解为真命题即在上有解设由勾型函数的单调性易得函数在上单调递减在上单调递增由则此时所以在上有解则所以解析:((4,)-∞⋃+∞【分析】先求出方程230x mx -+=在[]1,2上有解为真命题时m 的取值范围,即3m x x=+在[]1,2上有解,然后再求补集即可得到答案. 【详解】若方程230x mx -+=在[]1,2上有解为真命题. 即3m x x=+在[]1,2上有解,设()3f x x x =+由勾型函数的单调性,易得函数()3f x x x=+在1⎡⎣, 上单调递减,在2⎤⎦上单调递增.由f=()()714,22f f ==,则此时()4f x ≤所以3m x x=+在[]1,2上有解,则4m ≤≤所以若方程230x mx -+=在[]1,2上有解为真命题,则4m ≤≤所以命题“方程230x mx -+=在[]1,2上有解”为假命题时,4m >或m <故答案为:((4,)-∞⋃+∞ 【点睛】关键点睛:本题考查根据命题的真假求参数的范围,解答本题的关键是先求出方程230x mx -+=在[]1,2上有解为真命题时m 的取值范围,即即3m x x=+在[]1,2上有解得到4m ≤≤,从而得出当4m >或m <“方程230x mx -+=在[]1,2上有解”为假命题,属于中档题.14.【分析】将条件转化为任意恒成立此时有从而解出实数a 的取值范围【详解】命题:存在使为假命题即恒成立则即:解得故实数a 的取值范围为故答案为:【点睛】本题考查由命题的真假求参数的范围考查一元二次不等式的应 解析:()12,0-【分析】将条件转化为任意x ∈R ,230x ax a -->恒成立,此时有∆<0,从而解出实数a 的取值范围. 【详解】命题:“存在x ∈R ,使230x ax a --≤”为假命题 即230x ax a -->恒成立,则∆<0, 即:2120a a ∆=+<,解得120a -<<, 故实数a 的取值范围为()12,0- 故答案为:()12,0- 【点睛】本题考查由命题的真假求参数的范围,考查一元二次不等式的应用,体现了等价转化的思想,属于中等题.15.真【分析】先求逆命题及其真假再根据逆否命题等价性确定否命题真假【详解】命题若实数满足则且的逆命题是若且则是真命题所以命题若实数满足则且的否命题是真命题故答案为:真【点睛】本题考查四种命题关系及其真假解析:真 【分析】先求逆命题及其真假,再根据逆否命题等价性确定否命题真假. 【详解】命题“若实数a b ,满足25a b +>,则2a =且3b =”的逆命题是 “若2a =且3b =,则25a b +>”,是真命题,所以命题“若实数a b ,满足25a b +>,则2a =且3b =”的否命题是真命题. 故答案为:真 【点睛】本题考查四种命题关系及其真假,考查基本分析判断能力,属基础题.16.【分析】若命题p :∀x ∈Rax2+2x+1>0是假命题则a =0或a <0或进而得到实数a 的取值范围【详解】若命题p :∀x ∈Rax2+2x+1>0是假命题则∃x ∈Rax2+2x+1≤0当a =0时y =2x 解析:(],1-∞【分析】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题,则a =0,或a <0,或0440a a ⎧⎨=-≥⎩>,进而得到实数a 的取值范围. 【详解】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题, 则∃x ∈R ,ax 2+2x +1≤0,当a =0时,y =2x +1为一次函数,满足条件;当a <0时,y =ax 2+2x +1是开口朝下的二次函数,满足条件; 当a >0时,y =ax 2+2x +1是开口朝上的二次函数, 则函数图象与x 轴有交点,即△=4﹣4a ≥0, 解得:0<a ≤1综上可得:实数a 的取值范围是:(],1-∞ 故答案为:(],1-∞ 【点睛】本题以命题的真假判断与应用为载体,考查了二次函数的图象和性质,难度中档.17.①②③【分析】由被开方式非负和分母不为0解不等式可得f (x )的定义域可判断①;化简f (x )讨论0<x≤1﹣1≤x <0分别求得f (x )的范围求并集可得f (x )的值域可判断②;由f (﹣1)=f (1)=0解析:①②③ 【分析】由被开方式非负和分母不为0,解不等式可得f (x )的定义域,可判断①;化简f (x ),讨论0<x ≤1,﹣1≤x <0,分别求得f (x )的范围,求并集可得f (x )的值域,可判断②;由f (﹣1)=f (1)=0,f(x)不是增函数,可判断④;由奇偶性的定义得f (x )为奇函数,可判断③. 【详解】①,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得﹣1≤x ≤1且x ≠0,可得函数()f x =的定义域为[﹣1,0)∪(0,1],故①正确;②,由①可得f (x ,即f (x ,当0<x ≤1可得f (x (﹣1,0];当﹣1≤x <0可得f (x [0,1).可得f (x )的值域为(﹣1,1),故②正确;③,由f (x 的定义域为[﹣1,0)∪(0,1],关于原点对称,f (﹣x =﹣f (x ),则f (x )为奇函数,即有f (x )的图象关于原点对称,故③正确.④,由f (﹣1)=f (1)=0,则f (x )在定义域上不是增函数,故④错误; 故答案为:①②③【点睛】本题考查函数的性质和应用,主要是定义域和值域的求法、单调性的判断和图象的特征,考查定义法和分类讨论思想,以及化简运算能力和推理能力,属于中档题.18.【分析】根据全称命题的否定是特称命题解答【详解】由题意命题为全称命题则它的否定为:故答案为:【点睛】本题考查含一个量词的命题的否定属于基础题 解析:,11x x ∃∈+<R【分析】根据全称命题的否定是特称命题解答。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》检测卷(含答案解析)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》检测卷(含答案解析)

一、选择题1.下列命题错误的是( )A .命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=无实数根,则0m ≤”B .“6πθ=”是“()1sin 22k θπ+=”的充分不必要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++≥ 2.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( ) A .p ∧q B .¬p ∨q C .¬p ∧q D .¬p ∨q ⌝3.""6a π=是()tan a π-=的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件4.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .45.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”; ②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个6.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6 B .()2,6C .(][),26,-∞+∞ D .()(),26,-∞+∞7.已知命题:,sin cos 10p x R x x ∀∈++;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( )A .pB .()p q ∨⌝C .()p q ⌝∧D .p q ∧8.下列命题中正确命题的个数是( )①对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++>; ②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题; ③设a ,b 是非零向量,则“a b =”是“a b a b +=-”的必要不充分条件; ④3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A .1B .2C .3D .49.已知m ,n 为空间中两直线,α,β为两不同平面,已知命题:p 若m α⊂,m β⊥,则αβ⊥;命题:q 若m α⊂,n ⊂α,//m β,//n β,则//αβ.则p ,()q ⌝,()p q ∧,()p q ∨这四个命题中真命题的个数为( )A .1B .2C .3D .410.下列说法正确的是( )A .“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠或2x ≠-”B .如果p 是q 的充分条件,那么p ⌝是q ⌝的充分条件C .若命题p 为真命题,q 为假命题,则p q ∧为假命题D .命题“若αβ=,则sin sin αβ=”的否命题为真命题11.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .312.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若命题“方程230x mx -+=在[]1,2上有解”为假命题,则m 的取值范围是______. 14.若0, 0a >b >,则“4a b +≤”是 “4ab ≤”的_____条件15.若命题“*n N ∃∈,260n nt -+≤”是真命题,则实数t 的取值范围是______. 16.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数31()13f x x x =-++有两个零点; ③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是13;④动圆C 既与定圆22(2)4x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是28(0)y x x =≠;⑤若对任意的正数x ,不等式x e x a ≥+恒成立,则实数a 的取值范围是1a ≤. 其中正确的命题序号是________.17.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,则实数m 的最大值为__________. 18.设命题p :实数a 满足不等式39a ≤;命题q :函数329()(3)2772f x x a x x a =+-++无极值点.又已知“p q ∧”为真命题,记为r .命题t :211(2)()022a m a m m -+++>,若r 是t ⌝的必要不充分条件,则正整数m 的值为_____. 19.“”是“函数为R 上的增函数”的_______.(填“充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件”中的一个) 20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.(1)已知命题p :()20a a a R -<∈,命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈,若命题“p 且q ”为假命题,命题“p 或q ”为真命题,求实数a 的取值范围;(2)已知集合{}22|440A x x x a =-+-≤,{}2|41270B x x x =+-≤,若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.22.设:p 实数x 满足22430x ax a -+<,其中0a >.:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)非p 是非q 的充分不必要条件,求实数a 的取值范围.23.已知p :关于x ,y 的方程C :x 2+y 2﹣4x +6y +m 2﹣3=0表示圆;q :圆x 2+y 2=a 2(a >0)与直线3x +4y ﹣5m +10=0有公共点.若p 是q 的必要不充分条件,求实数a 的取值范围.24.已知命题P :函数()1()13f x x =-且()2<f a ,命题Q :集合(){}2210,A x x a x x R =+++=∈,{}0B x x =>且AB =∅.(1)分别求命题P 、Q 为真命题时的实数a 的取值范围;(2)当实数a 取何范围时,命题P 、Q 中有且仅有一个为真命题; (3)设P 、Q 皆为真时a 的取值范围为集合,,,0,0mS T y y x x R x m x ⎧⎫==+∈≠>⎨⎬⎩⎭,若全集U =R ,T S ⊆,求m 的取值范围.25.设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足2680x x -+<. (1)若1m =,且p 为真,q 为假,求实数x 的取值范围; (2)若0m >,且q 是p 的充分不必要条件,求实数m 的取值范围.26.已知集合{22}A xa x a =-≤≤+∣,{16}=≤≤∣B x x . (1)当3a =时,求AB ,()()R RA B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】对于A ,命题的逆否命题,既要交换条件、结论,又要否定条件及结论,所以‘命题“若m >0,则方程x 2+x-m=0有实数根”的逆否命题为:“若方程x 2+x-m=0无实数根,则m≤0”,故正确; 对于B “6πθ=”⇒“()1sin 22k θπ+=” 但“()1sin 22k θπ+=” 不能推出“6πθ=” 故正确;对于C ,p ∧q 为假命题,则p ,q 有一个为假命题即可,故错误; 对于D ,命题的否定先换量词,再否定结论,故正确. 故选C .2.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题,∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.3.A解析:A 【解析】 由6πα=,可得56ππα-=,得1sin()2πα-=,但由1sin()2πα-=不一定能够得到“6πα=”,即“6πα=”是()1sin 2πα-=的充分不必要条件,故选A. 4.C解析:C 【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.5.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.6.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6].故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.7.C解析:C 【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项. 【详解】命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d ==, 即|1|4d m =+=,解得3m =或5m =-,故q 为真, 故()p q ⌝∧为真, 故选:C. 【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题.8.A解析:A 【分析】①根据特称命题的否定是全称命题,判断①错误;②原命题与它的逆否命题真假性相同,判断它的逆否命题的真假性即可; ③利用向量的平行四边形法则,转化为平行四边形的对角线的关系,判断即可; ④计算直线()320m x my ++-=与直线650mx y -+=互相垂直的等价条件为0,3m =,即可.【详解】对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++≥,故①不正确;命题“已知x ,y R ∈,,若3x y +≠,则2x ≠或1y ≠”的逆否命题为:“已知x ,y R ∈,,若2x =且=1y ,则3x y +=”为真命题,故②正确;设a ,b 是非零向量,则“a b =”是“a b a b +=-”的既不充分也不必要条件,故③不正确;直线()320m x my ++-=与直线650mx y -+=互相垂直,则0,3m =,故④不正确. 故选:A 【点睛】本题考查了命题的否定,逆否命题,充要条件等知识点,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.9.C解析:C 【分析】先判断每个命题的真假,再由复合命题的真值表确定真假。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.已知命题 p : 4 x 6, q : x 2 2x 1 a 2 0(a 0), 若 p 是 q 的充分不必要条件,求 a 的取值范围。
21、已知 p: 1 x 1 2 ,q: x 2 2x 1 m 2 0 m 0 , 若 p 是 q 的充分不必要条件, 求实数 m的取值范围。 3
赠送以下资料 考试知识点技巧大全

A.一个命题的逆命题为真,则它的逆否命题一定为真
B.“ a b ”与“ a c b c ”不等价
C.“
2
a
2
b
0 , 则 a, b 全为 0 ”的逆否命题是“若
a, b全不为
0,
2
则a
2
b
0”
D.一个命题的否命题为真,则它的逆命题一定为真
8、“若 x ≠a 且 x ≠ b,则 x 2-( a+ b) x+ab≠ 0”的否命题()
②“正多边形都相似”的逆命题③“若
m>0,则 x 2+ x- m=0有实
根”的逆否命题
1
④“若 x - 32 是有理数,则 x 是无理数”的逆否命题
A、①②③④ B 、①③④ C 、②③④ D 、①④
3、“用反证法证明命题“如果
1
1
x<y,那么 x 5 < y 5 ”时,假设的内容应该是()
1
1
A、 x 5 = y 5
9、“ m
1
”是“直线 (m+2)x+3my+1=0 与直线 (m+2)x+(m-2)y-3=0
相互垂直”的(

2
A、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要
2
10、命题 p:存在实数 m,使方程 x + mx+1= 0 有实数根,则“非 p”形式的命题是( )
A、 存在实数 m,使得方程 x2+ mx+1= 0 无实根
2
A、 若 x= a 且 x= b,则 x -( a+ b) x+ ab=0
B、
B、若 x = a 或 x = b,则 x 2-( a+ b) x +ab≠ 0
C、
若 x= a 且 x= b,则 x2-( a+ b) x + ab≠0
D、 D、若 x = a 或 x = b,则 x 2-( a+ b) x +ab= 0
圆梦教育高二数学选修 2-1 测试题
1、一个命题与他们的逆命题、否命题、逆否命题这
4 个命题中( )
A、 真命题与假命题的个数相同
B 真命题的个数一定是奇数
C 真命题的个数一定是偶数
D 真命题的个数可能是奇数,也可能是偶数
2、下列命题中正确的是(

①“若 x 2+ y 2≠0,则 x ,y 不全为零”的否命题
B、不存在实数 m,使得方程 x2 +mx+ 1=0 有实根
C、对任意的实数 m,使得方程 x2+ mx+ 1= 0 有实根
D、至多有一个实数 m,使得方程 x 2+ mx+1= 0 有实根
11. 若 " a b c d " 和 " a b e f " 都是真命题 , 其逆命题都是假命题,则 " c d " 是 " e

A、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要
6.有下述说法:① a b 0 是 a2
b2 的充要条件 .
②a b 0是 1
1
的充要条件 .
ab
③a
b
0

3
a
3
b 的充要条件 . 则其中正确的说法有(

A. 0 个
B. 1个
C. 2 个
D. 3个
7.下列说法中正确的是(
1
1
B、 x 5 < y 5
1
1
1
1
C、 x 5 = y 5 且 x 5 < y5
1
1
1
1
D、 x 5 = y 5 或 x 5 > y5
4、“ a≠ 1 或 b≠ 2”是“ a+ b≠3”的( )
A、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要
5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的(
④ " p" 为真是 " p q" 为假的必要不充分条件
A. ①② B. ①③ C. ②④ D. ③④
13.已知条件 p : x 1 2 ,条件 q : 5x 6 x2 ,则 p 是 q 的( )
A.充分不必要条件 B .必要不充分条件 C.充要条件
D .既不充分也不必要条件
14、判断下列命题的真假性 : ①、若 m>0,则方程 x2- x+ m= 0 有实根
我们中考、高考每一科考试时间都在 2 小时或 2 小时以上且用脑强度大,这样可引起 低血糖并造成大脑疲劳,从而影响大脑的正常发挥,对考试成绩产生重大影响。因此 建议考生,在用脑 60 分钟时,开始补饮 25%浓度的葡萄糖水 100 毫升左右,为一个高 效果的考试 加油 。
A. 必要非充分条件 B. 充分非必要条件 C. 充分必要条件 D. 既非充分也非必要条件
12. 在下列结论中,正确的是(

f "的( )

① " p q" 为真是 " p q" 为真的充分不必要条件
② " p q" 为假是 " p q" 为真的充分不必要条件
③ " p q" 为真是 " p" 为假的必要不充分条件
②、若 x>1,y>1, 则 x+y>2 的逆命题
③、对任意的 x∈ {x|-2<x<4},|x-2|<3 的否定形式 ④、△ >0 是一元二次方程 ax2+bx+ c = 0 有一正根和一负根的充要条件
15、“末位数字是 0 或 5 的整数能被 5 整除”的
否定形式是
否命题是
18、写出下列命题的否定:
( 1)所有自然数的平方是正数
( 2)任何实数 x 都是方程 5x-12 = 0 的根
( 3)对于任意实数 x,存在实数 y,使 x+ y>0
( 4)有些质数是奇数
19、已知命题 P :“若 ac
0, 则二次方程
2
ax
bx
c
0 没有实根” .
(1) 写出命题 P 的否命题; (2) 判断命题 P 的否命题的真假 , 并证明你的结论 .
一、 考试中途应饮葡萄糖水
大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动 ,大脑细胞活动 需要大量能量。 科学研究证实 ,虽然大脑的重量只占人体重量的 2%-3%,但大脑消耗的能 量却占食物所产生的总能量的 20%,它的能量来源靠葡萄糖氧化过程产生。
据医学文献记载 ,一个健康的青少年学生 30 分钟用脑 ,血糖浓度在 120 毫克 /100 毫升 ,大 脑反应快 ,记忆力强; 90 分钟用脑,血糖浓度降至 80 毫克 /100 毫升,大脑功能尚正常; 连续 120 分钟用脑,血糖浓度降至 60 毫克 /100 毫升,大脑反应迟钝,思维能力较差。
相关文档
最新文档