平行四边形单元测试题(含答案)

合集下载

2020年人教版初中数学八年级下册第18章《平行四边形》单元综合测试题含答案

2020年人教版初中数学八年级下册第18章《平行四边形》单元综合测试题含答案

平行四边形一.选择题(共10小题)1.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC2.平行四边形两邻角的平分线相交所成的角的大小是()A.90°B.60°C.45°D.30°3.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形4.下列说法正确的有()①对角线互相平分的四边形是平行四边形;②平行四边形的对角互补;③平行线间的线段相等;④两个全等的三角形可以拼成一个平行四边形;⑤平行四边形的四内角之比可以是2:3:2:3.A.1个B.2个C.3个D.4个5.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.56.如图,在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),则点B坐标为()A.(0,2)B.(0,)C.(0,1)D.(0,2)7.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形8.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8 B.2.4 C.2.5 D.2.69.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断10.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形C.矩形D.正方形二.填空题(共8小题)11.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E、F两点,AB=6,BC=10,则EF的长度是.12.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC =∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为.14.如图,矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度运动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=时,四边形APQD 也为矩形.15.如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=3,则AE的边长为.16.在▱ABCD中,AE平分∠BAD交边BC于E,DF⊥AE,交边BC于F,若AD=10,EF=4,则AB=.17.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.18.如图,正方形OABC在直角坐标系中,点B(﹣2,2),点D为BC的中点,点E在线段OC上运动,射线ED交AB延长线于点F,设E(0,t),当△AEF是以AE为腰的等腰三角形时,点E的坐标是.三.解答题(共7小题)19.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE 的长.20.在▱ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以GH为边或对角线的所有平行四边形.21.已知:如图,在矩形ABCD中,点M、N在边AD上,且AM=DN,求证:BN=CM.22.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.23.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD=6.(1)求证:EF⊥BD;(2)求EF的长.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB 的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.25.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.第《18章平行四边形》单元测试题参考答案与试题解析一.选择题(共10小题)1.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.2.【分析】根据平行四边形的性质得到∠DAB+∠ABC=180°,由角平分线可得∠BAO+∠ABO=90°,根据三角形的内角和定理得∠AOB=90°,即可得到所选选项.【解答】解:▱ABCD的∠DAB的平分线和∠ABC的平分线交于O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°﹣90°=90°.故选:A.【点评】本题主要考查了平行四边形的性质,角平分线的定义,三角形的内角和定理等知识点,能综合利用性质进行证明是解此题的关键.3.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:根据平行四边形的判定定理,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.4.【分析】根据平行四边形的判定定理以及性质定理即可判断.【解答】解:①正确;②平行四边形的对角相等,命题错误;③平行线间的平行线段相等,命题错误;④正确;⑤正确.故选:C.【点评】本题考查了平行四边形的判定定理以及性质定理,正确理解定理的内容是关键.5.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.【分析】根据菱形的性质可得∠OAB=∠BAD=60°,∠AOB=90°,解直角△AOB,求出OB,即可得到点B坐标.【解答】解:∵在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),∴∠OAB=∠BAD=60°,∠AOB=90°,在直角△AOB中,∵OA=2,∴OB=OA•tan∠OAB=2×=2,∴点B坐标为(0,2).故选:D.【点评】本题考查了菱形的性质,掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角是解题的关键.也考查了锐角三角函数定义,坐标与图形性质.7.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ACD均正确,而B不正确,因为对角线互相垂直的四边形也可能是梯形.故选:B.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.8.【分析】过点A作AM⊥BC于点M′,根据勾股定理求出BC的长,再由三角形的面积公式求出AM′的长.根据题意得出四边形AEMF是矩形,故可得出AM=EF,MN=AM,当MN最小时,AM最短,此时M与M′重合,据此可得出结论.【解答】解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故选:B.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AM的最小值是关键.9.【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.【点评】本题考查了菱形的判定,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.二.填空题(共8小题)11.【分析】根据平行四边形的性质可知∠DEC=∠ECB,又因为CE平分∠BCD,所以∠DCE=∠ECB,则∠DEC=∠DCE,则DE=DC,同理可证AF=AB,那么EF就可表示为AF+ED﹣BC=2AB﹣BC,继而可得出答案.【解答】解:∵平行四边形ABCD,∴∠DEC=∠ECB,又CE平分∠BCD,∴∠DCE=∠ECB,∴∠DEC=∠DCE,∴DE=DC,同理可证:AF=AB,∴2AB﹣BC=AF+ED﹣BC=EF=2.故答案为2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.12.【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.13.【分析】根据折叠的性质易知,重合部分为菱形,然后根据菱形的面积公式计算即可.【解答】解:如图,过点A作AE⊥BC于点E,AF⊥CD于点F.则AE=AF=2.∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是2,∴S四边形ABCD=BC×2=CD×2,∴BC=CD,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.∴四边形ABCD的面积为2×2×=4.故答案是:4.【点评】本题主要考查菱形的性质和特殊角的三角函数值,通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.【分析】四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可.【解答】解:根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20﹣t,解得t=4(s).故答案是:4.【点评】本题考查了矩形的判定与性质.此题利用了矩形的对边相等的性质进行解题的.15.【分析】由平行四边形的性质和角平分线证出AD=DF,由F为DC中点,AB=CD,求出AD与DF 的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由AAS证明ADF≌△ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=4,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=2×2=4,故答案为:4【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解本题的关键.16.【分析】根据平行线的性质得到∠ADF=∠DFC,根据角平分线的定义得到∠BAE=∠DAE,推出AB=BE,根据已知条件推出∠ADF=∠ADC,得到∠DFC=∠CDF,推出CF=CD,于是得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣4=10,∴AB=7;②如图2,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE++EF+CF=2AB+EF=2AB+4=10,∴AB=3;综上所述:AB的长为7或3.故答案为:7或3.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE=CF=CD.17.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.18.【分析】由ASA证明△DBF≌△DCE,得出BF=CE=2﹣t,得出AF=AB+BF=4﹣t,即可得出点F的坐标;分两种情况:①当AE=AF时,根据勾股定理得出AE2=OA2+OE2,得出方程22+t2=(4﹣t)2,解方程即可求出t的值;②当AE=EF时,点E在AF的垂直平分线上,得出OE=AF,即t=(4﹣t),解方程即可求出t的值,从而求解.【解答】解:(1)∵四边形OABC是正方形,∴OA=AB=BC=OC=2,∠AOC=∠ABC=∠BCO=90°,∴∠FBD=90°,∵D是BC的中点,∴BD=CD,在△DBF和△DCE中,,∴△DBF≌△DCE(ASA),∴BF=CE=2﹣t,∴AF=AB+BF=4﹣t,∴D的坐标为(﹣2,4﹣t),当△AEF是以AE为腰的等腰三角形时,分两种情况:①当AE=AF时,∵AE2=OA2+OE2,∴22+t2=(4﹣t)2,解得:t=1.5;②当AE=EF时,点E在AF的垂直平分线上,∴OE=AF,即t=(4﹣t),解得:t=.综上所述:当△AEF是以AE为腰的等腰三角形时,点E的坐标是(0,1.5)或(0,).故答案为:(0,1.5)或(0,).【点评】考查了正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识;本题综合性强,有一定难度,需要进行分类讨论才能得出结果.三.解答题(共7小题)19.【分析】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.【解答】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE=CF=×4=2.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的判定与性质,作辅助线构造出以DE为中位线的三角形是解题的关键.20.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF,即可得出四边形DFBE是平行四边形;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,又∵DE∥BF,∴四边形DFBE是平行四边形;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE;以GH为对角线的平行四边形有GFHE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.21.【分析】由矩形的性质可得出BA=CD、∠A=∠D,由AM=DN可得出AN=DM,进而即可证出△ABN≌△DCM(SAS),根据全等三角形的性质可证出BN=CM.【解答】证明:∵四边形ABCD为矩形,∴BA=CD,∠A=∠D.∵AM=DN,∴AN=DM.在△ABN和△DCM中,,∴△ABN≌△DCM(SAS),∴BN=CM.【点评】本题考查了矩形的性质以及全等三角形的判定与性质,利用全等三角形的判定定理SAS 证出△ABN≌△DCM是解题的关键.22.【分析】延长EM交AD于点P,延长FM交AB于点Q,根据正方形的性质可得出:四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,进而可得出AQ=FM,QM=ME,结合∠AQM=∠FME=90°即可证出△AQM≌△FME(SAS),再利用全等三角形的性质可证出AM=EF.【解答】证明:延长EM交AD于点P,延长FM交AB于点Q,如图所示.∵四边形ABCD为正方形,点M为对角线BD上一点,∴四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,∴AQ=PM=FM,QM=ME.在△AQM和△FME中,,∴△AQM≌△FME(SAS),∴AM=EF.【点评】本题考查了全等三角形的判定与性质、正方形的性质以及矩形的性质,利用全等三角形的判定定值SAS证出△AQM≌△FME是解题的关键.23.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意可得BE=5,BF=3,根据勾股定理可求EF的长【解答】证明:(1)连接BE,DE∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵点F是BD的中点,BE=DE∴EF⊥BD(2)∵BE=AC∴BE=5∵点F是BD的中点∴BF=DF=3在Rt△BEF中,EF===4【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半是本题的关键.24.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,根据菱形的判定得出即可;(2)设CE=2x,AC=3x,求出BC=4x,DF=AC=3x,根据菱形的面积公式求出x,求出EF和CE,根据勾股定理求出CF即可.【解答】(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∴四边形BDCF是菱形;(2)解:∵tan∠EAC==,∴设CE=2x,AC=3x,∵四边形BDCF是菱形,∴BE=CE=2x,∴BC=4x,∵四边形ADFC是平行四边形,∴DF=AC=3x,∵四边形BDCF的面积为24,∴=24,解得:x=2(负数舍去),∴CE=4,DF=6,∴DE=EF=×6=3,∵DE⊥BC,∴∠CEF=90°,∴由勾股定理得:CF===5.【点评】本题考查了勾股定理,平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.25.【分析】(1)过G作GH⊥CD于H,根据三角形的内角和得到∠CDE=60°,根据平行四边形的性质得到AD∥BC,AB=CD=2,得到∠ADC=120°,解直角三角形即可得到结论;(2)根据全等三角形的性质得到∠ADH=∠EDC,∠H=∠C,DH=DC,根据平行四边形的性质得到AB=CD,AB∥CD,推出∠DFA=∠C,在DH上截取HM=AH,得到∠HAM=∠HMA,求得∠DAM =∠H,根据全等三角形的性质即可得到结论..【解答】解:(1)如图1,过G作GH⊥CD于H,∵DE⊥BC,∴∠DEC=90°,∵∠C=60°,∴∠CDE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=2,∴∠ADC=120°,∵AD=DF,∴∠DAF=∠DFA=30°,∴∠GDF=∠DFG,∴DG=GF,∵CD=2,∴DF=,∴HF=DF=,∴GF=1;(2)∵AH⊥AD,DE⊥BC,∴∠DAH=∠DEC=90°,在△ADE与△DEC中,,∴△ADE≌△DEC(SAS),∴∠ADH=∠EDC,∠H=∠C,DH=DC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DAB=∠C,∠DFA=∠BAF,∵AD=DF,∴∠DAF=∠DFA,∴∠DFA=∠C,如图2,在DH上截取HM=AH,∴∠HAM=∠HMA,∴∠H=180°﹣2∠HAM,∵∠MAD=90°﹣∠HAM,∴∠DAM=∠H,∴∠MAD=∠GFD,在△ADM与△FDG中,,∴△ADM≌△FDG(ASA),∴DM=DG,∵AB=CD=DH=HM+DM,∴AB=AH+DG.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.。

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+49.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。

第12章《平行四边形》单元测试(含解答)-

第12章《平行四边形》单元测试(含解答)-

第12章《平行四边形》单元测试A卷一、选择题:1.下面几组条件中,能判定一个四边形是平行四边形的是( ).A.一组对边相等; B.两条对角线互相平分C.一组对边平行; D.两条对角线互相垂直2.下列命题中正确的是( ).A.对角线互相垂直的四边形是菱形; B.对角线相等的四边形是矩形C.对角线相等且互相垂直的四边形是菱形;D.对角线相等的平行四边形是矩形3.如图所示,四边形ABCD和CEFG都是平行四边形, 下面等式中错误的是( ).A.∠1+∠8=1800; B.∠2+∠8=180°;C.∠4+∠6=180°; D.∠1+∠5=180°4.在正方形ABCD所在的平面上,到正方形三边所在直线距离相等的点有( ).A.3个 B.4个 C.5个 D.6个5.菱形的两条对角线长分别为3和4,那么这个菱形的面积为(平方单位)( ).A.12 B.6 C.5 D.76.矩形两条对角线的夹角为60°,一条对角线与短边的和为15cm,则矩形较短边长为( )A.4cm B.2cm C.3cm D.5cm7.下列结论中正确的有( )①等边三角形既是中心对称图形,又是轴对称图形,且有三条对称轴;②矩形既是中心对称,又是轴对称图形,且有四条对称轴;③对角线相等的梯形是等腰梯形;④菱形的对角线互相垂直平分.A.①③;B.①②③; C.②③④; D.③④8.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少要买( )m2的木地板A.12xy B.10xy C.8xy D.6xy二、填空题:1.用正三角形和正方形组合能够铺满地面,每个顶点周围有______个正三角形和______个正方形.2.平行四边形的一组对角和为300°,则另一组对角的度数分别为______.3.已知P为ABCD的边AB上一点,则S△PCD=____.4.已知ABCD中,∠A比∠B小20°,那么∠C的度数是________.5.在ABCD中,若一条对角线平分一个内角,则四边形ABCD为_______形.6.一个正方形要绕它的中心至少旋转______,才能和原来的图形重合;若绕它的一个顶点至少旋转________,才能和原来的图形重合.7.如图所示,在等腰梯形ABCD中,共有_____对相等的线段.8.梯形的上底长为acm,下底长为bcm(a<b),它的一条对角线把它分成的两部分的面积比为_______.三、解答题.1.在四边形ABCD中,AB∥CD,∠D=2∠B,AD与CD的长度分别为a和b.(1)求AB的长.(2)若AD⊥AB于点A,求梯形的面积.2.梯形ABCD中,DC∥AB,DC<AB,过D点作DE∥AB,交AB于点E,若梯形周长为30cm,CD=4cm,则△ADE的周长比梯形的周长少多少厘米?3.如图所示,已知四边形ABCD为正方形,M为BC边中点,将正方形折起,使点M与A重合,设折痕为EF,则ME=AB,求△AEM的面积与正方形ABCD面积的比.4.如图所示,已知ABCD中,AC的平行线MN分别交DA,DC的延长线于M,N,交AB,BC于P,Q,求证:QM=NP.5.已知AD是△ABC中∠A的平分线,DE∥AC交AB于E点,DF∥AB交AC于F 点.求证:E,F关于直线AD对称.6.试证明被凸四边形两条对角线分成的三角形中,两个相对三角形的面积的乘积等于另外两个相对三角形的面积的乘积.B卷1.(画图题)下料问题:要剪切如图1,2所示的两种直角梯形零件,且使两种零件的数量相等.有两种面积相等的矩形铝板,如图3,4所示,第一种长500mm,宽300mm,第二种长600mm,宽250mm,可供选用.(1)为了充分利用材料,应选用第_______种铝板剪零件更合理一些,一共剪______个,并说明理由.剪下这些零件后,铝板所剩的边角余料的面积是多少?(2)从图1,2中选出你要用的铝板示意图,在上面画出剪切线,并把边角余料用阴影表示出来.2.(探索题)(1)证明:在直角三角形中,若一条直角边等于斜边的一半,那么这条直角边所对的角为30°.(2)利用这个结论解决下列问题:如图所示,在梯形ABCD中,AB∥CD,AD⊥AC,AD=AC,DB=DC,AC,BD交于点E,试问CE与CB相等吗,为什么?3.(实际应用题)如图所示,在烟台市第一海水浴场铺设了一块长48m,宽32m的矩形花圃,喷水嘴安装在矩形对角线的交点P处,现计划从点P引三条射线把花圃分成面积相等的三部分,分别种植三种不同的花(不考虑各部分之间的空隙),请你通过计算,形成多个设计方案,并根据你的设计方案回答出三条射线与矩形有关边的交点位置(本题只要求设计四个正确方案以及其中一个方案的解答过程).答案:A卷一、1.B 2.D3.A 解析:∵四边形ABCD,CEFG是平行四边形,∴∠5+∠3=∠1+∠5=180°.∵∠4=∠5,∠5+∠6=180°,∴∠4+∠6=180°,同理∠2+∠8=180°,∴选项B,C,D均正确,∵∠1=∠3,∠3=∠8,∴∠1=∠8,∴选项A错.4.C 解析:如答图所示,点A,B,C,D,E即为满足条件的点.5.B 解析:菱形面积等于两条对角线乘积的一半.6.D 解析:如答图所示.∵矩形ABCD,∴OA=OB=OC=OD.∵∠AOB=60°,∴AB=OA=OB(有一个角为60°的等腰三角形是等边三角形).∵AC+AB=15,∴AB=15÷3=5(cm).7.D 解析:等边三角形是轴对称图形,有三条对称轴,对称轴是三条中线所在的直线,但不是中心对称图形,所以①不对;矩形既是中心对称图形,又是轴对称图形,但对称轴是对边中点连线所在的直线,只有两条,所以②不对;③④正确.8.A 解析:卧室和客厅的面积=2y×2x+2x×4y=4xy+8xy=12xy(m).二、1.3 22.解析:平行四边形内角和为360°,且对角相等,所以依题意可得,另一组对角的度数分别为(360°-300°)÷2=30°.答案:30°3.4.解析:如答图所示.∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∵∠B-∠A=20°,∴∠A=80°,∴∠C=∠A=80°(平行四边形对角相等).答案:80°5.菱 6.90° 360°7.解析:分别是AB=CD,BD=AC,OA=OD,OB=OC.答案:48.解析:如答图所示,对角线AC将梯形ABCD分成△ACD与△ABC,S△ACD= ,S△ABC = ,∴S△ACD:S△ABC =a:b.答案:a:b三、1.解析:如答图所示.(1)过C点作CE∥DA.∵AB∥CD,∴四边形AECD是平行四边形(两组对边分别平行的四边形是平行四边形),∴∠AEC=∠D.∵∠D=2∠B,∴∠AEC=2∠B=∠1+∠B,∴∠1=∠B,∴EC=EB.∵DC=b,AD=a,∴AE=b,CE=EB=a,∴AB=a+b.(2)S梯形ABCD= ×AB= ×a= .2.解析:如答图所示.∵DC∥AB,DE∥CB,∴四边形DEBC是平行四边形,∴DC=EB,DE=CB,∴L梯形ABCD-L△ADE=(DC+AD+AB+BC)-(AD+AE+DE)=DC+EB=2DC.∵CD=4cm,∴△ADE的周长比梯形的周长少8cm.3.解析:依题意可知EM=EA.∵EM=AB,EA=AB.∵M是BC边中点,∴MB= BC.∵正方形ABCD,∴∠B=90°,AB=BC=CD=DA,∴S△AEM:S正方形ABCD= :AB2= :AB2=1:6.4.解析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥ND.∵AC∥MN,∴四边形ACQM,APNC是平行四边形(两组对边分别平行的四边形是平行四边形),∴AC=PN=MQ(平行四边形对边相等).5.如答图所示,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵AD是△ABC中∠A的平分线,∴∠1=∠2,∴AEDF是菱形(对角线平分一组对角的平行四边形是菱形).∴EF关于直线AD对称.6.解析:如答图所示,过B,D两点分别作AC的垂线,得到两个高h1,h2,∴S△AOD=h1·OA,S△COD =h1·OC,S△AOB=OA·h2,S△BOC=OC·h2,∴S△AOD·S△BOC =OA·OC·h1·h2,S△COD·S△AOB =OA·OC·h1·h2,∴S△AOD·S△BOC = S△COD·S△AOB,即两个相对三角形的面积的乘积等于另外两个相对三角形的面积的乘积.B卷1.解析:(1)第一种,如答图所示,所选铝板所剩的边角余料的面积=500×300-2××200-2××150=150000-80000-60000=10000(mm2).(2)如答图所示.2.解析:(1)略.(2)CE=CB.证明:如答图所示,过A点,B点分别作AM⊥DC于M点,BN⊥DC于N 点.∵AB∥DC,∴AM=BN,∵AD=AC,∴DM=MC=DC.∵AD⊥AC,∴∠ACD=45°,AM=MC=MD=CD.∵DB=DC,∴BN=AM=DB,∴∠BDC=30°,∴∠CEB=∠ACD+∠DCB=45°+30°=75°,∠DCB=∠DBC=(180°-∠BDC)=(180°-30°)=75°,∴∠DBC=∠CEB,∴CE=CB.3.解析:如答图所示,如实线所示.证明:如答图(1).将AD分成三等份,将AB分成三等份.∵矩形对角线将矩形分割成四个面积相等的三角形△ABP,△BPC,△PCD,△DAP,将AD的两个三等分点分别与点P连结,且延长与BC相交,可将△ADP,△BPC三等分.同理将AB的两个三等分点分别与点P连结,且延长与CD相交,可将△ABP,△DPC三等分,这样就构成12个小三角形,且这12个小三角形的面积相等,每相邻4个小三角形的面积之和为矩形面积的,得证.(1) (2)。

人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)

人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)

人教版八年级数学下册 第十八章 平行四边形 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A . 4B . 3C .25 D . 2 2.如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A . 1<m <11B . 2<m <22C . 10<m <12D . 5<m <6 3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A . 2B . 3C . 4D . 54.Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( )A . 10B . 3C . 4D . 55.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A . 2B . 2.2C . 2.4D . 2.56.如图,在菱形ABCD 中,AB =5,∠B ∶∠BCD =1∶2,则对角线AC 等于( )A. 5 B. 10 C. 15 D. 207.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A. 16 B. 15 C. 14 D. 138.正方形具有而矩形不具有的性质是()A.对角线互相平分 B.对角线相等 C.对角线互相平分且相等 D.对角线互相垂直9.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④10.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40 B. 25 C. 26 D. 36二、填空题(共8小题,每小题3分,共24分)11.如图,在▱ABCD中,AB=2 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________ cm.12.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.13.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于________.14.如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC=__________.15.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为____________.16.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).17.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=____________.18.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是____________(填写图形的形状)(如图),它的一边长是____________ cm.三、解答题(共8小题,共66分)19.(6分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD 分别相交于点E、F,求证:AE=CF.20. (6分)如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.21. (6分)如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.22. (8分)如图,在矩形ABCD中,AB=24 cm,BC=8 cm,点P从A开始沿折线A-B-C-D 以4 cm/s的速度移动,点Q从C开始沿CD边以2 cm/s的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?23. (8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.24. (10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.25. (10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.26. (12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.答案解析1.【答案】B【解析】∵在ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,AB =DC ,∴∠DEC =∠DCE ,∴DE =DC =AB ,∵AD =7,AE =4,∴DE =DC =AB =3.故选B.2.【答案】A【解析】在平行四边形ABCD 中,则可得OA =21AC ,OB =21BD , 在△AOB 中,由三角形三边关系可得OA -OB <AB <OA +OB ,即6-5<m <6+5,1<m <11.故选A.3.【答案】C【解析】∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =21BC =21×8=4. 故选C.4.【答案】D【解析】已知直角三角形的两直角边为6、8, 则斜边长为=10,故斜边的中线长为21×10=5, 故选D.5.【答案】C 【解析】连接AP ,∵∠A =90°,PE ⊥AB ,PF ⊥AC ,∴∠A =∠AEP =∠AFP =90°,∴四边形AFPE 是矩形,∴EF =AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠A =90°,AC =4,AB =3,由勾股定理,得BC =5, 由三角形面积公式,得21×4×3=21×5×AP , ∴AP =2.4,即EF =2.4,故选C.6.【答案】A【解析】∵四边形ABCD 是菱形,∴∠B +∠BCD =180°,AB =BC ,∵∠B ∶∠BCD =1∶2,∴∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =5.故选A.7.【答案】A【解析】连接EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理,得OA===8,∴AE=2OA=16.故选A.8.【答案】D【解析】因为正方形的对角线相等、垂直、且互相平分,矩形的对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线好像垂直.故选D.9.【答案】B【解析】A.∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当③AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C .∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.10.【答案】B【解析】设小正方形的边长为a ,大正方形的边长为b ,由这三张纸片盖住的总面积是24平方厘米,可得ab +a (b -a )=24,①由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b -a )2=41a 2-3,② 将①②联立解方程组可得:a =4,b =5,∴大正方形的边长为5,∴面积是25.故选B.11.【答案】4【解析】在▱ABCD 中,∵AB =CD =2cm ,AD =BC =4 cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC==6 cm,∴OC=3 cm,∴BO==5 cm,∴BD=10 cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4 cm,12.【答案】12【解析】∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.13.【答案】30°【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.14.【答案】25°【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AB=CD,∴四边形ABCD是矩形,∴∠ADC=90°,∵∠ODA=∠OAD=65°,∴∠ODC=∠ADC-∠ODA=25°.15.【答案】30°或60°【解析】∵四边形ABCD 是菱形,∴∠ABD =21∠ABC ,∠BAC =21∠BAD ,AD ∥BC , ∵∠BAC =60°,∴∠BAD =180°-∠ABC =180°-60°=120°,∴∠ABD =30°,∠BAC =60°. ∴剪口与折痕所成的角α的度数应为30°或60°.16.【答案】①③④【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ·AE =21CD ·AF , ∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确;④若平行四边形ABCD 是菱形,则BC =CD , ∴21BC ·AE =21CD ·AF , ∴AE =AF ,故④正确;故答案为①③④.17.【答案】2n +1【解析】∵∠MON =45°,∴△OA 1B 1是等腰直角三角形,∵OA 1=1,∴正方形A 1B 1C 1A 2的边长为1,∵B 1C 1∥OA 2,∴∠B 2B 1C 1=∠MON =45°,∴△B 1C 1B 2是等腰直角三角形,∴正方形A 2B 2C 2A 3的边长为1+1=2,同理,第3个正方形A 3B 3C 3A 4的边长为2+2=22,其周长为4×22=24, 第4个正方形A 4B 4C 4A 5的边长为4+4=23,其周长为4×23=25, 第5个正方形A 5B 5C 5A 6的边长为8+8=24,其周长为4×24=26, 则第n 个正方形的周长Cn =2n +1.18.【答案】正方形 8【解析】如图,作AB 平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B 点,∴△ABC 为直角边长为8 cm 的等腰直角三角形,∴AB =AC =8,∴阴影正方形的边长=AB =8cm.19.【答案】证明 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ,∴∠OAE =∠OCF ,在△OAE 和△OCF 中,∴△AOE ≌△COF (ASA),∴AE =CF .【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,OA =OC ,继而证得△AOE ≌△COF ,则可证得结论.20.【答案】证明 如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF , ∵CE =CF ,∠C =90°,∴AE =BF ,∠MGN =∠C =90°,∴MG =NG ,∴△MNG 是等腰直角三角形,∴NG =MN ,∴AE =2NG =×2MN =MN , 即AE =MN .【解析】取AB 的中点G ,连接MG 、NG ,根据三角形的中位线平行于第三边并且等于第三边的一半可得NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF ,再求出AE =BF ,∠MGN =90°,判断出△MNG 是等腰直角三角形,根据等腰直角三角形的性质可得NG =MN ,再表示出AE 即可得证.21.【答案】证明 ∵AB =AC ,∴∠B =∠C ,∵DE ⊥AB ,FD ⊥BC ,∴∠BED =∠FDC =90°,∴∠1+∠B =90°,∠3+∠C =90°,∴∠1=∠3,∵G 是直角三角形FDC 的斜边中点,∴GD =GF ,∴∠2=∠3,∴∠1=∠2,∵∠FDC =∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE =90°,∴GD ⊥DE .【解析】由∠1+∠EDF =90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.22.【答案】解 根据题意得:CQ =2t ,AP =4t ,则BP =24-4t ,∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时,四边形QPBC 是矩形,即2t =24-4t ,解得t =4,答:当t =4 s 时,四边形QPBC 是矩形.【解析】求出CQ =2t ,AP =4t ,BP =24-4t ,由已知推出∠B =∠C =90°,CD ∥AB ,推出CQ =BP 时,四边形QPBC 是矩形,得出方程2t =24-4t ,求出即可.23.【答案】证明 ∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,∴△ADE ≌△CDF (SAS).【解析】由菱形的性质得出AD =CD ,由中点的定义证出DE =DF ,由SAS 证明△ADE ≌△CDF 即可.24.【答案】(1)证明 ∵四边形ABCD 是平行四边形,∴AD =BC ,在Rt △ABC 中,∠BAC =90°,点E 是BC 边的中点,∴AE =21BC =CE ,同理,AF =21AD =CF , ∴AE =CE =AF =CF ,∴四边形AECF 是菱形;(2)解 连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC =90°,∠B =30°,BC =10,∴AC =21BC =5,AB =AC =5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA =OC ,∴OE 是△ABC 的中位线,∴OE =21AB =,∴EF =5, ∴菱形AECF 的面积=21AC ·EF =21×5×5=.【解析】(1)由平行四边形的性质得出AD =BC ,由直角三角形斜边上的中线性质得出AE =21BC =CE ,AF =21AD =CF ,得出AE =CE =AF =CF ,即可得出结论; (2)连接EF 交AC 于点O ,解直角三角形求出AC 、AB ,由三角形中位线定理求出OE ,得出EF ,菱形AECF 的面积=21AC ·EF ,即可得出结果. 25.【答案】(1)证明 ∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中,∴△ADE ≌△ABF (SAS);(2)解 ∵BC =8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE ==10, ∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=21AE 2=21×100=50. 【解析】(1)根据正方形的性质得AD =AB ,∠D =∠ABC =90°,然后利用“SAS”易证得△ADE ≌△ABF ;(2)先利用勾股定理可计算出AE =10,再根据△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到AE =AF ,∠EAF =90°,然后根据直角三角形的面积公式计算即可.26.【答案】(1)证明 ∵AB =AC ,AD ⊥BC ,垂足为点D ,∴∠CAD =21∠BAC . ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =21∠CAM . ∵∠BAC 与∠CAM 是邻补角,∴∠BAC +∠CAM =180°,∴∠CAD +∠CAE =21(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形;(2)解 ∠BAC =90°且AB =AC 时,四边形ADCE 是一个正方形,证明:∵∠BAC =90°且AB =AC ,AD ⊥BC ,∴∠CAD =21∠BAC =45°,∠ADC =90°, ∴∠ACD =∠CAD =45°,∴AD =CD .∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;(3)解 由勾股定理,得=AB ,AD =CD , 即AD =2,AD =2,正方形ADCE 周长4AD =4×2=8. 【解析】(1)根据等腰三角形的性质,可得∠CAD =21∠BAC ,根据等式的性质,可得∠CAD +∠CAE =21(∠BAC +∠CAM )=90°,根据垂线的定义,可得∠ADC =∠CEA ,根据矩形的判定,可得答案;(2)根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;(3)根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.。

人教版小学四年级数学上册 第5单元 平行四边形和梯形 单元测试题(含答案)

人教版小学四年级数学上册  第5单元 平行四边形和梯形 单元测试题(含答案)

人教版小学四年级数学上册《第5单元平行四边形和梯形》单元测试题一.选择题1.下列说法中正确的是()A.两个锐角的和一定比直角大B.长方形相邻的两条边互相垂直C.不相交的两条直线叫平行线D.射线无限长,没有端点2.同一平面上的三条直线,一条直线既垂直于直线a也垂直于直线b,那么直线a和直线b()A.相交B.平行C.垂直D.无法确定3.下面的图形中,属于平行四边形的共有()个.A.1 B.2 C.3 D.44.把一个四边形撕成了三部分,其中两部分如图,这个四边形可能是()A.长方形B.正方形C.平行四边形D.梯形5.用长为5cm、5cm、8cm、8cm的四根小棒搭不同形状的平行四边形,可以搭出()个。

A.1 B.2 C.4 D.无数6.下面的说法正确的是()A.有一组对边平行的四边形是梯形B.平行四边形和梯形都是四边形C.在梯形中,平行的一组对边叫做梯形的腰7.下面的图形中,属于梯形的是()A.①和②B.②和③C.①和④D.①8.过直线外一点画已知直线的垂线,可以画()条.A.1 B.2 C.3 D.无数二.填空题9.一个梯形中最多有个直角,最多有条边长度相等.10.因为平行四边形容易变形,所以生活中往往会把做成平行四边形的形状.11.如图.(1)如果把梯形记作:梯形ABDC,那么请你在图中再找一个梯形,用这种表达方式记作:梯形.(2)如果把梯形AEFC的上底记作:AE,那么下底记作,高记作.这是一个梯形.12.平行四边形的一个内角是直角,并且相邻的边不相等,这个平行四边形就是,若相邻的边相等,这个平行四边形就是.13.如图,春光小学的伸缩门应用了平行四边形的特点.14.当两条直线相交成直角时,这两条直线.15.如果两条直线都垂直于同一条直线,那么这两条直线.16.在同一平面内,可以画条已知直线的垂线.过直线外的一点可以画条已知直线的平行线.17.两条直线相交成直角,这两条直线的交点叫.18.下面的各组直线,属于互相平行的有,属于相交的有,属于互相垂直的有。

平行四边形单元测试附解析

平行四边形单元测试附解析

平行四边形单元测试附解析一、解答题1.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+2.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.3.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQAM .4.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥. ②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = . 5.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动. ①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围. 6.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ; (2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积; (2)若CG CB =,求证:2BG FH CE +=.8.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立. 试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由; (3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论. 9.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.10.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长(用含t 的代数式表示); (2)当四边形ABQP 是平行四边形时,求t 的值; (3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)62BE =3)证明见解析. 【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AE DG CGCD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论.【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC , ∴∠E=∠EGD ,∠H=∠DFG , ∵∠CGH=∠EGD ,∠DFG=∠AFE , ∴∠E=∠CGH ,∠H=∠AFE , ∵//EH AC ,AB//CD , ∴四边形ACGE 是平行四边形, ∴AE=CG ,∴△AEF ≌△CGH (AAS ); (2)∵四边形ABCD 为平行四边形, ∴AB//CD ,AB=CD , ∴∠E=∠EGD ,∠D=∠EAF , ∵F 是AD 的中点, ∴AF=FD ,∴△AEF ≌△DGF (AAS ); 由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH, ∴12AEDG CGCD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴242ABCDAD ,∴22AE =, ∴62BE AB BE =+=; (3)如下图,∵四边形ABCD 为平行四边形, ∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD , ∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==, 且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+ 【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键. 2.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=52 【分析】(1)根据高AG 与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解. (2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x ,根据正方形的边长得出CE ,CF ,EF ,在Rt △CEF 中利用勾股定理得到方程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可. 【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE , ∴Rt △ABE ≌Rt △AGE (HL ). ∴∠BAE=∠GAE . 同理,∠GAF=∠DAF . ∴∠EAF =12∠BAD =45°; (2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN , 又∵AM=AH ,AN=AN , ∴△AMN ≌△AHN (SAS ). ∴MN=HN ,∵∠BAD=90°,AB=AD , ∴∠ABD=∠ADB=45°, ∴∠HDN=∠HDA+∠ADB=90°, ∴NH 2=ND 2+DH 2, ∴MN 2=ND 2+DH 2;(3)∵正方形ABCD 的边长为12, ∴AB=AG=12,由(1)知,BE=EG ,DF=FG .设EG=BE=x ,则CE=12-x , ∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6, 在Rt △CEF 中, ∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2, 解得x=4, 即EG=BE=4, 在Rt △ABD 中, BD=22AB AD +=122,在(2)中,MN 2=ND 2+DH 2,BM=DH , ∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()()221223232a --+,即a 2=()()229232a-+,∴a=52,即MN =52. 【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等. 3.(1)见解析;(2)见解析. 【分析】(1)连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N .可先证明△AOD ≌△COD ,再证明△MOB ≌NOB ,从而可得NB =MB ;(2)连接MO 并延长与AE 交于点Q ,连接QC ,则CQ ∥AM .理由如下:由正方形的性质以及平行线等分线段可证QO =MO ,从而可知四边形AQCM 为平行四边形,从而可得CQ ∥AM . 【详解】解:(1)如图(1),连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N ,则CN 为所作.理由:在△AOD 与△COD 中,∵AD CDADO CDO OD OD⎧⎪∠∠⎨⎪⎩===,∴△AOD≌△COD(SAS),∴∠OAD=∠OCD,∴∠BAM=∠BCN.在△ABM与△CBN中,∵BAM BCN AB CBABM CBN ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABM≌△CBN(ASA),∴CN=AM.(2)如图2连接AC、BD交与O点,连接MO并延长与AE交于点Q,连接QC,则CQ为所求的线段.在正方形ABCD中,OA=OB=OC=OD,AD∥BC,∴QO=MO∴四边形AQCM为平行四边形,∴QC∥AM【点睛】本题考查了作图-基本作图,解决此题的关键是利用正方形的性质求解.4.(1)①见解析;②GFC是等腰三角形,证明见解析;(2)4+54﹣5【分析】(1)①只要证明△DAH≌△DCH,即可解决问题;②只要证明∠CFG=∠FCG,即可解决问题;(2)分两种情形解决问题:①当点F在线段CD上时,连接DE.②当点F在线段DC的延长线上时,连接DE.分别求出EC即可解决问题.【详解】(1)①证明:∵四边形ABCD是正方形,∴∠ADB =∠CDB =45°,DA =DC , 在△DAH 和△DCH 中,DA DC ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩, ∴△DAH ≌△DCH , ∴∠DAH =∠DCH ; ∵∠ECG=∠DAH , ∴∠ECG=∠DCH ,∵∠ECG+∠FCG=∠FCE=90°, ∴∠DCH+∠FCG=90°, ∴CH ⊥CG.②∵在Rt △ADF 中,∠DFA+∠DAF =90°, 由①得∠DCH+∠FCG=90°,∠DAH =∠DCH ; ∴∠DFA =∠FCG , 又∵∠DFA =∠CFG , ∴∠CFG =∠FCG , ∴GF =GC ,∴△GFC 是等腰三角形(2)BE 的长为 4+25或425- . ①如图①当点F 在线段CD 上时,连接DE .∵∠GFC =∠GCF ,又∵在Rt △FCG 中,∠GEC+∠GFC =90°,∠GCF+∠GCE =90°, ∴∠GCE =∠GEC , ∴EG =GC =FG ,∴G是EF的中点,∴GM是△DEF的中位线∴DE=2MG=6,在Rt△DCE中,CE=22DE DC-=2264-=25,∴BE=BC+CE=4+25.②当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=5,在Rt△DCE中,CE22DE DC-2264-5∴BE=BC﹣CE=4﹣5综上所述,BE的长为4+54﹣25【点睛】本题考查正方形的性质、全等三角形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(1)证明过程见解析;(2)①边长为53cm,②225cm S9cm3≤≤.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=53cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF ,又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形;(2)①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°,∵点B 与点E 关于PQ 对称,∴CE =BC =5cm ,在Rt △CDE 中,DE =22CE -CD =4cm ,∴AE =AD ﹣DE =5cm -4cm =1cm ;在Rt △APE 中,AE =1,AP =3-PB =3﹣PE ,∴222EP =1(3-EP)+,解得:EP =53cm , ∴菱形BFEP 的边长为53cm ; ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm ,BP=53cm , 2BFEP 5S =BP AE=cm 3⋅四边形,当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm , 2ABQE BFEP S =S =9cm 正方形四边形,∴菱形的面积范围:225cm S 9cm 3≤≤.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE 是本题的关键.6.(1)见解析;(2)4.8;(3)1282x x- 【分析】(1)证明△ABP ≌△BCQ 即可得到结论;(2)证明Rt △ABN ≌△Rt △C 'BN 求出DQ ,设AN =NC '=a ,则DN =8﹣a ,利用勾股定理即可求出a ;(3)过Q 点作QG ⊥BM 于G ,设MQ =BM =y ,则MG =y ﹣x ,利用勾股定理求出MQ ,再根据面积相减得到答案.【详解】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中, ABP BCQ AB BCBAP QBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN=NC',∵BP=13PC,AB=8,∴BP=2=CQ,CP=DQ=6,设AN=NC'=a,则DN=8﹣a,∴在Rt△NDQ中,(8﹣a)2+62=(a+2)2解得:a=4.8,即AN=4.8.(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.设MQ=BM=y,则MG=y﹣x,∴在Rt△MQG中,y2=82+(y﹣x)2,∴322xyx=+.∴S△BMC′=S△BMQ﹣S△BC'Q=1122BM QG BC QC''⋅-⋅,=1321()88 222xxx+⨯-⨯,=1282x x-.【点睛】此题考查正方形的性质,三角形全等的判定及性质,勾股定理,正确理解题意画出图形辅助做题是解题的关键.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD是正方形,再根据已知条件证明△BCF≌△DCE,即可得到四边形AECF的面积=正方形ABCD的面积;(2) 延长BG交AD于点M,作AN⊥MN,连接FG,先证明四边形BCEM是平行四边形,得到BM=CE,证明△BCF≌△GCF,得到BF=GF,∠FGC=∠FBC=90︒,由AN⊥MN,得GM=2MN,根据∠BAC=45︒,BC∥AD得到AM=BF,再证△BFH≌△AMN,得到GM=2FH,由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD 为正方形,CE=DF ,可证△ADF ≌△DCE (SAS ),即可得到AF=DE ,∠DAF=∠CDE ,又因为∠ADG+∠EDC=90°,即有AF ⊥DE ;(2)∵四边形ABCD 为正方形,CE=DF ,可证△ADF ≌△DCE (SAS ),即可得到AF=DE ,∠E=∠F ,又因为∠ADG+∠EDC=90°,即有AF ⊥DE ;(3)设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,因为点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,可得MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,然后根据AF=DE ,可得四边形MNPQ 是菱形,又因为AF ⊥DE 即可证得四边形MNPQ 是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD 为正方形,∴AD=DC ,∠BCD=∠ADC=90°,在△ADF 和△DCE 中,∵DF=CE ,∠ADC=∠BCD=90°,AD=CD ,∴△ADF ≌△DCE (SAS ),∴AF=DE ,∠DAF=∠CDE ,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE ; (2)上述结论①,②仍然成立,理由是:∵四边形ABCD 为正方形,∴AD=DC ,∠BCD=∠ADC=90°,在△ADF 和△DCE 中,∵DF=CE ,∠ADC=∠BCD=90°,AD=CD ,∴△ADF ≌△DCE (SAS ),∴AF=DE ,∠E=∠F ,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE ;(3)四边形MNPQ 是正方形.理由是:如图,设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,∵点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,∴MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,∴四边形OHQG 是平行四边形,∵AF=DE ,∴MQ=PQ=PN=MN ,∴四边形MNPQ 是菱形,∵AF ⊥DE ,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ 是正方形.考点:1.四边形综合题;2.综合题.9.(1)证明见解析;(2)菱形;(3)四边形AEGF 是矩形,理由见解析.【分析】(1)根据平行线的性质得到BDE A ∠=∠,根据题意得到DEFBDE ∠=∠,根据平行线的判定定理得到//AD EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到12DE AC =,得到AD DE =,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE EG ⊥,根据有一个角是直角的平行四边形是矩形证明.【详解】 (1)证明://DE AC ,BDE A ∴∠=∠,DEF A ∠=∠,DEF BDE ∴∠=∠,//AD EF ∴,又//DE AC ,∴四边形ADEF 为平行四边形;(2)解:ADEF 的形状为菱形, 理由如下:点D 为AB 中点, 12AD AB ∴=, //DE AC ,点D 为AB 中点,12DE AC ∴=, AB AC =,AD DE ∴=,∴平行四边形ADEF 为菱形,故答案为:菱形;(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,//AF DE ∴,AF DE =,EG DE ,//AF DE∴,AF GE=,∴四边形AEGF是平行四边形,AD AG,EG DE=,AE EG∴⊥,∴四边形AEGF是矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.10.(1)10-t;(2)5秒;(3)见解析【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=10,∴BQ=10-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∴当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,在Rt△ABC中,∵AB=6,BC=10,∴,∴AO=CO=12AC=4,∵S△ABC=12AB AC⋅=12BC EF⋅,∴AB•AC=BC•EF,∴6×8=10×EF,∴EF=245,∴OE=125,∴AE=22AO OE-=165,当325t=时,AP=325,∴2AE=AP,即点E是AP中点,∴点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。

北师大版八下第六章《平行四边形》单元测试题(含答案)

北师大版八下第六章《平行四边形》单元测试题(含答案)

第六章平行四边形时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC 的周长为()A.13 B.17 C.20 D.262.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.243.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE4.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10 5.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.46.如图,▱ABCD中,AC⊥AB,O为对角线AC的中点,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°第6题图第7题图7.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①②B.①④C.③④D.②③8.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,连接EF.若EF=1,AC=6,则AB的长为()A.10 B.9 C.8 D.6第8题图第10题图9.马小虎在计算一个多边形的内角和时,由于粗心少算了两个内角,其和等于830°,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定10.如图,在△ABC中,DE∥AB,FD∥BC,EF∥AC,则下列说法:①图中共有3个平行四边形;②AF=BF,CE=BE,AD=CD;③EF=DE=DF;④图中共有3对全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).第12题图第13题图13.如图,P为▱ABCD的边CD上一点,若S▱ABCD=20cm2,则S△APB=________cm2.14.如图,在▱ABCD中,对角线AC,BD交于点O,AD=10,△BOC的周长为21,则AC+BD=________.第14题图第15题图15.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=________cm.16.如图,一块四边形绿化园地的四个角都做有半径为1m的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.第16题图第17题图17.如图,在▱ABCD中,AE⊥BC于点E,且DE平分∠CD A.若BE∶EC=1∶2,则∠BCD 的度数为________.18.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为________(n为正整数).三、解答题(共66分)19.(8分)如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD,连接CE.求证:CE平分∠BC D.20.(8分)如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.21.(8分)一个多边形的内角和与某个外角的度数的总和为1350°,试求此多边形的边数及此外角的度数.22.(10分)如图,△ABC中,BD平分∠ABC,AD⊥BD,D为垂足,E为AC的中点.求证:(1)DE∥BC;(2)DE=12(BC-AB).23.(10分)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=M C.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.24.(10分)如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG =EF (提示:直角三角形中,斜边上的中线等于斜边的一半).25.(12分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF .(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.参考答案BDBBD DDCCB11.10 12.AD =BC (答案不唯一) 13.10 14.22 15.3 16.πm 2 17.120° 18.12n19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE ,AE +CD =AE +AB =BE .(3分)又∵AE +CD =AD ,∴BE =AD =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BC D.(8分)20.证明:∵∠A +∠B +∠C +∠D =360°,∠A =∠C ,∠B =∠D ,∴∠A +∠B =180°.(3分)又∵∠A =∠C ,∴∠B +∠C =180°,∴AD ∥BC ,AB ∥CD ,(6分)∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).(8分)21.解:∵1350°=180°×7+90°,(2分)又∵多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,(5分)多边形的边数为7+2=9.(8分)22.证明:(1)延长AD 交BC 于F .∵BD 平分∠ABC ,AD ⊥BD ,∴AB =BF ,AD =DF .(3分)又∵E 为AC 的中点,∴DE 是△ACF 的中位线,∴DE ∥B C.(5分)(2)∵AB =BF ,∴FC =BC -A B.(7分)∵DE 是△ACF 的中位线,∴DE =12FC =12(BC -AB ).(10分)23.(1)证明:∵CN ∥AB ,∴∠1=∠2.在△AMD 和△CMN 中,⎩⎪⎨⎪⎧∠1=∠2,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN (ASA ),∴AD =CN .又∵AD ∥CN ,(3分)∴四边形ADCN 是平行四边形,∴CD =AN .(5分)(2)解:∵AC ⊥DN ,∠CAN =30°,MN =1,∴AN =2MN =2,∴AM =AN 2-MN 2= 3.(7分)∴S △AMN =12AM ·MN =12×3×1=32.(8分)∵四边形ADCN 是平行四边形,∴S四边形ADCN=4S △AMN =2 3.(10分)24.证明:(1)∵四边形ABCD 为平行四边形,∴AD =BC ,BD =2BO .(1分)又∵BD =2AD ,∴BO =AD =B C.(3分)∵E 为OC 的中点,∴BE ⊥A C.(5分)(2)由(1)知BE ⊥AC ,∴△ABE 为直角三角形,AB 为斜边.在Rt △ABE 中,G 为AB 的中点,∴EG =12A B.(7分)又∵E ,F 分别为OC ,OD 的中点,∴EF =12C D.(8分)∵四边形ABCD是平行四边形,∴AB =CD ,∴EG =EF .(10分)25.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =B C.(1分)∵F 是AD 的中点,∴DF =12A D.又∵CE =12BC ,∴DF =CE .(4分)又∵DF ∥CE ,∴四边形CEDF 是平行四边形.(5分)(2)解:过点D作DH⊥BE于点H.(6分)在▱ABCD中,∵AB∥CD,∠B=60°,∴∠DCE =60°,∴∠CDH=30°.(7分)∵AB=4,∴CD=AB=4,∴CH=2,DH=DC2-CH2=2 3.(9分)在▱CEDF中,CE=DF=12AD=3,则EH=CE-CH=1.(10分)∴在Rt△DHE中,由勾股定理得DE=DH2+HE2=(23)2+1=13.(12分) 。

《第18章 平行四边形》单元测试(2)

《第18章 平行四边形》单元测试(2)

《第18章平行四边形》单元测试(2)一.选择题(共10小题)1.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点D在AB上,点E在AC上,分别过B、E作AC、BC的平行线,两平行线交于点H,已知CD=4,则BE长度是()A.4B.4C.4D.52.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2011个正方形(正方形ABCD看作第1个)的面积为()A.5()2010B.5()2010C.5()2011D.5()2011 3.我们给出如下定义,顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()A.4B.8C.D.5.如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,BE与AD相交于点F,则下列结论不一定成立的是()A.△BFD是等腰三角形B.△ABF≌△EDFC.BE平分∠ABDD.折叠后的图形是轴对称图形6.如图,平行四边形ABCD中,AC、BD交于点O,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD=3,CD=4,则△BCE的周长为()A.7B.6C.5D.37.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.108.下列四边形中,对角线互相垂直的是()A.B.C.D.9.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm10.如图,矩形ABCD的周长是16,DE=2,△FEC是等腰三角形,∠FEC=90°,则AE 的长是()A.3B.4C.5D.6二.填空题(共8小题)11.如图,在边长为6的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=S,则PB+PC的最小值为.菱形ABCD12.若菱形的周长为16,高为2,则该菱形两邻角的度数分别是.13.如图,直线m过正方形ABCD的顶点B,点A,C到直线m的距离分别是1和3,则正方形的边长是.14.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.15.如图,在△ABC中,∠C=90°,AB=13,AD是△ABC的一条角平分线,E为AB的中点,连接DE,若CD=,则△AED的面积为.16.如图,将一张矩形纸片沿EF折叠后,点D、C分别落在点D′,C′的位置,若∠1=40°,则∠D′EF=.17.如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.18.已知直角坐标系中,菱形ABCD的顶点A、B、C的坐标分别是A(﹣2,0),B(0,﹣4),C(2,0),则点D的坐标是三.解答题(共9小题)19.如图所示,把四个相同的直角三角形拼成正方形,直角三角形两直角边长分别为24和7,通过面积计算该直角三角形的斜边长.20.如图,E,F是四边形ABCD的对角线BD的三等分点,CE,CF的延长线分别平分AB,AD,交点分别为点G,H.(1)求证:CE=2EG;(2)求证:四边形ABCD是平行四边形.21.2022年新版的《义务教育数学课程标准》、重新将梯形的概念作为需要理解的内容,如图所示:四边形ABCD为梯形,AB∥CD,E为AD的中点、解答下列问题:(1)作图:过点E作EF∥AB、交BC于点F;(2)EF和CD的位置关系如何?请写出简单的推理过程(推理的依据要写出来);(3)用刻变尺量一下BF和CF的长度,请你大胆猜想,直接写出BF和CF的数量关系;(4)用刻度尺量一下CD、EF、AB的长度,请你大胆猜想,直接写出CD、EF、AB这三条线段的数量关系.22.如图,将边长为6的正三角形ABC沿着MN折叠,使点A落在BC边上的D点处.(1)当折痕MN为△ABC的中位线时,求BD的长;(2)试说明△BDM与△CND是否相似;(3)若AM:AN=2:3时,求S△ABD:S△ADC.23.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是AO,CO的中点,连结BE,DF.(1)求证:BE=DF.(2)若BD=2AB=8,BC=6,求AC的长.24.矩形ABCD中,AB=3,AD=4,△ABC沿着AC翻折得到△AB'C,B'C交AD于点E,连接B'D.(1)求证:B'D∥AC;(2)求线段AE的长,直接写出线段B'D的长.25.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1.请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为8的菱形ABCD(非正方形);(2)在图2中画出一个面积为9,且∠MNP=45°的▱MNPQ,并直接写出▱MNPQ较长的对角线的长度.26.下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,ABC=90°.求作:矩形ABCD.作法:如图,①分别以点A,C为圆心、大于AC的长为半径作弧,两弧相交于E,F两点;②作直线EF,交AC于点P;③连接BP并延长至点D,使得PD=BP;④连接AD,CD.则四边形ABCD是矩形.根据小明设计的尺规作图过程,解决以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AE,CE,AF,CF.∵AE=CE,AF=CF,∴EF是线段AC的垂直平分线.∴AP=.又∵BP=DP,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴四边形ABCD是矩形()(填推理的依据).27.[定义]:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC就称为“美妙四边形”.[问题]:(1)下列四边形:平行四边形,矩形,菱形,正方形,其中是“美妙四边形”的是;(填写名称)(2)四边形ABCD是“美妙四边形”,AB=2,∠BAD=60°,∠ABC=90°,求美妙四边形ABCD的面积.(请画出图形,并写出解答过程)。

平行四边形单元测试题含答案

平行四边形单元测试题含答案

平行四边形单元测试题含答案Chapter 18 Test on "Parallelogram"I。

Multiple Choice (4 points x 8)1.Which of the following is not a characteristic of a parallelogram。

A。

Diagonals are equalB。

Two sets of opposite angles are equalC。

Two sets of opposite sides are parallelD。

The sum of r angles is 360 degrees2.What is the maximum number of parallelograms that XXX-isosceles triangles that XXX。

A。

1B。

2C。

3D。

43.XXX:A。

AcuteB。

RightC。

ObtuseD。

Cannot be determined4.In parallelogram ABCD。

XXX can be:A。

2:3:4:5B。

2:2:3:3C。

2:3:2:3D。

2:3:3:25.If one side of parallelogram ABCD is 10 cm。

what can be the lengths of the two diagonals。

A。

24 and 12B。

26 and 4C。

24 and 4D。

12 and 86.In parallelogram ABCD (as shown in the figure)。

P is an arbitrary point inside it。

and the areas of triangles ABP。

BCP。

CDP。

and DAP are S1.S2.S3.and S4.respectively。

Which of the following must be true。

人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。

第4章平行四边形单元测试卷(含解析)

第4章平行四边形单元测试卷(含解析)

浙教版八年级数学下册单元测试卷第四章平行四边形姓名:___________班级:___________学号:___________一、选择题(本大题共10小题,共30.0分)1.小斌家买了一套新房正在进行装修,星期天小斌陪父母一起到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设客厅地面(需无缝),则购买的瓷砖形状不可以是()A. 三角形地砖B. 正方形地砖C. 正六边形地砖D. 正五边形地砖2.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A. 35°B. 40°C. 50°D. 30°3.已知图形:①等边三角形,②平行四边形,③菱形,④圆.其中既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个4.学习了平行四边形的相关知识后,小明采用下列方法钉制了一个平行四边形框架:如图,将两根木条AC、BD的中点重叠并用钉子固定,然后用木条将AB、BC、CD、DA分别钉起来.此时四边形ABCD即为平行四边形,这样做的依据是()A. 两组对边分别平行的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 对角线互相平分的四边形是平行四边形5.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A. 2B. 5C. 7D. 96.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A. 有一个内角小于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 每一个内角都大于60°7.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3√3,则B′D的长度为()A. 6√3B. 9√3C. 6D. 98.已知点D与点A(−5 , 0),B(0,12),C(a,a)是一平行四边形的四个顶点,则CD长的最小值为()A. 172√2 B. 132√2 C. 13 D. 129.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为ℎ1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为ℎ2,则下列结论正确的是A. ℎ1 =ℎ2 B. ℎ1=2ℎ2 C. 2ℎ1 =ℎ2 D. ℎ1.ℎ2大小不确定10.如图,在平行四边形ABCD中,∠C=120º,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为()A. 1B.C.D.二、填空题(本大题共8小题,共24.0分)11.一个多边形的内角和与某一个外角的度数总和为1350°,则这个多边形的边数是________。

第四章 平行四边形单元测试(试卷答案)

第四章 平行四边形单元测试(试卷答案)

第四章平行四边形班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本题有10小题,每小题3分,共30分)1.七边形的外角和为()A.180°B.360°C.900°D.1260°2.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.93.如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.224.如图,在平行四边形ABCD中,AD=4,AB=3,AE平分∠BAD交BC于点E,则线段BE,EC的长分别为()A.2与2B.3与1C.3与2D.1与35.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.6.下列命题的逆命题错误的是()A.平行四边形的对角线互相平分B.两组对角相等的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形7.已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法证明这个结论,可假设()A.∠A=∠B B.AB=AC C.∠B=∠C D.∠A=∠C 8.如图,E,F分别是□ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A .6B .12C .18D .249. 如图,在△ABC 中,∠BAC =45°,AB =AC =8,P 为AB 边上一动点,以P A ,PC 为边作平行四边形P AQC ,则对角线PQ 的最小值为( ) A .6 B .8 C .2 2 D .4 210.如图,点E ,F 是□ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ;③AF =CE ;④∠AEB =∠CFD 中,选择一个条件添加,使四边形DEBF 是平行四边形,可添加的条件有( )A .①②③B .①②④C .①③④D .②③④二、填空题(本题有8小题,每小题3分,共24分)11.一个多边形的每一个外角均为30°,那么这个多边形的边数为__________.12.平行四边形的两邻边之比是2︰3,周长是30cm ,则较短的一边长为__________cm .13.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点.若EF 的长为2,则BC 的长为__________.14.请举反例说明命题“对于任意实数x ,x 2+5x +5的值总是整数”是假命题,你举的反例是x =__________(写出一个x 的值即可).15.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________.ABCEF16.如图,在8×8的方格纸中,每一个小正方形的边长均为1,则格点多边形的面积为__________.17.如图,在□ABCD 中,E ,F 分别是AB ,DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16 cm 2,S △BQC =25 cm 2,则图中阴影部分的面积为__________cm 2. 错误!未找到引用源。

人教版-八下数学第十八章《平行四边形》单元测试题及答案

人教版-八下数学第十八章《平行四边形》单元测试题及答案
(第8题) (第10题) 第3题 9.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . A BC DOABCD Ol 10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结 论是 . 二、选择题(每题3分,共24分) 11.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、 圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( )A.4种 B.5种 C.7种 D.8种 12.
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.

2020-2021学年人教版八年级数学下册 第18章 《平行四边形》 单元综合测试卷(含答案)

2020-2021学年人教版八年级数学下册   第18章 《平行四边形》 单元综合测试卷(含答案)

人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.已知▱ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.282.如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BCB.AB∥DC,AD∥BCC.AB∥DC,AD=BCD.AB∥DC,AB=DC4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是() A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6. 如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好都落在AD边的P点处,若∠FPH =90°,PF=16,PH=12,则矩形ABCD的边BC长为()A .40B .44C .48D .607.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12 C .16 D .328.将一张矩形纸片对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )A .三角形B .矩形C .菱形D .梯形 9.平行四边形的对角线一定具有的性质是( ) A .相等 B .互相平分C .互相垂直D .互相垂直且相等10.矩形ABCD 与CEFG 如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH.若BC =EF =2,CD =CE =1,则GH =( )A .1B .23C .22D .52二.填空题(共8小题,3*8=24)11.如图,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是________.12. 如图,已知▱ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD 的周长为__ __.13.如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,AC =2,点C 与点E 关于x 轴对称,则点D 的坐标是__ __.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是________.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是线段AO,BO的中点.若AC+BD=30 cm,△OAB的周长为23 cm,则EF的长为__________.16.如图,在△ABC中,AB=BC,AB=12 cm,F是AB上一点,过点F作FE∥BC交AC于点E,过点E作ED∥AB交BC于点D,则四边形BDEF的周长是__ _.17.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为_______.18.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 020秒时,点P的坐标为________.三.解答题(7小题,共66分)19.(8分) 如图所示,在▱ABCD中,AC,BD交于点O,点E,F分别是OA,OC的中点,请判断线段BE,DF的大小关系,并证明你的结论.20.(8分) 平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.21.(8分) 如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE =CF.22.(10分) 如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD 交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.23.(10分) 如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.24.(10分) 如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB,AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.25.(12分) 如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案1-5BBCCD 6-10CCCBC 11.20 12. 14 13.(33,0) 14.2.5 15.4 cm 16. 24cm 17. 10 18.(0,3) 19. 解:BE =DF.理由如下:连接DE ,BF. ∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD. ∵E ,F 分别是OA ,OC 的中点,∴OE =OF. ∴四边形BFDE 是平行四边形.∴BE =DF. 20. 证明:连接AC ,如图,在△ABC 和△CDA 中,⎩⎪⎨⎪⎧AB =CD CB =AD AC =CA ,∴△ABC ≌△CDA(SSS),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形21. 证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF.又BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD =90°. 在△ABE 与△CDF 中, ⎩⎪⎨⎪⎧∠AEB =∠CFD ,∠BAE =∠DCF ,AB =CD ,∴△ABE ≌△CDF(AAS),∴AE =CF22. 证明:∵AF ∥CD ,∴∠AFE =∠CDE ,在△AFE 和△CDE 中,⎩⎪⎨⎪⎧∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AEF ≌△CED.AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形.∴AE =12AC ,又AC =2AB ,AE =AB ,∠EAD =∠BAD ,AD =AD ,∴△AED ≌△ABD.∴∠AED =∠B =90°,即DF ⊥AC. ∴四边形ADCF 是菱形23.解:(1)四边形ADCE 是菱形.理由:∵四边形BCED 为平行四边形,∴CE ∥BD ,CE =BD ,BC ∥DE. ∵D 为AB 的中点,∴AD =BD. ∴CE =AD. 又∵CE ∥AD ,∴四边形ADCE 为平行四边形.∵BC ∥DF ,∴∠AFD =∠ACB =90°,即AC ⊥DE. ∴四边形ADCE 为菱形.(2)在Rt △ABC 中,∵AB =16,AC =12,∴BC =47. ∵BC =DE ,∴DE =47. ∴四边形ADCE 的面积=12AC·DE =247.(3)当AC =BC 时,四边形ADCE 为正方形.证明:∵AC =BC ,D 为AB 的中点,∴CD ⊥AB ,即∠ADC =90°. ∴四边形ADCE 为正方形.∠ADP +∠ADQ =90°,即∠PDQ =90°,∴△PDQ 为等腰直角三角形(2)当P 点运动到AB 的中点时,四边形APDQ 是正方形; 理由:∵P 为AB 的中点,AB =AC ,BP =AQ ,∴点Q 为AC 的中点,在Rt △ABD 和Rt △ACD 中,DP =AP =12AB ,QD =AQ =12AC , ∴DP=AP =QD =AQ ,∴四边形APDQ 为菱形,又∵∠A =90°,∴四边形APDQ 是正方形25.解:(1)证明:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,CB =CD ,AC =AC ,∴△ABC ≌△ADC(SSS), ∴∠BAC =∠DAC.在△ABF 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF ,∴∠AFD =∠AFB. 又∵∠AFB =∠CFE ,∴∠AFD =∠CFE.(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD. 又由(1)知∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD. 又∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形.(3)当BE ⊥CD 时,∠EFD =∠BCD. 理由:∵由(2)知四边形ABCD 是菱形,∴CB =CD ,∠BCF =∠DCF.又CF =CF ,∴△BCF ≌△DCF ,∴∠CBF =∠CDF. 又∵BE ⊥CD ,∴∠BEC =∠DEF =90°.∴∠BCD +∠CBF =90°,∠EFD +∠CDF =90°. 又∵∠CBF =∠CDF ,∴∠EFD =∠BCD.。

人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)

人教版八年级数学下册   第18章 《平行四边形》 单元测试卷(包含答案)

人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。

D.8错误!未找到引用源。

3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。

C.4-2 错误!未找到引用源。

D.3 错误!未找到引用源。

-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形单元测试题
班别姓名学号分数
一、选择题(每小题5分,共40分)
1.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()(A)36°(B)108°(C)72°(D)60°
2.如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为().
(A)9 (B)6 (C)3 (D)9 2
3.平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为().(A)4<x<6 (B)2<x<8 (C)0<x<10 (D)0<x<6
4.平行四边形的周长为24cm,相邻两边长的比为3:1,那么平行四边形较短的边长为().(A)6cm (B)3cm (C)9cm (D)12cm
5.下列说法正确的是().
(A)有两组对边分别平行的图形是平行四边形
(B)平行四边形的对角线相等
(C)平行四边形的对角互补,邻角相等
(D)平行四边形的对边平等且相等
6.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有().
A、无数种
B、4种
C、2种
D、1种
7.一个多边形的内角和等于外角和的一半,那么这个多边形是()
(A)三角形(B)四边形(C)五边形(D)六边形
8.在等腰三角形ABC中,∠C=90°,BC=2厘米,如果以AC的中点O为旋转中心,•将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距多少厘米()A.3 B.23 C.5 D.25
二、填空题(每小题6分,共36分)
9.如图1,在平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,
F,∠FBE=60°,AF=3cm,CE=4.5cm,则∠A=______度,AB=______,
BC=_______.
10.如图2,在平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于点
E.则∠DAE= °.
11在平行四边形ABCD中,AE⊥BC于E, AF⊥CD于F ,AE=4,AF=6,平行四
边形ABCD的周长为40,则平行四边形ABCD的面积为 .
C
D
B
A
F
E
12已知平行四边形ABCD 的两条对角线相交于直角坐标系的原点,点A ,B 的坐标分别为(-1,-5),(-1,2),则C 、D 的坐标分别为_________________.
13如图3,BC 为固定的木条,AB ,AC 为可伸缩的橡皮筋.当点A 在与BC•平行的轨道上滑动时,△ABC 的面积将如何变化 .(变大、变小、不变、不一定)
14如图4,在平行四边形ABCD 中,E是BC 上一点,且AB=BE , AE 的延长线交DC 的延长线于点F ,若∠F=50°,则∠D= °.
三、简答题(共24分)
15.(8分)已知:如图,在平行四边形ABCD 中,E 、F 是对角线BD 上的两点,且BE =DF. 求证:(1)AE =CF ;(2)AE ∥CF .
16. (8分)如图,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ′、C ′的位置上,若∠EFG=55°,求∠AEG 和∠ECB 的度数.
17. (8分)如图,在平行四边形ABCD 中,BE ⊥AC ,DF ⊥AC ,E 、F 分别为垂足, •试说明四边形BEDF 是平行四边形.
A
B C
D
E
F
答案:1.B 2.D 3.B 4.B 5.D 6.A 7.A 8.D
9.60°,6cm,9cm 10. 20°11 48. 12(1,5)(1,-2)13 不变. 14 80°
15.(略);16.(略);17.(略)。

相关文档
最新文档