2014学年度闸北区初三数学一模试卷
2014上海中考数学模拟测试参考答案(2014.6)
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
上海中考一模数学2014年25题汇编(含答案)
2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,0090305cm C A BC ∠=∠==,,;△DEF 中,090D ∠=,045E ∠=,3cm DE =. 现将△DEF 的直角边DF 与△AB C 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,AD x BE y ==,请你写出y 与x 之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得022.5EBD ∠= ?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分) 如图,在△ABC 中,AB =8,BC =10,3cos 4C =,2ABC C ∠=∠,BD 平分∠ABC 交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。
(1)求证:AB BGCE CF=; (2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。
25、(1)证明:∵BD 平分ABC ∠∴2ABC ABD ∠=∠ ∵2ABC C ∠=∠∴ABD C ∠=∠∵AEC ABC BAE ∠=∠+∠ 即AEF FEC ABC BAE ∠+∠=∠+∠ ∵AEF ABC ∠=∠∴BAE FEC ∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=B(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8 过点A 作AN MB ⊥,垂足为N∵3,cos ,4ABD C C AB AC ∠=∠==∴6,12BN MN BM === ∵AM ∥BC ∴AM MG BE BG =∴812BG x BG -=∴128xBG x =+ ∵AB BGCE CF =∴128810x x xy +=- ∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况: 1°AE AF =,则AEF AFE ∠=∠易证明FE FC y ==, 又∵3cos 4C =易得32EC y =, 又∵10EC x =- ∴2023x y -=又∵2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF =作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x =====∴2810x += ∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。
2014年上海市中考数学一模试卷 (1)DOC
2014年上海市中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,BC=a,那么AC等于().2.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m的值等于()3.如图,已知平行四边形ABCD中,向量在,方向上的分量分别是()..、、4.(4分)抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是()5.(4分)在△ABC,点D、E分别在边AB、AC上,如果AD=1,BD=2,那么由下列条件能够判定DE∥BC的是()..6.(4分)如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B 处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为()米0二、填空题:(本大题12小题,每题4分,满分48分)7.函数y=(5+x)(2﹣x)图象的开口方向是_________.8.在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=_________.9.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于_________cm.10.如果两个相似三角形周长的比是2:3,那么它们面积的比是_________.11.如图,在△ABC于△ADE中,,要使△ABC于△ADE相似,还需要添加一个条件,这个条件是_________.12.已知点G是△ABC的重心,AB=AC=5,BC=8,那么AG=_________.13.(4分)已知向量与单位向量方向相反,且,那么=_________(用向量的式子表示)14.如果在平面直角坐标系xOy中,点P的坐标为(3,4),射线OP与x的正半轴所夹的角为α,那么α的余弦值等于_________.15.(4分)已知一条斜坡的长度为10米,高为6米,那么坡角的度数约为_________(备用数据:tan31°=cot59°≈0.6,sin37°=cos53°≈0.6)16.如果二次函数y=x2+2kx+k﹣4图象的对称轴为x=3,那么k=_________.17.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.18.(4分)(2014•静安区一模)如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形相似缩放,使重叠的两边互相重合,我们称这样的图形为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC中,AB=6,BC=7,AC=5,△A1B1C是△ABC 以点C为转似中心的其中一个转似三角形,那么以点C为转似中心的另一个转似三角形△A2B2C(点A2,B2分别与A、B对应)的边A2B2的长为_________.三、解答题:(本大题共7题,满分78分)19.(10分)如图,已知在直角坐标系中,点A在第二象限内,点B和点C在x轴上,原点O为边BC的中点,BC=4,AO=AB,tan∠AOB=3,求图象经过A、B、C三点的二次函数解析式.20.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,,如果,.(1)求(用向量的式子表示)(2)求作向量(不要求写作法,但要指出所作图表中表示结论的向量)21.(10分)(2014•静安区一模)已知:如图,在平行四边形ABCD中,E、F分别是边BC,CD上的点,且EF∥BD,AE、AF分别交BD与点G和点H,BD=12,EF=8.求:(1)的值;(2)线段GH的长.22.(10分)如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.23.(12分)(2014•静安区一模)已知,如图,在梯形ABCD中,AD∥BC,∠BCD=90°,对角线AC、BD相交于点E,且AC⊥BD.(1)求证:CD2=BC•AD;(2)点F是边BC上一点,联结AF,与BD相交于点G,如果∠BAF=∠DBF,求证:.24.(12分)已知在平面直角坐标系xOy中,二次函数y=﹣2x2+bx+c的图象经过点A (﹣3,0)和点B(0,6).(1)求此二次函数的解析式;(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,tanA=,点D是斜边AB上的动点,联结CD,作DE⊥CD,交射线CB于点E,设AD=x.(1)当点D是边AB的中点时,求线段DE的长;(2)当△BED是等腰三角形时,求x的值;(3)如果y=,求y关于x的函数解析式,并写出它的定义域.2014年上海市中考数学一模试卷参考答案1. B2. C3. C4. A5. D6. B7. 向下8. 69. 2.10. 4:9 11. ∠B=∠E12. 213. :﹣3.14..15. 答案为:37°.16. K=-3 17. 2 18.答案为:.19. 解:∵原点O为边BC的中点,BC=4,∴B点坐标为(﹣2,0),C点坐标为(2,0),作AH⊥OB于H,如图,∵AO=AB,∴OH=BH=1,∵tan∠AOB==3,∴AH=3,∴A点坐标为(﹣1,3),设抛物线的解析式为y=a(x+2)(x﹣2),把A(﹣1,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴经过A、B、C三点的二次函数解析式为y=﹣(x+2)(x﹣2)=﹣x2+4.20. 解:(1)∵DE∥BC,∴=,∵,,∴=+=+,∴==(+)=+;(2)如图,取点AB的中点M,作=,连接,则即为所求.21.解:(1)∵EF∥BD,∴=,∵BD=12,EF=8,∴=,∴=,∵四边形ABCD是平行四边形,∴AB=CD,∴=;(2)∵DF∥AB,∴==,∴=,∵EF∥BD,∴==,∴=,∴GH=6.22. 解:解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴=∵AB=CB=8∴BD=4,AD=12.∴=∴CD=3≈6.928>6.∴船继续向东航行无触礁危险.23. 证明:(1)∵AD∥BC,∠BCD=90°,∴∠ADC=∠BCD=90°,又∵AC⊥BD,∴∠ACD+∠ACB=∠CBD+∠ACB=90°,∴∠ACD=∠CBD,∴△ACD∽△DBC,∴=,即CD2=BC×AD;(2)方法一:∵AD∥BC,∴∠ADB=∠DBF,∵∠BAF=∠DBF,∴∠ADB=∠BAF,∵∠ABG=∠DBA,∴△ABG∽△DBA,∴=,∴=,又∵△ABG∽△DBA,∴=,∴AB2=BG•BD,∴===,方法二:∵AD∥BC,∴∠ADB=∠DBF,∵∠BAF=∠DBF,∴∠ADB=∠BAF,∵∠ABG=∠DBA,∴△ABG∽△DBA,∴=()2=,而=,∴=.24. 解:(1)由题意得,,解得,所以,此二次函数的解析式为y=﹣2x2﹣4x+6;(2)∵y=﹣2x2﹣4x+6=﹣2(x+1)2+8,∴函数y=2x2﹣4x+6的顶点坐标为(﹣1,8),∴向右平移5个单位的后的顶点C(4,8),设直线BC的解析式为y=kx+b(k≠0),则,解得,所以,直线BC 的解析式为y=x+6,令y=0,则x+6=0,解得x=﹣12,∴点D的坐标为(﹣12,0),过点A作AH⊥BD于H,OD=12,BD===6,AD=﹣3﹣(﹣12)=﹣3+12=9,∵∠ADH=∠BDO,∠AHD=∠BOD=90°,∴△ADH∽△BDO,∴=,即=,解得AH=,∵AB===3,∴sin∠ABD===;(3)AB∥OC.理由如下:方法一:∵BD=6,BC==2,AD=9,AO=3,∴==3,∴AB∥OC;方法二:过点C作CP⊥x轴于P,由题意得,CP=8,PO=4,AO=3,BO=6,∴tan∠COP===2,tan∠BAO===2,∴tan∠COP=tan∠BAO,∴∠BAO=∠COP,∴AB∥OC.25. 解:(1)在△ABC中,∵∠ACB=90°,AB=10,tanA=,∴BC=8,AC=6,∵点D为斜边AB的中点,∴CD=AD=BD=5,∴∠DCB=∠DBC,∵∠EDC=∠ACB=90°,∴△EDC∽△ACB,∴=,即=,则DE=;(2)分两种情况情况:(i)当E在BC边长时,∵△BED为等腰三角形,∠BED为钝角,∴EB=ED,∴∠EBD=∠EDB,∵∠EDC=∠ACB=90°,∴∠CDA=∠A,∴CD=AC,作CH⊥AB,垂足为H,那么AD=2AH,∴=,即AH=,∴AD=,即x=;(ii)当E在CB延长线上时,∵△BED为等腰三角形,∠DBE为钝角,∴BD=DE,∴∠BED=∠BDE,∵∠EDC=90°,∴∠BED+∠BCD=∠BDE+∠EDC=90°,∴∠BCD=∠BDC,∴BD=BC=8,∴AD=x=AB﹣BD=10﹣8=2;(3)作DM⊥BC,垂足为M,∵DM∥AC,∴==,∴DM=(10﹣x),BM=(10﹣x),∴CM=8﹣(10﹣x)=x,CD=,∵△DEM∽△CDM,∴=,即DE==,∴y==,整理得:y=(0<x<10).。
上海市闸北区2014届初三第二次模拟考试数学试题
N M HD CFE O图1上海市闸北区2014届初三第二次模拟考试数学试题(满分150分,考试时间100分钟)(2014. 4)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.9的平方根是……………………………………………………………………( ▲ ) (A )3; (B )-3; (C )3和-3; (D )9. 2.下列实数中,是无理数的是……………………………………………………( ▲ ) (A(B; (C )722; (D )cos 60. 3.在下列二次根式中,( ▲ )(A(B; (C; (D4.下列方程有实数根的是 ………………………………………………………( ▲ ) (A )210x x -+=; (B )40x =; (C )111x x x =--; (D0=. 5.某中学篮球队14名队员的年龄情况如下表,则这些队员年龄的众数和中位数分别是…………………………………………………………………………………………( ▲ ) (A )15,16; (B )16,16; (C )16,16.5; (D )17,16.5. 6.如图1,EF 是⊙O 的直径,CD 交⊙O 于M 、N ,H 为MN 的中点,EC ⊥CD于点C ,FD ⊥CD 于点D ,则下列结论错误的是……( ▲ ) (A )CM ﹦DN ; (B ) CH ﹦HD ;(C )OH ⊥CD ; (D )EC OHOH FD=.图3图6 DCB A图5二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.我国最长的河流长江全长约为6300千米,用科学记数法表示为 ▲ 千米. 8.计算:4nn xx ÷= ▲ .9.因式分解:2a 2-2= ▲ . 10.化简221(1)(1)x x x ---的结果是 ▲ . 112=的解是 ▲ .12.已知反比例函数y =m -1x 的图象如图2所示,则实数m 的取值范围是 ▲ .13.从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为 ▲ .14.某校对初中学生开展的四项课外活动进行了一 次抽样调查(每人只参加其中的一项活动),调查结果如图3 所示.根据图示所提供的样本数据,可得学生参加科技活动 的频率是 ▲ .15.已知3,5a b ==,且b 与a 反向,则用向量b 表示向量a ,即a = ▲ b . 16.如图4,自动扶梯AB 段的长度为20米,倾斜角A 为α, 高度BC 为 ▲ 米.(结果用含α的三角比表示)17.如图5,在四边形ABCD 中,点M ,N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD , FN ∥DC ,则∠B = ▲ 度.18.如图6,等腰△ABC 的顶角A 的度数是36°,点D 是腰AB 的 黄金分割点(AD >BD ),将△BCD 绕着点C 按照顺时针方向旋转一个角 度后点D 落在点E 处,联结AE ,当AE ∥CD 时,这个旋转角是 ▲ 度.图4三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:12021tan 6014π-⎛⎫+++ ⎪+⎝⎭(-1).20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧≤--+<+-.1312412x x x x , ,并把解集在数轴上表示出来.21.(本题满分10分,第(1)小题5分,第(2)小题5分) 已知:如图7,在梯形ABCD 中,DF 平分∠D ,若以点D 为 圆心,DC 长为半径作弧,交边AD 于点E ,联结EF 、BE 、EC .(1) 求证:四边形EDCF 是菱形;(2) 若点F 是BC 的中点,请判断线段BE 和EC 的位置关系,并证明你的结论.22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分) 全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y (万元)与月份x (月)(1≤x ≤6)的函数关系如图8(1) 根据图像,请判断:y 与x (1≤x ≤6)的变化规律应该 符合 函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2) 求出y 与x (1≤x ≤6)的函数关系式(不写取值范围);(3) 经统计发现,从6月到8月每月利润的增长率相同, 且8月份的利润为151.2万元,求这个增长率.①② 图7)23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图9,点D 是线段BC 上的任意一点, △ABD 和△DCE 都是等边三角形,AD 与BE 交于点F .(1)求证:△BDE ≌△ADC ; (2)求证:AB 2 = BC AF ;(3)若BD =12,CD =6,求∠ABF 的正弦值.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图10,二次函数y =ax 2+4的图像与 x 轴交于点A 和点B (点A 在点B 的左侧),与y轴交于点C ,且cos ∠CAO=2. (1)求二次函数的解析式;(2)若以点O 为圆心的圆与直线AC 相切于点D ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P 使得以P 、A 、D 、O 为顶点的四边形是直角梯形....,若存在,请求出点P 坐标;若不存在,请说明理由.25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图11—①,△ABC 中,AB=AC=6,BC=4,点D 在BC 的延长线上,联结AD ,以AD 为一边作△ADE ,使点E 与点B 位于直线AD 的两侧,且AD=AE ,∠DAE=∠BAC.(1)如果AE//BC ,请判断四边形ABDE 的形状并证明;(2)如图11—②,设M 是BC 中点,N 是DE 中点,联结AM 、AN 、MN , 求证:△ABD ∽△AMN ;(3)设BD=x ,在(2)的前提下,以BC 为直径的⊙M 与以DE 为直径的⊙N 存在着哪些位置关系?并求出相应的x 的取值范围(直接写出结论).图11—②MABCD EN图9ABCDE F10ABCDE图11—①上海市闸北区2014届初三第二次模拟考试数学试题答案及评分参考(考试时间:100分钟,满分:150分)一. 选择题(本大题共6题,每题4分,满分24分)二、填空题(本大题共12题,每题4分,满分48分) 7、36.310⨯. 8、3n x . 9、2(1)(1)a a +-. 10、11x -. 11、x=3. 12、1m >. 13、23. 14、0.2.15、35-. 16、20sin α.17、95.18、72或者108. 三. 解答题(本大题共7题,满分78分)19、(本题满分10分) 解:原式12+ …………………………………………………(5分) 13 ………………………………………………………(3分) =2 .……………………………………………………………(2分) 20.(本题满分10分)解:由①得:33x -<……………………………………………………………(2分)解得1x >-…………………………………………………………(1分)由②得:32(1)6x x --≤…………………………………………………(3分) 解得4x ≤ …………………………………………………………(1分)所以不等式组的解集是14x -<≤ .………………………………………(1分) ………………………………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵DF 平分∠D∴∠ EDF=∠CDF ……………………………(1分) ∵作弧∴ED=DC …………………………………(1分) 在△EDF 与△CDF 中,图7ED DC EDF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∴△EDF ≌△CDF ……………………………………………………………………(1分) ∴EF=CF ………………………………………………………………………………(1分) ∵梯形ABCD ∴ AD ∥BC ∴∠ EDF=∠ DFC ∴∠ DFC=∠ CDF ∴CF=CD∴ED=DC=CF=EF ………………………………………………………………………(1分) ∴四边形EDCF 是菱形.(2)线段BE 和EC 的位置关系是垂直. …………………………………………(1分) ∵点F 是BC 的中点 ∴BF=CF∴BF=ED ………………………………………………………………………………(1分) ∵ED ∥BF∴四边形BEDF 是平行四边形………………………………………………………(1分) ∴BE ∥DF ……………………………………………………………………………(1分) ∵菱形EDCF∴EC ⊥DF ……………………………………………………………………………(1分) ∴BE ⊥EC .22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分)(1)②………………………………………………………………………………………(2分) (2)设y =kx +b (a ≠0),将(1,80)、(4,95)代入得:80495k b k b +=⎧⎨+=⎩ ………………………………………………………………………(2分) 解得: 575k b =⎧⎨=⎩………………………………………………………………………(1分)∴y =5x +75.………………………………………………………………………(1分) (3)把x=6代入y =5x +75得y=105 ……………………………………………………………………………(1分) 设这个增长率是a ,则:105(a+1)2=151.2 ……………………………………(2分) 解得a=20%答:这个增长率是20%.…………………………………………………………(1分) 23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) (1)证明:∵△ABD 和△DCE 都是等边三角形∴BD =AD ,DE =DC ,∠FAB =∠ABC =∠ADB =∠EDC =60°…………………(2分) ∴∠BDE =∠ADC . ……………………………………………………………………(1分) 在△BDE 和△ADC 中BD AD BDE ADC DE DC =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△ADC .………………………………………………………………………(1分) (2)证明:∵△BDE ≌△ADC ∴∠DBE =∠DAC∵∠ABC =∠ADB =60° ∴∠ABF =∠BCA∵∠FAB =∠ABC ,∠ABF =∠BCA …………………………………………………………(2分)∴△FAB ∽△ABC ………………………………………………………………………………(1分) ∴AF ABAB BC= 即AB 2 = BC ⋅AF ………………………………………………………………………………(1分)(3)∵△FAB ∽△ABC∴∠ABF=∠ACB ………………………………………………………………………………(1分)过A 作AM ⊥BC 于点M ……………………………………………………………………(1分)∵△ABC 是等边三角形,BD=12 ∴MD=6,AM=在Rt △AMC 中,12==………………………………(1分) ∴sin ∠ACB=AM AC ==即sin∠1分)24. (本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵二次函数y =ax 2+4的图像与y 轴交于点C ∴点C 的坐标为(0,4).………………………………………………………………(1分)∵二次函数y =ax 2+4的图像与x 轴交于点A ,cos∠CAO =2∴∠CAO =45°…………………………………………………………………………(1分) ∴OA =OC =4,∴点A 的坐标为(-4,0) ………………………………………(1分)图9ABCDEFM∴0=a (-4)2+4,∴a =-41 ∴这二次函数的解析式为y =-41x 2+4. …………………………………………(1分)(2)连接OD ,作DE ∥y 轴,交x 轴于点E ,DF ∥x 轴,交y 轴于点F (如图一).∵⊙O 与直线AC 相切于点D ,∴OD ⊥AC .………(1∵OA =OC =4,∴点D 是AC 的中点………………(1∴DE =21OC =2,DF =21OA =2,∴点D 的坐标为(-2,2). ………………………(2分)(3)直线OD 的解析式为y =-x (如图二),则经过点A 且与直线OD 平行的直线的解析式为y =-x -分)解方程组⎪⎩⎪⎨⎧+-=--=44142x y x y , 消去y ,得x 2-4x -32=0,即(x -8)(x +4)=0,∴x 1=8, x 2=-4(舍去),∴y =-12,∴点P 1的坐标为(8,-12).……………(1分)直线AC 的解析式为y =x +4,则经过点O 且与直线AC 平行的直线的解析式为y =x . ……………………………(1分) 解方程组⎪⎩⎪⎨⎧+-==4412x y xy , 消去y ,得x 2+4x -16=0,即x =-2+25,∴x 1=-2-25,x 2=-2+25(舍去),∴y =-2-25,∴点P 2的坐标为(-2-25,-2-25).………………………………………(1分) 25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)解:(1)四边形ABDE 是平行四边形…………(1分) 如图(1)∵ ∠ BAC=∠ DAE ,AB=AC ,AD=AE∴ △ABC ~△ADE ……………………………(2分) ∴ ∠ E=∠ ACB=∠ B ∵ AE//BC∴ ∠ EAB+∠ E=∠ EAB+∠ B=180º……(1分) ∴ AB//ED ……………………………………(2分) ∴ 四边形ABDE 是平行四边形 (2)证明:∵ AB=AC ,M 是BC 中点ABE N(图一)(图二)EBAC D图(1)∴ AM ⊥BC ,AM 平分∠ BAC ………………(1分) 同理AN ⊥DE ,AN 平分∠ DAE ……………(1分) ∵∠ MAN=∠ MAC+∠ CAD+∠ DAN ∠ BAD=∠ BAM+∠ MAC+∠ CAD∴∠ MAN=∠ BAD …………………………(1分) ∵△ABC ~△ADE ∴ANAMAD AB =……………………………………………………………………(1分) 在△ABD 和△AMN 中∴AB ADAM AN MAN BAD⎧=⎪⎨⎪∠=∠⎩ ∴△ABD ~△AMN .………………………………………………………………(1分) (3)当74224x -=两圆外切 ………………………………………………(2分)当4x ≤<1分);74224x ->两圆外离. (1)。
2014市中一模数学试题
数学试题2014、4
本试题分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,第1卷共2页,满分为45分;第1I卷共6页,满分为75分.本试题共8页,满分为120分.考试时间为120分钟,答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器,
16.3a(x+y)(x-y)17. 1518.OD=OB(或∠A=∠C或∠D=∠B)
19.atan40°20. 9 21.
22.(1) (2)
23.(1)证明:∵ED⊥AB
∴∠EDB=900...............1分
在Rt△ECB和Rt△EDB中
∴Rt△ECB≌Rt△EDB(HL)……2分
∵S△EOM ,S△AON ……………8分
∴S△EOM=S△AON,
∵AN和ME边上的高相等,
∴AN=ME……………………………………………9分
27.解:(1)PN= PM
证明:略…………………………3分
(2)解:①如图2,PN=PM…………4分
如图2:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F
质地完全相同且充分洗匀),那么员工小胡抽到去以地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是;“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”,试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
其中正确的是( )
A.①②B.①②④C.③④D.①②③④
2014年上海市初三模拟测试(含答案)
1 / 72014年上海市初三模拟测试数 学 试 卷(满分150分,考试时间100分钟) 2014.3考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是 ( ) (A(B )8;(C )2x ;(D )12+x .2.k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是 ( ) (A)有两个不相等的实数根; (B)有两个相等的实数根; (C)没有实数根; (D)无法确定.3.如果用A 表示事件“若a b >,则ac bc >”,那么下列结论正确的是 ( ) (A )P(A)=0; (B )P(A)=1; (C )0<P(A)<1; (D) P(A)>14.下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是 ( )5. ( ) (C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.6.下图描述了小丽散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象,下面描述符合小红散步情景的是 ( ) (A )从家出发,到了一个公共阅报栏,看了一会儿报,就回家了; (B )从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了;(C )从家出发,一直散步(没有停留),然后回家了;(D )从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回. 二、填空题:(本大题12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.比较大小:-2.2 / 7 A B C D E F (第15题)(第17题)(第16题) ① ②③ 8.因式分解:2221x x y ++-= .9.两个..不相等...的无理数,它们的乘积为有理数,这两个数可以是 . 10.方程4210x =的根是 .11.若一次函数(12)y k x k =-+的图像经过第一、二、三象限,则k 的取值范围是 . 12.抛物线221y x =-的顶点坐标是 .13.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:则可估计该城市一年中日平均气温为26℃的约有 天.14.若圆的半径是10cm ,则圆心角为40°的扇形的面积是 cm 2.15.如图,在梯形ABCD 中,AD//BC ,EF 是梯形的中位线,点E 在AB 上,若A D ︰B C =1︰3,AD a =,则用a 表示FE 是:FE = .16.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是带编号为 的碎片去.17.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO 为2.4m ,在图中直角坐标系内,涵洞截面所在抛物线的解析式是___ _______.18.如图,点G 是等边ABC △的重心,过点G 作BC 的平行线,E ,点M 在BC 边上.如果以点B 、D 、M 的三角形相似(但不全等),那么:BDM CEM S S =△△ . 三、解答题:(本大题共7题,满分78分)19.(本题10分)先化简再求值:5332(3)(1)x x x x +÷-+,其中12x =-. 20.(本题10分)解方程: 33201x x x x+--=+ 21.(本题10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的60BAD ∠=.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm 1.732≈) 22.(本题10分)如图,在Rt △ABC 中,∠ABC =90°,BA =BC .点D 是AB B 作BG 丄CD ,分别交CD 、CA 于点E 、F ,与过点A 点G .(第18题)3 / 7(1)求ACAF的值; (2)求ABCAFGS S ∆∆的值; 23.(本题12分)如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. ⑴ 若BK =52KC ,求CDAB的值; ⑵ 联结BE ,若BE 平分ABC ∠,则当12AE AD =时,猜想线段AB 、BC 、CD 三者之间有怎样的数量关系?请写出你的结论并予以证明;⑶ 试探究:当BE 平分ABC ∠,且()12AE AD n n =>时,线段AB 、BC 、CD 三者之间有怎样的数量关系?请直接写出你的结论,不必证明.24.(本题12分)已知一次函数m x y +=43的图像分别交x 轴、y 轴于A 、B 两点(如图),且与反比例函数x y 24=的图像在第一象限交于点C (4,n ),CD ⊥x 轴于D 。
2014年上海市闸北区中考数学一模试卷
2014年上海市闸北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.)1.(4分)(2014•闸北区一模)对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都保持不变B.图形中线段的长度与角的大小都会改变C.图形中线段的长度保持不变、角的大小可以改变D.图形中线段的长度可以改变、角的大小保持不变【考点】M33N 相似三角形的应用【难度】容易题【分析】根据相似图形的性质得出相似图形的对应边成比例,对应角相等,即可得出对一个图形进行收缩时,图形中线段的长度改变,角的大小不变,故选D.【解答】D.【点评】本题主要考查对相似图形的性质的理解和掌握,能熟练地根据相似图形的性质进行说理是解此题的关键.2.(4分)(2014•闸北区一模)已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()A.B.C.D.【考点】M226 二次根式的加、减、乘、除及其混合运算M241 一元二次方程的概念、解法M33K 黄金分割【难度】中等题【分析】把AB当作已知数求出AC,求出BC,再分别求出各个比值,根据结果判断即可.具体为:AC2=BC•AB,AC2﹣BC•AB=0,AC2﹣(AB﹣AC)AB=0,AC2+AB•AC﹣AB2=0,AC=,∵边长为正值,∴AC=AB,BC=AB﹣AC=,∴==,===,==,即选项A、C、D错误,只有选项B正确;故选B.【解答】B.【点评】本题考查了解一元二次方程和黄金分割的应用,要求学生要有较强的计算能力.3.(4分)(2014•闸北区一模)下列关于抛物线和的关系说法中,正确的是()A.它们的形状相同,开口也相同B.它们都关于y轴对称C.它们的顶点不相同D.点(﹣3,3)既在抛物线上也在上【考点】M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】根据两个函数知道其二次项系数a的绝对值相等,则开口方向相反,都关于y轴对称,顶点都为原点,故A、C错误,B正确,故选B.【解答】B.【点评】本题考查了二次函数的性质,解题的关键是了解形如y=ax2的抛物线的性质.4.(4分)(2014•闸北区一模)下列关于向量的说法中,不正确的是()A. B.C.若,则或D.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】A、,故本选项正确;B、,故本选项正确;C、若,无法判定与的关系,因为向量有方向性;故本选项错误;D、,故本选项正确.故选C.【解答】C.【点评】此题考查了平面向量的定义与运算.此题比较简单,注意理解平面向量的定义是解此题的关键.5.(4分)(2014•闸北区一模)已知α、β都是锐角,如果sinα=cosβ,那么α与β之间满足的关系是()A.α=βB.α+β=90°C.α﹣β=90° D.β﹣α=90°【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据α、β都是锐角,sinα=cosβ,则sinα=cos(90°﹣α)=cosβ,可得α、β互为余角,故选:B.【解答】B.【点评】本题考查了互为余角两三角函数的关系,两角都是锐角,一角的正弦等于另一角的余弦,这两个锐角互余.6.(4分)(2014•闸北区一模)如图,平行四边形ABCD中,F是CD上一点,BF交AD 的延长线于G,则图中的相似三角形对数共有()A.8对B.6对C.4对D.2对【考点】M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】中等题【分析】根据平行四边形的性质,得到平行四边形的对边平行,即AD∥BC,AB∥CD;再根据相似三角形的判定方法:平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似,得△BEC∽△GEA,△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF,进而得△GAB∽△BCF,还有△ABC≌△CDA(是特殊相似),∴共有6对.故选:B.【解答】B.【点评】此题考查了相似三角形的判定方法(平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似)与平行四边形的性质(平行四边形的对边平行).解题的关键是要注意数形结合思想的应用,注意做到不重不漏.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2014•闸北区一模)已知a:b=3:2,则(a﹣b):a=.【考点】M33H 比例的性质【难度】容易题【分析】根据两內项之积等于两外项之积用a表示出b=a,然后代入比例式进行计算即(a﹣b):a=(a﹣a):a=1:3.【解答】1:3.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.(4分)(2014•闸北区一模)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果DE:EF=3:5,AC=24,则BC=.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】根据平行线分线段成比例定理得出==,再根据BC=AC×代入计算得BC=24×=15,故答案为:15.【解答】15.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.9.(4分)(2014•闸北区一模)在Rt△ABC和Rt△DEF中,∠C=∠F=90°,当AC=3,AB=5,DE=10,EF=8时,Rt△ABC和Rt△DEF是的.(填“相似”或者“不相似”)【考点】M33E 勾股定理M33M 相似三角形性质、判定【难度】容易题【分析】如图所示:首先利用勾股定理得出BC==4,DF==6,则可得==,又∠C=∠F=90°,进而利用相似三角形的判定得出Rt△ABC∽Rt△DEF.故答案为:相似.【解答】相似.【点评】此题主要考查了勾股定理以及相似三角形的判定,根据已知得出==是解题关键.10.(4分)(2014•闸北区一模)两个相似三角形对应边的比为2:3,则它们的周长比为.【考点】M33M 相似三角形性质、判定【难度】容易题【分析】根据相似三角形周长的比等于相似比进行解答即得它们对应周长的比为2:3.故答案为:2:3.【解答】2:3.【点评】本题考查的是相似三角形的性质,关键是要知道相似三角形周长的比等于相似比.11.(4分)(2014•闸北区一模)化简:=.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】直接利用三角形法则求解,即=+=.故答案为:.【解答】.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握三角形法则的应用.12.(4分)(2014•闸北区一模)如图,某人在塔顶的P处观测地平面上点C处,经测量∠P=35°,则他从P处观察C处的俯角是度.【考点】M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】过P作平行于地平面的直线PO,∵∠P=35°,∴∠CPO=90°﹣∠P=55°,∵从P处观察C处的俯角即为∠CPO,∴从P处观察C处的俯角为55°.故答案为:55.【解答】55.【点评】本题考查了解直角三角形的应用,解答本题的关键掌握俯角是向下看的视线与水平线的夹角.13.(4分)(2014•闸北区一模)将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x轴上,则m=.【考点】M232 一元一次方程的概念、解法M41A 函数图像的几何变换M442 二次函数的图象、性质【难度】容易题【分析】把二次函数解析式整理成顶点式形式y=(x﹣1)2+m﹣1,再根据向下平移横坐标不变,纵坐标减写出平移后的解析式y=(x﹣1)2+m﹣2,然后根据顶点在x轴上,纵坐标为0列式m﹣2=0,解得m=2.故答案为:2.【解答】2.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.(4分)(2014•闸北区一模)在Rt△ABC中,∠C=90°,CD⊥AB于点D,若AD=9,BD=4,则AC=.【考点】M228 算术平方根、立方根M33D 直角三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定【难度】中等题【分析】根如图所示:∵Rt△ABC中∠C=90°,CD⊥AB,∴∠A+∠B=90°,∠A+∠ACD=90°,∠B+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴=,即CD2=AD•BD=9×4=36,解得CD=6,在Rt△ACD中,∵AD=9,CD=6,∴AC===.故答案为:.【解答】.【点评】本题主要考查的是相似三角形的判定与性质,属于中考高频考点,考生要注意掌握;对于本题熟知相似三角形的对应边成比例是解答此题的关键.15.(4分)(2014•闸北区一模)一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数解析式是.(不写定义域)【考点】M256 列方程(组)解应用题M348 四边形周长、面积M443 二次函数的关系式【难度】容易题【分析】原边长为3厘米的正方形面积为:3×3=9(平方厘米),边长增加x厘米后边长变为:x+3,则面积为:(x+3)2平方厘米,∴y=(x+3)2﹣9=x2+6x.故答案为:y=x2+6x.【解答】y=x2+6x.【点评】此题主要考查了根据实际问题列二次函数关系式,关键是正确表示出正方形的面积.16.(4分)(2014•闸北区一模)如图,在平行四边形ABCD中,AB=12,AD=18,∠BAD 的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF 的周长是.【考点】M339 等腰三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】中等题【分析】先计算出△ABE的周长,然后根据相似比的知识进行解答即可.具体为:解:∵在▱ABCD中,AB=CD=12,AD=BC=18,∠BAD的平分线交BC于点E,∴△ADF是等腰三角形,AD=DF=18;∵AB=BE=12,∴CF=6;∴在△ABG中,BG⊥AE,AB=12,BG=8,可得:AG=4,又∵BG⊥AE,∴AE=2AG=8,∴△ABE的周长等于32,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为16.故答案为16.【解答】16.【点评】本题意在综合考查平行四边形、相似三角形和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,相似三角形的周长比等于相似比,难度较大.17.(4分)(2014•闸北区一模)如图,点G是Rt△ABC的重心,过点G作矩形GECF,当GF:GE=1:2时,则∠B的正切值为.【考点】M33L 三角形重心、内心、外心M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】中等题【分析】连接AG并延长交BC于点H,因为点G是Rt△ABC的重心,所以BH=CH,=,又GE∥BC,则由相似三角形的判定定理可知△AGE∽△AHC,故可得出==,设GE=2x,则CH=3x,再根据GF:GE=1:2可知,GF=HF=x,由于四边形GECF是矩形,故CE=GF=x,所以AC=2CE=3x,则tan∠B===.【解答】.【点评】本题主要考查的是三角形的重心,涉及相似三角形性质、判定,矩形性质等知识点;熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.18.(4分)(2014•闸北区一模)如图,已知等腰△ABC,AD是底边BC上的高,AD:DC=1:3,将△ADC绕着点D旋转,得△DEF,点A、C分别与点E、F对应,且EF与直线AB重合,设AC与DF相交于点O,则S△AOF:S△DOC=.【考点】M339 等腰三角形的性质和判定M33O 三角形面积M33E 勾股定理M33M 相似三角形性质、判定M361 锐角的三角比的概念(正切、余切、正弦、余弦)M372 图形的旋转与旋转对称图形【难度】较难题【分析】作DG⊥AB于G,∵AB=AC,AD⊥BC,∴∠ADB=∠ADC=90°,∠BAD=∠CAD,∠B=∠C.设AD=x,则BD=3x,由勾股定理,得AB=x,∴AC=x.∴,∴,∴GD=.∵==tan∠C.∴tan∠B=.∵∠ADG+∠GAD=90°,∠B+∠GAD=90°,∴∠ADG=∠B.∴tan∠ADG=,∴,∴AG=.∵△FDE是由△CDA旋转得来的,∴△FDE≌△CDA,∴DE=DA.∠F=∠C.∵DG⊥AB,∴AG=EG.∴AE=2AG,∴AE=.∴AF==.∵∠AOF=∠DOC,∠F=∠C,∴△AFO∽△DCO,∴S△AOF:S△DOC==()2.=.故答案为:.【解答】.【点评】本题考查了等腰三角形的性质的运用,勾股定理的运用,旋转的性质的运用,三角函数值的运用,相似三角形的判定与性质的运用,三角形面积公式的运用,涉及知识点较多且均属于中考常考知识点,考生要注意掌握!解答时证明三角形相似是关键.三、解答题19.(10分)(2014•闸北区一模)已知:抛物线y=﹣x2+bx+c经过A(﹣1,0)、B(5,0)两点,顶点为P.求:(1)求b,c的值;(2)求△ABP的面积;(3)若点C(x1,y1)和点D(x2,y2)在该抛物线上,则当0<x1<x2<1时,请写出y1与y2的大小关系.【考点】M414 用待定系数法求函数关系式M417 不同位置的点的坐标的特征M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M33O 三角形面积【难度】容易题【分析】(1)利用交点式得到y=﹣(x+1)(x﹣5),然后展开即可得到b和c的值;(2)先把抛物线的解析式配成顶点式得到P点坐标为(2,9),然后根据三角形面积公式计算即可;(3)由于抛物线的对称轴为直线x=2,开口向下,则根据二次函数的性质可确定y1与y2的大小关系.【解答】解:(1)设抛物线的解析式为y=﹣(x+1)(x﹣5), (1)所以y=﹣x2+4x+5,所以b=4,c=5; (3)(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,P点坐标为(2,9), (5)所以△ABP的面积=×6×9=27; (7)(3)抛物线的对称轴为直线x=2,开口向下,所以当0<x1<x2<1时,y1<y2. (10)【点评】本题考查了待定系数法求二次函数关系式:要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(10分)(2014•闸北区一模)已知:如图,EF是△ABC的中位线,设,.(1)求向量、(用向量、表示);(2)在图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】M334 三角形中位线定理M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)由EF是△ABC的中位线,设,,利用三角形的中位线的性质,即可求得,然后由三角形法则,求得;(2)利用平行四边形法则,即可求得向量在、方向上的分向量.【解答】解:(1)∵EF是△ABC的中位线,.∴==, (3)∵,∴=﹣=﹣; (5)(2)如图,过点E作EM∥AC, (7)则与即为向量在、方向上的分向量. (10)【点评】此题考查了平面向量的知识.此题比较简单,属于向量方面的常规题型,注意掌握三角形法则与平行四边形法则的应用.21.(10分)如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D 的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1:1.875,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.【考点】M241 一元二次方程的概念、解法M33E 勾股定理M33M 相似三角形性质、判定M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】中等题【分析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.【解答】解:作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.在Rt△CFD中,i=1:1.875,即CF:DF=1:1.875=8:15; (2)设CF=8x米,则DF=15x米, (3)由勾股定理可得,(8x)2+(15x)2=CD2,∴CD=17x=3.4,∴x=0.2, (5)∴DF=15×0.2=3米,CF=8×0.2=1.6米. (6)∵FE:CF=NH:NM,∴FE:1.6=336:168,∴FE=3.2,∴BE=BD+DF+FE=2+3+3.2=8.2米. (8)∴AB:BE=MN:NH,∴AB:8.2=168:336,∴AB=4.1米.答:铁塔高度为4.1米. (10)【点评】本题是解直角三角形+坡度与坡角应用问题,是历年中考常考题型,考生要注意;本还涉及相似三角形的应用,对于本题构造直角三角形是解题的关键.22.(10分)(2014•闸北区一模)已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.【考点】M226 二次根式的加、减、乘、除及其混合运算M228 算术平方根、立方根M253 分式方程M323 平行线的判定、性质M33O 三角形面积M33M 相似三角形性质、判定M373 图形的翻折与轴对称图形【难度】容易题【分析】(1)根据等高的三角形的面积的比等于底边的比求出BD=2CD,然后求出BC,再根据两组角对应相等两三角形相似求出△ABC和△DAC相似,然后根据相似三角形对应边成比例可得=,代入数据计算即可得解;(2)根据翻折的性质可得∠E=∠C,DE=CD,再根据两直线平行,内错角相等可得∠B=∠EDF,然后求出∠EDF=∠CAD,再根据两组角对应相等两三角形相似求出△EFD和△ADC相似,根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6, (2)∴BC=BD+DC=6+3=9, (3)∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3; (5)(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF, (6)∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC, (8)∴=()2=()2=. (10)【点评】本题考查了相似三角形的判定与性质,翻折变换的性质,以及平行线的性质,等高的三角形的面积的比等于底边的比,难点在于利用两组角对应相等,两三角形相似确定出相似的三角形.23.(12分)(2014•闸北区一模)小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:(1)如图1,已知锐角△ABC.求证:;(2)根据题(1)得到的信息,请完成下题:如图2,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?【考点】M241 一元二次方程的概念、解法M243 一元二次方程的应用M339 等腰三角形的性质和判定M33O 三角形面积M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】中等题【分析】(1)首先过点C作CE⊥AB于点E,则sinA=,进而得出EC的长,即可得出答案;此问简单(2)首先表示出△APQ的面积,进而得出△ABC的面积,进而利用求出t的值即可.此问中等【解答】解:(1)如图1,过点C作CE⊥AB于点E, (1)sinA=, (2)∴EC=ACsinA, (3)S△ABC=EC×AB=AB×ACsinA; (5)(2)如图2,过点P作PE⊥AC于点E,过点B作BF⊥AC于点F,设移动时间为t秒,则AP=2t,CQ=t,∴PE=APsinA,BF=12sinA, (7)S△APQ=AQ×PE=×(12﹣t)×APsinA=×(12﹣t)×2t×sinA=t(12﹣t)sinA,S△ABC=BF×AC=×12×12sinA=72sinA, (9)当,∴=, (11)∴整理得出:t2﹣12t+27=0,解得:t1=3,t2=9(不合题意舍去),∴当t=3秒时,. (12)【点评】此题主要考查了解直角三角形的应用和一元二次方程的解法,根据已知表示出△APQ的面积是解题关键.24.(12分)(2014•闸北区一模)已知:如图,抛物线与y轴交于点C,与x轴交于点A、B,(点A在点B的左侧)且满足OC=4OA.设抛物线的对称轴与x轴交于点M:(1)求抛物线的解析式及点M的坐标;(2)联接CM,点Q是射线CM上的一个动点,当△QMB与△COM相似时,求直线AQ 的解析式.【考点】M233 二元一次方程(组)的概念、解法M241 一元二次方程的概念、解法M33E 勾股定理M33M 相似三角形性质、判定M414 用待定系数法求函数关系式M415 动点问题的函数图像M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M422 一次函数的的图象、性质M423 一次函数的关系式M424 一次函数的应用【难度】较难题【分析】(1)令x=0求出点C的坐标,再求出OA的长度,然后写出点A的坐标,代入抛物线求出m的值,即可得解,再利用对称轴解析式求出点M的坐标即可;此问简单(2)求出OM的长,再利用勾股定理列式求出CM,令y=0,解关于x的一元二次方程求出点B的坐标,得到OB的长度,再求出BM,然后分①∠BQM=90°时,△COM和△BQM 相似,利用相似三角形对应边成比例列式求出BQ,过点Q作QD⊥x轴于D,解直角三角形求出BD、QD,然后求出OD,从而写出点Q的坐标,再利用待定系数法求一次函数解析式解答;②∠MBQ=90°时,△COM和△QBM相似,利用相似三角形对应边成比例列式求出BQ,再写出点Q的坐标,然后利用待定系数法求一次函数解析式解答.此问较难【解答】解:(1)令x=0,则y=4,∴点C(0,4),OC=4,∵OC=4OA,∴OA=1,.∴点A(﹣1,0),把点A坐标代入抛物线y=﹣x2+mx+4得,﹣×(﹣1)2+m×(﹣1)+4=0,解得m=, (2)∴抛物线解析式为y=﹣x2+x+4,∵抛物线的对称轴为直线x=﹣=2,∴点M的坐标为(2,0); (4)(2)∵OM=2,OC=4,∴CM==2,令y=0,则﹣x2+x+4=0,整理得x2﹣4x﹣5=0,解得x1=﹣1,x2=5, (5)∴点B的坐标为(5,0),∴OB=5,∴BM=OB﹣OM=5﹣2=3, (6)如图,①∠BQM=90°时,△COM和△BQM相似,∴=,即=,解得BQ=,过点Q作QD⊥x轴于D,则BD=BQ•cos∠QBM=×=,QD=BQ•sin∠QBM=×=,∴OD=OB﹣BD=5﹣=,∴点Q的坐标为(,﹣), (8)设直线AQ的解析式为y=kx+b(k≠0),则,解得,∴直线AQ的解析式为y=﹣x﹣; (9)②∠MBQ=90°时,△COM和△QBM相似,∴=,即=,解得BQ=6,∴点Q的坐标为(5,﹣6), (10)设直线AQ的解析式为y=kx+b(k≠0),则,解得,∴直线AQ的解析式为y=﹣x﹣1;综上所述,当△QMB与△COM相似时,直线AQ的解析式为y=﹣x﹣或y=﹣x﹣1. (12)【点评】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点坐标的求法,待定系数法求二次函数解析式,待定系数法求一次函数解析式,相似三角形的性质,解直角三角形,难点在于(2)要分情况讨论,考生要注意,以防漏解。
2014年初三中考数学模拟试卷
2014年初三中考数学模拟试卷此篇中考模拟试卷由市教研室命制一、选择题(本大题共8小题,每小题3分,共24分) 1. 5的倒数是 ( ) A .5B .-5C .51 D .512. 实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是 ( )A .a > bB .a < bC .a = bD . 不能判断3. 如图,直线a 、b 被直线c 所截,下列说法正确的是 ( )A .当∠1=∠2时,一定有a ∥bB .当a ∥b 时,一定有∠1=∠2C .当a ∥b 时,一定有∠1+∠2=90°D .当a ∥b 时,一定有∠1+∠2=180°4.下列运算,正确的是 ( )A .a +a 3=a 4B .a 2﹒a 3=a 6C .(a 2)3=a 6D .a 10÷a 2=a 55.下列命题 ( )(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形; (3)两条对角线互相垂直的矩形是正方形; (4)两条对角线互相垂直的四边形是菱形. 其中正确命题的个数为 ( ) A .1个 B .2个 C .3个 D .4个 6.下列事件是必然事件的是 ( ) (A )打开电视机屏幕上正在播放天气预报 (B )到电影院任意买一张电影票,座位号是奇数 (C )掷一枚均匀的骰子,骰子停止转动后偶数点朝上 (D )在地球上,抛出去的篮球一定会下落7. 已知⊙O 1的半径r 为4cm ,⊙O 2的半径R 为5cm ,两圆的圆心距O 1O 2为6cm ,则这两圆的位置关系是 ( )o第2题第3题第14题P CDB A第15题8cm6cmA .相交B .内含C .内切D .外切8.一个样本有40个数据,把它分成4个小组,某一组有10个数据,则这一小组的频率是( )A. 0.05B.0.25C.0.5D.0.6二、填空题(本大题共8小题,每小题3分,共24分)9.2010年上海世博会共有7300万人参观,用科学记数法表示7300万= 10. 分解因式:33ab b a -= . 11.不等式x x 243<-的正整数解是 .12. 一个角的补角是它的余角的4倍,则这个角等于 度.13.将多项式142+x 加上一项后成为一个完全平方式,则这项可以是 .(只要填一个即可)14.如图,矩形ABCD 的长AB 为5cm ,宽BC 为3cm ,点P 为AB 边上的一个动点,则阴影部分的面积为_____________2cm .15.一块直角边分别为6cm 和8cm 的三角木板,绕6cm 的边旋转一周,则斜边扫过的面积 是 2cm (结果用含π的式子表示).16.一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是_______.三、解答题 (本大题共6小题,每小题6分,满分36分) 17.计算: 20116+-0-(21)1--8cos60°18.解不等式组并在数轴上表示出解集:⎪⎩⎪⎨⎧>++≥-253241x x x19.如图7,在方格纸中,以格点连线为边的三角形叫格点三角形,⊿ABC就是格点三角形,请在此方格纸上另画一个与⊿ABC相似的格点三角形,并写出它与⊿ABC的相似比.AB C第19题20.2010年10月9日,国家发改委价格司公布《关于居民生活用电实行阶梯电价的指导意见》提供了两套可供选择的电价方案,向社会公开征求意见:方案一:第一档月均用电量110度以内,该档内电价不变动;第二档月用电量为110度至210度,提价标准不低于每度5分钱;第三档为用电量210度以上,每度电价上调不低于0.2元。
2014年上海市初中毕业统一学业考试数学试卷及答案
2014年上海市初中毕业统一学业考试数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.)(C) ;(D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( )(A) 608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y =x 2向右平移1个单位,那么所得的抛物线的表达式是( )(A) 21y x =-; (B) 21y x =+; (C) 2(1)y x =-; (D) 2(1)y x =+. 4.如图1,已知直线a 、b 被直线c 所截,那么∠1的同位角是( )(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某市测得一周PM2.5的日均值(单位:微克每立方米)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是( )(A) 50和50; (B) 50和40; (C) 40和50; (D) 40和40.6.如图2,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )(A) △ABD 与△ABC 的周长相等; (B) △ABD 与△ABC 的面积相等;(C) 菱形的周长等于两条对角线之和的两倍; (D) 菱形的面积等于两条对角线之积的两倍. 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:a (a +1)= . 8.函数11y x =-的定义域是 . 9.不等式组1228x x ->⎧⎨<⎩,的解集是 .10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔 支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12.已知传送带与水平面所成斜坡的坡度i =1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 .a1 2 34 5 图1c BCD图2A14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个).15.如图3,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a = ,BC b =,那么DE =_____________(结果用a 、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图4所示,那么三人中成绩最稳定的是 .17.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为 . 18.如图5,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为 (用含t 的代数式表示). 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:1382-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.图3一二 四 五 次数图4B CDED ′C ′ 图5A21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (㎝)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图6),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2㎝,求此时体温计的读数.22.(本题满分10分,第(1)、(2)小题满分各5分)如图7,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sin B 的值;(2)如果CD=BE 的值.23.(本题满分12分,第(1)、(2)小题满分各6分)已知:如图8,梯形ABCD 中,AD ∥BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB.图6BEHCDA图7F E图8DABC24.(第(1)、(2)、(3)小题满分各4分)在平面直角坐标系中(如图9),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2). (1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点P 在对称轴上,四边形ACEP 为梯形,求点P 的坐标; (3)点D 为该抛物线的顶点,设点F (t ,0),且t ﹥3,如果△BDF 和△CDF 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分) 如图10,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长; (2)联结AP ,当AP ∥CG 时,求弦EF 的长; (3)当△AGE 是等腰三角形时,求圆C 的半径长.图9G B EFDCP 图10ABDC备用图A2014年上海市初中毕业统一学业考试数学参考答案一、选择题(每小题4分,共24分)1. B 2. C 3. C 4. A 5. A 6. B 二、填空题(每小题4分,共48分)7.2a a +. 8.1x ≠. 9.34x <<. 10.352. 11.1k <. 12.26. 13.13.14.1(0y k x =-<) 15.23a b -. 16.乙. 17. -9. 18.三、解答题(本题共7题,满分78分)19.原式=20. 0;1(xx ==舍)21.(1) 1.2529.75y x =+ (2)37.522. CD AB =∴= cos 4;BC B ==sin 2AC B ==tanCAE 1CE AC ∴== 3BE BC CE ∴=-=23.(1)ABCD ADB DAC ∴∆≅∆ 为等腰梯形,,ABD D C A D CA DE B ∴∠∠∠∠= =,//DE CDE AC DCA =∴∠∴∠//,AD CE ADEC ∴ 为(2)//,;DG AD DF ADAD BC GB BE FB BC∴== ,DF AD DF ADFB BC DF FB AD BC =∴=++,;ADEC AD CE AD BC BE ∴=∴+= 为DF AD DF ADDF FB AD BC DB BE ∴=⇒=++DG DFGB DB∴=24.(1) 224233y x x =--,对称轴为直线1x = (2)①AC ∥EP ,AC :22y x =--;所以直线EP :22y x =-+,当1x =,0y = ,此时P 与E 重合② AP ∥CE ,CE :22y x =-;所以直线AP :22y x =+,当1x =,4y = ,P(1,4)(3)点B (3,0),点D 81,3⎛⎫-⎪⎝⎭,若面积相等,则DF ∥BC ,得直线BC 的解析式为:223y x =-,所以直线DF 的解析式为21033y x =-,当0y =,5x =所以5t =25.(1)5CP=(2)若AP∥CE,APCE为平行四边形,又∵CE=CP,∴APCE为菱形,联结AC、EP,则AC⊥EP,垂足为M,由(1)得,AC=AB,则∠ACB=∠B,所以CP=CE=25 cos8 CMACB=∠∴74 EF==(3)作CN⊥EF,∵4cos5B=∴∠B<45°,又∵∠BCG<90°,∴∠BGC>45°又∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG ∵AD∥BC,∴AE AGBC BG=,即85AE AEAE=+,解得AE=3,EN=AN=AE=1,∴==。
2014上海中考数学模拟测试(2014.6)
2014年上海市初中毕业统一学业考试模拟测试数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 用科学技术法表示31000000,结果是(A) 6101.3⨯; (B) 7101.3⨯; (C) 8101.3⨯; (D) 9101.3⨯. 2. 下列方程中,有实数根的是 (A) 13-=x ; (B) 014=+x ; (C) 0852=++x x ; (D)112=-xx . 3. 下S2列运算中,正确的是 (A) ()632aa =; (B)233a a =; (C) 1052a a a =⋅ ; (D) 00=a .4. 新世界商城某日共销售耐克运动鞋25双,其中各种尺码鞋子的销售量如下表所示:在这25双所销售的运动鞋尺码组成的数据中,众数和中位数分别是(A) 26,26.5; (B) 26.5,26.5; (C) 26,27; (D) 26.5,27. 5. 下列四个命题中,正确的是(A) 如果两圆内含,则他们的圆心距大于零; (B) 如果两圆没有交点,那么这两个圆一定外离;(C) 对角线相等且平分的四边形是矩形; (D) 四边都相等的四边形是正方形. 6. 如图1,在平行四边形ABCD 中,1=AB ,E 为射线DC 上的点,直线AC 与直线BE 交于点P ,过P 作AB PQ //,交直线AD 于点Q .下列结论中,正确的个数是① 若E 为CD 中点,则32=PQ ; ② 若E 为CD 中点,则QD CD ED AQ ⋅=⋅;③ 若21=PQ DE ,则222-=DE . (A) 0个; (B) 1个; (C) 2个; (D) 3个.— 1 —PBACD EQ 尺码(单位:cm ) 25 25.5 26 26.5 27 销售量(单位:双)2556(图1)二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7. 因式分解:=-942x ▲ ; 8. 解不等式:2572+<-x x ▲ ;9. 计算:()()()=︒-︒-+-220330sin 30cos 1π ▲ ;10. 在线段、圆、矩形、等腰三角形、平行四边形、直角梯形和正五边形中,任意选取一种图形,这个图形是轴对称图形的概率是 ▲ ; 11. 正十边形内角和为 ▲ ;12. 将二次函数22x y =先左平移2个单位,再向上平移1个单位,随后再将整个图像关于y 轴翻折,最终得到的函数解析式是 ▲ ;13. 如图2,梯形ABCD 中,CD AB //,3=BC 、7=AB ,且BC CD AD 2=+.若AD 、 CD 的长度均为正数且CD AD >,则梯形ABCD 的面积为 ▲ ;14. 如图3,P 为ABC ∆的重心,连接BP 并延长,交AC 于点D .设a AB =、b BC =,则=PD ▲ (请用含a 、b 的式子表示);15. 已知0142=--x x ,则=--+--22))(()32(y y x y x x ▲ ;16. 在等腰三角形ABC 中,︒=∠90ACB ,1=AC .过点C 作直线AB l //,P 为直线l 上的任意一点,且AB AP =,则点P 到BC 所在直线的距离为 ▲ ;17. 对于任意的定义域为一切实数的正比例函数、一次函数)(x f y =,根据这个函数中x 、y 的关系,用y 把x 表示出来,从而得到)(y g x =,那么我们把)(y g x =称作是函数)(x f y =的“反函数”,记作)(1x f y -=.例如,正比例函数)0()(≠==k kx x f y 的“反函数”为)0()(1≠==-k kxx fy .如果某一函数)(x f y =与它的“反函数”)(1x f y -=满足关系)()(1x f x f -=,那么我们把这样的函数称为“自反函数”.请写出一个能使一次函数)0()(≠+==k b kx x f y 为“自反函数”的条件 ▲ ;18. 如图4,在边长为a 的正方形ABCD 中,E 是射线CB 上的任意一点,将CDE ∆沿DE翻折得DEF ∆.若射线EF 交射线BA 于点G ,且︒=∠45ADF ,则=GF ▲ (请用含a 的代数式表示).三、解答题(本大题共7题,满分78分) 19. (本题满分10分) 先化简,再求值:b a a b a b b a +÷⎪⎭⎫ ⎝⎛---221,其中2=a 、1=b .GBA CDEF.A BC DPA B CD (图2) (图3) (图4)— 2 —(反面还有试题)20. (本题满分10分)解方程:131232+=-+-x x x x . 21. (本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分5分)(1) 如图5,在平面直角坐标系xOy 中,点)2,2(A ,将线段OA 绕着点O 顺时针旋转︒90后得到线段OB ,连接AB 交x 轴于点C ,则=∠COA sin ▲ ;(2) 如图6,若将(1)中点A 坐标改为)32,2(A ,其余条件均不变,求OCA ∠sin 的值; (3) 如图7,若将(1)中点A 坐标进一步改为)0,0)(,(>>n m n m A ,其余条件均不变,那么当OCA ∠为锐角时,试用含m 、n 的代数式表示OCA ∠sin 的值.22. (本题满分10分)如图8,在面积为34的直角梯形ABCD 中,7=AD , 10=BC .E 为线段BC 的中点,取AE 中点F ,连接BF 并延长,交AD 于点G ,连接CG .求证:GCD ABC ∠=∠2.23. (本题满分12分,每小题满分各4分)通过实验研究,专家们发现:初中学生听课的注意力指数是随着老师讲课时间的变化而变化的.当老师的讲课开始时,学生们的兴趣激增;中间一段时间,学生们的兴趣保持平稳的状态;随后学生的注意力会出现分散,听课的的注意力指数也会随之下降.专家建议,当听课的注意力指数低于20时,教师应当选择停止教学.学生听课的注意力指数y 随听课时间x (分钟)变化的关系如下表所示,并已知:①当100≤≤x 时,听课的注意力指数y 的图像为抛物线的一部分;②当2010≤≤x 时听课的注意力指数y 的图像为平行于x 轴的线段;③当20≥x 时,听课的注意力指数y 的图像为反比例函数的一部分.— 3 —听课的注意力指数y 20 39 48 … 听课时间x (分钟)0 510…x y O A B C xy OAB C x yO A B C (图5) (图6) (图7) FA BCE G(图8)D(1) 请利用上表所给的数据分别求出各段听课的注意力指数y 的解析式,并在答题纸的相应位置画出大致图像;(2) 当一节课开始后第6分钟与第25分钟相比,何时学生的听课注意力更集中? (3) 数学老师讲评一道压轴题需要24分钟,若一节数学课的时间为40分钟,问老师能否经过适当的安排,使学生在听这道题时的听课注意力指数都不低于36?24. (本题满分12分,每小题满分各4分)如图9,在平面直角坐标系xOy 中,直线343+-=x y 分别交x 轴、y 轴于A 、B 两点.过原点的动直线)0(≠=k kx y 交直线AB 于点C ,二次函数bx ax y +=2过A 、C 两点.(1) 将AOC ∆沿x 轴翻折,得到'AOC ∆.若以B 、O 、C 、'C 四点构成的四边形为平行四边形,请求出直线'OC 的解析式;(2) 若176tan =∠ACO ,求点C 的坐标.25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图10,半圆O 的直径10=AB .C 为弧AB 上的一个动点,连接BC 并延长到点D 使得BD AB =,连接AD 交弧AB 于点E .过圆心O 作AD OF ⊥,F 为垂足.(1) 在点C 运动的过程中,ADEF的值是否始终保持不变?如果是,请求出这个定值;如果不是,请说明理由;(2) 设x AF =、y CD =,求y 关于x 的函数关系式;(3) 讨论以AE 为直径的圆与以D 为圆心、CD 长为半径的圆处于不同位置关系时BC的取值范围.— 4 —. OABCFE D xy O A B(图9)(图10)。
上海市闸北区2014年中考一模(即期末)数学试题(WORD版,跟答案)
闸北区九年级数学学科期末练习卷(2014年1月)(考试时间:100分钟,满分:150分)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.对一个图形进行放缩时,下列说法中正确的是………………………………………( ▲ )A .图形中线段的长度与角的大小都会改变;B .图形中线段的长度与角的大小都保持不变;C .图形中线段的长度保持不变、角的大小可以改变;D .图形中线段的长度可以改变、角的大小保持不变.2.已知点C 是线段AB 上的一个点,且满足2AC BC AB =⋅,则下列式子成立的是……( ▲ )A .512AC BC -=; B .512AC AB -=; C .512BC AB -=; D .512CB AC +=. 3.下列关于抛物线213y x =和213y x =-的关系说法中,正确的是 ……………………( ▲ )A .它们的形状相同,开口也相同;B .它们都关于y 轴对称;C .它们的顶点不相同;D .点(3-,3)既在抛物线213y x =上也在213y x =-上.4.下列关于向量的说法中,不正确...的是 …………………………………………………( ▲ ) A .2()22a b a b +=+; B .22a a =; C .若2a b =,则2a b =或2a b =-; D .()()m na mn =a .图1F GED C BA 图2l 2l 1F ED C BA图3DCPGFE CBA图5图4GDEFCBA5.已知α、β都是锐角,如果sin cos αβ=,那么α与β之间满足的关系是 ……( ▲ )A .αβ= ;B . 90αβ+=°;C .90αβ-=°;D .90βα-=°. 6.如图1,平行四边形ABCD 中,F 是CD 上一点,BF 交AD 的 延长线于G ,则图中的相似三角形对数共有………………( ▲ )A .8对;B . 6对;C .4对;D .2对. 二、填空题(本大题共12题,每题4分,满分48分)7.已知:3:2a b =,则():a b a -= ▲ .8.如图2,已知AD ∥BE ∥CF ,它们依次交直线1l 、2l 于 点A 、B 、C 和点D 、E 、F ,如果DE :EF =3:5,AC=24, 则BC = ▲ .9.在Rt △ABC 和Rt △DEF 中,∠ C =∠ F =90°,当AC =3,AB =5,DE =10,EF =8时, Rt △ABC 和Rt △DEF 是 ▲ 的.(填“相似”或者“不相似”)10.如果两个相似三角形的对应边上的高之比是2:3,则它们的周长比是 ▲ . 11.化简:CD AB BC ++= ▲ .12.如图3,某人在塔顶的P 处观测地平面上点C 处,经测量∠ P =35°, 则他从P 处观察C 处的俯角是 ▲ 度.13.将二次函数22y x x m =-+的图像向下平移1个单位后,它的顶点 恰好落在x 轴上,则m = ▲ .14.在Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,若AD =9,BD =4,则AC = ▲ . 15.一个边长为3厘米的正方形,若它的边长增加x 厘米,面积随之增加y 平方厘米,则y 关于x 的函数解析式是 ▲ .(不写定义域)16.如图4,在平行四边形ABCD 中,AB =12,AD =18, ∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =82,则△CEF 的周长是 ▲ . 17.如图5,点G 是Rt △ABC 的重心,过点G 作矩形GECF , 当GF :GE =1:2时,则∠ B 的正切值为 ▲ . 18.如图6,已知等腰△ABC ,AD 是底边BC 上的高, AD :DC =1:3,将△ADC 绕着点D 旋转,得△DEF ,图6D C BA点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合, 设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分)已知:抛物线2y x b x c =-++经过A (1-,0)、B (5,0)两点,顶点为P . 求:(1)求b ,c 的值; (2)求△ABP 的面积;(3)若点C (1x ,1y )和点D (2x ,2y )在该抛物线上,则当1201x x <<<时, 请写出1y 与2y 的大小关系.20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图7, EF 是△ABC 的中位线,设AF a =,BC b =. (1)求向量EF 、EA (用向量a 、b 表示);(2)在图中求作向量EF 在AB 、AC 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分)如图8,在夕阳西下的傍晚,某人看见高压电线的铁 塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡 上,为了测得铁塔的高度,他测得铁塔底部B 到小山坡脚 D 的距离为2米,铁塔在小山斜坡上的影长DC 为3.4米, 斜坡的坡度11.875i =:,同时他测得自己的影长NH ﹦336cm , 而他的身长MN 为168cm ,求铁塔的高度.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图9,在△ABC 中,已知点D 在BC 上,联结AD , 使得CAD B ∠=∠,DC =3且ACD ADB S S ∆∆: ﹦1﹕2. (1)求AC 的值;A BCEF图7ABCDMNH 图8FEDCBA图9图10C BA(2)若将△ADC 沿着直线AD 翻折,使点C 落点E 处, AE 交边BC 于点F ,且AB ∥DE ,求EFDADCS S ∆∆的值.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)小华同学学习了第二十五章《锐角三角比》后,对求三角形 的面积方法进行了研究,得到了新的结论: (1)如图10,已知锐角△ABC .求证:1sin 2ABCS AB AC A ∆=; (2)根据题(1)得到的信息,请完成下题:如图11,在等腰 △ABC 中,AB=AC =12厘米,点P 从A 点出发,沿着边AB 移动, 点Q 从C 点出发沿着边CA 移动,点Q 的速度是1厘米/秒,点P 的速度是点Q 速度的2倍,若它们同时出发,设移动时间为t 秒,问:当t 为何值时,38APQ ABCS S ∆∆=?24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图12,抛物线2445y x mx =-++与y 轴交于点C , 与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足OC =4OA . 设抛物线的对称轴与x 轴交于点M : (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当 △QMB 与△COM 相似时,求直线AQ 的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分)已知:如图13,在等腰直角△ABC 中, AC = BC ,斜边AB 的长为4,过点C 作射线CP //AB ,D 为射线CP 上一点,E 在边BC 上(不与B 、C 重合),且∠DAE =45°,AC 与CBA图11BAC图12OxyADE 交于点O .(1)求证:△ADE ∽△ACB ;(2)设CD =x ,tan ∠BAE = y ,求y 关于x 的函数 解析式,并写出它的定义域;(3)如果△COD 与△BEA 相似,求CD 的值.九年级数学学科期末练习卷(2014年1月)答案及评分参考(考试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6 答案DBBCBB二、填空题(本大题共12题,每题4分,满分48分)7、13. 8、15. 9、相似. 10、2:3. 11、AD . 12、55. 13、2. 14、313.15、26y x x =+. 16、16. 17、12. 18、3245.三、解答题(本大题共12题,满分78分)19、(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分)解:(1)把点A (1-,0)、B (5,0)分别代入2y x b x c =-++,得010255b cb c=--+⎧⎨=-++⎩ …………………………………………………………(1+1分) 解得45b c =⎧⎨=⎩ . …………………………………………………………(1+1分) (2)由(1)得抛物线解析式245y x x =-++∴2(2)9y x =--+∴P (2,9) …………………………………………………………(2分) ∵A (1-,0)、B (5,0)∴AB=6 …………………………………………………………(1分)∴169272ABP S ∆=⨯⨯=. …………………………………………………………(1分)(3)∵抛物线开口向下∴在对称轴直线x=2的左侧y 随着x 的增大而增大∴1y <2y . …………………………………………………………(2分)DFCBAE FE12 20、(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) (1)∵EF 是△ABC 的中位线∴EF ∥BC ,EF=12BC ………………………………………………………(2分)∵BC b =∴EF 12b = ………………………………………………………(1分) ∵EA EF FA =+,AF a = ………………………………………………………(2分)∴12EA b a =- . ………………………………………………………(1分)(2)所以EA 、ED 是EF 在AB 和AC 方向上的分向量.……………………………(2分) (评分说明:准确作出向量EA 、ED 各得1分,结论2分)21、(本题满分10分)解:过点C 作CE ⊥BD 于点E ,延长AC 交BD 延长线于点F ………………(1分) 在Rt △CDE 中,11.875i =:∴181.87515CE DE == ………………………(1分) 设CE=8x ,DE=15x ,则CD=17x ∵DC=3.4米∴CE=1.6米,DE=3米 ………………………(2分) 在Rt △MNH 中, tan ∠MHN 16813362MN NH === …………………(1分) ∴在Rt △ABF 中,tan ∠F 1.6CE EF EF === tan ∠MHN 12=…………………………(1分) ∴EF=3.2米 …………………………(1分)即BF=2+3+3.2=8.2米 …………………………(1分) ∴在Rt △CEF 中,tan ∠F 12AB BF == ∴AB=4.1米 …………………………(1分) 答:铁塔的高度是4.1米. …………………………(1分)22、(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)解:(1)∵ACD ADB S S ∆∆: ﹦1﹕2∴CD :BD=1:2 ……………………………(1分)FDCBA图93DCBA 图10∵DC=3 ∴BD=6 ……………………………(1分) 在△ACD 和△BCA 中,∠CAD=∠B ,∠C=∠C∴△ACD ∽△BCA ……………………………(1分) ∴CD AC AC CB =即2AC CD CB = …………………………………………………(1分) ∴33AC =. …………………………………………………(1分) (2)∵翻折∴∠C=∠E ,∠1=∠2,DE=DC=3 …………………………………………………(1分) ∵AB ∥DE∴∠3=∠B ……………………………………………………………………(1分) ∵∠1=∠B∴∠1=∠3 …………………………………………………(1分) ∴△ACD ∽△DEF …………………………………………………(1分) ∴21()3EFD ADC S DE S AC ∆∆== . …………………………………………………(1分)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)解:(1)如图10,过点C 作CD ⊥ AB 于点D ……………(1分)在Rt △ADC 中,sinA=CDAC……………………………(1分)∴CD=AC.sinA ……………………………(1分) ∵12ABC S AB CD ∆= ……………………………(1分) ∴1sin 2ABCS AB AC A ∆= .……………………………(1分) (2)根据题意:AP=2t 厘米 ,CQ=t 厘米∴AQ=(12—t )厘米 ………………………………(1分) 由(1)得:1sin 2APQ S AP AQ A ∆=…………………(1分) ∴1sin 2(12)32112128sin 2APQ ABC AP AQ A S t t S AB AC A ∆∆-===⨯…………(1分) 化简得:212270t t -+=…………………………………(1分) 解得19t =(舍),23t = …………………………………(2+1分)即当t=3秒时,38APQ ABC S S ∆∆=. 24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)解:(1)根据题意:C (0,4)……………………………(1分) ∵OC=4OAQ P ABC图11Cy∴A (1-,0)………………………………………………(1分) 把点A 代入得0=445m --+ ……………………………(1分) 解得16=5m………………………………………………(1分) ∴抛物线的解析式2416455y x x =-++…………………(1分) 2416455y x x =-++24362)55x =--+(∴ (20)M , ………………………………………………(1分) (2)根据题意得:BM=3,tan ∠CMO= 2,直线CM :y=2-x+4(i )当∠COM=∠MBQ=90°时,△COM ∽△QBM ∴tan ∠BMQ=2BQBM= ∴BQ=6即Q (5,6-) ……………………………………(2分) ∴AQ :1y x =-- ……………………………………(1分) (i i )当∠COM=∠BQM=90°时,△COM ∽△BQM同理Q (13655,-) …………………………………(2分) ∴AQ :1133y x =-- …………………………………(1分)25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分)(1)证明:∵△ACB 是等腰直角三角形∴∠CAB =∠B=45° ∵CP//AB ∴∠DCA =∠CAB=45° …………………………………………………(1分) ∴∠DCA =∠B …………………………………………………(1分) ∵∠ DAE=45°∴∠ DAC+∠ CAE=∠ CAE+∠ EAB∴∠ DAC =∠ EAB …………………………………………………(1分) ∴△DCA ∽△EAB …………………………………………………(1分)∴AD ACAE AB = 即AD AEAC AB =且∠ DAE =∠ CAB=45° ……………………………(1分) ∴△ADE ∽△ACB . ……………………………………………(1分) (2)过点E 作EH ⊥AB 于点H ……………………………………(1分) 由(1)得△DCA ∽△EAB ∴DC ACEB AB =∵△ACB 是等腰直角三角形,且CD=xPD O AH∴EB=2x …………………(1分) ∴EH=BH= x ∴AH=4—x在Rt △AEH 中,tan ∠BAE =EHAH即y =4xx -………………………………………………………(1分)定义域0<x <2. ………………………………………………………(1分)(3)若△COD 与△BEA 相似,又△BEA 与相似△DCA 即△COD 与△DCA 相似∴只有△DCO ∽△ACD ……………………………………………(1分) ∴2CD CO CA = ∵∠DAO =∠CEO ∴∠CEO =∠EAB ∴tan ∠CEO =y 即y COCE= ∴()2224xCO xx =-- …………………………………………(1分) ∴2x =()222224xxx-- 解得 1422x =-,2422x =+……………………………(1分) 经检验12,x x 都是原方程的实数根,2422x =+不合题意舍去…(1分) ∴当CD=422-时,△COD 与△BEA 相似.。
2014年中考一模数学试卷
2014年中考一模数学试卷一、选择题:(本大题有l0小题,每小题4分,共40分。
请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分)1、下列各数中,最小的是( ) (A)-5 (B)2 (C)0 (D).-12、雾霾天气对北京地区的人民造成严重影响,为改善大气质量,北京市政府决定投入7600 亿元治理雾霾,请你对7600亿元用科学记数法表示( )(A)7.6X 1010元 (B)76X 1010元 (C)7.6³lon 元 (D)7.6³l012元3、左下图为主视方向的几何体,它的俯视图是( )A.B. C. D.4、xx x x -=-11式子成立的条件是( )(A)X<1目x ≠0 (B )x>0目.x ≠1 (C)0<x ≤l (D)0<x<15、下列说法错误的是( ) (A)16的平方根是±2(B)2是无理数(C)327-是有理数(D)22是分数 6、如图,定圆0的半径是3cm ,动圆P 的半径是lcm ,动圆在直线,上移动,当两圆相切 时,0P 的长是( )cm 。
(A)2或4 (B)2 (C)4 (D)37、如图,在3³3方格纸中,点A 、B 、C 、D 、E 、F 分别位于小正方形的格点上。
从A 、D 、 E 、F 四个点中任意选取两个不同的点,以所取得这两个点与点B 、C 为顶点画四边形,则所 画四边形是平行四边形的概率为( ) (A)21 (B)31 ( C) 41 ( D) 61 8、如图,把四张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形(长为a , 宽为b)的盒子底部,盒子底面未被卡片覆盖的部分用阴影表示,则这两块阴影部分小长方 形周长的和为( )(Aa+2b (B)4a (C)4b (D)2a+b9、如图,圆柱形纸杯高8 cm ,底面周长为l2,cm ,在纸杯内壁离杯底2 Cem 的点C 处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2cm 与蜂蜜相对的的点A 处,则蚂蚁到达蜂蜜 的最短距离为( ) (A)32(B)26 (C)10 (D)以上答案都不对10、如图,平面直角坐标系中,⊙01过原点O ,且⊙01与⊙02相外切,圆心O 1与O 2在X 轴正半轴上,⊙Ol 的半径O l P l 、⊙02的半径O 2P 2都与X 轴垂直,且点P l 、P 2在反比例函数xy 4= 的图像上,则△OP l P 2的面积为( ) (A)2 (B)4 (C)6 (D)8二、填空题(本大题有6小题,每小题5分,共30分。
2014年九年级中考第一次模拟数学试题及答案
2014年中考网上阅卷适应性测试数 学 试 题(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.︱-12︱等于A . 2B .-2C . 12D .-122.9的立方根是A .3B .39C .3±D .39±3.下列各图中,不是中心对称图形的是A .B .C .D . 4.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b5.函数1y x =+x 的取值范围是A .x ≥-1B .x ≤-1C . x >-1D .x <-1 6.已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A 的值为A . 34B . 43C . 35D . 457.在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则P 点表示的数大于3的概率是A .41B .92C .51D .1128.如图,在平面直角坐标系中,⊙M 和y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.地球上的海洋面积大约为361000000千米2,将361000000这个数用科学记数法表示为 .ab(第4题)QP OMy10.计算:( 2- 3 ) (2+ 3 )= .11.分解因式:22242y xy x +-= .12.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:年龄组13岁14岁 15岁 16岁 参赛人数 5191214则全体参赛选手年龄的中位数是 岁.13.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 14.如图,该图形经过折叠可以围成一个正方体,折好以后,和“静”字相对的字是 .15.已知⊙O 的半径为5厘米,若⊙O ′和⊙O 外切时,圆心距为7厘米,则⊙O ′和⊙O 内切时,圆心距为 厘米.16.如图,△ABC 内接于⊙O ,直径AD=2,∠ABC=30°,则CD 的长度是 . 17.如图,矩形ABCD 中,AB=3cm ,BC=4cm 。
2014中考数学模拟试卷(附详细答案)(3份)
2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。
2014届九年级数学中考一模模拟试卷及答案
DBCA 2014年中考调研测试(一)数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。
4.选择题使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共30分) 1.54的相反数是( ) A. 45 B. 45- C. 54 D. 54-2.下列计算正确的是( )A .34x x x +=B .325()x x =C .633x x x ÷=D .2532x x x =⋅3.下列图形中既是轴对称图形又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个 4.图1所示的几何体主视图是( )图1 A. B .C .D .5.将抛物线2)2(3-=x y 向左平移3个单位得到的抛物线的解析式是( ) A.2)5(3-=x y B.3)2(32+-=x y C.2)1(3+=x y D.3)2(32--=x y6.一个不透明的袋子里有5个红球和3个黄球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是黄球的概率是( )A.15 B. 31 C. 38 D. 587.已知反比例数3k y x+=的图象在每一象限内y 随x 的增大而增大,则k 的取值范围是( )A. k>3B. k<-3C. k>-3D. k<38.如图,Rt △ABC 中,∠ACB=90º,CD ⊥AB ,BC=3,AC=4, tan ∠BCD 等于( )A.34 B. 43 C. 35 D. 459.如图,矩形ABCD 中,两条对角线相交于点O ,折叠矩形,第8题图 EOA DE DACBAFEACBDx y (时)(千米)4207CO A B ED 使顶点D 与对角线交点O 重合,折痕为CE ,已知△CDE 的 周长是10cm,则矩形ABCD 的周长为( )A. 15cmB. 18cmC. 19cmD. 20cm10.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y (千米)与所用的时间x (时)的关系如图所示,下列说法正确的有 ( )①快车返回的速度为140千米/时 ②慢车的速度为70千米/时 ③出发314小时时,快慢两车距各自出发地的路程相等④快慢两车出发错误!未找到引用源。
初三数学一模试卷及答案2014.3
如图, 点 在 轴的正半轴上, , , .点 从点 出发,沿 轴向左以每秒1个单位长的速度运动,运动时间为 秒.
(1)求点 的坐标;
(2)当 时,求 的值;
(3)以点 为圆心, 为半径的 随点 的运动而变化,当 与四边形
的边(或边所在的直线)相切时,求 的值.
28.(本题满分10分)
2.下列运算中,结果正确的是(▲)
A.a ÷a =a B.(2ab ) =2a b C.a·a =a D.(a+b) =a +b
3.无锡梅园是全国著名的赏梅胜地之一.近年来,梅园的植梅规模不断扩大,新的品种不断出现,如今的梅园的梅树约15000株,这个数可用科学记数法表示为(▲)
A. B. C. D.
(1)A点所表示的实际意义是▲; =▲;
(2)求出AB所在直线的函数关系式;
( 3)如果小刚上坡平均速度是小亮上坡平均速度
的一半,那么两人出发后多长时间第一次相遇?
26.(本题满分8分)
随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.
4.下列图形中,既是轴对称图形,又是中心对称图形的是(▲)
A.B.C.D.
5.已知⊙O1和⊙O2的半径分别为2cm和3cm,两圆的圆心距为5cm,则两圆的位置关系是(▲)
A.外切B.外离C.相交D.内切
6.如果用□表示1个立方体,用 表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是(▲)
闸北区初三数学2014年1月一模试卷答案
闸北区九年级数学学科期末练习卷(2014年1月)答案及评分参考(考试时间:100分钟,满分:150分)二、填空题(本大题共12题,每题4分,满分48分)7、13. 8、15. 9、相似. 10、2:3.11、AD . 12、55. 13、2. 14、15、26y x x =+. 16、16. 17、12. 18、3245.三、解答题(本大题共12题,满分78分) 19、(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分) 解:(1)把点A (1-,0)、B (5,0)分别代入2y x b x c =-++,得010255b cb c =--+⎧⎨=-++⎩…………………………………………………………(1+1分) 解得45b c =⎧⎨=⎩. …………………………………………………………(1+1分) (2)由(1)得抛物线解析式245y x x =-++∴2(2)9y x =--+ ∴P (2,9) …………………………………………………………(2分) ∵A (1-,0)、B (5,0)∴AB=6 …………………………………………………………(1分)∴169272ABP S ∆=⨯⨯=. …………………………………………………………(1分)(3)∵抛物线开口向下∴在对称轴直线x=2的左侧y 随着x 的增大而增大∴1y <2y . …………………………………………………………(2分)20、(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) (1)∵EF 是△ABC 的中位线∴EF ∥BC ,EF=12BC ………………………………………………………(2分)∵BC b =∴EF 12b =………………………………………………………(1分) ∵EA EF FA =+,AF a = ………………………………………………………(2分)∴12EA b a =- . ………………………………………………………(1分)CFE123 (2)所以EA、ED是EF在AB和AC方向上的分向量.……………………………(2分)(评分说明:准确作出向量EA、ED各得1分,结论2分)21、(本题满分10分)解:过点C作CE⊥BD于点E,延长AC交BD延长线于点F ………………(1分)在Rt△CDE中,11.875i=:∴181.87515CEDE==………………………(1分)设CE=8x ,DE=15x ,则CD=17x∵DC=3.4米∴CE=1.6米,DE=3米………………………(2分)在Rt△MNH中,tan∠MHN16813362MNNH===…………………(1分)∴在Rt△ABF中,tan∠F1.6CEEF EF===tan∠MHN12=…………………………(1分)∴EF=3.2米…………………………(1分)即BF=2+3+3.2=8.2米…………………………(1分)∴在Rt△CEF中,tan∠F12ABBF==∴AB=4.1米…………………………(1分)答:铁塔的高度是4.1米.…………………………(1分)22、(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)解:(1)∵ACD ADBS S∆∆:﹦1﹕2∴CD:BD=1:2 ……………………………(1分)∵DC=3 ∴BD=6 ……………………………(1分)在△ACD和△BCA中,∠CAD=∠B,∠C=∠C∴△ACD∽△BCA ……………………………(1分)∴CD ACAC CB=即2AC CD CB=…………………………………………………(1分)∴AC=…………………………………………………(1分)(2)∵翻折∴∠C=∠E,∠1=∠2,DE=DC=3 …………………………………………………(1分)∵AB∥DE∴∠3=∠B ……………………………………………………………………(1分)∵∠1=∠B∴∠1=∠3…………………………………………………(1分)∴△ACD∽△DEF …………………………………………………(1分)∴21()3EFDADCS DES AC∆∆==.…………………………………………………(1分)FEDCBA图9DCBA 图1023.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)解:(1)如图10,过点C 作CD ⊥ AB 于点D ……………(1分)在Rt △ADC 中,sinA=CDAC……………………………(1分) ∴CD=AC.sinA ……………………………(1分) ∵12ABC S AB CD ∆= ……………………………(1分) ∴1sin 2ABCS AB AC A ∆= .……………………………(1分) (2)根据题意:AP=2t 厘米 ,CQ=t 厘米∴AQ=(12—t )厘米 ………………………………(1分) 由(1)得:1sin 2APQS AP AQ A ∆= …………………(1分) ∴1sin 2(12)32112128sin 2APQ ABC AP AQ A S t t S AB AC A ∆∆-===⨯…………(1分) 化简得:212270t t -+=…………………………………(1分) 解得19t =(舍),23t = …………………………………(2+1分)即当t=3秒时,38APQ ABC S S ∆∆=. 24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6解:(1)根据题意:C (0,4)……………………………(1∵OC=4OA∴A (1-,0)………………………………………………(1把点A 代入得0=445m --+ ……………………………(1解得16=5m………………………………………………(1∴抛物线的解析式2416455y x x =-++…………………(12416455y x x =-++24362)55x =--+(∴ (20)M ,………………………………………………(1分) (2)根据题意得:BM=3,tan ∠CMO= 2,直线CM :y=2-(i )当∠COM=∠MBQ=90°时,△COM ∽△QBM ∴tan ∠BMQ=2BQBM= ∴BQ=6即Q (5,6-) ……………………………………(2分) ∴AQ :1y x =-- ……………………………………(1分) (i i )当∠COM=∠BQM=90°时,△COM ∽△BQM同理Q (13655,-) …………………………………(2分) ∴AQ :1133y x =-- …………………………………(1分)BC图1125.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分)(1)证明:∵△ACB 是等腰直角三角形∴∠CAB =∠B=45° ∵CP//AB ∴∠DCA =∠CAB=45° …………………………………………………(1分) ∴∠DCA =∠B …………………………………………………(1分) ∵∠ DAE=45° ∴∠ DAC+∠ CAE=∠ CAE+∠ EAB ∴∠ DAC =∠ EAB …………………………………………………(1分) ∴△DCA ∽△EAB …………………………………………………(1分)∴AD ACAE AB = 即AD AEAC AB =且∠ DAE =∠ CAB=45° ……………………………(1分) ∴△ADE ∽△ACB . ……………………………………………(1分) (2)过点E 作EH ⊥AB 于点H ……………………………………(1分) 由(1)得△DCA ∽△EAB ∴DC ACEB AB =∵△ACB 是等腰直角三角形,且CD=x ∴…………………(1分) ∴EH=BH= x ∴AH=4—x在Rt △AEH 中,tan ∠BAE =EH AH即y =4xx -………………………………………………………(1分)定义域0<x <2. ………………………………………………………(1分)(3)若△COD 与△BEA 相似,又△BEA 与相似△DCA 即△COD 与△DCA 相似∴只有△DCO ∽△ACD ……………………………………………(1分) ∴2CD CO CA = ∵∠DAO =∠CEO ∴∠CEO =∠EAB ∴tan ∠CEO =y 即y COCE=∴()4xCO x =- …………………………………………(1分) ∴2x=()224xx- 解得 14x =-24x =+……………………………(1分) 经检验12,x x 都是原方程的实数根,24x =+…(1分) ∴当CD=4-,△COD 与△BEA 相似.图13PDOC B AH。
2014中考数学模拟试卷含答案(20200612024042).pdf
)
2
1 ( A ) a e ; ( B) a 2e ;
2
(C) a
1 e;
2
( D) a 2e .
3.将抛物线 y = x2 向右平移 1个单位,所得新抛物线的函数解析式是(
)
( A ) y = (x +1)2;
( B ) y (x 1)2 ;
( C) y = x2 +1 ;
(D) y x2 1.
4.在 Rt△ ABC 中,∠ A=90 °,如果把这个直角三角形的各边长都扩大
19.(本题满 分 10 分)
计算: 2sin 2 60 cos2 45 cos30 tan30
tan 60 cot 45
20.(本题满分 10 分, 其中第( 1)小题 6 分,第( 2)小题 4 分)
已知一个二次函数 y x2 b x c 的图像经过点( 4, 1)和( 1 ,6).
(1)求这个二次函数的解析式;
直角三角形中,∠ B 的正切值(
)
( A )扩大 2 倍; ( B )缩小 2 倍;
( C)扩大 4 倍;
2 倍,那么所得到的 ( D)大小不变 .
5.已知在 Rt△ ABC 中,∠ C=90 °,∠ A= a ,BC=m,那么 AB 的长为(
)
( A ) m sin ; ( B) m cos ; ( C) m ; sin
18.在 Rt△ ABC 中,∠ C=90 °, cosB 3 ,
A
5
把这个直角三角形绕顶点 C 旋转后得到
D
B'
Rt△ A'B'C ,其中点 B' 正好落在 AB 上,
A'B' 与 AC 相交于点 D ,那么 B D
初三数学一模卷(闸北答案)
(图9)九年级数学学科期末练习卷答案要点与评分标准(2011年1月)(考试时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.B ; 3.D ; 4.B ; 5.C ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置]7.成比例; 8.83; 9.相反; 10.向下; 11.34; 12.3; 13.32; 14.30; 15.8; 16.2(2)6y x =++; 17.43; 18.±,0.三、解答题(本大题共7题,满分78分) 19.(本题满分10分)解:原式=222a b a ab b a a --+÷=2()a b aa ab -⋅- ················································ (2分) =1a b- ··························································································· (2分)当3tan 301311a =︒+==,45b =︒1=时, ····· (4分) 原式=1a b -. ························································· (2分)20.(本题满分10分)解:(1) BC =AC AB -=b a -; ······························ (4分)(2) 3BD DC =,BD =34BC =34(b a -), ·········· (2分)AD =AB BD +=3()4a b a +-=1344a b +. ·········· (4分)21.(本题满分10分)证明:∵E 是Rt △ACD 斜边中点,∴ED =EA ,∴∠A =∠1, ·········································· (2分)∵∠1=∠2,∴∠2=∠A , ········································· (1分) ∵∠FDC =∠CDB +∠2=90°+∠2, ∠FBD =∠ACB +∠A =90°+∠A ∴∠FBD =∠FDC ···················································· (2分)∵∠F 是公共角 ······················································ (1分)∴△FBD ∽△FDC ················································· (2分) ∴FC FD FD FB =. ····················································· (2分)AD EB FC H B ED C F 浦西 浦东 A (图11)Cxy A(图13)22.(本题满分10分)解:过点C 作CE ∥DA 交AB 于点E , ····························································· (1分)∵DC ∥AE ,∴四边形AECD 是平行四边形 ············································· (2分) ∴200AE DC m ==,300EB AB AE m =-=, ········································ (2分) ∵30CEB DAB ∠=∠=︒,又60CBF ∠=︒, ∴30ECB ∠=︒,∴300CB EB m == ······················································· (2分)在Rt CBF ∆中,sin CF CB CBF =⋅∠=300sin 60⋅︒=1503m ······················ (2分) 答:世博园段黄浦江的宽度为1503m . ·························································· (1分) 23.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)(1)证明:∵ ∠ADB =∠CDE , AD ED BD CD ⋅=⋅,∴AD BDCD ED= ················································· (2分) ∴ △ABD ∽△CED . ······································································ (2分)(2)解:作EH ⊥BF 于点E ,∵ AD =2CD ,∴ CD =2,AD =4, ····················· (2分)由(1)△ABD ∽△CED 得,AB AD CE CD =,642CE =,3CE =. ······················ (1分)∵△ABC 是等边三角形,∴60ECD A ACB ∠=∠=∠=︒,∠ECH=60°, ········· (1分)在Rt △ECH 中,∴033sin 602EH CE =⋅=03cos 602CH CE =⋅=,∴BH = BC +CH=6+32=152, ······································································· (2分)∴BE 22BH EH +221533()()22+37 ······································ (2分)24.(本题满分12分,第(1)小题满3分,第(2)小题满分5分,第(3)解:(1)在Rt △AOC 中,∵∠AOC=30 o ,AC =1.5∴OC =AC ·cot 30o =1.53332A 的坐标为332 1.5) .················ (3分) (2) ∵顶点B 的纵坐标:3.55-1.55=2,∴B (2,2),∴设抛物线的解析式为2(2)2y a x =-+ ····················································· (2分) 把点O (0,0)坐标代入得:20(02)2a =-+,解得a =12-, ∴抛物线的解析式为21(2)22y x =--+,即2122y x x =-+. ······················ (3分) (3)① ∵当332x =y ≠1.5,∴小强这一投不能把球从O 点直接投入球篮; ······· (2分)② 当y =1.5时,211.5(2)22x =--+,11x =(舍),23x =,又∵3332> ∴小强只需向后退(3332-A 点了. ··· (2分)(图甲) (图乙)25.(本题满分14分,第(1)小题满4分,第(2)小题满分6分,第(3)小题满分4分) 已知:把Rt △ABC 和Rt △DEF 按如图甲摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠BAC = ∠DEF = 90°,∠ABC = 45°,BC = 9 cm ,DE = 6 cm ,EF = 8 cm .如图乙,△DEF 从图甲的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△DEF 的顶点F 出发,以3 cm/s 的速度沿FD 向点D 匀速移动.当点P 移动到点D 时,P 点停止移动,△DEF 也随之停止移动.DE 与AC 相交于点Q ,连接BQ 、PQ ,设移动时间为t (s ).解答下列问题:(1)设三角形BQE 的面积为y (cm 2),求y 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)当t 为何值时,三角形DPQ 为等腰三角形?(3)是否存在某一时刻t ,使P 、Q 、B 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.解:(1)∠ACB = 45°,∠DEF = 90°,∴∠EQC = 45°.∴EC = EQ = t ,∴BE = 9-t .∴11(9)22y BE EQ t t =⋅=-, ····················· (3分) 即:21922y t t =-+(100t 3<≤) ························································ (1分)(2)①当DQ = DP 时,∴6-t =10-3t ,解得:t = 2s. ····································· (2分)②当PQ = PD 时,过P 作H DQ P ⊥,交DE 于点H ,则DH = HQ=6t2-,由HP ∥EF ,∴DH DP DE DF =则6t103t 2610--=,解得30t 13=s ·············································· (2分) ③当QP = QD 时,过Q 作QG DP ⊥,交DP 于点G ,则GD = GP=103t2-,可得:△DQG ∽△DFE ,∴DG DQ DE DF =,则103t6t 2610--=,解得14t 9=s ············································· (2分) (3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.则,过P 作PI BF ⊥,交BF 于点I ,∴PI ∥D E ,于是:PI FP DE FD =,∴95PI t =,125FI t =, ∴QE BE PI BI =, 则991298t 55t t t t -=-+-,解得:1t 2=s . 答:当1t 2=s ,点P 、Q 、F 三点在同一条直线上. ········································ (4分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014学年度闸北区九年级数学学科期末练习卷(2015年1月)
(考试时间:100分钟,满分:150分)
一、 选择题(本大题共6题,每题4分,满分24分)
1.如果点G 是△ABC 的重心,联结AG 并延长,交对边BC 于点D ,那么AG ︰AD 是……( )
(A )2︰3 ; (B )1︰2; (C )1︰3 ; (D )3︰4.
2.已知点D 、E 分别在△ABC 的边AB 、AC 上,下列给出的条件中,不能判定DE ∥B C 的是( )
(A )BD ︰AB = CE ︰AC ; (B )DE ︰BC = AB ︰AD ; (C )AB ︰AC = AD ︰AE ; (D )AD ︰DB = AE ︰EC .
3.下列有关向量的等式中,不一定成立的是…………………………………( )
(A )AB =-BA ; (B )︱AB ︱=︱BA ︱;
(C ) +=; (D )︱+︱=︱︱+︱|.
4.在直角△ABC 中,∠C =90°,∠A 、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中,正确的是( )
(A )cos A =
c a ; (B )tan A =a b ; (C )sin A =c a ; (D )cot A =b
a
. 5.在下列y 关于x 的函数中,一定是二次函数的是…………………………( )
(A )2x y =; (B )21
x
y =
; (C )2kx y =; (D )x k y 2=. 6.如图1,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米.他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是( )
(A )4.5米; (B )6米; (C )7.2米; (D )8米.
二、填空题(本大题共12题,每题4分,满分48分) 7.已知
y x =2
5
,则y y x -的值是 .
8.如果点P 是线段AB 的黄金分割点,且AP >PB ,那么AP
BP
的比值是 .
9.如图2,在平行四边形ABCD 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于点F ,若 S △AFD =9,则S △EFC = .
10.如果α是锐角,且tanα =cot20°,那么α= 度. 11.计算:2sin60°+tan45°= .
12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是 .(请写成1︰m 的形式). 13.如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 .
14.将抛物线5)3(2+--=x y 向下平移6个单位,所得到的抛物线的顶点坐标为 .
15.已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线上.你的 结论是: (填“是”或“否”).
图2
A B
C
E
F
图1
16.如图3,正方形DEFG 内接于Rt △ABC ,∠C =90°,AE =4,BF =9 ,则tan A = .
17.如图4,梯形ABCD 中,AD //BC ,AB =DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2
, 则图中有 对相似三角形.
18.如图5,在Rt △ABC 中,∠C =90°,点D 在边AB 上,线段D C 绕点D 逆时针旋转,端点C 恰巧落在边 AC 上的点E 处.如果
m DB AD =,n EC
AE
=.那么m 与n 满足的关系式是:m = (用含n 的代数式表示m ).
三、解答题(本大题共7题,满分78分) 19.(本题满分10分)
解方程:
4
322
--x x -x -21
=2.
20.(本题满分10分, 第(1)小题6分,第(2)小题4分)
已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).
(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式; (2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.
A
B
D
E C
图5
C A B
D
G 图3 图4
21.(本题满分10分)
如图6,已知点E 在平行四边形ABCD 的边AD 上,AE =3ED ,延长CE 到点F ,使得EF =CE ,设
=a ,BC =b ,试用a
、b 分别表示向量CE 和AF .
22.(本题满分10分)
如图7,某人在C 处看到远处有一凉亭B ,在凉亭B 正东方向有一棵大树A ,这时此人在C 处测得B 在北偏 西45°方向上,测得A 在北偏东35°方向上.又测得A 、C 之间的距离为100米,求A 、B 之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)
23.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)
如图8,已知等腰梯形ABCD 中,AD ∥BC ,AD =1,BC =3,AB =CD =2,点E 在BC 边上,AE 与BD 交于点F ,∠BAE =∠DBC ,(1)求证:△ABE ∽△BCD ;(2)求tan ∠DBC 的值;(3)求线段BF 的长.
图
8
A B F
E
D C 图6
A 图7
24.(本题满分12分, 第(1)小题6分,第(2)小题6分)
如图9,在平面直角坐标系内,已知直线4+=x y 与x 轴、y 轴分别相交于点A 和点C ,抛物线12-++=k kx x y 图像过点A 和点C ,抛物线与x 轴的另一交点是B , (1)求出此抛物线的解析式、对称轴以及B 点坐标;
(2)若在y 轴负半轴上存在点D ,能使得以A 、C 、D 为顶点的三角形与△ABC 相似,请求出点D 的坐标.
25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分)
如图10,已知在等腰 Rt △ABC 中,∠C =90°,斜边AB =2,若将△ABC 翻折,折痕EF 分别交边AC 、边BC 于点E 和点F (点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D .过点D 作DK ⊥AB ,交射线AC 于点K ,设AD =x ,y =cot ∠CFE , (1)求证:△DEK ∽△DFB ;
(2)求y 关于x 的函数解析式并写出定义域;
(3)联结CD ,当EF CD =2
3时,求x 的值.
A
B
C
备用图 A
B
C
备用图
A
B
C
E K
F
图10。